linux/arch/x86/kvm/vmx.c
Radim Krčmář 05d8d34611 KVM: nVMX: do not warn when MSR bitmap address is not backed
Before trying to do nested_get_page() in nested_vmx_merge_msr_bitmap(),
we have already checked that the MSR bitmap address is valid (4k aligned
and within physical limits).  SDM doesn't specify what happens if the
there is no memory mapped at the valid address, but Intel CPUs treat the
situation as if the bitmap was configured to trap all MSRs.

KVM already does that by returning false and a correct handling doesn't
need the guest-trigerrable warning that was reported by syzkaller:
(The warning was originally there to catch some possible bugs in nVMX.)

  ------------[ cut here ]------------
  WARNING: CPU: 0 PID: 7832 at arch/x86/kvm/vmx.c:9709
  nested_vmx_merge_msr_bitmap arch/x86/kvm/vmx.c:9709 [inline]
  WARNING: CPU: 0 PID: 7832 at arch/x86/kvm/vmx.c:9709
  nested_get_vmcs12_pages+0xfb6/0x15c0 arch/x86/kvm/vmx.c:9640
  Kernel panic - not syncing: panic_on_warn set ...
  CPU: 0 PID: 7832 Comm: syz-executor1 Not tainted 4.10.0+ #229
  Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Bochs 01/01/2011
  Call Trace:
   __dump_stack lib/dump_stack.c:15 [inline]
   dump_stack+0x2ee/0x3ef lib/dump_stack.c:51
   panic+0x1fb/0x412 kernel/panic.c:179
   __warn+0x1c4/0x1e0 kernel/panic.c:540
   warn_slowpath_null+0x2c/0x40 kernel/panic.c:583
   nested_vmx_merge_msr_bitmap arch/x86/kvm/vmx.c:9709 [inline]
   nested_get_vmcs12_pages+0xfb6/0x15c0 arch/x86/kvm/vmx.c:9640
   enter_vmx_non_root_mode arch/x86/kvm/vmx.c:10471 [inline]
   nested_vmx_run+0x6186/0xaab0 arch/x86/kvm/vmx.c:10561
   handle_vmlaunch+0x1a/0x20 arch/x86/kvm/vmx.c:7312
   vmx_handle_exit+0xfc0/0x3f00 arch/x86/kvm/vmx.c:8526
   vcpu_enter_guest arch/x86/kvm/x86.c:6982 [inline]
   vcpu_run arch/x86/kvm/x86.c:7044 [inline]
   kvm_arch_vcpu_ioctl_run+0x1418/0x4840 arch/x86/kvm/x86.c:7205
   kvm_vcpu_ioctl+0x673/0x1120 arch/x86/kvm/../../../virt/kvm/kvm_main.c:2570

Reported-by: Dmitry Vyukov <dvyukov@google.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
[Jim Mattson explained the bare metal behavior: "I believe this behavior
 would be documented in the chipset data sheet rather than the SDM,
 since the chipset returns all 1s for an unclaimed read."]
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2017-03-09 15:34:51 +01:00

11625 lines
329 KiB
C

/*
* Kernel-based Virtual Machine driver for Linux
*
* This module enables machines with Intel VT-x extensions to run virtual
* machines without emulation or binary translation.
*
* Copyright (C) 2006 Qumranet, Inc.
* Copyright 2010 Red Hat, Inc. and/or its affiliates.
*
* Authors:
* Avi Kivity <avi@qumranet.com>
* Yaniv Kamay <yaniv@qumranet.com>
*
* This work is licensed under the terms of the GNU GPL, version 2. See
* the COPYING file in the top-level directory.
*
*/
#include "irq.h"
#include "mmu.h"
#include "cpuid.h"
#include "lapic.h"
#include <linux/kvm_host.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/highmem.h>
#include <linux/sched.h>
#include <linux/moduleparam.h>
#include <linux/mod_devicetable.h>
#include <linux/trace_events.h>
#include <linux/slab.h>
#include <linux/tboot.h>
#include <linux/hrtimer.h>
#include "kvm_cache_regs.h"
#include "x86.h"
#include <asm/cpu.h>
#include <asm/io.h>
#include <asm/desc.h>
#include <asm/vmx.h>
#include <asm/virtext.h>
#include <asm/mce.h>
#include <asm/fpu/internal.h>
#include <asm/perf_event.h>
#include <asm/debugreg.h>
#include <asm/kexec.h>
#include <asm/apic.h>
#include <asm/irq_remapping.h>
#include "trace.h"
#include "pmu.h"
#define __ex(x) __kvm_handle_fault_on_reboot(x)
#define __ex_clear(x, reg) \
____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
MODULE_AUTHOR("Qumranet");
MODULE_LICENSE("GPL");
static const struct x86_cpu_id vmx_cpu_id[] = {
X86_FEATURE_MATCH(X86_FEATURE_VMX),
{}
};
MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
static bool __read_mostly enable_vpid = 1;
module_param_named(vpid, enable_vpid, bool, 0444);
static bool __read_mostly flexpriority_enabled = 1;
module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
static bool __read_mostly enable_ept = 1;
module_param_named(ept, enable_ept, bool, S_IRUGO);
static bool __read_mostly enable_unrestricted_guest = 1;
module_param_named(unrestricted_guest,
enable_unrestricted_guest, bool, S_IRUGO);
static bool __read_mostly enable_ept_ad_bits = 1;
module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
static bool __read_mostly emulate_invalid_guest_state = true;
module_param(emulate_invalid_guest_state, bool, S_IRUGO);
static bool __read_mostly vmm_exclusive = 1;
module_param(vmm_exclusive, bool, S_IRUGO);
static bool __read_mostly fasteoi = 1;
module_param(fasteoi, bool, S_IRUGO);
static bool __read_mostly enable_apicv = 1;
module_param(enable_apicv, bool, S_IRUGO);
static bool __read_mostly enable_shadow_vmcs = 1;
module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
/*
* If nested=1, nested virtualization is supported, i.e., guests may use
* VMX and be a hypervisor for its own guests. If nested=0, guests may not
* use VMX instructions.
*/
static bool __read_mostly nested = 0;
module_param(nested, bool, S_IRUGO);
static u64 __read_mostly host_xss;
static bool __read_mostly enable_pml = 1;
module_param_named(pml, enable_pml, bool, S_IRUGO);
#define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL
/* Guest_tsc -> host_tsc conversion requires 64-bit division. */
static int __read_mostly cpu_preemption_timer_multi;
static bool __read_mostly enable_preemption_timer = 1;
#ifdef CONFIG_X86_64
module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
#endif
#define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
#define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE)
#define KVM_VM_CR0_ALWAYS_ON \
(KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
#define KVM_CR4_GUEST_OWNED_BITS \
(X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
| X86_CR4_OSXMMEXCPT | X86_CR4_TSD)
#define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
#define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
#define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
#define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
/*
* Hyper-V requires all of these, so mark them as supported even though
* they are just treated the same as all-context.
*/
#define VMX_VPID_EXTENT_SUPPORTED_MASK \
(VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT | \
VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT | \
VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT | \
VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
/*
* These 2 parameters are used to config the controls for Pause-Loop Exiting:
* ple_gap: upper bound on the amount of time between two successive
* executions of PAUSE in a loop. Also indicate if ple enabled.
* According to test, this time is usually smaller than 128 cycles.
* ple_window: upper bound on the amount of time a guest is allowed to execute
* in a PAUSE loop. Tests indicate that most spinlocks are held for
* less than 2^12 cycles
* Time is measured based on a counter that runs at the same rate as the TSC,
* refer SDM volume 3b section 21.6.13 & 22.1.3.
*/
#define KVM_VMX_DEFAULT_PLE_GAP 128
#define KVM_VMX_DEFAULT_PLE_WINDOW 4096
#define KVM_VMX_DEFAULT_PLE_WINDOW_GROW 2
#define KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK 0
#define KVM_VMX_DEFAULT_PLE_WINDOW_MAX \
INT_MAX / KVM_VMX_DEFAULT_PLE_WINDOW_GROW
static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
module_param(ple_gap, int, S_IRUGO);
static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
module_param(ple_window, int, S_IRUGO);
/* Default doubles per-vcpu window every exit. */
static int ple_window_grow = KVM_VMX_DEFAULT_PLE_WINDOW_GROW;
module_param(ple_window_grow, int, S_IRUGO);
/* Default resets per-vcpu window every exit to ple_window. */
static int ple_window_shrink = KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK;
module_param(ple_window_shrink, int, S_IRUGO);
/* Default is to compute the maximum so we can never overflow. */
static int ple_window_actual_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
static int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
module_param(ple_window_max, int, S_IRUGO);
extern const ulong vmx_return;
#define NR_AUTOLOAD_MSRS 8
#define VMCS02_POOL_SIZE 1
struct vmcs {
u32 revision_id;
u32 abort;
char data[0];
};
/*
* Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
* remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
* loaded on this CPU (so we can clear them if the CPU goes down).
*/
struct loaded_vmcs {
struct vmcs *vmcs;
struct vmcs *shadow_vmcs;
int cpu;
int launched;
struct list_head loaded_vmcss_on_cpu_link;
};
struct shared_msr_entry {
unsigned index;
u64 data;
u64 mask;
};
/*
* struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
* single nested guest (L2), hence the name vmcs12. Any VMX implementation has
* a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
* stored in guest memory specified by VMPTRLD, but is opaque to the guest,
* which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
* More than one of these structures may exist, if L1 runs multiple L2 guests.
* nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
* underlying hardware which will be used to run L2.
* This structure is packed to ensure that its layout is identical across
* machines (necessary for live migration).
* If there are changes in this struct, VMCS12_REVISION must be changed.
*/
typedef u64 natural_width;
struct __packed vmcs12 {
/* According to the Intel spec, a VMCS region must start with the
* following two fields. Then follow implementation-specific data.
*/
u32 revision_id;
u32 abort;
u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
u32 padding[7]; /* room for future expansion */
u64 io_bitmap_a;
u64 io_bitmap_b;
u64 msr_bitmap;
u64 vm_exit_msr_store_addr;
u64 vm_exit_msr_load_addr;
u64 vm_entry_msr_load_addr;
u64 tsc_offset;
u64 virtual_apic_page_addr;
u64 apic_access_addr;
u64 posted_intr_desc_addr;
u64 ept_pointer;
u64 eoi_exit_bitmap0;
u64 eoi_exit_bitmap1;
u64 eoi_exit_bitmap2;
u64 eoi_exit_bitmap3;
u64 xss_exit_bitmap;
u64 guest_physical_address;
u64 vmcs_link_pointer;
u64 guest_ia32_debugctl;
u64 guest_ia32_pat;
u64 guest_ia32_efer;
u64 guest_ia32_perf_global_ctrl;
u64 guest_pdptr0;
u64 guest_pdptr1;
u64 guest_pdptr2;
u64 guest_pdptr3;
u64 guest_bndcfgs;
u64 host_ia32_pat;
u64 host_ia32_efer;
u64 host_ia32_perf_global_ctrl;
u64 padding64[8]; /* room for future expansion */
/*
* To allow migration of L1 (complete with its L2 guests) between
* machines of different natural widths (32 or 64 bit), we cannot have
* unsigned long fields with no explict size. We use u64 (aliased
* natural_width) instead. Luckily, x86 is little-endian.
*/
natural_width cr0_guest_host_mask;
natural_width cr4_guest_host_mask;
natural_width cr0_read_shadow;
natural_width cr4_read_shadow;
natural_width cr3_target_value0;
natural_width cr3_target_value1;
natural_width cr3_target_value2;
natural_width cr3_target_value3;
natural_width exit_qualification;
natural_width guest_linear_address;
natural_width guest_cr0;
natural_width guest_cr3;
natural_width guest_cr4;
natural_width guest_es_base;
natural_width guest_cs_base;
natural_width guest_ss_base;
natural_width guest_ds_base;
natural_width guest_fs_base;
natural_width guest_gs_base;
natural_width guest_ldtr_base;
natural_width guest_tr_base;
natural_width guest_gdtr_base;
natural_width guest_idtr_base;
natural_width guest_dr7;
natural_width guest_rsp;
natural_width guest_rip;
natural_width guest_rflags;
natural_width guest_pending_dbg_exceptions;
natural_width guest_sysenter_esp;
natural_width guest_sysenter_eip;
natural_width host_cr0;
natural_width host_cr3;
natural_width host_cr4;
natural_width host_fs_base;
natural_width host_gs_base;
natural_width host_tr_base;
natural_width host_gdtr_base;
natural_width host_idtr_base;
natural_width host_ia32_sysenter_esp;
natural_width host_ia32_sysenter_eip;
natural_width host_rsp;
natural_width host_rip;
natural_width paddingl[8]; /* room for future expansion */
u32 pin_based_vm_exec_control;
u32 cpu_based_vm_exec_control;
u32 exception_bitmap;
u32 page_fault_error_code_mask;
u32 page_fault_error_code_match;
u32 cr3_target_count;
u32 vm_exit_controls;
u32 vm_exit_msr_store_count;
u32 vm_exit_msr_load_count;
u32 vm_entry_controls;
u32 vm_entry_msr_load_count;
u32 vm_entry_intr_info_field;
u32 vm_entry_exception_error_code;
u32 vm_entry_instruction_len;
u32 tpr_threshold;
u32 secondary_vm_exec_control;
u32 vm_instruction_error;
u32 vm_exit_reason;
u32 vm_exit_intr_info;
u32 vm_exit_intr_error_code;
u32 idt_vectoring_info_field;
u32 idt_vectoring_error_code;
u32 vm_exit_instruction_len;
u32 vmx_instruction_info;
u32 guest_es_limit;
u32 guest_cs_limit;
u32 guest_ss_limit;
u32 guest_ds_limit;
u32 guest_fs_limit;
u32 guest_gs_limit;
u32 guest_ldtr_limit;
u32 guest_tr_limit;
u32 guest_gdtr_limit;
u32 guest_idtr_limit;
u32 guest_es_ar_bytes;
u32 guest_cs_ar_bytes;
u32 guest_ss_ar_bytes;
u32 guest_ds_ar_bytes;
u32 guest_fs_ar_bytes;
u32 guest_gs_ar_bytes;
u32 guest_ldtr_ar_bytes;
u32 guest_tr_ar_bytes;
u32 guest_interruptibility_info;
u32 guest_activity_state;
u32 guest_sysenter_cs;
u32 host_ia32_sysenter_cs;
u32 vmx_preemption_timer_value;
u32 padding32[7]; /* room for future expansion */
u16 virtual_processor_id;
u16 posted_intr_nv;
u16 guest_es_selector;
u16 guest_cs_selector;
u16 guest_ss_selector;
u16 guest_ds_selector;
u16 guest_fs_selector;
u16 guest_gs_selector;
u16 guest_ldtr_selector;
u16 guest_tr_selector;
u16 guest_intr_status;
u16 host_es_selector;
u16 host_cs_selector;
u16 host_ss_selector;
u16 host_ds_selector;
u16 host_fs_selector;
u16 host_gs_selector;
u16 host_tr_selector;
};
/*
* VMCS12_REVISION is an arbitrary id that should be changed if the content or
* layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
* VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
*/
#define VMCS12_REVISION 0x11e57ed0
/*
* VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
* and any VMCS region. Although only sizeof(struct vmcs12) are used by the
* current implementation, 4K are reserved to avoid future complications.
*/
#define VMCS12_SIZE 0x1000
/* Used to remember the last vmcs02 used for some recently used vmcs12s */
struct vmcs02_list {
struct list_head list;
gpa_t vmptr;
struct loaded_vmcs vmcs02;
};
/*
* The nested_vmx structure is part of vcpu_vmx, and holds information we need
* for correct emulation of VMX (i.e., nested VMX) on this vcpu.
*/
struct nested_vmx {
/* Has the level1 guest done vmxon? */
bool vmxon;
gpa_t vmxon_ptr;
/* The guest-physical address of the current VMCS L1 keeps for L2 */
gpa_t current_vmptr;
/* The host-usable pointer to the above */
struct page *current_vmcs12_page;
struct vmcs12 *current_vmcs12;
/*
* Cache of the guest's VMCS, existing outside of guest memory.
* Loaded from guest memory during VMPTRLD. Flushed to guest
* memory during VMXOFF, VMCLEAR, VMPTRLD.
*/
struct vmcs12 *cached_vmcs12;
/*
* Indicates if the shadow vmcs must be updated with the
* data hold by vmcs12
*/
bool sync_shadow_vmcs;
/* vmcs02_list cache of VMCSs recently used to run L2 guests */
struct list_head vmcs02_pool;
int vmcs02_num;
bool change_vmcs01_virtual_x2apic_mode;
/* L2 must run next, and mustn't decide to exit to L1. */
bool nested_run_pending;
/*
* Guest pages referred to in vmcs02 with host-physical pointers, so
* we must keep them pinned while L2 runs.
*/
struct page *apic_access_page;
struct page *virtual_apic_page;
struct page *pi_desc_page;
struct pi_desc *pi_desc;
bool pi_pending;
u16 posted_intr_nv;
unsigned long *msr_bitmap;
struct hrtimer preemption_timer;
bool preemption_timer_expired;
/* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */
u64 vmcs01_debugctl;
u16 vpid02;
u16 last_vpid;
/*
* We only store the "true" versions of the VMX capability MSRs. We
* generate the "non-true" versions by setting the must-be-1 bits
* according to the SDM.
*/
u32 nested_vmx_procbased_ctls_low;
u32 nested_vmx_procbased_ctls_high;
u32 nested_vmx_secondary_ctls_low;
u32 nested_vmx_secondary_ctls_high;
u32 nested_vmx_pinbased_ctls_low;
u32 nested_vmx_pinbased_ctls_high;
u32 nested_vmx_exit_ctls_low;
u32 nested_vmx_exit_ctls_high;
u32 nested_vmx_entry_ctls_low;
u32 nested_vmx_entry_ctls_high;
u32 nested_vmx_misc_low;
u32 nested_vmx_misc_high;
u32 nested_vmx_ept_caps;
u32 nested_vmx_vpid_caps;
u64 nested_vmx_basic;
u64 nested_vmx_cr0_fixed0;
u64 nested_vmx_cr0_fixed1;
u64 nested_vmx_cr4_fixed0;
u64 nested_vmx_cr4_fixed1;
u64 nested_vmx_vmcs_enum;
};
#define POSTED_INTR_ON 0
#define POSTED_INTR_SN 1
/* Posted-Interrupt Descriptor */
struct pi_desc {
u32 pir[8]; /* Posted interrupt requested */
union {
struct {
/* bit 256 - Outstanding Notification */
u16 on : 1,
/* bit 257 - Suppress Notification */
sn : 1,
/* bit 271:258 - Reserved */
rsvd_1 : 14;
/* bit 279:272 - Notification Vector */
u8 nv;
/* bit 287:280 - Reserved */
u8 rsvd_2;
/* bit 319:288 - Notification Destination */
u32 ndst;
};
u64 control;
};
u32 rsvd[6];
} __aligned(64);
static bool pi_test_and_set_on(struct pi_desc *pi_desc)
{
return test_and_set_bit(POSTED_INTR_ON,
(unsigned long *)&pi_desc->control);
}
static bool pi_test_and_clear_on(struct pi_desc *pi_desc)
{
return test_and_clear_bit(POSTED_INTR_ON,
(unsigned long *)&pi_desc->control);
}
static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
{
return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
}
static inline void pi_clear_sn(struct pi_desc *pi_desc)
{
return clear_bit(POSTED_INTR_SN,
(unsigned long *)&pi_desc->control);
}
static inline void pi_set_sn(struct pi_desc *pi_desc)
{
return set_bit(POSTED_INTR_SN,
(unsigned long *)&pi_desc->control);
}
static inline void pi_clear_on(struct pi_desc *pi_desc)
{
clear_bit(POSTED_INTR_ON,
(unsigned long *)&pi_desc->control);
}
static inline int pi_test_on(struct pi_desc *pi_desc)
{
return test_bit(POSTED_INTR_ON,
(unsigned long *)&pi_desc->control);
}
static inline int pi_test_sn(struct pi_desc *pi_desc)
{
return test_bit(POSTED_INTR_SN,
(unsigned long *)&pi_desc->control);
}
struct vcpu_vmx {
struct kvm_vcpu vcpu;
unsigned long host_rsp;
u8 fail;
bool nmi_known_unmasked;
u32 exit_intr_info;
u32 idt_vectoring_info;
ulong rflags;
struct shared_msr_entry *guest_msrs;
int nmsrs;
int save_nmsrs;
unsigned long host_idt_base;
#ifdef CONFIG_X86_64
u64 msr_host_kernel_gs_base;
u64 msr_guest_kernel_gs_base;
#endif
u32 vm_entry_controls_shadow;
u32 vm_exit_controls_shadow;
/*
* loaded_vmcs points to the VMCS currently used in this vcpu. For a
* non-nested (L1) guest, it always points to vmcs01. For a nested
* guest (L2), it points to a different VMCS.
*/
struct loaded_vmcs vmcs01;
struct loaded_vmcs *loaded_vmcs;
bool __launched; /* temporary, used in vmx_vcpu_run */
struct msr_autoload {
unsigned nr;
struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
} msr_autoload;
struct {
int loaded;
u16 fs_sel, gs_sel, ldt_sel;
#ifdef CONFIG_X86_64
u16 ds_sel, es_sel;
#endif
int gs_ldt_reload_needed;
int fs_reload_needed;
u64 msr_host_bndcfgs;
unsigned long vmcs_host_cr4; /* May not match real cr4 */
} host_state;
struct {
int vm86_active;
ulong save_rflags;
struct kvm_segment segs[8];
} rmode;
struct {
u32 bitmask; /* 4 bits per segment (1 bit per field) */
struct kvm_save_segment {
u16 selector;
unsigned long base;
u32 limit;
u32 ar;
} seg[8];
} segment_cache;
int vpid;
bool emulation_required;
/* Support for vnmi-less CPUs */
int soft_vnmi_blocked;
ktime_t entry_time;
s64 vnmi_blocked_time;
u32 exit_reason;
/* Posted interrupt descriptor */
struct pi_desc pi_desc;
/* Support for a guest hypervisor (nested VMX) */
struct nested_vmx nested;
/* Dynamic PLE window. */
int ple_window;
bool ple_window_dirty;
/* Support for PML */
#define PML_ENTITY_NUM 512
struct page *pml_pg;
/* apic deadline value in host tsc */
u64 hv_deadline_tsc;
u64 current_tsc_ratio;
bool guest_pkru_valid;
u32 guest_pkru;
u32 host_pkru;
/*
* Only bits masked by msr_ia32_feature_control_valid_bits can be set in
* msr_ia32_feature_control. FEATURE_CONTROL_LOCKED is always included
* in msr_ia32_feature_control_valid_bits.
*/
u64 msr_ia32_feature_control;
u64 msr_ia32_feature_control_valid_bits;
};
enum segment_cache_field {
SEG_FIELD_SEL = 0,
SEG_FIELD_BASE = 1,
SEG_FIELD_LIMIT = 2,
SEG_FIELD_AR = 3,
SEG_FIELD_NR = 4
};
static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
{
return container_of(vcpu, struct vcpu_vmx, vcpu);
}
static struct pi_desc *vcpu_to_pi_desc(struct kvm_vcpu *vcpu)
{
return &(to_vmx(vcpu)->pi_desc);
}
#define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
#define FIELD(number, name) [number] = VMCS12_OFFSET(name)
#define FIELD64(number, name) [number] = VMCS12_OFFSET(name), \
[number##_HIGH] = VMCS12_OFFSET(name)+4
static unsigned long shadow_read_only_fields[] = {
/*
* We do NOT shadow fields that are modified when L0
* traps and emulates any vmx instruction (e.g. VMPTRLD,
* VMXON...) executed by L1.
* For example, VM_INSTRUCTION_ERROR is read
* by L1 if a vmx instruction fails (part of the error path).
* Note the code assumes this logic. If for some reason
* we start shadowing these fields then we need to
* force a shadow sync when L0 emulates vmx instructions
* (e.g. force a sync if VM_INSTRUCTION_ERROR is modified
* by nested_vmx_failValid)
*/
VM_EXIT_REASON,
VM_EXIT_INTR_INFO,
VM_EXIT_INSTRUCTION_LEN,
IDT_VECTORING_INFO_FIELD,
IDT_VECTORING_ERROR_CODE,
VM_EXIT_INTR_ERROR_CODE,
EXIT_QUALIFICATION,
GUEST_LINEAR_ADDRESS,
GUEST_PHYSICAL_ADDRESS
};
static int max_shadow_read_only_fields =
ARRAY_SIZE(shadow_read_only_fields);
static unsigned long shadow_read_write_fields[] = {
TPR_THRESHOLD,
GUEST_RIP,
GUEST_RSP,
GUEST_CR0,
GUEST_CR3,
GUEST_CR4,
GUEST_INTERRUPTIBILITY_INFO,
GUEST_RFLAGS,
GUEST_CS_SELECTOR,
GUEST_CS_AR_BYTES,
GUEST_CS_LIMIT,
GUEST_CS_BASE,
GUEST_ES_BASE,
GUEST_BNDCFGS,
CR0_GUEST_HOST_MASK,
CR0_READ_SHADOW,
CR4_READ_SHADOW,
TSC_OFFSET,
EXCEPTION_BITMAP,
CPU_BASED_VM_EXEC_CONTROL,
VM_ENTRY_EXCEPTION_ERROR_CODE,
VM_ENTRY_INTR_INFO_FIELD,
VM_ENTRY_INSTRUCTION_LEN,
VM_ENTRY_EXCEPTION_ERROR_CODE,
HOST_FS_BASE,
HOST_GS_BASE,
HOST_FS_SELECTOR,
HOST_GS_SELECTOR
};
static int max_shadow_read_write_fields =
ARRAY_SIZE(shadow_read_write_fields);
static const unsigned short vmcs_field_to_offset_table[] = {
FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
FIELD(POSTED_INTR_NV, posted_intr_nv),
FIELD(GUEST_ES_SELECTOR, guest_es_selector),
FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
FIELD(GUEST_INTR_STATUS, guest_intr_status),
FIELD(HOST_ES_SELECTOR, host_es_selector),
FIELD(HOST_CS_SELECTOR, host_cs_selector),
FIELD(HOST_SS_SELECTOR, host_ss_selector),
FIELD(HOST_DS_SELECTOR, host_ds_selector),
FIELD(HOST_FS_SELECTOR, host_fs_selector),
FIELD(HOST_GS_SELECTOR, host_gs_selector),
FIELD(HOST_TR_SELECTOR, host_tr_selector),
FIELD64(IO_BITMAP_A, io_bitmap_a),
FIELD64(IO_BITMAP_B, io_bitmap_b),
FIELD64(MSR_BITMAP, msr_bitmap),
FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
FIELD64(TSC_OFFSET, tsc_offset),
FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
FIELD64(POSTED_INTR_DESC_ADDR, posted_intr_desc_addr),
FIELD64(EPT_POINTER, ept_pointer),
FIELD64(EOI_EXIT_BITMAP0, eoi_exit_bitmap0),
FIELD64(EOI_EXIT_BITMAP1, eoi_exit_bitmap1),
FIELD64(EOI_EXIT_BITMAP2, eoi_exit_bitmap2),
FIELD64(EOI_EXIT_BITMAP3, eoi_exit_bitmap3),
FIELD64(XSS_EXIT_BITMAP, xss_exit_bitmap),
FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
FIELD64(GUEST_PDPTR0, guest_pdptr0),
FIELD64(GUEST_PDPTR1, guest_pdptr1),
FIELD64(GUEST_PDPTR2, guest_pdptr2),
FIELD64(GUEST_PDPTR3, guest_pdptr3),
FIELD64(GUEST_BNDCFGS, guest_bndcfgs),
FIELD64(HOST_IA32_PAT, host_ia32_pat),
FIELD64(HOST_IA32_EFER, host_ia32_efer),
FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
FIELD(EXCEPTION_BITMAP, exception_bitmap),
FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
FIELD(CR3_TARGET_COUNT, cr3_target_count),
FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
FIELD(TPR_THRESHOLD, tpr_threshold),
FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
FIELD(VM_EXIT_REASON, vm_exit_reason),
FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
FIELD(GUEST_ES_LIMIT, guest_es_limit),
FIELD(GUEST_CS_LIMIT, guest_cs_limit),
FIELD(GUEST_SS_LIMIT, guest_ss_limit),
FIELD(GUEST_DS_LIMIT, guest_ds_limit),
FIELD(GUEST_FS_LIMIT, guest_fs_limit),
FIELD(GUEST_GS_LIMIT, guest_gs_limit),
FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
FIELD(GUEST_TR_LIMIT, guest_tr_limit),
FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value),
FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
FIELD(CR0_READ_SHADOW, cr0_read_shadow),
FIELD(CR4_READ_SHADOW, cr4_read_shadow),
FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
FIELD(EXIT_QUALIFICATION, exit_qualification),
FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
FIELD(GUEST_CR0, guest_cr0),
FIELD(GUEST_CR3, guest_cr3),
FIELD(GUEST_CR4, guest_cr4),
FIELD(GUEST_ES_BASE, guest_es_base),
FIELD(GUEST_CS_BASE, guest_cs_base),
FIELD(GUEST_SS_BASE, guest_ss_base),
FIELD(GUEST_DS_BASE, guest_ds_base),
FIELD(GUEST_FS_BASE, guest_fs_base),
FIELD(GUEST_GS_BASE, guest_gs_base),
FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
FIELD(GUEST_TR_BASE, guest_tr_base),
FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
FIELD(GUEST_IDTR_BASE, guest_idtr_base),
FIELD(GUEST_DR7, guest_dr7),
FIELD(GUEST_RSP, guest_rsp),
FIELD(GUEST_RIP, guest_rip),
FIELD(GUEST_RFLAGS, guest_rflags),
FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
FIELD(HOST_CR0, host_cr0),
FIELD(HOST_CR3, host_cr3),
FIELD(HOST_CR4, host_cr4),
FIELD(HOST_FS_BASE, host_fs_base),
FIELD(HOST_GS_BASE, host_gs_base),
FIELD(HOST_TR_BASE, host_tr_base),
FIELD(HOST_GDTR_BASE, host_gdtr_base),
FIELD(HOST_IDTR_BASE, host_idtr_base),
FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
FIELD(HOST_RSP, host_rsp),
FIELD(HOST_RIP, host_rip),
};
static inline short vmcs_field_to_offset(unsigned long field)
{
BUILD_BUG_ON(ARRAY_SIZE(vmcs_field_to_offset_table) > SHRT_MAX);
if (field >= ARRAY_SIZE(vmcs_field_to_offset_table) ||
vmcs_field_to_offset_table[field] == 0)
return -ENOENT;
return vmcs_field_to_offset_table[field];
}
static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
{
return to_vmx(vcpu)->nested.cached_vmcs12;
}
static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
{
struct page *page = kvm_vcpu_gfn_to_page(vcpu, addr >> PAGE_SHIFT);
if (is_error_page(page))
return NULL;
return page;
}
static void nested_release_page(struct page *page)
{
kvm_release_page_dirty(page);
}
static void nested_release_page_clean(struct page *page)
{
kvm_release_page_clean(page);
}
static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu);
static u64 construct_eptp(unsigned long root_hpa);
static void kvm_cpu_vmxon(u64 addr);
static void kvm_cpu_vmxoff(void);
static bool vmx_xsaves_supported(void);
static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
static void vmx_set_segment(struct kvm_vcpu *vcpu,
struct kvm_segment *var, int seg);
static void vmx_get_segment(struct kvm_vcpu *vcpu,
struct kvm_segment *var, int seg);
static bool guest_state_valid(struct kvm_vcpu *vcpu);
static u32 vmx_segment_access_rights(struct kvm_segment *var);
static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx);
static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx);
static int alloc_identity_pagetable(struct kvm *kvm);
static DEFINE_PER_CPU(struct vmcs *, vmxarea);
static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
/*
* We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
* when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
*/
static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
/*
* We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we
* can find which vCPU should be waken up.
*/
static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu);
static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock);
enum {
VMX_IO_BITMAP_A,
VMX_IO_BITMAP_B,
VMX_MSR_BITMAP_LEGACY,
VMX_MSR_BITMAP_LONGMODE,
VMX_MSR_BITMAP_LEGACY_X2APIC_APICV,
VMX_MSR_BITMAP_LONGMODE_X2APIC_APICV,
VMX_MSR_BITMAP_LEGACY_X2APIC,
VMX_MSR_BITMAP_LONGMODE_X2APIC,
VMX_VMREAD_BITMAP,
VMX_VMWRITE_BITMAP,
VMX_BITMAP_NR
};
static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
#define vmx_io_bitmap_a (vmx_bitmap[VMX_IO_BITMAP_A])
#define vmx_io_bitmap_b (vmx_bitmap[VMX_IO_BITMAP_B])
#define vmx_msr_bitmap_legacy (vmx_bitmap[VMX_MSR_BITMAP_LEGACY])
#define vmx_msr_bitmap_longmode (vmx_bitmap[VMX_MSR_BITMAP_LONGMODE])
#define vmx_msr_bitmap_legacy_x2apic_apicv (vmx_bitmap[VMX_MSR_BITMAP_LEGACY_X2APIC_APICV])
#define vmx_msr_bitmap_longmode_x2apic_apicv (vmx_bitmap[VMX_MSR_BITMAP_LONGMODE_X2APIC_APICV])
#define vmx_msr_bitmap_legacy_x2apic (vmx_bitmap[VMX_MSR_BITMAP_LEGACY_X2APIC])
#define vmx_msr_bitmap_longmode_x2apic (vmx_bitmap[VMX_MSR_BITMAP_LONGMODE_X2APIC])
#define vmx_vmread_bitmap (vmx_bitmap[VMX_VMREAD_BITMAP])
#define vmx_vmwrite_bitmap (vmx_bitmap[VMX_VMWRITE_BITMAP])
static bool cpu_has_load_ia32_efer;
static bool cpu_has_load_perf_global_ctrl;
static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
static DEFINE_SPINLOCK(vmx_vpid_lock);
static struct vmcs_config {
int size;
int order;
u32 basic_cap;
u32 revision_id;
u32 pin_based_exec_ctrl;
u32 cpu_based_exec_ctrl;
u32 cpu_based_2nd_exec_ctrl;
u32 vmexit_ctrl;
u32 vmentry_ctrl;
} vmcs_config;
static struct vmx_capability {
u32 ept;
u32 vpid;
} vmx_capability;
#define VMX_SEGMENT_FIELD(seg) \
[VCPU_SREG_##seg] = { \
.selector = GUEST_##seg##_SELECTOR, \
.base = GUEST_##seg##_BASE, \
.limit = GUEST_##seg##_LIMIT, \
.ar_bytes = GUEST_##seg##_AR_BYTES, \
}
static const struct kvm_vmx_segment_field {
unsigned selector;
unsigned base;
unsigned limit;
unsigned ar_bytes;
} kvm_vmx_segment_fields[] = {
VMX_SEGMENT_FIELD(CS),
VMX_SEGMENT_FIELD(DS),
VMX_SEGMENT_FIELD(ES),
VMX_SEGMENT_FIELD(FS),
VMX_SEGMENT_FIELD(GS),
VMX_SEGMENT_FIELD(SS),
VMX_SEGMENT_FIELD(TR),
VMX_SEGMENT_FIELD(LDTR),
};
static u64 host_efer;
static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
/*
* Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
* away by decrementing the array size.
*/
static const u32 vmx_msr_index[] = {
#ifdef CONFIG_X86_64
MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
#endif
MSR_EFER, MSR_TSC_AUX, MSR_STAR,
};
static inline bool is_exception_n(u32 intr_info, u8 vector)
{
return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
INTR_INFO_VALID_MASK)) ==
(INTR_TYPE_HARD_EXCEPTION | vector | INTR_INFO_VALID_MASK);
}
static inline bool is_debug(u32 intr_info)
{
return is_exception_n(intr_info, DB_VECTOR);
}
static inline bool is_breakpoint(u32 intr_info)
{
return is_exception_n(intr_info, BP_VECTOR);
}
static inline bool is_page_fault(u32 intr_info)
{
return is_exception_n(intr_info, PF_VECTOR);
}
static inline bool is_no_device(u32 intr_info)
{
return is_exception_n(intr_info, NM_VECTOR);
}
static inline bool is_invalid_opcode(u32 intr_info)
{
return is_exception_n(intr_info, UD_VECTOR);
}
static inline bool is_external_interrupt(u32 intr_info)
{
return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
== (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
}
static inline bool is_machine_check(u32 intr_info)
{
return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
INTR_INFO_VALID_MASK)) ==
(INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
}
static inline bool cpu_has_vmx_msr_bitmap(void)
{
return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
}
static inline bool cpu_has_vmx_tpr_shadow(void)
{
return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
}
static inline bool cpu_need_tpr_shadow(struct kvm_vcpu *vcpu)
{
return cpu_has_vmx_tpr_shadow() && lapic_in_kernel(vcpu);
}
static inline bool cpu_has_secondary_exec_ctrls(void)
{
return vmcs_config.cpu_based_exec_ctrl &
CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
}
static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
{
return vmcs_config.cpu_based_2nd_exec_ctrl &
SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
}
static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
{
return vmcs_config.cpu_based_2nd_exec_ctrl &
SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
}
static inline bool cpu_has_vmx_apic_register_virt(void)
{
return vmcs_config.cpu_based_2nd_exec_ctrl &
SECONDARY_EXEC_APIC_REGISTER_VIRT;
}
static inline bool cpu_has_vmx_virtual_intr_delivery(void)
{
return vmcs_config.cpu_based_2nd_exec_ctrl &
SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
}
/*
* Comment's format: document - errata name - stepping - processor name.
* Refer from
* https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
*/
static u32 vmx_preemption_cpu_tfms[] = {
/* 323344.pdf - BA86 - D0 - Xeon 7500 Series */
0x000206E6,
/* 323056.pdf - AAX65 - C2 - Xeon L3406 */
/* 322814.pdf - AAT59 - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
/* 322911.pdf - AAU65 - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
0x00020652,
/* 322911.pdf - AAU65 - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
0x00020655,
/* 322373.pdf - AAO95 - B1 - Xeon 3400 Series */
/* 322166.pdf - AAN92 - B1 - i7-800 and i5-700 Desktop */
/*
* 320767.pdf - AAP86 - B1 -
* i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
*/
0x000106E5,
/* 321333.pdf - AAM126 - C0 - Xeon 3500 */
0x000106A0,
/* 321333.pdf - AAM126 - C1 - Xeon 3500 */
0x000106A1,
/* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
0x000106A4,
/* 321333.pdf - AAM126 - D0 - Xeon 3500 */
/* 321324.pdf - AAK139 - D0 - Xeon 5500 */
/* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
0x000106A5,
};
static inline bool cpu_has_broken_vmx_preemption_timer(void)
{
u32 eax = cpuid_eax(0x00000001), i;
/* Clear the reserved bits */
eax &= ~(0x3U << 14 | 0xfU << 28);
for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
if (eax == vmx_preemption_cpu_tfms[i])
return true;
return false;
}
static inline bool cpu_has_vmx_preemption_timer(void)
{
return vmcs_config.pin_based_exec_ctrl &
PIN_BASED_VMX_PREEMPTION_TIMER;
}
static inline bool cpu_has_vmx_posted_intr(void)
{
return IS_ENABLED(CONFIG_X86_LOCAL_APIC) &&
vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR;
}
static inline bool cpu_has_vmx_apicv(void)
{
return cpu_has_vmx_apic_register_virt() &&
cpu_has_vmx_virtual_intr_delivery() &&
cpu_has_vmx_posted_intr();
}
static inline bool cpu_has_vmx_flexpriority(void)
{
return cpu_has_vmx_tpr_shadow() &&
cpu_has_vmx_virtualize_apic_accesses();
}
static inline bool cpu_has_vmx_ept_execute_only(void)
{
return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
}
static inline bool cpu_has_vmx_ept_2m_page(void)
{
return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
}
static inline bool cpu_has_vmx_ept_1g_page(void)
{
return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
}
static inline bool cpu_has_vmx_ept_4levels(void)
{
return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
}
static inline bool cpu_has_vmx_ept_ad_bits(void)
{
return vmx_capability.ept & VMX_EPT_AD_BIT;
}
static inline bool cpu_has_vmx_invept_context(void)
{
return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
}
static inline bool cpu_has_vmx_invept_global(void)
{
return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
}
static inline bool cpu_has_vmx_invvpid_single(void)
{
return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
}
static inline bool cpu_has_vmx_invvpid_global(void)
{
return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
}
static inline bool cpu_has_vmx_ept(void)
{
return vmcs_config.cpu_based_2nd_exec_ctrl &
SECONDARY_EXEC_ENABLE_EPT;
}
static inline bool cpu_has_vmx_unrestricted_guest(void)
{
return vmcs_config.cpu_based_2nd_exec_ctrl &
SECONDARY_EXEC_UNRESTRICTED_GUEST;
}
static inline bool cpu_has_vmx_ple(void)
{
return vmcs_config.cpu_based_2nd_exec_ctrl &
SECONDARY_EXEC_PAUSE_LOOP_EXITING;
}
static inline bool cpu_has_vmx_basic_inout(void)
{
return (((u64)vmcs_config.basic_cap << 32) & VMX_BASIC_INOUT);
}
static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
{
return flexpriority_enabled && lapic_in_kernel(vcpu);
}
static inline bool cpu_has_vmx_vpid(void)
{
return vmcs_config.cpu_based_2nd_exec_ctrl &
SECONDARY_EXEC_ENABLE_VPID;
}
static inline bool cpu_has_vmx_rdtscp(void)
{
return vmcs_config.cpu_based_2nd_exec_ctrl &
SECONDARY_EXEC_RDTSCP;
}
static inline bool cpu_has_vmx_invpcid(void)
{
return vmcs_config.cpu_based_2nd_exec_ctrl &
SECONDARY_EXEC_ENABLE_INVPCID;
}
static inline bool cpu_has_virtual_nmis(void)
{
return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
}
static inline bool cpu_has_vmx_wbinvd_exit(void)
{
return vmcs_config.cpu_based_2nd_exec_ctrl &
SECONDARY_EXEC_WBINVD_EXITING;
}
static inline bool cpu_has_vmx_shadow_vmcs(void)
{
u64 vmx_msr;
rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
/* check if the cpu supports writing r/o exit information fields */
if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS))
return false;
return vmcs_config.cpu_based_2nd_exec_ctrl &
SECONDARY_EXEC_SHADOW_VMCS;
}
static inline bool cpu_has_vmx_pml(void)
{
return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_ENABLE_PML;
}
static inline bool cpu_has_vmx_tsc_scaling(void)
{
return vmcs_config.cpu_based_2nd_exec_ctrl &
SECONDARY_EXEC_TSC_SCALING;
}
static inline bool report_flexpriority(void)
{
return flexpriority_enabled;
}
static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
{
return vmcs12->cpu_based_vm_exec_control & bit;
}
static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
{
return (vmcs12->cpu_based_vm_exec_control &
CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
(vmcs12->secondary_vm_exec_control & bit);
}
static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12)
{
return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
}
static inline bool nested_cpu_has_preemption_timer(struct vmcs12 *vmcs12)
{
return vmcs12->pin_based_vm_exec_control &
PIN_BASED_VMX_PREEMPTION_TIMER;
}
static inline int nested_cpu_has_ept(struct vmcs12 *vmcs12)
{
return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_EPT);
}
static inline bool nested_cpu_has_xsaves(struct vmcs12 *vmcs12)
{
return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES) &&
vmx_xsaves_supported();
}
static inline bool nested_cpu_has_virt_x2apic_mode(struct vmcs12 *vmcs12)
{
return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
}
static inline bool nested_cpu_has_vpid(struct vmcs12 *vmcs12)
{
return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_VPID);
}
static inline bool nested_cpu_has_apic_reg_virt(struct vmcs12 *vmcs12)
{
return nested_cpu_has2(vmcs12, SECONDARY_EXEC_APIC_REGISTER_VIRT);
}
static inline bool nested_cpu_has_vid(struct vmcs12 *vmcs12)
{
return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
}
static inline bool nested_cpu_has_posted_intr(struct vmcs12 *vmcs12)
{
return vmcs12->pin_based_vm_exec_control & PIN_BASED_POSTED_INTR;
}
static inline bool is_nmi(u32 intr_info)
{
return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
== (INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK);
}
static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
u32 exit_intr_info,
unsigned long exit_qualification);
static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
struct vmcs12 *vmcs12,
u32 reason, unsigned long qualification);
static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
{
int i;
for (i = 0; i < vmx->nmsrs; ++i)
if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
return i;
return -1;
}
static inline void __invvpid(int ext, u16 vpid, gva_t gva)
{
struct {
u64 vpid : 16;
u64 rsvd : 48;
u64 gva;
} operand = { vpid, 0, gva };
asm volatile (__ex(ASM_VMX_INVVPID)
/* CF==1 or ZF==1 --> rc = -1 */
"; ja 1f ; ud2 ; 1:"
: : "a"(&operand), "c"(ext) : "cc", "memory");
}
static inline void __invept(int ext, u64 eptp, gpa_t gpa)
{
struct {
u64 eptp, gpa;
} operand = {eptp, gpa};
asm volatile (__ex(ASM_VMX_INVEPT)
/* CF==1 or ZF==1 --> rc = -1 */
"; ja 1f ; ud2 ; 1:\n"
: : "a" (&operand), "c" (ext) : "cc", "memory");
}
static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
{
int i;
i = __find_msr_index(vmx, msr);
if (i >= 0)
return &vmx->guest_msrs[i];
return NULL;
}
static void vmcs_clear(struct vmcs *vmcs)
{
u64 phys_addr = __pa(vmcs);
u8 error;
asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
: "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
: "cc", "memory");
if (error)
printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
vmcs, phys_addr);
}
static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
{
vmcs_clear(loaded_vmcs->vmcs);
if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
vmcs_clear(loaded_vmcs->shadow_vmcs);
loaded_vmcs->cpu = -1;
loaded_vmcs->launched = 0;
}
static void vmcs_load(struct vmcs *vmcs)
{
u64 phys_addr = __pa(vmcs);
u8 error;
asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
: "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
: "cc", "memory");
if (error)
printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
vmcs, phys_addr);
}
#ifdef CONFIG_KEXEC_CORE
/*
* This bitmap is used to indicate whether the vmclear
* operation is enabled on all cpus. All disabled by
* default.
*/
static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
static inline void crash_enable_local_vmclear(int cpu)
{
cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
}
static inline void crash_disable_local_vmclear(int cpu)
{
cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
}
static inline int crash_local_vmclear_enabled(int cpu)
{
return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
}
static void crash_vmclear_local_loaded_vmcss(void)
{
int cpu = raw_smp_processor_id();
struct loaded_vmcs *v;
if (!crash_local_vmclear_enabled(cpu))
return;
list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
loaded_vmcss_on_cpu_link)
vmcs_clear(v->vmcs);
}
#else
static inline void crash_enable_local_vmclear(int cpu) { }
static inline void crash_disable_local_vmclear(int cpu) { }
#endif /* CONFIG_KEXEC_CORE */
static void __loaded_vmcs_clear(void *arg)
{
struct loaded_vmcs *loaded_vmcs = arg;
int cpu = raw_smp_processor_id();
if (loaded_vmcs->cpu != cpu)
return; /* vcpu migration can race with cpu offline */
if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
per_cpu(current_vmcs, cpu) = NULL;
crash_disable_local_vmclear(cpu);
list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
/*
* we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
* is before setting loaded_vmcs->vcpu to -1 which is done in
* loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
* then adds the vmcs into percpu list before it is deleted.
*/
smp_wmb();
loaded_vmcs_init(loaded_vmcs);
crash_enable_local_vmclear(cpu);
}
static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
{
int cpu = loaded_vmcs->cpu;
if (cpu != -1)
smp_call_function_single(cpu,
__loaded_vmcs_clear, loaded_vmcs, 1);
}
static inline void vpid_sync_vcpu_single(int vpid)
{
if (vpid == 0)
return;
if (cpu_has_vmx_invvpid_single())
__invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vpid, 0);
}
static inline void vpid_sync_vcpu_global(void)
{
if (cpu_has_vmx_invvpid_global())
__invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
}
static inline void vpid_sync_context(int vpid)
{
if (cpu_has_vmx_invvpid_single())
vpid_sync_vcpu_single(vpid);
else
vpid_sync_vcpu_global();
}
static inline void ept_sync_global(void)
{
if (cpu_has_vmx_invept_global())
__invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
}
static inline void ept_sync_context(u64 eptp)
{
if (enable_ept) {
if (cpu_has_vmx_invept_context())
__invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
else
ept_sync_global();
}
}
static __always_inline void vmcs_check16(unsigned long field)
{
BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000,
"16-bit accessor invalid for 64-bit field");
BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
"16-bit accessor invalid for 64-bit high field");
BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
"16-bit accessor invalid for 32-bit high field");
BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
"16-bit accessor invalid for natural width field");
}
static __always_inline void vmcs_check32(unsigned long field)
{
BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
"32-bit accessor invalid for 16-bit field");
BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
"32-bit accessor invalid for natural width field");
}
static __always_inline void vmcs_check64(unsigned long field)
{
BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
"64-bit accessor invalid for 16-bit field");
BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
"64-bit accessor invalid for 64-bit high field");
BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
"64-bit accessor invalid for 32-bit field");
BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
"64-bit accessor invalid for natural width field");
}
static __always_inline void vmcs_checkl(unsigned long field)
{
BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
"Natural width accessor invalid for 16-bit field");
BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000,
"Natural width accessor invalid for 64-bit field");
BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
"Natural width accessor invalid for 64-bit high field");
BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
"Natural width accessor invalid for 32-bit field");
}
static __always_inline unsigned long __vmcs_readl(unsigned long field)
{
unsigned long value;
asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
: "=a"(value) : "d"(field) : "cc");
return value;
}
static __always_inline u16 vmcs_read16(unsigned long field)
{
vmcs_check16(field);
return __vmcs_readl(field);
}
static __always_inline u32 vmcs_read32(unsigned long field)
{
vmcs_check32(field);
return __vmcs_readl(field);
}
static __always_inline u64 vmcs_read64(unsigned long field)
{
vmcs_check64(field);
#ifdef CONFIG_X86_64
return __vmcs_readl(field);
#else
return __vmcs_readl(field) | ((u64)__vmcs_readl(field+1) << 32);
#endif
}
static __always_inline unsigned long vmcs_readl(unsigned long field)
{
vmcs_checkl(field);
return __vmcs_readl(field);
}
static noinline void vmwrite_error(unsigned long field, unsigned long value)
{
printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
dump_stack();
}
static __always_inline void __vmcs_writel(unsigned long field, unsigned long value)
{
u8 error;
asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
: "=q"(error) : "a"(value), "d"(field) : "cc");
if (unlikely(error))
vmwrite_error(field, value);
}
static __always_inline void vmcs_write16(unsigned long field, u16 value)
{
vmcs_check16(field);
__vmcs_writel(field, value);
}
static __always_inline void vmcs_write32(unsigned long field, u32 value)
{
vmcs_check32(field);
__vmcs_writel(field, value);
}
static __always_inline void vmcs_write64(unsigned long field, u64 value)
{
vmcs_check64(field);
__vmcs_writel(field, value);
#ifndef CONFIG_X86_64
asm volatile ("");
__vmcs_writel(field+1, value >> 32);
#endif
}
static __always_inline void vmcs_writel(unsigned long field, unsigned long value)
{
vmcs_checkl(field);
__vmcs_writel(field, value);
}
static __always_inline void vmcs_clear_bits(unsigned long field, u32 mask)
{
BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000,
"vmcs_clear_bits does not support 64-bit fields");
__vmcs_writel(field, __vmcs_readl(field) & ~mask);
}
static __always_inline void vmcs_set_bits(unsigned long field, u32 mask)
{
BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000,
"vmcs_set_bits does not support 64-bit fields");
__vmcs_writel(field, __vmcs_readl(field) | mask);
}
static inline void vm_entry_controls_reset_shadow(struct vcpu_vmx *vmx)
{
vmx->vm_entry_controls_shadow = vmcs_read32(VM_ENTRY_CONTROLS);
}
static inline void vm_entry_controls_init(struct vcpu_vmx *vmx, u32 val)
{
vmcs_write32(VM_ENTRY_CONTROLS, val);
vmx->vm_entry_controls_shadow = val;
}
static inline void vm_entry_controls_set(struct vcpu_vmx *vmx, u32 val)
{
if (vmx->vm_entry_controls_shadow != val)
vm_entry_controls_init(vmx, val);
}
static inline u32 vm_entry_controls_get(struct vcpu_vmx *vmx)
{
return vmx->vm_entry_controls_shadow;
}
static inline void vm_entry_controls_setbit(struct vcpu_vmx *vmx, u32 val)
{
vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) | val);
}
static inline void vm_entry_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
{
vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) & ~val);
}
static inline void vm_exit_controls_reset_shadow(struct vcpu_vmx *vmx)
{
vmx->vm_exit_controls_shadow = vmcs_read32(VM_EXIT_CONTROLS);
}
static inline void vm_exit_controls_init(struct vcpu_vmx *vmx, u32 val)
{
vmcs_write32(VM_EXIT_CONTROLS, val);
vmx->vm_exit_controls_shadow = val;
}
static inline void vm_exit_controls_set(struct vcpu_vmx *vmx, u32 val)
{
if (vmx->vm_exit_controls_shadow != val)
vm_exit_controls_init(vmx, val);
}
static inline u32 vm_exit_controls_get(struct vcpu_vmx *vmx)
{
return vmx->vm_exit_controls_shadow;
}
static inline void vm_exit_controls_setbit(struct vcpu_vmx *vmx, u32 val)
{
vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) | val);
}
static inline void vm_exit_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
{
vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) & ~val);
}
static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
{
vmx->segment_cache.bitmask = 0;
}
static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
unsigned field)
{
bool ret;
u32 mask = 1 << (seg * SEG_FIELD_NR + field);
if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
vmx->segment_cache.bitmask = 0;
}
ret = vmx->segment_cache.bitmask & mask;
vmx->segment_cache.bitmask |= mask;
return ret;
}
static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
{
u16 *p = &vmx->segment_cache.seg[seg].selector;
if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
*p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
return *p;
}
static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
{
ulong *p = &vmx->segment_cache.seg[seg].base;
if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
*p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
return *p;
}
static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
{
u32 *p = &vmx->segment_cache.seg[seg].limit;
if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
*p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
return *p;
}
static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
{
u32 *p = &vmx->segment_cache.seg[seg].ar;
if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
*p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
return *p;
}
static void update_exception_bitmap(struct kvm_vcpu *vcpu)
{
u32 eb;
eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
(1u << DB_VECTOR) | (1u << AC_VECTOR);
if ((vcpu->guest_debug &
(KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
(KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
eb |= 1u << BP_VECTOR;
if (to_vmx(vcpu)->rmode.vm86_active)
eb = ~0;
if (enable_ept)
eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
/* When we are running a nested L2 guest and L1 specified for it a
* certain exception bitmap, we must trap the same exceptions and pass
* them to L1. When running L2, we will only handle the exceptions
* specified above if L1 did not want them.
*/
if (is_guest_mode(vcpu))
eb |= get_vmcs12(vcpu)->exception_bitmap;
vmcs_write32(EXCEPTION_BITMAP, eb);
}
static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
unsigned long entry, unsigned long exit)
{
vm_entry_controls_clearbit(vmx, entry);
vm_exit_controls_clearbit(vmx, exit);
}
static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
{
unsigned i;
struct msr_autoload *m = &vmx->msr_autoload;
switch (msr) {
case MSR_EFER:
if (cpu_has_load_ia32_efer) {
clear_atomic_switch_msr_special(vmx,
VM_ENTRY_LOAD_IA32_EFER,
VM_EXIT_LOAD_IA32_EFER);
return;
}
break;
case MSR_CORE_PERF_GLOBAL_CTRL:
if (cpu_has_load_perf_global_ctrl) {
clear_atomic_switch_msr_special(vmx,
VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
return;
}
break;
}
for (i = 0; i < m->nr; ++i)
if (m->guest[i].index == msr)
break;
if (i == m->nr)
return;
--m->nr;
m->guest[i] = m->guest[m->nr];
m->host[i] = m->host[m->nr];
vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
}
static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
unsigned long entry, unsigned long exit,
unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
u64 guest_val, u64 host_val)
{
vmcs_write64(guest_val_vmcs, guest_val);
vmcs_write64(host_val_vmcs, host_val);
vm_entry_controls_setbit(vmx, entry);
vm_exit_controls_setbit(vmx, exit);
}
static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
u64 guest_val, u64 host_val)
{
unsigned i;
struct msr_autoload *m = &vmx->msr_autoload;
switch (msr) {
case MSR_EFER:
if (cpu_has_load_ia32_efer) {
add_atomic_switch_msr_special(vmx,
VM_ENTRY_LOAD_IA32_EFER,
VM_EXIT_LOAD_IA32_EFER,
GUEST_IA32_EFER,
HOST_IA32_EFER,
guest_val, host_val);
return;
}
break;
case MSR_CORE_PERF_GLOBAL_CTRL:
if (cpu_has_load_perf_global_ctrl) {
add_atomic_switch_msr_special(vmx,
VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
GUEST_IA32_PERF_GLOBAL_CTRL,
HOST_IA32_PERF_GLOBAL_CTRL,
guest_val, host_val);
return;
}
break;
case MSR_IA32_PEBS_ENABLE:
/* PEBS needs a quiescent period after being disabled (to write
* a record). Disabling PEBS through VMX MSR swapping doesn't
* provide that period, so a CPU could write host's record into
* guest's memory.
*/
wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
}
for (i = 0; i < m->nr; ++i)
if (m->guest[i].index == msr)
break;
if (i == NR_AUTOLOAD_MSRS) {
printk_once(KERN_WARNING "Not enough msr switch entries. "
"Can't add msr %x\n", msr);
return;
} else if (i == m->nr) {
++m->nr;
vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
}
m->guest[i].index = msr;
m->guest[i].value = guest_val;
m->host[i].index = msr;
m->host[i].value = host_val;
}
static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
{
u64 guest_efer = vmx->vcpu.arch.efer;
u64 ignore_bits = 0;
if (!enable_ept) {
/*
* NX is needed to handle CR0.WP=1, CR4.SMEP=1. Testing
* host CPUID is more efficient than testing guest CPUID
* or CR4. Host SMEP is anyway a requirement for guest SMEP.
*/
if (boot_cpu_has(X86_FEATURE_SMEP))
guest_efer |= EFER_NX;
else if (!(guest_efer & EFER_NX))
ignore_bits |= EFER_NX;
}
/*
* LMA and LME handled by hardware; SCE meaningless outside long mode.
*/
ignore_bits |= EFER_SCE;
#ifdef CONFIG_X86_64
ignore_bits |= EFER_LMA | EFER_LME;
/* SCE is meaningful only in long mode on Intel */
if (guest_efer & EFER_LMA)
ignore_bits &= ~(u64)EFER_SCE;
#endif
clear_atomic_switch_msr(vmx, MSR_EFER);
/*
* On EPT, we can't emulate NX, so we must switch EFER atomically.
* On CPUs that support "load IA32_EFER", always switch EFER
* atomically, since it's faster than switching it manually.
*/
if (cpu_has_load_ia32_efer ||
(enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
if (!(guest_efer & EFER_LMA))
guest_efer &= ~EFER_LME;
if (guest_efer != host_efer)
add_atomic_switch_msr(vmx, MSR_EFER,
guest_efer, host_efer);
return false;
} else {
guest_efer &= ~ignore_bits;
guest_efer |= host_efer & ignore_bits;
vmx->guest_msrs[efer_offset].data = guest_efer;
vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
return true;
}
}
#ifdef CONFIG_X86_32
/*
* On 32-bit kernels, VM exits still load the FS and GS bases from the
* VMCS rather than the segment table. KVM uses this helper to figure
* out the current bases to poke them into the VMCS before entry.
*/
static unsigned long segment_base(u16 selector)
{
struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
struct desc_struct *table;
unsigned long v;
if (!(selector & ~SEGMENT_RPL_MASK))
return 0;
table = (struct desc_struct *)gdt->address;
if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
u16 ldt_selector = kvm_read_ldt();
if (!(ldt_selector & ~SEGMENT_RPL_MASK))
return 0;
table = (struct desc_struct *)segment_base(ldt_selector);
}
v = get_desc_base(&table[selector >> 3]);
return v;
}
#endif
static void vmx_save_host_state(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
int i;
if (vmx->host_state.loaded)
return;
vmx->host_state.loaded = 1;
/*
* Set host fs and gs selectors. Unfortunately, 22.2.3 does not
* allow segment selectors with cpl > 0 or ti == 1.
*/
vmx->host_state.ldt_sel = kvm_read_ldt();
vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
savesegment(fs, vmx->host_state.fs_sel);
if (!(vmx->host_state.fs_sel & 7)) {
vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
vmx->host_state.fs_reload_needed = 0;
} else {
vmcs_write16(HOST_FS_SELECTOR, 0);
vmx->host_state.fs_reload_needed = 1;
}
savesegment(gs, vmx->host_state.gs_sel);
if (!(vmx->host_state.gs_sel & 7))
vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
else {
vmcs_write16(HOST_GS_SELECTOR, 0);
vmx->host_state.gs_ldt_reload_needed = 1;
}
#ifdef CONFIG_X86_64
savesegment(ds, vmx->host_state.ds_sel);
savesegment(es, vmx->host_state.es_sel);
#endif
#ifdef CONFIG_X86_64
vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
#else
vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
#endif
#ifdef CONFIG_X86_64
rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
if (is_long_mode(&vmx->vcpu))
wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
#endif
if (boot_cpu_has(X86_FEATURE_MPX))
rdmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
for (i = 0; i < vmx->save_nmsrs; ++i)
kvm_set_shared_msr(vmx->guest_msrs[i].index,
vmx->guest_msrs[i].data,
vmx->guest_msrs[i].mask);
}
static void __vmx_load_host_state(struct vcpu_vmx *vmx)
{
if (!vmx->host_state.loaded)
return;
++vmx->vcpu.stat.host_state_reload;
vmx->host_state.loaded = 0;
#ifdef CONFIG_X86_64
if (is_long_mode(&vmx->vcpu))
rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
#endif
if (vmx->host_state.gs_ldt_reload_needed) {
kvm_load_ldt(vmx->host_state.ldt_sel);
#ifdef CONFIG_X86_64
load_gs_index(vmx->host_state.gs_sel);
#else
loadsegment(gs, vmx->host_state.gs_sel);
#endif
}
if (vmx->host_state.fs_reload_needed)
loadsegment(fs, vmx->host_state.fs_sel);
#ifdef CONFIG_X86_64
if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
loadsegment(ds, vmx->host_state.ds_sel);
loadsegment(es, vmx->host_state.es_sel);
}
#endif
invalidate_tss_limit();
#ifdef CONFIG_X86_64
wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
#endif
if (vmx->host_state.msr_host_bndcfgs)
wrmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
load_gdt(this_cpu_ptr(&host_gdt));
}
static void vmx_load_host_state(struct vcpu_vmx *vmx)
{
preempt_disable();
__vmx_load_host_state(vmx);
preempt_enable();
}
static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu)
{
struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
struct pi_desc old, new;
unsigned int dest;
if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
!irq_remapping_cap(IRQ_POSTING_CAP) ||
!kvm_vcpu_apicv_active(vcpu))
return;
do {
old.control = new.control = pi_desc->control;
/*
* If 'nv' field is POSTED_INTR_WAKEUP_VECTOR, there
* are two possible cases:
* 1. After running 'pre_block', context switch
* happened. For this case, 'sn' was set in
* vmx_vcpu_put(), so we need to clear it here.
* 2. After running 'pre_block', we were blocked,
* and woken up by some other guy. For this case,
* we don't need to do anything, 'pi_post_block'
* will do everything for us. However, we cannot
* check whether it is case #1 or case #2 here
* (maybe, not needed), so we also clear sn here,
* I think it is not a big deal.
*/
if (pi_desc->nv != POSTED_INTR_WAKEUP_VECTOR) {
if (vcpu->cpu != cpu) {
dest = cpu_physical_id(cpu);
if (x2apic_enabled())
new.ndst = dest;
else
new.ndst = (dest << 8) & 0xFF00;
}
/* set 'NV' to 'notification vector' */
new.nv = POSTED_INTR_VECTOR;
}
/* Allow posting non-urgent interrupts */
new.sn = 0;
} while (cmpxchg(&pi_desc->control, old.control,
new.control) != old.control);
}
static void decache_tsc_multiplier(struct vcpu_vmx *vmx)
{
vmx->current_tsc_ratio = vmx->vcpu.arch.tsc_scaling_ratio;
vmcs_write64(TSC_MULTIPLIER, vmx->current_tsc_ratio);
}
/*
* Switches to specified vcpu, until a matching vcpu_put(), but assumes
* vcpu mutex is already taken.
*/
static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
if (!vmm_exclusive)
kvm_cpu_vmxon(phys_addr);
else if (!already_loaded)
loaded_vmcs_clear(vmx->loaded_vmcs);
if (!already_loaded) {
local_irq_disable();
crash_disable_local_vmclear(cpu);
/*
* Read loaded_vmcs->cpu should be before fetching
* loaded_vmcs->loaded_vmcss_on_cpu_link.
* See the comments in __loaded_vmcs_clear().
*/
smp_rmb();
list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
&per_cpu(loaded_vmcss_on_cpu, cpu));
crash_enable_local_vmclear(cpu);
local_irq_enable();
}
if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
vmcs_load(vmx->loaded_vmcs->vmcs);
}
if (!already_loaded) {
struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
unsigned long sysenter_esp;
kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
/*
* Linux uses per-cpu TSS and GDT, so set these when switching
* processors. See 22.2.4.
*/
vmcs_writel(HOST_TR_BASE,
(unsigned long)this_cpu_ptr(&cpu_tss));
vmcs_writel(HOST_GDTR_BASE, gdt->address);
/*
* VM exits change the host TR limit to 0x67 after a VM
* exit. This is okay, since 0x67 covers everything except
* the IO bitmap and have have code to handle the IO bitmap
* being lost after a VM exit.
*/
BUILD_BUG_ON(IO_BITMAP_OFFSET - 1 != 0x67);
rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
vmx->loaded_vmcs->cpu = cpu;
}
/* Setup TSC multiplier */
if (kvm_has_tsc_control &&
vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio)
decache_tsc_multiplier(vmx);
vmx_vcpu_pi_load(vcpu, cpu);
vmx->host_pkru = read_pkru();
}
static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu)
{
struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
!irq_remapping_cap(IRQ_POSTING_CAP) ||
!kvm_vcpu_apicv_active(vcpu))
return;
/* Set SN when the vCPU is preempted */
if (vcpu->preempted)
pi_set_sn(pi_desc);
}
static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
{
vmx_vcpu_pi_put(vcpu);
__vmx_load_host_state(to_vmx(vcpu));
if (!vmm_exclusive) {
__loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
vcpu->cpu = -1;
kvm_cpu_vmxoff();
}
}
static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
/*
* Return the cr0 value that a nested guest would read. This is a combination
* of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
* its hypervisor (cr0_read_shadow).
*/
static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
{
return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
(fields->cr0_read_shadow & fields->cr0_guest_host_mask);
}
static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
{
return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
(fields->cr4_read_shadow & fields->cr4_guest_host_mask);
}
static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
{
unsigned long rflags, save_rflags;
if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
__set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
rflags = vmcs_readl(GUEST_RFLAGS);
if (to_vmx(vcpu)->rmode.vm86_active) {
rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
save_rflags = to_vmx(vcpu)->rmode.save_rflags;
rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
}
to_vmx(vcpu)->rflags = rflags;
}
return to_vmx(vcpu)->rflags;
}
static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
{
__set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
to_vmx(vcpu)->rflags = rflags;
if (to_vmx(vcpu)->rmode.vm86_active) {
to_vmx(vcpu)->rmode.save_rflags = rflags;
rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
}
vmcs_writel(GUEST_RFLAGS, rflags);
}
static u32 vmx_get_pkru(struct kvm_vcpu *vcpu)
{
return to_vmx(vcpu)->guest_pkru;
}
static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
{
u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
int ret = 0;
if (interruptibility & GUEST_INTR_STATE_STI)
ret |= KVM_X86_SHADOW_INT_STI;
if (interruptibility & GUEST_INTR_STATE_MOV_SS)
ret |= KVM_X86_SHADOW_INT_MOV_SS;
return ret;
}
static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
{
u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
u32 interruptibility = interruptibility_old;
interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
if (mask & KVM_X86_SHADOW_INT_MOV_SS)
interruptibility |= GUEST_INTR_STATE_MOV_SS;
else if (mask & KVM_X86_SHADOW_INT_STI)
interruptibility |= GUEST_INTR_STATE_STI;
if ((interruptibility != interruptibility_old))
vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
}
static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
{
unsigned long rip;
rip = kvm_rip_read(vcpu);
rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
kvm_rip_write(vcpu, rip);
/* skipping an emulated instruction also counts */
vmx_set_interrupt_shadow(vcpu, 0);
}
/*
* KVM wants to inject page-faults which it got to the guest. This function
* checks whether in a nested guest, we need to inject them to L1 or L2.
*/
static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned nr)
{
struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
if (!(vmcs12->exception_bitmap & (1u << nr)))
return 0;
nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
vmcs_read32(VM_EXIT_INTR_INFO),
vmcs_readl(EXIT_QUALIFICATION));
return 1;
}
static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
bool has_error_code, u32 error_code,
bool reinject)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
u32 intr_info = nr | INTR_INFO_VALID_MASK;
if (!reinject && is_guest_mode(vcpu) &&
nested_vmx_check_exception(vcpu, nr))
return;
if (has_error_code) {
vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
intr_info |= INTR_INFO_DELIVER_CODE_MASK;
}
if (vmx->rmode.vm86_active) {
int inc_eip = 0;
if (kvm_exception_is_soft(nr))
inc_eip = vcpu->arch.event_exit_inst_len;
if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
return;
}
if (kvm_exception_is_soft(nr)) {
vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
vmx->vcpu.arch.event_exit_inst_len);
intr_info |= INTR_TYPE_SOFT_EXCEPTION;
} else
intr_info |= INTR_TYPE_HARD_EXCEPTION;
vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
}
static bool vmx_rdtscp_supported(void)
{
return cpu_has_vmx_rdtscp();
}
static bool vmx_invpcid_supported(void)
{
return cpu_has_vmx_invpcid() && enable_ept;
}
/*
* Swap MSR entry in host/guest MSR entry array.
*/
static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
{
struct shared_msr_entry tmp;
tmp = vmx->guest_msrs[to];
vmx->guest_msrs[to] = vmx->guest_msrs[from];
vmx->guest_msrs[from] = tmp;
}
static void vmx_set_msr_bitmap(struct kvm_vcpu *vcpu)
{
unsigned long *msr_bitmap;
if (is_guest_mode(vcpu))
msr_bitmap = to_vmx(vcpu)->nested.msr_bitmap;
else if (cpu_has_secondary_exec_ctrls() &&
(vmcs_read32(SECONDARY_VM_EXEC_CONTROL) &
SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
if (enable_apicv && kvm_vcpu_apicv_active(vcpu)) {
if (is_long_mode(vcpu))
msr_bitmap = vmx_msr_bitmap_longmode_x2apic_apicv;
else
msr_bitmap = vmx_msr_bitmap_legacy_x2apic_apicv;
} else {
if (is_long_mode(vcpu))
msr_bitmap = vmx_msr_bitmap_longmode_x2apic;
else
msr_bitmap = vmx_msr_bitmap_legacy_x2apic;
}
} else {
if (is_long_mode(vcpu))
msr_bitmap = vmx_msr_bitmap_longmode;
else
msr_bitmap = vmx_msr_bitmap_legacy;
}
vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
}
/*
* Set up the vmcs to automatically save and restore system
* msrs. Don't touch the 64-bit msrs if the guest is in legacy
* mode, as fiddling with msrs is very expensive.
*/
static void setup_msrs(struct vcpu_vmx *vmx)
{
int save_nmsrs, index;
save_nmsrs = 0;
#ifdef CONFIG_X86_64
if (is_long_mode(&vmx->vcpu)) {
index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
if (index >= 0)
move_msr_up(vmx, index, save_nmsrs++);
index = __find_msr_index(vmx, MSR_LSTAR);
if (index >= 0)
move_msr_up(vmx, index, save_nmsrs++);
index = __find_msr_index(vmx, MSR_CSTAR);
if (index >= 0)
move_msr_up(vmx, index, save_nmsrs++);
index = __find_msr_index(vmx, MSR_TSC_AUX);
if (index >= 0 && guest_cpuid_has_rdtscp(&vmx->vcpu))
move_msr_up(vmx, index, save_nmsrs++);
/*
* MSR_STAR is only needed on long mode guests, and only
* if efer.sce is enabled.
*/
index = __find_msr_index(vmx, MSR_STAR);
if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
move_msr_up(vmx, index, save_nmsrs++);
}
#endif
index = __find_msr_index(vmx, MSR_EFER);
if (index >= 0 && update_transition_efer(vmx, index))
move_msr_up(vmx, index, save_nmsrs++);
vmx->save_nmsrs = save_nmsrs;
if (cpu_has_vmx_msr_bitmap())
vmx_set_msr_bitmap(&vmx->vcpu);
}
/*
* reads and returns guest's timestamp counter "register"
* guest_tsc = (host_tsc * tsc multiplier) >> 48 + tsc_offset
* -- Intel TSC Scaling for Virtualization White Paper, sec 1.3
*/
static u64 guest_read_tsc(struct kvm_vcpu *vcpu)
{
u64 host_tsc, tsc_offset;
host_tsc = rdtsc();
tsc_offset = vmcs_read64(TSC_OFFSET);
return kvm_scale_tsc(vcpu, host_tsc) + tsc_offset;
}
/*
* writes 'offset' into guest's timestamp counter offset register
*/
static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
{
if (is_guest_mode(vcpu)) {
/*
* We're here if L1 chose not to trap WRMSR to TSC. According
* to the spec, this should set L1's TSC; The offset that L1
* set for L2 remains unchanged, and still needs to be added
* to the newly set TSC to get L2's TSC.
*/
struct vmcs12 *vmcs12;
/* recalculate vmcs02.TSC_OFFSET: */
vmcs12 = get_vmcs12(vcpu);
vmcs_write64(TSC_OFFSET, offset +
(nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
vmcs12->tsc_offset : 0));
} else {
trace_kvm_write_tsc_offset(vcpu->vcpu_id,
vmcs_read64(TSC_OFFSET), offset);
vmcs_write64(TSC_OFFSET, offset);
}
}
static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
{
struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
}
/*
* nested_vmx_allowed() checks whether a guest should be allowed to use VMX
* instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
* all guests if the "nested" module option is off, and can also be disabled
* for a single guest by disabling its VMX cpuid bit.
*/
static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
{
return nested && guest_cpuid_has_vmx(vcpu);
}
/*
* nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
* returned for the various VMX controls MSRs when nested VMX is enabled.
* The same values should also be used to verify that vmcs12 control fields are
* valid during nested entry from L1 to L2.
* Each of these control msrs has a low and high 32-bit half: A low bit is on
* if the corresponding bit in the (32-bit) control field *must* be on, and a
* bit in the high half is on if the corresponding bit in the control field
* may be on. See also vmx_control_verify().
*/
static void nested_vmx_setup_ctls_msrs(struct vcpu_vmx *vmx)
{
/*
* Note that as a general rule, the high half of the MSRs (bits in
* the control fields which may be 1) should be initialized by the
* intersection of the underlying hardware's MSR (i.e., features which
* can be supported) and the list of features we want to expose -
* because they are known to be properly supported in our code.
* Also, usually, the low half of the MSRs (bits which must be 1) can
* be set to 0, meaning that L1 may turn off any of these bits. The
* reason is that if one of these bits is necessary, it will appear
* in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
* fields of vmcs01 and vmcs02, will turn these bits off - and
* nested_vmx_exit_handled() will not pass related exits to L1.
* These rules have exceptions below.
*/
/* pin-based controls */
rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
vmx->nested.nested_vmx_pinbased_ctls_low,
vmx->nested.nested_vmx_pinbased_ctls_high);
vmx->nested.nested_vmx_pinbased_ctls_low |=
PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
vmx->nested.nested_vmx_pinbased_ctls_high &=
PIN_BASED_EXT_INTR_MASK |
PIN_BASED_NMI_EXITING |
PIN_BASED_VIRTUAL_NMIS;
vmx->nested.nested_vmx_pinbased_ctls_high |=
PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
PIN_BASED_VMX_PREEMPTION_TIMER;
if (kvm_vcpu_apicv_active(&vmx->vcpu))
vmx->nested.nested_vmx_pinbased_ctls_high |=
PIN_BASED_POSTED_INTR;
/* exit controls */
rdmsr(MSR_IA32_VMX_EXIT_CTLS,
vmx->nested.nested_vmx_exit_ctls_low,
vmx->nested.nested_vmx_exit_ctls_high);
vmx->nested.nested_vmx_exit_ctls_low =
VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
vmx->nested.nested_vmx_exit_ctls_high &=
#ifdef CONFIG_X86_64
VM_EXIT_HOST_ADDR_SPACE_SIZE |
#endif
VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
vmx->nested.nested_vmx_exit_ctls_high |=
VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
if (kvm_mpx_supported())
vmx->nested.nested_vmx_exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
/* We support free control of debug control saving. */
vmx->nested.nested_vmx_exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
/* entry controls */
rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
vmx->nested.nested_vmx_entry_ctls_low,
vmx->nested.nested_vmx_entry_ctls_high);
vmx->nested.nested_vmx_entry_ctls_low =
VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
vmx->nested.nested_vmx_entry_ctls_high &=
#ifdef CONFIG_X86_64
VM_ENTRY_IA32E_MODE |
#endif
VM_ENTRY_LOAD_IA32_PAT;
vmx->nested.nested_vmx_entry_ctls_high |=
(VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
if (kvm_mpx_supported())
vmx->nested.nested_vmx_entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
/* We support free control of debug control loading. */
vmx->nested.nested_vmx_entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
/* cpu-based controls */
rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
vmx->nested.nested_vmx_procbased_ctls_low,
vmx->nested.nested_vmx_procbased_ctls_high);
vmx->nested.nested_vmx_procbased_ctls_low =
CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
vmx->nested.nested_vmx_procbased_ctls_high &=
CPU_BASED_VIRTUAL_INTR_PENDING |
CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
CPU_BASED_CR3_STORE_EXITING |
#ifdef CONFIG_X86_64
CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
#endif
CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
/*
* We can allow some features even when not supported by the
* hardware. For example, L1 can specify an MSR bitmap - and we
* can use it to avoid exits to L1 - even when L0 runs L2
* without MSR bitmaps.
*/
vmx->nested.nested_vmx_procbased_ctls_high |=
CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
CPU_BASED_USE_MSR_BITMAPS;
/* We support free control of CR3 access interception. */
vmx->nested.nested_vmx_procbased_ctls_low &=
~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
/* secondary cpu-based controls */
rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
vmx->nested.nested_vmx_secondary_ctls_low,
vmx->nested.nested_vmx_secondary_ctls_high);
vmx->nested.nested_vmx_secondary_ctls_low = 0;
vmx->nested.nested_vmx_secondary_ctls_high &=
SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
SECONDARY_EXEC_RDTSCP |
SECONDARY_EXEC_DESC |
SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
SECONDARY_EXEC_ENABLE_VPID |
SECONDARY_EXEC_APIC_REGISTER_VIRT |
SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
SECONDARY_EXEC_WBINVD_EXITING |
SECONDARY_EXEC_XSAVES;
if (enable_ept) {
/* nested EPT: emulate EPT also to L1 */
vmx->nested.nested_vmx_secondary_ctls_high |=
SECONDARY_EXEC_ENABLE_EPT;
vmx->nested.nested_vmx_ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
VMX_EPTP_WB_BIT | VMX_EPT_2MB_PAGE_BIT |
VMX_EPT_INVEPT_BIT;
if (cpu_has_vmx_ept_execute_only())
vmx->nested.nested_vmx_ept_caps |=
VMX_EPT_EXECUTE_ONLY_BIT;
vmx->nested.nested_vmx_ept_caps &= vmx_capability.ept;
vmx->nested.nested_vmx_ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
VMX_EPT_EXTENT_CONTEXT_BIT;
} else
vmx->nested.nested_vmx_ept_caps = 0;
/*
* Old versions of KVM use the single-context version without
* checking for support, so declare that it is supported even
* though it is treated as global context. The alternative is
* not failing the single-context invvpid, and it is worse.
*/
if (enable_vpid)
vmx->nested.nested_vmx_vpid_caps = VMX_VPID_INVVPID_BIT |
VMX_VPID_EXTENT_SUPPORTED_MASK;
else
vmx->nested.nested_vmx_vpid_caps = 0;
if (enable_unrestricted_guest)
vmx->nested.nested_vmx_secondary_ctls_high |=
SECONDARY_EXEC_UNRESTRICTED_GUEST;
/* miscellaneous data */
rdmsr(MSR_IA32_VMX_MISC,
vmx->nested.nested_vmx_misc_low,
vmx->nested.nested_vmx_misc_high);
vmx->nested.nested_vmx_misc_low &= VMX_MISC_SAVE_EFER_LMA;
vmx->nested.nested_vmx_misc_low |=
VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
VMX_MISC_ACTIVITY_HLT;
vmx->nested.nested_vmx_misc_high = 0;
/*
* This MSR reports some information about VMX support. We
* should return information about the VMX we emulate for the
* guest, and the VMCS structure we give it - not about the
* VMX support of the underlying hardware.
*/
vmx->nested.nested_vmx_basic =
VMCS12_REVISION |
VMX_BASIC_TRUE_CTLS |
((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
(VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
if (cpu_has_vmx_basic_inout())
vmx->nested.nested_vmx_basic |= VMX_BASIC_INOUT;
/*
* These MSRs specify bits which the guest must keep fixed on
* while L1 is in VMXON mode (in L1's root mode, or running an L2).
* We picked the standard core2 setting.
*/
#define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
#define VMXON_CR4_ALWAYSON X86_CR4_VMXE
vmx->nested.nested_vmx_cr0_fixed0 = VMXON_CR0_ALWAYSON;
vmx->nested.nested_vmx_cr4_fixed0 = VMXON_CR4_ALWAYSON;
/* These MSRs specify bits which the guest must keep fixed off. */
rdmsrl(MSR_IA32_VMX_CR0_FIXED1, vmx->nested.nested_vmx_cr0_fixed1);
rdmsrl(MSR_IA32_VMX_CR4_FIXED1, vmx->nested.nested_vmx_cr4_fixed1);
/* highest index: VMX_PREEMPTION_TIMER_VALUE */
vmx->nested.nested_vmx_vmcs_enum = 0x2e;
}
/*
* if fixed0[i] == 1: val[i] must be 1
* if fixed1[i] == 0: val[i] must be 0
*/
static inline bool fixed_bits_valid(u64 val, u64 fixed0, u64 fixed1)
{
return ((val & fixed1) | fixed0) == val;
}
static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
{
return fixed_bits_valid(control, low, high);
}
static inline u64 vmx_control_msr(u32 low, u32 high)
{
return low | ((u64)high << 32);
}
static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
{
superset &= mask;
subset &= mask;
return (superset | subset) == superset;
}
static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
{
const u64 feature_and_reserved =
/* feature (except bit 48; see below) */
BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
/* reserved */
BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
u64 vmx_basic = vmx->nested.nested_vmx_basic;
if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
return -EINVAL;
/*
* KVM does not emulate a version of VMX that constrains physical
* addresses of VMX structures (e.g. VMCS) to 32-bits.
*/
if (data & BIT_ULL(48))
return -EINVAL;
if (vmx_basic_vmcs_revision_id(vmx_basic) !=
vmx_basic_vmcs_revision_id(data))
return -EINVAL;
if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
return -EINVAL;
vmx->nested.nested_vmx_basic = data;
return 0;
}
static int
vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
{
u64 supported;
u32 *lowp, *highp;
switch (msr_index) {
case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
lowp = &vmx->nested.nested_vmx_pinbased_ctls_low;
highp = &vmx->nested.nested_vmx_pinbased_ctls_high;
break;
case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
lowp = &vmx->nested.nested_vmx_procbased_ctls_low;
highp = &vmx->nested.nested_vmx_procbased_ctls_high;
break;
case MSR_IA32_VMX_TRUE_EXIT_CTLS:
lowp = &vmx->nested.nested_vmx_exit_ctls_low;
highp = &vmx->nested.nested_vmx_exit_ctls_high;
break;
case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
lowp = &vmx->nested.nested_vmx_entry_ctls_low;
highp = &vmx->nested.nested_vmx_entry_ctls_high;
break;
case MSR_IA32_VMX_PROCBASED_CTLS2:
lowp = &vmx->nested.nested_vmx_secondary_ctls_low;
highp = &vmx->nested.nested_vmx_secondary_ctls_high;
break;
default:
BUG();
}
supported = vmx_control_msr(*lowp, *highp);
/* Check must-be-1 bits are still 1. */
if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
return -EINVAL;
/* Check must-be-0 bits are still 0. */
if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
return -EINVAL;
*lowp = data;
*highp = data >> 32;
return 0;
}
static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
{
const u64 feature_and_reserved_bits =
/* feature */
BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
/* reserved */
GENMASK_ULL(13, 9) | BIT_ULL(31);
u64 vmx_misc;
vmx_misc = vmx_control_msr(vmx->nested.nested_vmx_misc_low,
vmx->nested.nested_vmx_misc_high);
if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
return -EINVAL;
if ((vmx->nested.nested_vmx_pinbased_ctls_high &
PIN_BASED_VMX_PREEMPTION_TIMER) &&
vmx_misc_preemption_timer_rate(data) !=
vmx_misc_preemption_timer_rate(vmx_misc))
return -EINVAL;
if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
return -EINVAL;
if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
return -EINVAL;
if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
return -EINVAL;
vmx->nested.nested_vmx_misc_low = data;
vmx->nested.nested_vmx_misc_high = data >> 32;
return 0;
}
static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
{
u64 vmx_ept_vpid_cap;
vmx_ept_vpid_cap = vmx_control_msr(vmx->nested.nested_vmx_ept_caps,
vmx->nested.nested_vmx_vpid_caps);
/* Every bit is either reserved or a feature bit. */
if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
return -EINVAL;
vmx->nested.nested_vmx_ept_caps = data;
vmx->nested.nested_vmx_vpid_caps = data >> 32;
return 0;
}
static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
{
u64 *msr;
switch (msr_index) {
case MSR_IA32_VMX_CR0_FIXED0:
msr = &vmx->nested.nested_vmx_cr0_fixed0;
break;
case MSR_IA32_VMX_CR4_FIXED0:
msr = &vmx->nested.nested_vmx_cr4_fixed0;
break;
default:
BUG();
}
/*
* 1 bits (which indicates bits which "must-be-1" during VMX operation)
* must be 1 in the restored value.
*/
if (!is_bitwise_subset(data, *msr, -1ULL))
return -EINVAL;
*msr = data;
return 0;
}
/*
* Called when userspace is restoring VMX MSRs.
*
* Returns 0 on success, non-0 otherwise.
*/
static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
switch (msr_index) {
case MSR_IA32_VMX_BASIC:
return vmx_restore_vmx_basic(vmx, data);
case MSR_IA32_VMX_PINBASED_CTLS:
case MSR_IA32_VMX_PROCBASED_CTLS:
case MSR_IA32_VMX_EXIT_CTLS:
case MSR_IA32_VMX_ENTRY_CTLS:
/*
* The "non-true" VMX capability MSRs are generated from the
* "true" MSRs, so we do not support restoring them directly.
*
* If userspace wants to emulate VMX_BASIC[55]=0, userspace
* should restore the "true" MSRs with the must-be-1 bits
* set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
* DEFAULT SETTINGS".
*/
return -EINVAL;
case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
case MSR_IA32_VMX_TRUE_EXIT_CTLS:
case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
case MSR_IA32_VMX_PROCBASED_CTLS2:
return vmx_restore_control_msr(vmx, msr_index, data);
case MSR_IA32_VMX_MISC:
return vmx_restore_vmx_misc(vmx, data);
case MSR_IA32_VMX_CR0_FIXED0:
case MSR_IA32_VMX_CR4_FIXED0:
return vmx_restore_fixed0_msr(vmx, msr_index, data);
case MSR_IA32_VMX_CR0_FIXED1:
case MSR_IA32_VMX_CR4_FIXED1:
/*
* These MSRs are generated based on the vCPU's CPUID, so we
* do not support restoring them directly.
*/
return -EINVAL;
case MSR_IA32_VMX_EPT_VPID_CAP:
return vmx_restore_vmx_ept_vpid_cap(vmx, data);
case MSR_IA32_VMX_VMCS_ENUM:
vmx->nested.nested_vmx_vmcs_enum = data;
return 0;
default:
/*
* The rest of the VMX capability MSRs do not support restore.
*/
return -EINVAL;
}
}
/* Returns 0 on success, non-0 otherwise. */
static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
switch (msr_index) {
case MSR_IA32_VMX_BASIC:
*pdata = vmx->nested.nested_vmx_basic;
break;
case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
case MSR_IA32_VMX_PINBASED_CTLS:
*pdata = vmx_control_msr(
vmx->nested.nested_vmx_pinbased_ctls_low,
vmx->nested.nested_vmx_pinbased_ctls_high);
if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
*pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
break;
case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
case MSR_IA32_VMX_PROCBASED_CTLS:
*pdata = vmx_control_msr(
vmx->nested.nested_vmx_procbased_ctls_low,
vmx->nested.nested_vmx_procbased_ctls_high);
if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
*pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
break;
case MSR_IA32_VMX_TRUE_EXIT_CTLS:
case MSR_IA32_VMX_EXIT_CTLS:
*pdata = vmx_control_msr(
vmx->nested.nested_vmx_exit_ctls_low,
vmx->nested.nested_vmx_exit_ctls_high);
if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
*pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
break;
case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
case MSR_IA32_VMX_ENTRY_CTLS:
*pdata = vmx_control_msr(
vmx->nested.nested_vmx_entry_ctls_low,
vmx->nested.nested_vmx_entry_ctls_high);
if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
*pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
break;
case MSR_IA32_VMX_MISC:
*pdata = vmx_control_msr(
vmx->nested.nested_vmx_misc_low,
vmx->nested.nested_vmx_misc_high);
break;
case MSR_IA32_VMX_CR0_FIXED0:
*pdata = vmx->nested.nested_vmx_cr0_fixed0;
break;
case MSR_IA32_VMX_CR0_FIXED1:
*pdata = vmx->nested.nested_vmx_cr0_fixed1;
break;
case MSR_IA32_VMX_CR4_FIXED0:
*pdata = vmx->nested.nested_vmx_cr4_fixed0;
break;
case MSR_IA32_VMX_CR4_FIXED1:
*pdata = vmx->nested.nested_vmx_cr4_fixed1;
break;
case MSR_IA32_VMX_VMCS_ENUM:
*pdata = vmx->nested.nested_vmx_vmcs_enum;
break;
case MSR_IA32_VMX_PROCBASED_CTLS2:
*pdata = vmx_control_msr(
vmx->nested.nested_vmx_secondary_ctls_low,
vmx->nested.nested_vmx_secondary_ctls_high);
break;
case MSR_IA32_VMX_EPT_VPID_CAP:
*pdata = vmx->nested.nested_vmx_ept_caps |
((u64)vmx->nested.nested_vmx_vpid_caps << 32);
break;
default:
return 1;
}
return 0;
}
static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
uint64_t val)
{
uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
return !(val & ~valid_bits);
}
/*
* Reads an msr value (of 'msr_index') into 'pdata'.
* Returns 0 on success, non-0 otherwise.
* Assumes vcpu_load() was already called.
*/
static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
{
struct shared_msr_entry *msr;
switch (msr_info->index) {
#ifdef CONFIG_X86_64
case MSR_FS_BASE:
msr_info->data = vmcs_readl(GUEST_FS_BASE);
break;
case MSR_GS_BASE:
msr_info->data = vmcs_readl(GUEST_GS_BASE);
break;
case MSR_KERNEL_GS_BASE:
vmx_load_host_state(to_vmx(vcpu));
msr_info->data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
break;
#endif
case MSR_EFER:
return kvm_get_msr_common(vcpu, msr_info);
case MSR_IA32_TSC:
msr_info->data = guest_read_tsc(vcpu);
break;
case MSR_IA32_SYSENTER_CS:
msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
break;
case MSR_IA32_SYSENTER_EIP:
msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
break;
case MSR_IA32_SYSENTER_ESP:
msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
break;
case MSR_IA32_BNDCFGS:
if (!kvm_mpx_supported())
return 1;
msr_info->data = vmcs_read64(GUEST_BNDCFGS);
break;
case MSR_IA32_MCG_EXT_CTL:
if (!msr_info->host_initiated &&
!(to_vmx(vcpu)->msr_ia32_feature_control &
FEATURE_CONTROL_LMCE))
return 1;
msr_info->data = vcpu->arch.mcg_ext_ctl;
break;
case MSR_IA32_FEATURE_CONTROL:
msr_info->data = to_vmx(vcpu)->msr_ia32_feature_control;
break;
case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
if (!nested_vmx_allowed(vcpu))
return 1;
return vmx_get_vmx_msr(vcpu, msr_info->index, &msr_info->data);
case MSR_IA32_XSS:
if (!vmx_xsaves_supported())
return 1;
msr_info->data = vcpu->arch.ia32_xss;
break;
case MSR_TSC_AUX:
if (!guest_cpuid_has_rdtscp(vcpu) && !msr_info->host_initiated)
return 1;
/* Otherwise falls through */
default:
msr = find_msr_entry(to_vmx(vcpu), msr_info->index);
if (msr) {
msr_info->data = msr->data;
break;
}
return kvm_get_msr_common(vcpu, msr_info);
}
return 0;
}
static void vmx_leave_nested(struct kvm_vcpu *vcpu);
/*
* Writes msr value into into the appropriate "register".
* Returns 0 on success, non-0 otherwise.
* Assumes vcpu_load() was already called.
*/
static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
struct shared_msr_entry *msr;
int ret = 0;
u32 msr_index = msr_info->index;
u64 data = msr_info->data;
switch (msr_index) {
case MSR_EFER:
ret = kvm_set_msr_common(vcpu, msr_info);
break;
#ifdef CONFIG_X86_64
case MSR_FS_BASE:
vmx_segment_cache_clear(vmx);
vmcs_writel(GUEST_FS_BASE, data);
break;
case MSR_GS_BASE:
vmx_segment_cache_clear(vmx);
vmcs_writel(GUEST_GS_BASE, data);
break;
case MSR_KERNEL_GS_BASE:
vmx_load_host_state(vmx);
vmx->msr_guest_kernel_gs_base = data;
break;
#endif
case MSR_IA32_SYSENTER_CS:
vmcs_write32(GUEST_SYSENTER_CS, data);
break;
case MSR_IA32_SYSENTER_EIP:
vmcs_writel(GUEST_SYSENTER_EIP, data);
break;
case MSR_IA32_SYSENTER_ESP:
vmcs_writel(GUEST_SYSENTER_ESP, data);
break;
case MSR_IA32_BNDCFGS:
if (!kvm_mpx_supported())
return 1;
vmcs_write64(GUEST_BNDCFGS, data);
break;
case MSR_IA32_TSC:
kvm_write_tsc(vcpu, msr_info);
break;
case MSR_IA32_CR_PAT:
if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
return 1;
vmcs_write64(GUEST_IA32_PAT, data);
vcpu->arch.pat = data;
break;
}
ret = kvm_set_msr_common(vcpu, msr_info);
break;
case MSR_IA32_TSC_ADJUST:
ret = kvm_set_msr_common(vcpu, msr_info);
break;
case MSR_IA32_MCG_EXT_CTL:
if ((!msr_info->host_initiated &&
!(to_vmx(vcpu)->msr_ia32_feature_control &
FEATURE_CONTROL_LMCE)) ||
(data & ~MCG_EXT_CTL_LMCE_EN))
return 1;
vcpu->arch.mcg_ext_ctl = data;
break;
case MSR_IA32_FEATURE_CONTROL:
if (!vmx_feature_control_msr_valid(vcpu, data) ||
(to_vmx(vcpu)->msr_ia32_feature_control &
FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
return 1;
vmx->msr_ia32_feature_control = data;
if (msr_info->host_initiated && data == 0)
vmx_leave_nested(vcpu);
break;
case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
if (!msr_info->host_initiated)
return 1; /* they are read-only */
if (!nested_vmx_allowed(vcpu))
return 1;
return vmx_set_vmx_msr(vcpu, msr_index, data);
case MSR_IA32_XSS:
if (!vmx_xsaves_supported())
return 1;
/*
* The only supported bit as of Skylake is bit 8, but
* it is not supported on KVM.
*/
if (data != 0)
return 1;
vcpu->arch.ia32_xss = data;
if (vcpu->arch.ia32_xss != host_xss)
add_atomic_switch_msr(vmx, MSR_IA32_XSS,
vcpu->arch.ia32_xss, host_xss);
else
clear_atomic_switch_msr(vmx, MSR_IA32_XSS);
break;
case MSR_TSC_AUX:
if (!guest_cpuid_has_rdtscp(vcpu) && !msr_info->host_initiated)
return 1;
/* Check reserved bit, higher 32 bits should be zero */
if ((data >> 32) != 0)
return 1;
/* Otherwise falls through */
default:
msr = find_msr_entry(vmx, msr_index);
if (msr) {
u64 old_msr_data = msr->data;
msr->data = data;
if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
preempt_disable();
ret = kvm_set_shared_msr(msr->index, msr->data,
msr->mask);
preempt_enable();
if (ret)
msr->data = old_msr_data;
}
break;
}
ret = kvm_set_msr_common(vcpu, msr_info);
}
return ret;
}
static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
{
__set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
switch (reg) {
case VCPU_REGS_RSP:
vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
break;
case VCPU_REGS_RIP:
vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
break;
case VCPU_EXREG_PDPTR:
if (enable_ept)
ept_save_pdptrs(vcpu);
break;
default:
break;
}
}
static __init int cpu_has_kvm_support(void)
{
return cpu_has_vmx();
}
static __init int vmx_disabled_by_bios(void)
{
u64 msr;
rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
if (msr & FEATURE_CONTROL_LOCKED) {
/* launched w/ TXT and VMX disabled */
if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
&& tboot_enabled())
return 1;
/* launched w/o TXT and VMX only enabled w/ TXT */
if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
&& (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
&& !tboot_enabled()) {
printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
"activate TXT before enabling KVM\n");
return 1;
}
/* launched w/o TXT and VMX disabled */
if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
&& !tboot_enabled())
return 1;
}
return 0;
}
static void kvm_cpu_vmxon(u64 addr)
{
intel_pt_handle_vmx(1);
asm volatile (ASM_VMX_VMXON_RAX
: : "a"(&addr), "m"(addr)
: "memory", "cc");
}
static int hardware_enable(void)
{
int cpu = raw_smp_processor_id();
u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
u64 old, test_bits;
if (cr4_read_shadow() & X86_CR4_VMXE)
return -EBUSY;
INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu));
spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
/*
* Now we can enable the vmclear operation in kdump
* since the loaded_vmcss_on_cpu list on this cpu
* has been initialized.
*
* Though the cpu is not in VMX operation now, there
* is no problem to enable the vmclear operation
* for the loaded_vmcss_on_cpu list is empty!
*/
crash_enable_local_vmclear(cpu);
rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
test_bits = FEATURE_CONTROL_LOCKED;
test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
if (tboot_enabled())
test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
if ((old & test_bits) != test_bits) {
/* enable and lock */
wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
}
cr4_set_bits(X86_CR4_VMXE);
if (vmm_exclusive) {
kvm_cpu_vmxon(phys_addr);
ept_sync_global();
}
native_store_gdt(this_cpu_ptr(&host_gdt));
return 0;
}
static void vmclear_local_loaded_vmcss(void)
{
int cpu = raw_smp_processor_id();
struct loaded_vmcs *v, *n;
list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
loaded_vmcss_on_cpu_link)
__loaded_vmcs_clear(v);
}
/* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
* tricks.
*/
static void kvm_cpu_vmxoff(void)
{
asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
intel_pt_handle_vmx(0);
}
static void hardware_disable(void)
{
if (vmm_exclusive) {
vmclear_local_loaded_vmcss();
kvm_cpu_vmxoff();
}
cr4_clear_bits(X86_CR4_VMXE);
}
static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
u32 msr, u32 *result)
{
u32 vmx_msr_low, vmx_msr_high;
u32 ctl = ctl_min | ctl_opt;
rdmsr(msr, vmx_msr_low, vmx_msr_high);
ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
/* Ensure minimum (required) set of control bits are supported. */
if (ctl_min & ~ctl)
return -EIO;
*result = ctl;
return 0;
}
static __init bool allow_1_setting(u32 msr, u32 ctl)
{
u32 vmx_msr_low, vmx_msr_high;
rdmsr(msr, vmx_msr_low, vmx_msr_high);
return vmx_msr_high & ctl;
}
static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
{
u32 vmx_msr_low, vmx_msr_high;
u32 min, opt, min2, opt2;
u32 _pin_based_exec_control = 0;
u32 _cpu_based_exec_control = 0;
u32 _cpu_based_2nd_exec_control = 0;
u32 _vmexit_control = 0;
u32 _vmentry_control = 0;
min = CPU_BASED_HLT_EXITING |
#ifdef CONFIG_X86_64
CPU_BASED_CR8_LOAD_EXITING |
CPU_BASED_CR8_STORE_EXITING |
#endif
CPU_BASED_CR3_LOAD_EXITING |
CPU_BASED_CR3_STORE_EXITING |
CPU_BASED_USE_IO_BITMAPS |
CPU_BASED_MOV_DR_EXITING |
CPU_BASED_USE_TSC_OFFSETING |
CPU_BASED_MWAIT_EXITING |
CPU_BASED_MONITOR_EXITING |
CPU_BASED_INVLPG_EXITING |
CPU_BASED_RDPMC_EXITING;
opt = CPU_BASED_TPR_SHADOW |
CPU_BASED_USE_MSR_BITMAPS |
CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
&_cpu_based_exec_control) < 0)
return -EIO;
#ifdef CONFIG_X86_64
if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
_cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
~CPU_BASED_CR8_STORE_EXITING;
#endif
if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
min2 = 0;
opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
SECONDARY_EXEC_WBINVD_EXITING |
SECONDARY_EXEC_ENABLE_VPID |
SECONDARY_EXEC_ENABLE_EPT |
SECONDARY_EXEC_UNRESTRICTED_GUEST |
SECONDARY_EXEC_PAUSE_LOOP_EXITING |
SECONDARY_EXEC_RDTSCP |
SECONDARY_EXEC_ENABLE_INVPCID |
SECONDARY_EXEC_APIC_REGISTER_VIRT |
SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
SECONDARY_EXEC_SHADOW_VMCS |
SECONDARY_EXEC_XSAVES |
SECONDARY_EXEC_ENABLE_PML |
SECONDARY_EXEC_TSC_SCALING;
if (adjust_vmx_controls(min2, opt2,
MSR_IA32_VMX_PROCBASED_CTLS2,
&_cpu_based_2nd_exec_control) < 0)
return -EIO;
}
#ifndef CONFIG_X86_64
if (!(_cpu_based_2nd_exec_control &
SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
_cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
#endif
if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
_cpu_based_2nd_exec_control &= ~(
SECONDARY_EXEC_APIC_REGISTER_VIRT |
SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
/* CR3 accesses and invlpg don't need to cause VM Exits when EPT
enabled */
_cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
CPU_BASED_CR3_STORE_EXITING |
CPU_BASED_INVLPG_EXITING);
rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
vmx_capability.ept, vmx_capability.vpid);
}
min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
#ifdef CONFIG_X86_64
min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
#endif
opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT |
VM_EXIT_CLEAR_BNDCFGS;
if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
&_vmexit_control) < 0)
return -EIO;
min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR |
PIN_BASED_VMX_PREEMPTION_TIMER;
if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
&_pin_based_exec_control) < 0)
return -EIO;
if (cpu_has_broken_vmx_preemption_timer())
_pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
if (!(_cpu_based_2nd_exec_control &
SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
_pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
opt = VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS;
if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
&_vmentry_control) < 0)
return -EIO;
rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
/* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
return -EIO;
#ifdef CONFIG_X86_64
/* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
if (vmx_msr_high & (1u<<16))
return -EIO;
#endif
/* Require Write-Back (WB) memory type for VMCS accesses. */
if (((vmx_msr_high >> 18) & 15) != 6)
return -EIO;
vmcs_conf->size = vmx_msr_high & 0x1fff;
vmcs_conf->order = get_order(vmcs_conf->size);
vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
vmcs_conf->revision_id = vmx_msr_low;
vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
vmcs_conf->vmexit_ctrl = _vmexit_control;
vmcs_conf->vmentry_ctrl = _vmentry_control;
cpu_has_load_ia32_efer =
allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
VM_ENTRY_LOAD_IA32_EFER)
&& allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
VM_EXIT_LOAD_IA32_EFER);
cpu_has_load_perf_global_ctrl =
allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
&& allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
/*
* Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
* but due to errata below it can't be used. Workaround is to use
* msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
*
* VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
*
* AAK155 (model 26)
* AAP115 (model 30)
* AAT100 (model 37)
* BC86,AAY89,BD102 (model 44)
* BA97 (model 46)
*
*/
if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
switch (boot_cpu_data.x86_model) {
case 26:
case 30:
case 37:
case 44:
case 46:
cpu_has_load_perf_global_ctrl = false;
printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
"does not work properly. Using workaround\n");
break;
default:
break;
}
}
if (boot_cpu_has(X86_FEATURE_XSAVES))
rdmsrl(MSR_IA32_XSS, host_xss);
return 0;
}
static struct vmcs *alloc_vmcs_cpu(int cpu)
{
int node = cpu_to_node(cpu);
struct page *pages;
struct vmcs *vmcs;
pages = __alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
if (!pages)
return NULL;
vmcs = page_address(pages);
memset(vmcs, 0, vmcs_config.size);
vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
return vmcs;
}
static struct vmcs *alloc_vmcs(void)
{
return alloc_vmcs_cpu(raw_smp_processor_id());
}
static void free_vmcs(struct vmcs *vmcs)
{
free_pages((unsigned long)vmcs, vmcs_config.order);
}
/*
* Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
*/
static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
{
if (!loaded_vmcs->vmcs)
return;
loaded_vmcs_clear(loaded_vmcs);
free_vmcs(loaded_vmcs->vmcs);
loaded_vmcs->vmcs = NULL;
WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
}
static void free_kvm_area(void)
{
int cpu;
for_each_possible_cpu(cpu) {
free_vmcs(per_cpu(vmxarea, cpu));
per_cpu(vmxarea, cpu) = NULL;
}
}
static void init_vmcs_shadow_fields(void)
{
int i, j;
/* No checks for read only fields yet */
for (i = j = 0; i < max_shadow_read_write_fields; i++) {
switch (shadow_read_write_fields[i]) {
case GUEST_BNDCFGS:
if (!kvm_mpx_supported())
continue;
break;
default:
break;
}
if (j < i)
shadow_read_write_fields[j] =
shadow_read_write_fields[i];
j++;
}
max_shadow_read_write_fields = j;
/* shadowed fields guest access without vmexit */
for (i = 0; i < max_shadow_read_write_fields; i++) {
clear_bit(shadow_read_write_fields[i],
vmx_vmwrite_bitmap);
clear_bit(shadow_read_write_fields[i],
vmx_vmread_bitmap);
}
for (i = 0; i < max_shadow_read_only_fields; i++)
clear_bit(shadow_read_only_fields[i],
vmx_vmread_bitmap);
}
static __init int alloc_kvm_area(void)
{
int cpu;
for_each_possible_cpu(cpu) {
struct vmcs *vmcs;
vmcs = alloc_vmcs_cpu(cpu);
if (!vmcs) {
free_kvm_area();
return -ENOMEM;
}
per_cpu(vmxarea, cpu) = vmcs;
}
return 0;
}
static bool emulation_required(struct kvm_vcpu *vcpu)
{
return emulate_invalid_guest_state && !guest_state_valid(vcpu);
}
static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
struct kvm_segment *save)
{
if (!emulate_invalid_guest_state) {
/*
* CS and SS RPL should be equal during guest entry according
* to VMX spec, but in reality it is not always so. Since vcpu
* is in the middle of the transition from real mode to
* protected mode it is safe to assume that RPL 0 is a good
* default value.
*/
if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
save->selector &= ~SEGMENT_RPL_MASK;
save->dpl = save->selector & SEGMENT_RPL_MASK;
save->s = 1;
}
vmx_set_segment(vcpu, save, seg);
}
static void enter_pmode(struct kvm_vcpu *vcpu)
{
unsigned long flags;
struct vcpu_vmx *vmx = to_vmx(vcpu);
/*
* Update real mode segment cache. It may be not up-to-date if sement
* register was written while vcpu was in a guest mode.
*/
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
vmx->rmode.vm86_active = 0;
vmx_segment_cache_clear(vmx);
vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
flags = vmcs_readl(GUEST_RFLAGS);
flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
vmcs_writel(GUEST_RFLAGS, flags);
vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
(vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
update_exception_bitmap(vcpu);
fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
}
static void fix_rmode_seg(int seg, struct kvm_segment *save)
{
const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
struct kvm_segment var = *save;
var.dpl = 0x3;
if (seg == VCPU_SREG_CS)
var.type = 0x3;
if (!emulate_invalid_guest_state) {
var.selector = var.base >> 4;
var.base = var.base & 0xffff0;
var.limit = 0xffff;
var.g = 0;
var.db = 0;
var.present = 1;
var.s = 1;
var.l = 0;
var.unusable = 0;
var.type = 0x3;
var.avl = 0;
if (save->base & 0xf)
printk_once(KERN_WARNING "kvm: segment base is not "
"paragraph aligned when entering "
"protected mode (seg=%d)", seg);
}
vmcs_write16(sf->selector, var.selector);
vmcs_writel(sf->base, var.base);
vmcs_write32(sf->limit, var.limit);
vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
}
static void enter_rmode(struct kvm_vcpu *vcpu)
{
unsigned long flags;
struct vcpu_vmx *vmx = to_vmx(vcpu);
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
vmx->rmode.vm86_active = 1;
/*
* Very old userspace does not call KVM_SET_TSS_ADDR before entering
* vcpu. Warn the user that an update is overdue.
*/
if (!vcpu->kvm->arch.tss_addr)
printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
"called before entering vcpu\n");
vmx_segment_cache_clear(vmx);
vmcs_writel(GUEST_TR_BASE, vcpu->kvm->arch.tss_addr);
vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
flags = vmcs_readl(GUEST_RFLAGS);
vmx->rmode.save_rflags = flags;
flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
vmcs_writel(GUEST_RFLAGS, flags);
vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
update_exception_bitmap(vcpu);
fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
kvm_mmu_reset_context(vcpu);
}
static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
if (!msr)
return;
/*
* Force kernel_gs_base reloading before EFER changes, as control
* of this msr depends on is_long_mode().
*/
vmx_load_host_state(to_vmx(vcpu));
vcpu->arch.efer = efer;
if (efer & EFER_LMA) {
vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
msr->data = efer;
} else {
vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
msr->data = efer & ~EFER_LME;
}
setup_msrs(vmx);
}
#ifdef CONFIG_X86_64
static void enter_lmode(struct kvm_vcpu *vcpu)
{
u32 guest_tr_ar;
vmx_segment_cache_clear(to_vmx(vcpu));
guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
pr_debug_ratelimited("%s: tss fixup for long mode. \n",
__func__);
vmcs_write32(GUEST_TR_AR_BYTES,
(guest_tr_ar & ~VMX_AR_TYPE_MASK)
| VMX_AR_TYPE_BUSY_64_TSS);
}
vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
}
static void exit_lmode(struct kvm_vcpu *vcpu)
{
vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
}
#endif
static inline void __vmx_flush_tlb(struct kvm_vcpu *vcpu, int vpid)
{
vpid_sync_context(vpid);
if (enable_ept) {
if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
return;
ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
}
}
static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
{
__vmx_flush_tlb(vcpu, to_vmx(vcpu)->vpid);
}
static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
{
ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
}
static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
{
if (enable_ept && is_paging(vcpu))
vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
}
static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
{
ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
}
static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
{
struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
if (!test_bit(VCPU_EXREG_PDPTR,
(unsigned long *)&vcpu->arch.regs_dirty))
return;
if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
}
}
static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
{
struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
}
__set_bit(VCPU_EXREG_PDPTR,
(unsigned long *)&vcpu->arch.regs_avail);
__set_bit(VCPU_EXREG_PDPTR,
(unsigned long *)&vcpu->arch.regs_dirty);
}
static bool nested_guest_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
{
u64 fixed0 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed0;
u64 fixed1 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed1;
struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
if (to_vmx(vcpu)->nested.nested_vmx_secondary_ctls_high &
SECONDARY_EXEC_UNRESTRICTED_GUEST &&
nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
fixed0 &= ~(X86_CR0_PE | X86_CR0_PG);
return fixed_bits_valid(val, fixed0, fixed1);
}
static bool nested_host_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
{
u64 fixed0 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed0;
u64 fixed1 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed1;
return fixed_bits_valid(val, fixed0, fixed1);
}
static bool nested_cr4_valid(struct kvm_vcpu *vcpu, unsigned long val)
{
u64 fixed0 = to_vmx(vcpu)->nested.nested_vmx_cr4_fixed0;
u64 fixed1 = to_vmx(vcpu)->nested.nested_vmx_cr4_fixed1;
return fixed_bits_valid(val, fixed0, fixed1);
}
/* No difference in the restrictions on guest and host CR4 in VMX operation. */
#define nested_guest_cr4_valid nested_cr4_valid
#define nested_host_cr4_valid nested_cr4_valid
static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
unsigned long cr0,
struct kvm_vcpu *vcpu)
{
if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
vmx_decache_cr3(vcpu);
if (!(cr0 & X86_CR0_PG)) {
/* From paging/starting to nonpaging */
vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
(CPU_BASED_CR3_LOAD_EXITING |
CPU_BASED_CR3_STORE_EXITING));
vcpu->arch.cr0 = cr0;
vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
} else if (!is_paging(vcpu)) {
/* From nonpaging to paging */
vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
~(CPU_BASED_CR3_LOAD_EXITING |
CPU_BASED_CR3_STORE_EXITING));
vcpu->arch.cr0 = cr0;
vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
}
if (!(cr0 & X86_CR0_WP))
*hw_cr0 &= ~X86_CR0_WP;
}
static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
unsigned long hw_cr0;
hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK);
if (enable_unrestricted_guest)
hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
else {
hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
enter_pmode(vcpu);
if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
enter_rmode(vcpu);
}
#ifdef CONFIG_X86_64
if (vcpu->arch.efer & EFER_LME) {
if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
enter_lmode(vcpu);
if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
exit_lmode(vcpu);
}
#endif
if (enable_ept)
ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
vmcs_writel(CR0_READ_SHADOW, cr0);
vmcs_writel(GUEST_CR0, hw_cr0);
vcpu->arch.cr0 = cr0;
/* depends on vcpu->arch.cr0 to be set to a new value */
vmx->emulation_required = emulation_required(vcpu);
}
static u64 construct_eptp(unsigned long root_hpa)
{
u64 eptp;
/* TODO write the value reading from MSR */
eptp = VMX_EPT_DEFAULT_MT |
VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
if (enable_ept_ad_bits)
eptp |= VMX_EPT_AD_ENABLE_BIT;
eptp |= (root_hpa & PAGE_MASK);
return eptp;
}
static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
{
unsigned long guest_cr3;
u64 eptp;
guest_cr3 = cr3;
if (enable_ept) {
eptp = construct_eptp(cr3);
vmcs_write64(EPT_POINTER, eptp);
if (is_paging(vcpu) || is_guest_mode(vcpu))
guest_cr3 = kvm_read_cr3(vcpu);
else
guest_cr3 = vcpu->kvm->arch.ept_identity_map_addr;
ept_load_pdptrs(vcpu);
}
vmx_flush_tlb(vcpu);
vmcs_writel(GUEST_CR3, guest_cr3);
}
static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
{
/*
* Pass through host's Machine Check Enable value to hw_cr4, which
* is in force while we are in guest mode. Do not let guests control
* this bit, even if host CR4.MCE == 0.
*/
unsigned long hw_cr4 =
(cr4_read_shadow() & X86_CR4_MCE) |
(cr4 & ~X86_CR4_MCE) |
(to_vmx(vcpu)->rmode.vm86_active ?
KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
if (cr4 & X86_CR4_VMXE) {
/*
* To use VMXON (and later other VMX instructions), a guest
* must first be able to turn on cr4.VMXE (see handle_vmon()).
* So basically the check on whether to allow nested VMX
* is here.
*/
if (!nested_vmx_allowed(vcpu))
return 1;
}
if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
return 1;
vcpu->arch.cr4 = cr4;
if (enable_ept) {
if (!is_paging(vcpu)) {
hw_cr4 &= ~X86_CR4_PAE;
hw_cr4 |= X86_CR4_PSE;
} else if (!(cr4 & X86_CR4_PAE)) {
hw_cr4 &= ~X86_CR4_PAE;
}
}
if (!enable_unrestricted_guest && !is_paging(vcpu))
/*
* SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
* hardware. To emulate this behavior, SMEP/SMAP/PKU needs
* to be manually disabled when guest switches to non-paging
* mode.
*
* If !enable_unrestricted_guest, the CPU is always running
* with CR0.PG=1 and CR4 needs to be modified.
* If enable_unrestricted_guest, the CPU automatically
* disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
*/
hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
vmcs_writel(CR4_READ_SHADOW, cr4);
vmcs_writel(GUEST_CR4, hw_cr4);
return 0;
}
static void vmx_get_segment(struct kvm_vcpu *vcpu,
struct kvm_segment *var, int seg)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
u32 ar;
if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
*var = vmx->rmode.segs[seg];
if (seg == VCPU_SREG_TR
|| var->selector == vmx_read_guest_seg_selector(vmx, seg))
return;
var->base = vmx_read_guest_seg_base(vmx, seg);
var->selector = vmx_read_guest_seg_selector(vmx, seg);
return;
}
var->base = vmx_read_guest_seg_base(vmx, seg);
var->limit = vmx_read_guest_seg_limit(vmx, seg);
var->selector = vmx_read_guest_seg_selector(vmx, seg);
ar = vmx_read_guest_seg_ar(vmx, seg);
var->unusable = (ar >> 16) & 1;
var->type = ar & 15;
var->s = (ar >> 4) & 1;
var->dpl = (ar >> 5) & 3;
/*
* Some userspaces do not preserve unusable property. Since usable
* segment has to be present according to VMX spec we can use present
* property to amend userspace bug by making unusable segment always
* nonpresent. vmx_segment_access_rights() already marks nonpresent
* segment as unusable.
*/
var->present = !var->unusable;
var->avl = (ar >> 12) & 1;
var->l = (ar >> 13) & 1;
var->db = (ar >> 14) & 1;
var->g = (ar >> 15) & 1;
}
static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
{
struct kvm_segment s;
if (to_vmx(vcpu)->rmode.vm86_active) {
vmx_get_segment(vcpu, &s, seg);
return s.base;
}
return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
}
static int vmx_get_cpl(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
if (unlikely(vmx->rmode.vm86_active))
return 0;
else {
int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
return VMX_AR_DPL(ar);
}
}
static u32 vmx_segment_access_rights(struct kvm_segment *var)
{
u32 ar;
if (var->unusable || !var->present)
ar = 1 << 16;
else {
ar = var->type & 15;
ar |= (var->s & 1) << 4;
ar |= (var->dpl & 3) << 5;
ar |= (var->present & 1) << 7;
ar |= (var->avl & 1) << 12;
ar |= (var->l & 1) << 13;
ar |= (var->db & 1) << 14;
ar |= (var->g & 1) << 15;
}
return ar;
}
static void vmx_set_segment(struct kvm_vcpu *vcpu,
struct kvm_segment *var, int seg)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
vmx_segment_cache_clear(vmx);
if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
vmx->rmode.segs[seg] = *var;
if (seg == VCPU_SREG_TR)
vmcs_write16(sf->selector, var->selector);
else if (var->s)
fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
goto out;
}
vmcs_writel(sf->base, var->base);
vmcs_write32(sf->limit, var->limit);
vmcs_write16(sf->selector, var->selector);
/*
* Fix the "Accessed" bit in AR field of segment registers for older
* qemu binaries.
* IA32 arch specifies that at the time of processor reset the
* "Accessed" bit in the AR field of segment registers is 1. And qemu
* is setting it to 0 in the userland code. This causes invalid guest
* state vmexit when "unrestricted guest" mode is turned on.
* Fix for this setup issue in cpu_reset is being pushed in the qemu
* tree. Newer qemu binaries with that qemu fix would not need this
* kvm hack.
*/
if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
var->type |= 0x1; /* Accessed */
vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
out:
vmx->emulation_required = emulation_required(vcpu);
}
static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
{
u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
*db = (ar >> 14) & 1;
*l = (ar >> 13) & 1;
}
static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
{
dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
dt->address = vmcs_readl(GUEST_IDTR_BASE);
}
static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
{
vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
vmcs_writel(GUEST_IDTR_BASE, dt->address);
}
static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
{
dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
dt->address = vmcs_readl(GUEST_GDTR_BASE);
}
static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
{
vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
vmcs_writel(GUEST_GDTR_BASE, dt->address);
}
static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
{
struct kvm_segment var;
u32 ar;
vmx_get_segment(vcpu, &var, seg);
var.dpl = 0x3;
if (seg == VCPU_SREG_CS)
var.type = 0x3;
ar = vmx_segment_access_rights(&var);
if (var.base != (var.selector << 4))
return false;
if (var.limit != 0xffff)
return false;
if (ar != 0xf3)
return false;
return true;
}
static bool code_segment_valid(struct kvm_vcpu *vcpu)
{
struct kvm_segment cs;
unsigned int cs_rpl;
vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
cs_rpl = cs.selector & SEGMENT_RPL_MASK;
if (cs.unusable)
return false;
if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
return false;
if (!cs.s)
return false;
if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
if (cs.dpl > cs_rpl)
return false;
} else {
if (cs.dpl != cs_rpl)
return false;
}
if (!cs.present)
return false;
/* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
return true;
}
static bool stack_segment_valid(struct kvm_vcpu *vcpu)
{
struct kvm_segment ss;
unsigned int ss_rpl;
vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
ss_rpl = ss.selector & SEGMENT_RPL_MASK;
if (ss.unusable)
return true;
if (ss.type != 3 && ss.type != 7)
return false;
if (!ss.s)
return false;
if (ss.dpl != ss_rpl) /* DPL != RPL */
return false;
if (!ss.present)
return false;
return true;
}
static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
{
struct kvm_segment var;
unsigned int rpl;
vmx_get_segment(vcpu, &var, seg);
rpl = var.selector & SEGMENT_RPL_MASK;
if (var.unusable)
return true;
if (!var.s)
return false;
if (!var.present)
return false;
if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
if (var.dpl < rpl) /* DPL < RPL */
return false;
}
/* TODO: Add other members to kvm_segment_field to allow checking for other access
* rights flags
*/
return true;
}
static bool tr_valid(struct kvm_vcpu *vcpu)
{
struct kvm_segment tr;
vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
if (tr.unusable)
return false;
if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */
return false;
if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
return false;
if (!tr.present)
return false;
return true;
}
static bool ldtr_valid(struct kvm_vcpu *vcpu)
{
struct kvm_segment ldtr;
vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
if (ldtr.unusable)
return true;
if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */
return false;
if (ldtr.type != 2)
return false;
if (!ldtr.present)
return false;
return true;
}
static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
{
struct kvm_segment cs, ss;
vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
return ((cs.selector & SEGMENT_RPL_MASK) ==
(ss.selector & SEGMENT_RPL_MASK));
}
/*
* Check if guest state is valid. Returns true if valid, false if
* not.
* We assume that registers are always usable
*/
static bool guest_state_valid(struct kvm_vcpu *vcpu)
{
if (enable_unrestricted_guest)
return true;
/* real mode guest state checks */
if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
return false;
if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
return false;
if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
return false;
if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
return false;
if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
return false;
if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
return false;
} else {
/* protected mode guest state checks */
if (!cs_ss_rpl_check(vcpu))
return false;
if (!code_segment_valid(vcpu))
return false;
if (!stack_segment_valid(vcpu))
return false;
if (!data_segment_valid(vcpu, VCPU_SREG_DS))
return false;
if (!data_segment_valid(vcpu, VCPU_SREG_ES))
return false;
if (!data_segment_valid(vcpu, VCPU_SREG_FS))
return false;
if (!data_segment_valid(vcpu, VCPU_SREG_GS))
return false;
if (!tr_valid(vcpu))
return false;
if (!ldtr_valid(vcpu))
return false;
}
/* TODO:
* - Add checks on RIP
* - Add checks on RFLAGS
*/
return true;
}
static int init_rmode_tss(struct kvm *kvm)
{
gfn_t fn;
u16 data = 0;
int idx, r;
idx = srcu_read_lock(&kvm->srcu);
fn = kvm->arch.tss_addr >> PAGE_SHIFT;
r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
if (r < 0)
goto out;
data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
r = kvm_write_guest_page(kvm, fn++, &data,
TSS_IOPB_BASE_OFFSET, sizeof(u16));
if (r < 0)
goto out;
r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
if (r < 0)
goto out;
r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
if (r < 0)
goto out;
data = ~0;
r = kvm_write_guest_page(kvm, fn, &data,
RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
sizeof(u8));
out:
srcu_read_unlock(&kvm->srcu, idx);
return r;
}
static int init_rmode_identity_map(struct kvm *kvm)
{
int i, idx, r = 0;
kvm_pfn_t identity_map_pfn;
u32 tmp;
if (!enable_ept)
return 0;
/* Protect kvm->arch.ept_identity_pagetable_done. */
mutex_lock(&kvm->slots_lock);
if (likely(kvm->arch.ept_identity_pagetable_done))
goto out2;
identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
r = alloc_identity_pagetable(kvm);
if (r < 0)
goto out2;
idx = srcu_read_lock(&kvm->srcu);
r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
if (r < 0)
goto out;
/* Set up identity-mapping pagetable for EPT in real mode */
for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
_PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
r = kvm_write_guest_page(kvm, identity_map_pfn,
&tmp, i * sizeof(tmp), sizeof(tmp));
if (r < 0)
goto out;
}
kvm->arch.ept_identity_pagetable_done = true;
out:
srcu_read_unlock(&kvm->srcu, idx);
out2:
mutex_unlock(&kvm->slots_lock);
return r;
}
static void seg_setup(int seg)
{
const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
unsigned int ar;
vmcs_write16(sf->selector, 0);
vmcs_writel(sf->base, 0);
vmcs_write32(sf->limit, 0xffff);
ar = 0x93;
if (seg == VCPU_SREG_CS)
ar |= 0x08; /* code segment */
vmcs_write32(sf->ar_bytes, ar);
}
static int alloc_apic_access_page(struct kvm *kvm)
{
struct page *page;
int r = 0;
mutex_lock(&kvm->slots_lock);
if (kvm->arch.apic_access_page_done)
goto out;
r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
if (r)
goto out;
page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
if (is_error_page(page)) {
r = -EFAULT;
goto out;
}
/*
* Do not pin the page in memory, so that memory hot-unplug
* is able to migrate it.
*/
put_page(page);
kvm->arch.apic_access_page_done = true;
out:
mutex_unlock(&kvm->slots_lock);
return r;
}
static int alloc_identity_pagetable(struct kvm *kvm)
{
/* Called with kvm->slots_lock held. */
int r = 0;
BUG_ON(kvm->arch.ept_identity_pagetable_done);
r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
kvm->arch.ept_identity_map_addr, PAGE_SIZE);
return r;
}
static int allocate_vpid(void)
{
int vpid;
if (!enable_vpid)
return 0;
spin_lock(&vmx_vpid_lock);
vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
if (vpid < VMX_NR_VPIDS)
__set_bit(vpid, vmx_vpid_bitmap);
else
vpid = 0;
spin_unlock(&vmx_vpid_lock);
return vpid;
}
static void free_vpid(int vpid)
{
if (!enable_vpid || vpid == 0)
return;
spin_lock(&vmx_vpid_lock);
__clear_bit(vpid, vmx_vpid_bitmap);
spin_unlock(&vmx_vpid_lock);
}
#define MSR_TYPE_R 1
#define MSR_TYPE_W 2
static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
u32 msr, int type)
{
int f = sizeof(unsigned long);
if (!cpu_has_vmx_msr_bitmap())
return;
/*
* See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
* have the write-low and read-high bitmap offsets the wrong way round.
* We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
*/
if (msr <= 0x1fff) {
if (type & MSR_TYPE_R)
/* read-low */
__clear_bit(msr, msr_bitmap + 0x000 / f);
if (type & MSR_TYPE_W)
/* write-low */
__clear_bit(msr, msr_bitmap + 0x800 / f);
} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
msr &= 0x1fff;
if (type & MSR_TYPE_R)
/* read-high */
__clear_bit(msr, msr_bitmap + 0x400 / f);
if (type & MSR_TYPE_W)
/* write-high */
__clear_bit(msr, msr_bitmap + 0xc00 / f);
}
}
/*
* If a msr is allowed by L0, we should check whether it is allowed by L1.
* The corresponding bit will be cleared unless both of L0 and L1 allow it.
*/
static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
unsigned long *msr_bitmap_nested,
u32 msr, int type)
{
int f = sizeof(unsigned long);
if (!cpu_has_vmx_msr_bitmap()) {
WARN_ON(1);
return;
}
/*
* See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
* have the write-low and read-high bitmap offsets the wrong way round.
* We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
*/
if (msr <= 0x1fff) {
if (type & MSR_TYPE_R &&
!test_bit(msr, msr_bitmap_l1 + 0x000 / f))
/* read-low */
__clear_bit(msr, msr_bitmap_nested + 0x000 / f);
if (type & MSR_TYPE_W &&
!test_bit(msr, msr_bitmap_l1 + 0x800 / f))
/* write-low */
__clear_bit(msr, msr_bitmap_nested + 0x800 / f);
} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
msr &= 0x1fff;
if (type & MSR_TYPE_R &&
!test_bit(msr, msr_bitmap_l1 + 0x400 / f))
/* read-high */
__clear_bit(msr, msr_bitmap_nested + 0x400 / f);
if (type & MSR_TYPE_W &&
!test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
/* write-high */
__clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
}
}
static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
{
if (!longmode_only)
__vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy,
msr, MSR_TYPE_R | MSR_TYPE_W);
__vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode,
msr, MSR_TYPE_R | MSR_TYPE_W);
}
static void vmx_disable_intercept_msr_x2apic(u32 msr, int type, bool apicv_active)
{
if (apicv_active) {
__vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic_apicv,
msr, type);
__vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic_apicv,
msr, type);
} else {
__vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
msr, type);
__vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
msr, type);
}
}
static bool vmx_get_enable_apicv(void)
{
return enable_apicv;
}
static void vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
int max_irr;
void *vapic_page;
u16 status;
if (vmx->nested.pi_desc &&
vmx->nested.pi_pending) {
vmx->nested.pi_pending = false;
if (!pi_test_and_clear_on(vmx->nested.pi_desc))
return;
max_irr = find_last_bit(
(unsigned long *)vmx->nested.pi_desc->pir, 256);
if (max_irr == 256)
return;
vapic_page = kmap(vmx->nested.virtual_apic_page);
__kvm_apic_update_irr(vmx->nested.pi_desc->pir, vapic_page);
kunmap(vmx->nested.virtual_apic_page);
status = vmcs_read16(GUEST_INTR_STATUS);
if ((u8)max_irr > ((u8)status & 0xff)) {
status &= ~0xff;
status |= (u8)max_irr;
vmcs_write16(GUEST_INTR_STATUS, status);
}
}
}
static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu)
{
#ifdef CONFIG_SMP
if (vcpu->mode == IN_GUEST_MODE) {
struct vcpu_vmx *vmx = to_vmx(vcpu);
/*
* Currently, we don't support urgent interrupt,
* all interrupts are recognized as non-urgent
* interrupt, so we cannot post interrupts when
* 'SN' is set.
*
* If the vcpu is in guest mode, it means it is
* running instead of being scheduled out and
* waiting in the run queue, and that's the only
* case when 'SN' is set currently, warning if
* 'SN' is set.
*/
WARN_ON_ONCE(pi_test_sn(&vmx->pi_desc));
apic->send_IPI_mask(get_cpu_mask(vcpu->cpu),
POSTED_INTR_VECTOR);
return true;
}
#endif
return false;
}
static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
int vector)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
if (is_guest_mode(vcpu) &&
vector == vmx->nested.posted_intr_nv) {
/* the PIR and ON have been set by L1. */
kvm_vcpu_trigger_posted_interrupt(vcpu);
/*
* If a posted intr is not recognized by hardware,
* we will accomplish it in the next vmentry.
*/
vmx->nested.pi_pending = true;
kvm_make_request(KVM_REQ_EVENT, vcpu);
return 0;
}
return -1;
}
/*
* Send interrupt to vcpu via posted interrupt way.
* 1. If target vcpu is running(non-root mode), send posted interrupt
* notification to vcpu and hardware will sync PIR to vIRR atomically.
* 2. If target vcpu isn't running(root mode), kick it to pick up the
* interrupt from PIR in next vmentry.
*/
static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
int r;
r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
if (!r)
return;
if (pi_test_and_set_pir(vector, &vmx->pi_desc))
return;
/* If a previous notification has sent the IPI, nothing to do. */
if (pi_test_and_set_on(&vmx->pi_desc))
return;
if (!kvm_vcpu_trigger_posted_interrupt(vcpu))
kvm_vcpu_kick(vcpu);
}
/*
* Set up the vmcs's constant host-state fields, i.e., host-state fields that
* will not change in the lifetime of the guest.
* Note that host-state that does change is set elsewhere. E.g., host-state
* that is set differently for each CPU is set in vmx_vcpu_load(), not here.
*/
static void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
{
u32 low32, high32;
unsigned long tmpl;
struct desc_ptr dt;
unsigned long cr0, cr4;
cr0 = read_cr0();
WARN_ON(cr0 & X86_CR0_TS);
vmcs_writel(HOST_CR0, cr0); /* 22.2.3 */
vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
/* Save the most likely value for this task's CR4 in the VMCS. */
cr4 = cr4_read_shadow();
vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */
vmx->host_state.vmcs_host_cr4 = cr4;
vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
#ifdef CONFIG_X86_64
/*
* Load null selectors, so we can avoid reloading them in
* __vmx_load_host_state(), in case userspace uses the null selectors
* too (the expected case).
*/
vmcs_write16(HOST_DS_SELECTOR, 0);
vmcs_write16(HOST_ES_SELECTOR, 0);
#else
vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
#endif
vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
native_store_idt(&dt);
vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
vmx->host_idt_base = dt.address;
vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
rdmsr(MSR_IA32_CR_PAT, low32, high32);
vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
}
}
static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
{
vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
if (enable_ept)
vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
if (is_guest_mode(&vmx->vcpu))
vmx->vcpu.arch.cr4_guest_owned_bits &=
~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
}
static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
{
u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
if (!kvm_vcpu_apicv_active(&vmx->vcpu))
pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
/* Enable the preemption timer dynamically */
pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
return pin_based_exec_ctrl;
}
static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
if (cpu_has_secondary_exec_ctrls()) {
if (kvm_vcpu_apicv_active(vcpu))
vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
SECONDARY_EXEC_APIC_REGISTER_VIRT |
SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
else
vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
SECONDARY_EXEC_APIC_REGISTER_VIRT |
SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
}
if (cpu_has_vmx_msr_bitmap())
vmx_set_msr_bitmap(vcpu);
}
static u32 vmx_exec_control(struct vcpu_vmx *vmx)
{
u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
exec_control &= ~CPU_BASED_MOV_DR_EXITING;
if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
exec_control &= ~CPU_BASED_TPR_SHADOW;
#ifdef CONFIG_X86_64
exec_control |= CPU_BASED_CR8_STORE_EXITING |
CPU_BASED_CR8_LOAD_EXITING;
#endif
}
if (!enable_ept)
exec_control |= CPU_BASED_CR3_STORE_EXITING |
CPU_BASED_CR3_LOAD_EXITING |
CPU_BASED_INVLPG_EXITING;
return exec_control;
}
static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
{
u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
if (!cpu_need_virtualize_apic_accesses(&vmx->vcpu))
exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
if (vmx->vpid == 0)
exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
if (!enable_ept) {
exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
enable_unrestricted_guest = 0;
/* Enable INVPCID for non-ept guests may cause performance regression. */
exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
}
if (!enable_unrestricted_guest)
exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
if (!ple_gap)
exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
if (!kvm_vcpu_apicv_active(&vmx->vcpu))
exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
/* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
(handle_vmptrld).
We can NOT enable shadow_vmcs here because we don't have yet
a current VMCS12
*/
exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
if (!enable_pml)
exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
return exec_control;
}
static void ept_set_mmio_spte_mask(void)
{
/*
* EPT Misconfigurations can be generated if the value of bits 2:0
* of an EPT paging-structure entry is 110b (write/execute).
*/
kvm_mmu_set_mmio_spte_mask(VMX_EPT_MISCONFIG_WX_VALUE);
}
#define VMX_XSS_EXIT_BITMAP 0
/*
* Sets up the vmcs for emulated real mode.
*/
static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
{
#ifdef CONFIG_X86_64
unsigned long a;
#endif
int i;
/* I/O */
vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
if (enable_shadow_vmcs) {
vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
}
if (cpu_has_vmx_msr_bitmap())
vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
/* Control */
vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
vmx->hv_deadline_tsc = -1;
vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
if (cpu_has_secondary_exec_ctrls()) {
vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
vmx_secondary_exec_control(vmx));
}
if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
vmcs_write64(EOI_EXIT_BITMAP0, 0);
vmcs_write64(EOI_EXIT_BITMAP1, 0);
vmcs_write64(EOI_EXIT_BITMAP2, 0);
vmcs_write64(EOI_EXIT_BITMAP3, 0);
vmcs_write16(GUEST_INTR_STATUS, 0);
vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
}
if (ple_gap) {
vmcs_write32(PLE_GAP, ple_gap);
vmx->ple_window = ple_window;
vmx->ple_window_dirty = true;
}
vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
vmx_set_constant_host_state(vmx);
#ifdef CONFIG_X86_64
rdmsrl(MSR_FS_BASE, a);
vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
rdmsrl(MSR_GS_BASE, a);
vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
#else
vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
#endif
vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
u32 index = vmx_msr_index[i];
u32 data_low, data_high;
int j = vmx->nmsrs;
if (rdmsr_safe(index, &data_low, &data_high) < 0)
continue;
if (wrmsr_safe(index, data_low, data_high) < 0)
continue;
vmx->guest_msrs[j].index = i;
vmx->guest_msrs[j].data = 0;
vmx->guest_msrs[j].mask = -1ull;
++vmx->nmsrs;
}
vm_exit_controls_init(vmx, vmcs_config.vmexit_ctrl);
/* 22.2.1, 20.8.1 */
vm_entry_controls_init(vmx, vmcs_config.vmentry_ctrl);
vmx->vcpu.arch.cr0_guest_owned_bits = X86_CR0_TS;
vmcs_writel(CR0_GUEST_HOST_MASK, ~X86_CR0_TS);
set_cr4_guest_host_mask(vmx);
if (vmx_xsaves_supported())
vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
if (enable_pml) {
ASSERT(vmx->pml_pg);
vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
}
return 0;
}
static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
struct msr_data apic_base_msr;
u64 cr0;
vmx->rmode.vm86_active = 0;
vmx->soft_vnmi_blocked = 0;
vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
kvm_set_cr8(vcpu, 0);
if (!init_event) {
apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
MSR_IA32_APICBASE_ENABLE;
if (kvm_vcpu_is_reset_bsp(vcpu))
apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
apic_base_msr.host_initiated = true;
kvm_set_apic_base(vcpu, &apic_base_msr);
}
vmx_segment_cache_clear(vmx);
seg_setup(VCPU_SREG_CS);
vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
seg_setup(VCPU_SREG_DS);
seg_setup(VCPU_SREG_ES);
seg_setup(VCPU_SREG_FS);
seg_setup(VCPU_SREG_GS);
seg_setup(VCPU_SREG_SS);
vmcs_write16(GUEST_TR_SELECTOR, 0);
vmcs_writel(GUEST_TR_BASE, 0);
vmcs_write32(GUEST_TR_LIMIT, 0xffff);
vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
vmcs_write16(GUEST_LDTR_SELECTOR, 0);
vmcs_writel(GUEST_LDTR_BASE, 0);
vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
if (!init_event) {
vmcs_write32(GUEST_SYSENTER_CS, 0);
vmcs_writel(GUEST_SYSENTER_ESP, 0);
vmcs_writel(GUEST_SYSENTER_EIP, 0);
vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
}
vmcs_writel(GUEST_RFLAGS, 0x02);
kvm_rip_write(vcpu, 0xfff0);
vmcs_writel(GUEST_GDTR_BASE, 0);
vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
vmcs_writel(GUEST_IDTR_BASE, 0);
vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
setup_msrs(vmx);
vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
if (cpu_has_vmx_tpr_shadow() && !init_event) {
vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
if (cpu_need_tpr_shadow(vcpu))
vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
__pa(vcpu->arch.apic->regs));
vmcs_write32(TPR_THRESHOLD, 0);
}
kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
if (kvm_vcpu_apicv_active(vcpu))
memset(&vmx->pi_desc, 0, sizeof(struct pi_desc));
if (vmx->vpid != 0)
vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
vmx->vcpu.arch.cr0 = cr0;
vmx_set_cr0(vcpu, cr0); /* enter rmode */
vmx_set_cr4(vcpu, 0);
vmx_set_efer(vcpu, 0);
update_exception_bitmap(vcpu);
vpid_sync_context(vmx->vpid);
}
/*
* In nested virtualization, check if L1 asked to exit on external interrupts.
* For most existing hypervisors, this will always return true.
*/
static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
{
return get_vmcs12(vcpu)->pin_based_vm_exec_control &
PIN_BASED_EXT_INTR_MASK;
}
/*
* In nested virtualization, check if L1 has set
* VM_EXIT_ACK_INTR_ON_EXIT
*/
static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
{
return get_vmcs12(vcpu)->vm_exit_controls &
VM_EXIT_ACK_INTR_ON_EXIT;
}
static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
{
return get_vmcs12(vcpu)->pin_based_vm_exec_control &
PIN_BASED_NMI_EXITING;
}
static void enable_irq_window(struct kvm_vcpu *vcpu)
{
vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
CPU_BASED_VIRTUAL_INTR_PENDING);
}
static void enable_nmi_window(struct kvm_vcpu *vcpu)
{
if (!cpu_has_virtual_nmis() ||
vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
enable_irq_window(vcpu);
return;
}
vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
CPU_BASED_VIRTUAL_NMI_PENDING);
}
static void vmx_inject_irq(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
uint32_t intr;
int irq = vcpu->arch.interrupt.nr;
trace_kvm_inj_virq(irq);
++vcpu->stat.irq_injections;
if (vmx->rmode.vm86_active) {
int inc_eip = 0;
if (vcpu->arch.interrupt.soft)
inc_eip = vcpu->arch.event_exit_inst_len;
if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
return;
}
intr = irq | INTR_INFO_VALID_MASK;
if (vcpu->arch.interrupt.soft) {
intr |= INTR_TYPE_SOFT_INTR;
vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
vmx->vcpu.arch.event_exit_inst_len);
} else
intr |= INTR_TYPE_EXT_INTR;
vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
}
static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
if (!is_guest_mode(vcpu)) {
if (!cpu_has_virtual_nmis()) {
/*
* Tracking the NMI-blocked state in software is built upon
* finding the next open IRQ window. This, in turn, depends on
* well-behaving guests: They have to keep IRQs disabled at
* least as long as the NMI handler runs. Otherwise we may
* cause NMI nesting, maybe breaking the guest. But as this is
* highly unlikely, we can live with the residual risk.
*/
vmx->soft_vnmi_blocked = 1;
vmx->vnmi_blocked_time = 0;
}
++vcpu->stat.nmi_injections;
vmx->nmi_known_unmasked = false;
}
if (vmx->rmode.vm86_active) {
if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
return;
}
vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
}
static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
{
if (!cpu_has_virtual_nmis())
return to_vmx(vcpu)->soft_vnmi_blocked;
if (to_vmx(vcpu)->nmi_known_unmasked)
return false;
return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
}
static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
if (!cpu_has_virtual_nmis()) {
if (vmx->soft_vnmi_blocked != masked) {
vmx->soft_vnmi_blocked = masked;
vmx->vnmi_blocked_time = 0;
}
} else {
vmx->nmi_known_unmasked = !masked;
if (masked)
vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
GUEST_INTR_STATE_NMI);
else
vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
GUEST_INTR_STATE_NMI);
}
}
static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
{
if (to_vmx(vcpu)->nested.nested_run_pending)
return 0;
if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
return 0;
return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
(GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
| GUEST_INTR_STATE_NMI));
}
static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
{
return (!to_vmx(vcpu)->nested.nested_run_pending &&
vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
}
static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
{
int ret;
ret = x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
PAGE_SIZE * 3);
if (ret)
return ret;
kvm->arch.tss_addr = addr;
return init_rmode_tss(kvm);
}
static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
{
switch (vec) {
case BP_VECTOR:
/*
* Update instruction length as we may reinject the exception
* from user space while in guest debugging mode.
*/
to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
return false;
/* fall through */
case DB_VECTOR:
if (vcpu->guest_debug &
(KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
return false;
/* fall through */
case DE_VECTOR:
case OF_VECTOR:
case BR_VECTOR:
case UD_VECTOR:
case DF_VECTOR:
case SS_VECTOR:
case GP_VECTOR:
case MF_VECTOR:
return true;
break;
}
return false;
}
static int handle_rmode_exception(struct kvm_vcpu *vcpu,
int vec, u32 err_code)
{
/*
* Instruction with address size override prefix opcode 0x67
* Cause the #SS fault with 0 error code in VM86 mode.
*/
if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
if (emulate_instruction(vcpu, 0) == EMULATE_DONE) {
if (vcpu->arch.halt_request) {
vcpu->arch.halt_request = 0;
return kvm_vcpu_halt(vcpu);
}
return 1;
}
return 0;
}
/*
* Forward all other exceptions that are valid in real mode.
* FIXME: Breaks guest debugging in real mode, needs to be fixed with
* the required debugging infrastructure rework.
*/
kvm_queue_exception(vcpu, vec);
return 1;
}
/*
* Trigger machine check on the host. We assume all the MSRs are already set up
* by the CPU and that we still run on the same CPU as the MCE occurred on.
* We pass a fake environment to the machine check handler because we want
* the guest to be always treated like user space, no matter what context
* it used internally.
*/
static void kvm_machine_check(void)
{
#if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
struct pt_regs regs = {
.cs = 3, /* Fake ring 3 no matter what the guest ran on */
.flags = X86_EFLAGS_IF,
};
do_machine_check(&regs, 0);
#endif
}
static int handle_machine_check(struct kvm_vcpu *vcpu)
{
/* already handled by vcpu_run */
return 1;
}
static int handle_exception(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
struct kvm_run *kvm_run = vcpu->run;
u32 intr_info, ex_no, error_code;
unsigned long cr2, rip, dr6;
u32 vect_info;
enum emulation_result er;
vect_info = vmx->idt_vectoring_info;
intr_info = vmx->exit_intr_info;
if (is_machine_check(intr_info))
return handle_machine_check(vcpu);
if (is_nmi(intr_info))
return 1; /* already handled by vmx_vcpu_run() */
if (is_invalid_opcode(intr_info)) {
if (is_guest_mode(vcpu)) {
kvm_queue_exception(vcpu, UD_VECTOR);
return 1;
}
er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
if (er != EMULATE_DONE)
kvm_queue_exception(vcpu, UD_VECTOR);
return 1;
}
error_code = 0;
if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
/*
* The #PF with PFEC.RSVD = 1 indicates the guest is accessing
* MMIO, it is better to report an internal error.
* See the comments in vmx_handle_exit.
*/
if ((vect_info & VECTORING_INFO_VALID_MASK) &&
!(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
vcpu->run->internal.ndata = 3;
vcpu->run->internal.data[0] = vect_info;
vcpu->run->internal.data[1] = intr_info;
vcpu->run->internal.data[2] = error_code;
return 0;
}
if (is_page_fault(intr_info)) {
/* EPT won't cause page fault directly */
BUG_ON(enable_ept);
cr2 = vmcs_readl(EXIT_QUALIFICATION);
trace_kvm_page_fault(cr2, error_code);
if (kvm_event_needs_reinjection(vcpu))
kvm_mmu_unprotect_page_virt(vcpu, cr2);
return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
}
ex_no = intr_info & INTR_INFO_VECTOR_MASK;
if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
return handle_rmode_exception(vcpu, ex_no, error_code);
switch (ex_no) {
case AC_VECTOR:
kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
return 1;
case DB_VECTOR:
dr6 = vmcs_readl(EXIT_QUALIFICATION);
if (!(vcpu->guest_debug &
(KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
vcpu->arch.dr6 &= ~15;
vcpu->arch.dr6 |= dr6 | DR6_RTM;
if (!(dr6 & ~DR6_RESERVED)) /* icebp */
skip_emulated_instruction(vcpu);
kvm_queue_exception(vcpu, DB_VECTOR);
return 1;
}
kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
/* fall through */
case BP_VECTOR:
/*
* Update instruction length as we may reinject #BP from
* user space while in guest debugging mode. Reading it for
* #DB as well causes no harm, it is not used in that case.
*/
vmx->vcpu.arch.event_exit_inst_len =
vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
kvm_run->exit_reason = KVM_EXIT_DEBUG;
rip = kvm_rip_read(vcpu);
kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
kvm_run->debug.arch.exception = ex_no;
break;
default:
kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
kvm_run->ex.exception = ex_no;
kvm_run->ex.error_code = error_code;
break;
}
return 0;
}
static int handle_external_interrupt(struct kvm_vcpu *vcpu)
{
++vcpu->stat.irq_exits;
return 1;
}
static int handle_triple_fault(struct kvm_vcpu *vcpu)
{
vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
return 0;
}
static int handle_io(struct kvm_vcpu *vcpu)
{
unsigned long exit_qualification;
int size, in, string, ret;
unsigned port;
exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
string = (exit_qualification & 16) != 0;
in = (exit_qualification & 8) != 0;
++vcpu->stat.io_exits;
if (string || in)
return emulate_instruction(vcpu, 0) == EMULATE_DONE;
port = exit_qualification >> 16;
size = (exit_qualification & 7) + 1;
ret = kvm_skip_emulated_instruction(vcpu);
/*
* TODO: we might be squashing a KVM_GUESTDBG_SINGLESTEP-triggered
* KVM_EXIT_DEBUG here.
*/
return kvm_fast_pio_out(vcpu, size, port) && ret;
}
static void
vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
{
/*
* Patch in the VMCALL instruction:
*/
hypercall[0] = 0x0f;
hypercall[1] = 0x01;
hypercall[2] = 0xc1;
}
/* called to set cr0 as appropriate for a mov-to-cr0 exit. */
static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
{
if (is_guest_mode(vcpu)) {
struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
unsigned long orig_val = val;
/*
* We get here when L2 changed cr0 in a way that did not change
* any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
* but did change L0 shadowed bits. So we first calculate the
* effective cr0 value that L1 would like to write into the
* hardware. It consists of the L2-owned bits from the new
* value combined with the L1-owned bits from L1's guest_cr0.
*/
val = (val & ~vmcs12->cr0_guest_host_mask) |
(vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
if (!nested_guest_cr0_valid(vcpu, val))
return 1;
if (kvm_set_cr0(vcpu, val))
return 1;
vmcs_writel(CR0_READ_SHADOW, orig_val);
return 0;
} else {
if (to_vmx(vcpu)->nested.vmxon &&
!nested_host_cr0_valid(vcpu, val))
return 1;
return kvm_set_cr0(vcpu, val);
}
}
static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
{
if (is_guest_mode(vcpu)) {
struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
unsigned long orig_val = val;
/* analogously to handle_set_cr0 */
val = (val & ~vmcs12->cr4_guest_host_mask) |
(vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
if (kvm_set_cr4(vcpu, val))
return 1;
vmcs_writel(CR4_READ_SHADOW, orig_val);
return 0;
} else
return kvm_set_cr4(vcpu, val);
}
static int handle_cr(struct kvm_vcpu *vcpu)
{
unsigned long exit_qualification, val;
int cr;
int reg;
int err;
int ret;
exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
cr = exit_qualification & 15;
reg = (exit_qualification >> 8) & 15;
switch ((exit_qualification >> 4) & 3) {
case 0: /* mov to cr */
val = kvm_register_readl(vcpu, reg);
trace_kvm_cr_write(cr, val);
switch (cr) {
case 0:
err = handle_set_cr0(vcpu, val);
return kvm_complete_insn_gp(vcpu, err);
case 3:
err = kvm_set_cr3(vcpu, val);
return kvm_complete_insn_gp(vcpu, err);
case 4:
err = handle_set_cr4(vcpu, val);
return kvm_complete_insn_gp(vcpu, err);
case 8: {
u8 cr8_prev = kvm_get_cr8(vcpu);
u8 cr8 = (u8)val;
err = kvm_set_cr8(vcpu, cr8);
ret = kvm_complete_insn_gp(vcpu, err);
if (lapic_in_kernel(vcpu))
return ret;
if (cr8_prev <= cr8)
return ret;
/*
* TODO: we might be squashing a
* KVM_GUESTDBG_SINGLESTEP-triggered
* KVM_EXIT_DEBUG here.
*/
vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
return 0;
}
}
break;
case 2: /* clts */
WARN_ONCE(1, "Guest should always own CR0.TS");
vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
return kvm_skip_emulated_instruction(vcpu);
case 1: /*mov from cr*/
switch (cr) {
case 3:
val = kvm_read_cr3(vcpu);
kvm_register_write(vcpu, reg, val);
trace_kvm_cr_read(cr, val);
return kvm_skip_emulated_instruction(vcpu);
case 8:
val = kvm_get_cr8(vcpu);
kvm_register_write(vcpu, reg, val);
trace_kvm_cr_read(cr, val);
return kvm_skip_emulated_instruction(vcpu);
}
break;
case 3: /* lmsw */
val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
kvm_lmsw(vcpu, val);
return kvm_skip_emulated_instruction(vcpu);
default:
break;
}
vcpu->run->exit_reason = 0;
vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
(int)(exit_qualification >> 4) & 3, cr);
return 0;
}
static int handle_dr(struct kvm_vcpu *vcpu)
{
unsigned long exit_qualification;
int dr, dr7, reg;
exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
/* First, if DR does not exist, trigger UD */
if (!kvm_require_dr(vcpu, dr))
return 1;
/* Do not handle if the CPL > 0, will trigger GP on re-entry */
if (!kvm_require_cpl(vcpu, 0))
return 1;
dr7 = vmcs_readl(GUEST_DR7);
if (dr7 & DR7_GD) {
/*
* As the vm-exit takes precedence over the debug trap, we
* need to emulate the latter, either for the host or the
* guest debugging itself.
*/
if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
vcpu->run->debug.arch.dr7 = dr7;
vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
vcpu->run->debug.arch.exception = DB_VECTOR;
vcpu->run->exit_reason = KVM_EXIT_DEBUG;
return 0;
} else {
vcpu->arch.dr6 &= ~15;
vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
kvm_queue_exception(vcpu, DB_VECTOR);
return 1;
}
}
if (vcpu->guest_debug == 0) {
vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
CPU_BASED_MOV_DR_EXITING);
/*
* No more DR vmexits; force a reload of the debug registers
* and reenter on this instruction. The next vmexit will
* retrieve the full state of the debug registers.
*/
vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
return 1;
}
reg = DEBUG_REG_ACCESS_REG(exit_qualification);
if (exit_qualification & TYPE_MOV_FROM_DR) {
unsigned long val;
if (kvm_get_dr(vcpu, dr, &val))
return 1;
kvm_register_write(vcpu, reg, val);
} else
if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
return 1;
return kvm_skip_emulated_instruction(vcpu);
}
static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
{
return vcpu->arch.dr6;
}
static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
{
}
static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
{
get_debugreg(vcpu->arch.db[0], 0);
get_debugreg(vcpu->arch.db[1], 1);
get_debugreg(vcpu->arch.db[2], 2);
get_debugreg(vcpu->arch.db[3], 3);
get_debugreg(vcpu->arch.dr6, 6);
vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL, CPU_BASED_MOV_DR_EXITING);
}
static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
{
vmcs_writel(GUEST_DR7, val);
}
static int handle_cpuid(struct kvm_vcpu *vcpu)
{
return kvm_emulate_cpuid(vcpu);
}
static int handle_rdmsr(struct kvm_vcpu *vcpu)
{
u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
struct msr_data msr_info;
msr_info.index = ecx;
msr_info.host_initiated = false;
if (vmx_get_msr(vcpu, &msr_info)) {
trace_kvm_msr_read_ex(ecx);
kvm_inject_gp(vcpu, 0);
return 1;
}
trace_kvm_msr_read(ecx, msr_info.data);
/* FIXME: handling of bits 32:63 of rax, rdx */
vcpu->arch.regs[VCPU_REGS_RAX] = msr_info.data & -1u;
vcpu->arch.regs[VCPU_REGS_RDX] = (msr_info.data >> 32) & -1u;
return kvm_skip_emulated_instruction(vcpu);
}
static int handle_wrmsr(struct kvm_vcpu *vcpu)
{
struct msr_data msr;
u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
| ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
msr.data = data;
msr.index = ecx;
msr.host_initiated = false;
if (kvm_set_msr(vcpu, &msr) != 0) {
trace_kvm_msr_write_ex(ecx, data);
kvm_inject_gp(vcpu, 0);
return 1;
}
trace_kvm_msr_write(ecx, data);
return kvm_skip_emulated_instruction(vcpu);
}
static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
{
kvm_apic_update_ppr(vcpu);
return 1;
}
static int handle_interrupt_window(struct kvm_vcpu *vcpu)
{
vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
CPU_BASED_VIRTUAL_INTR_PENDING);
kvm_make_request(KVM_REQ_EVENT, vcpu);
++vcpu->stat.irq_window_exits;
return 1;
}
static int handle_halt(struct kvm_vcpu *vcpu)
{
return kvm_emulate_halt(vcpu);
}
static int handle_vmcall(struct kvm_vcpu *vcpu)
{
return kvm_emulate_hypercall(vcpu);
}
static int handle_invd(struct kvm_vcpu *vcpu)
{
return emulate_instruction(vcpu, 0) == EMULATE_DONE;
}
static int handle_invlpg(struct kvm_vcpu *vcpu)
{
unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
kvm_mmu_invlpg(vcpu, exit_qualification);
return kvm_skip_emulated_instruction(vcpu);
}
static int handle_rdpmc(struct kvm_vcpu *vcpu)
{
int err;
err = kvm_rdpmc(vcpu);
return kvm_complete_insn_gp(vcpu, err);
}
static int handle_wbinvd(struct kvm_vcpu *vcpu)
{
return kvm_emulate_wbinvd(vcpu);
}
static int handle_xsetbv(struct kvm_vcpu *vcpu)
{
u64 new_bv = kvm_read_edx_eax(vcpu);
u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
if (kvm_set_xcr(vcpu, index, new_bv) == 0)
return kvm_skip_emulated_instruction(vcpu);
return 1;
}
static int handle_xsaves(struct kvm_vcpu *vcpu)
{
kvm_skip_emulated_instruction(vcpu);
WARN(1, "this should never happen\n");
return 1;
}
static int handle_xrstors(struct kvm_vcpu *vcpu)
{
kvm_skip_emulated_instruction(vcpu);
WARN(1, "this should never happen\n");
return 1;
}
static int handle_apic_access(struct kvm_vcpu *vcpu)
{
if (likely(fasteoi)) {
unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
int access_type, offset;
access_type = exit_qualification & APIC_ACCESS_TYPE;
offset = exit_qualification & APIC_ACCESS_OFFSET;
/*
* Sane guest uses MOV to write EOI, with written value
* not cared. So make a short-circuit here by avoiding
* heavy instruction emulation.
*/
if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
(offset == APIC_EOI)) {
kvm_lapic_set_eoi(vcpu);
return kvm_skip_emulated_instruction(vcpu);
}
}
return emulate_instruction(vcpu, 0) == EMULATE_DONE;
}
static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
{
unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
int vector = exit_qualification & 0xff;
/* EOI-induced VM exit is trap-like and thus no need to adjust IP */
kvm_apic_set_eoi_accelerated(vcpu, vector);
return 1;
}
static int handle_apic_write(struct kvm_vcpu *vcpu)
{
unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
u32 offset = exit_qualification & 0xfff;
/* APIC-write VM exit is trap-like and thus no need to adjust IP */
kvm_apic_write_nodecode(vcpu, offset);
return 1;
}
static int handle_task_switch(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
unsigned long exit_qualification;
bool has_error_code = false;
u32 error_code = 0;
u16 tss_selector;
int reason, type, idt_v, idt_index;
idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
reason = (u32)exit_qualification >> 30;
if (reason == TASK_SWITCH_GATE && idt_v) {
switch (type) {
case INTR_TYPE_NMI_INTR:
vcpu->arch.nmi_injected = false;
vmx_set_nmi_mask(vcpu, true);
break;
case INTR_TYPE_EXT_INTR:
case INTR_TYPE_SOFT_INTR:
kvm_clear_interrupt_queue(vcpu);
break;
case INTR_TYPE_HARD_EXCEPTION:
if (vmx->idt_vectoring_info &
VECTORING_INFO_DELIVER_CODE_MASK) {
has_error_code = true;
error_code =
vmcs_read32(IDT_VECTORING_ERROR_CODE);
}
/* fall through */
case INTR_TYPE_SOFT_EXCEPTION:
kvm_clear_exception_queue(vcpu);
break;
default:
break;
}
}
tss_selector = exit_qualification;
if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
type != INTR_TYPE_EXT_INTR &&
type != INTR_TYPE_NMI_INTR))
skip_emulated_instruction(vcpu);
if (kvm_task_switch(vcpu, tss_selector,
type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
has_error_code, error_code) == EMULATE_FAIL) {
vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
vcpu->run->internal.ndata = 0;
return 0;
}
/*
* TODO: What about debug traps on tss switch?
* Are we supposed to inject them and update dr6?
*/
return 1;
}
static int handle_ept_violation(struct kvm_vcpu *vcpu)
{
unsigned long exit_qualification;
gpa_t gpa;
u32 error_code;
int gla_validity;
exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
gla_validity = (exit_qualification >> 7) & 0x3;
if (gla_validity == 0x2) {
printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
(long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
vmcs_readl(GUEST_LINEAR_ADDRESS));
printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
(long unsigned int)exit_qualification);
vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
return 0;
}
/*
* EPT violation happened while executing iret from NMI,
* "blocked by NMI" bit has to be set before next VM entry.
* There are errata that may cause this bit to not be set:
* AAK134, BY25.
*/
if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
cpu_has_virtual_nmis() &&
(exit_qualification & INTR_INFO_UNBLOCK_NMI))
vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
trace_kvm_page_fault(gpa, exit_qualification);
/* Is it a read fault? */
error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
? PFERR_USER_MASK : 0;
/* Is it a write fault? */
error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
? PFERR_WRITE_MASK : 0;
/* Is it a fetch fault? */
error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
? PFERR_FETCH_MASK : 0;
/* ept page table entry is present? */
error_code |= (exit_qualification &
(EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE |
EPT_VIOLATION_EXECUTABLE))
? PFERR_PRESENT_MASK : 0;
vcpu->arch.gpa_available = true;
vcpu->arch.exit_qualification = exit_qualification;
return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
}
static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
{
int ret;
gpa_t gpa;
gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
if (!kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
trace_kvm_fast_mmio(gpa);
return kvm_skip_emulated_instruction(vcpu);
}
ret = handle_mmio_page_fault(vcpu, gpa, true);
vcpu->arch.gpa_available = true;
if (likely(ret == RET_MMIO_PF_EMULATE))
return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
EMULATE_DONE;
if (unlikely(ret == RET_MMIO_PF_INVALID))
return kvm_mmu_page_fault(vcpu, gpa, 0, NULL, 0);
if (unlikely(ret == RET_MMIO_PF_RETRY))
return 1;
/* It is the real ept misconfig */
WARN_ON(1);
vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
return 0;
}
static int handle_nmi_window(struct kvm_vcpu *vcpu)
{
vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
CPU_BASED_VIRTUAL_NMI_PENDING);
++vcpu->stat.nmi_window_exits;
kvm_make_request(KVM_REQ_EVENT, vcpu);
return 1;
}
static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
enum emulation_result err = EMULATE_DONE;
int ret = 1;
u32 cpu_exec_ctrl;
bool intr_window_requested;
unsigned count = 130;
cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
while (vmx->emulation_required && count-- != 0) {
if (intr_window_requested && vmx_interrupt_allowed(vcpu))
return handle_interrupt_window(&vmx->vcpu);
if (test_bit(KVM_REQ_EVENT, &vcpu->requests))
return 1;
err = emulate_instruction(vcpu, EMULTYPE_NO_REEXECUTE);
if (err == EMULATE_USER_EXIT) {
++vcpu->stat.mmio_exits;
ret = 0;
goto out;
}
if (err != EMULATE_DONE) {
vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
vcpu->run->internal.ndata = 0;
return 0;
}
if (vcpu->arch.halt_request) {
vcpu->arch.halt_request = 0;
ret = kvm_vcpu_halt(vcpu);
goto out;
}
if (signal_pending(current))
goto out;
if (need_resched())
schedule();
}
out:
return ret;
}
static int __grow_ple_window(int val)
{
if (ple_window_grow < 1)
return ple_window;
val = min(val, ple_window_actual_max);
if (ple_window_grow < ple_window)
val *= ple_window_grow;
else
val += ple_window_grow;
return val;
}
static int __shrink_ple_window(int val, int modifier, int minimum)
{
if (modifier < 1)
return ple_window;
if (modifier < ple_window)
val /= modifier;
else
val -= modifier;
return max(val, minimum);
}
static void grow_ple_window(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
int old = vmx->ple_window;
vmx->ple_window = __grow_ple_window(old);
if (vmx->ple_window != old)
vmx->ple_window_dirty = true;
trace_kvm_ple_window_grow(vcpu->vcpu_id, vmx->ple_window, old);
}
static void shrink_ple_window(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
int old = vmx->ple_window;
vmx->ple_window = __shrink_ple_window(old,
ple_window_shrink, ple_window);
if (vmx->ple_window != old)
vmx->ple_window_dirty = true;
trace_kvm_ple_window_shrink(vcpu->vcpu_id, vmx->ple_window, old);
}
/*
* ple_window_actual_max is computed to be one grow_ple_window() below
* ple_window_max. (See __grow_ple_window for the reason.)
* This prevents overflows, because ple_window_max is int.
* ple_window_max effectively rounded down to a multiple of ple_window_grow in
* this process.
* ple_window_max is also prevented from setting vmx->ple_window < ple_window.
*/
static void update_ple_window_actual_max(void)
{
ple_window_actual_max =
__shrink_ple_window(max(ple_window_max, ple_window),
ple_window_grow, INT_MIN);
}
/*
* Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
*/
static void wakeup_handler(void)
{
struct kvm_vcpu *vcpu;
int cpu = smp_processor_id();
spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu),
blocked_vcpu_list) {
struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
if (pi_test_on(pi_desc) == 1)
kvm_vcpu_kick(vcpu);
}
spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
}
void vmx_enable_tdp(void)
{
kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK,
enable_ept_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull,
enable_ept_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull,
0ull, VMX_EPT_EXECUTABLE_MASK,
cpu_has_vmx_ept_execute_only() ? 0ull : VMX_EPT_READABLE_MASK,
enable_ept_ad_bits ? 0ull : VMX_EPT_RWX_MASK);
ept_set_mmio_spte_mask();
kvm_enable_tdp();
}
static __init int hardware_setup(void)
{
int r = -ENOMEM, i, msr;
rdmsrl_safe(MSR_EFER, &host_efer);
for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
kvm_define_shared_msr(i, vmx_msr_index[i]);
for (i = 0; i < VMX_BITMAP_NR; i++) {
vmx_bitmap[i] = (unsigned long *)__get_free_page(GFP_KERNEL);
if (!vmx_bitmap[i])
goto out;
}
vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
/*
* Allow direct access to the PC debug port (it is often used for I/O
* delays, but the vmexits simply slow things down).
*/
memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
clear_bit(0x80, vmx_io_bitmap_a);
memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
if (setup_vmcs_config(&vmcs_config) < 0) {
r = -EIO;
goto out;
}
if (boot_cpu_has(X86_FEATURE_NX))
kvm_enable_efer_bits(EFER_NX);
if (!cpu_has_vmx_vpid())
enable_vpid = 0;
if (!cpu_has_vmx_shadow_vmcs())
enable_shadow_vmcs = 0;
if (enable_shadow_vmcs)
init_vmcs_shadow_fields();
if (!cpu_has_vmx_ept() ||
!cpu_has_vmx_ept_4levels()) {
enable_ept = 0;
enable_unrestricted_guest = 0;
enable_ept_ad_bits = 0;
}
if (!cpu_has_vmx_ept_ad_bits())
enable_ept_ad_bits = 0;
if (!cpu_has_vmx_unrestricted_guest())
enable_unrestricted_guest = 0;
if (!cpu_has_vmx_flexpriority())
flexpriority_enabled = 0;
/*
* set_apic_access_page_addr() is used to reload apic access
* page upon invalidation. No need to do anything if not
* using the APIC_ACCESS_ADDR VMCS field.
*/
if (!flexpriority_enabled)
kvm_x86_ops->set_apic_access_page_addr = NULL;
if (!cpu_has_vmx_tpr_shadow())
kvm_x86_ops->update_cr8_intercept = NULL;
if (enable_ept && !cpu_has_vmx_ept_2m_page())
kvm_disable_largepages();
if (!cpu_has_vmx_ple())
ple_gap = 0;
if (!cpu_has_vmx_apicv()) {
enable_apicv = 0;
kvm_x86_ops->sync_pir_to_irr = NULL;
}
if (cpu_has_vmx_tsc_scaling()) {
kvm_has_tsc_control = true;
kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
kvm_tsc_scaling_ratio_frac_bits = 48;
}
vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
vmx_disable_intercept_for_msr(MSR_IA32_BNDCFGS, true);
memcpy(vmx_msr_bitmap_legacy_x2apic_apicv,
vmx_msr_bitmap_legacy, PAGE_SIZE);
memcpy(vmx_msr_bitmap_longmode_x2apic_apicv,
vmx_msr_bitmap_longmode, PAGE_SIZE);
memcpy(vmx_msr_bitmap_legacy_x2apic,
vmx_msr_bitmap_legacy, PAGE_SIZE);
memcpy(vmx_msr_bitmap_longmode_x2apic,
vmx_msr_bitmap_longmode, PAGE_SIZE);
set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
for (msr = 0x800; msr <= 0x8ff; msr++) {
if (msr == 0x839 /* TMCCT */)
continue;
vmx_disable_intercept_msr_x2apic(msr, MSR_TYPE_R, true);
}
/*
* TPR reads and writes can be virtualized even if virtual interrupt
* delivery is not in use.
*/
vmx_disable_intercept_msr_x2apic(0x808, MSR_TYPE_W, true);
vmx_disable_intercept_msr_x2apic(0x808, MSR_TYPE_R | MSR_TYPE_W, false);
/* EOI */
vmx_disable_intercept_msr_x2apic(0x80b, MSR_TYPE_W, true);
/* SELF-IPI */
vmx_disable_intercept_msr_x2apic(0x83f, MSR_TYPE_W, true);
if (enable_ept)
vmx_enable_tdp();
else
kvm_disable_tdp();
update_ple_window_actual_max();
/*
* Only enable PML when hardware supports PML feature, and both EPT
* and EPT A/D bit features are enabled -- PML depends on them to work.
*/
if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
enable_pml = 0;
if (!enable_pml) {
kvm_x86_ops->slot_enable_log_dirty = NULL;
kvm_x86_ops->slot_disable_log_dirty = NULL;
kvm_x86_ops->flush_log_dirty = NULL;
kvm_x86_ops->enable_log_dirty_pt_masked = NULL;
}
if (cpu_has_vmx_preemption_timer() && enable_preemption_timer) {
u64 vmx_msr;
rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
cpu_preemption_timer_multi =
vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
} else {
kvm_x86_ops->set_hv_timer = NULL;
kvm_x86_ops->cancel_hv_timer = NULL;
}
kvm_set_posted_intr_wakeup_handler(wakeup_handler);
kvm_mce_cap_supported |= MCG_LMCE_P;
return alloc_kvm_area();
out:
for (i = 0; i < VMX_BITMAP_NR; i++)
free_page((unsigned long)vmx_bitmap[i]);
return r;
}
static __exit void hardware_unsetup(void)
{
int i;
for (i = 0; i < VMX_BITMAP_NR; i++)
free_page((unsigned long)vmx_bitmap[i]);
free_kvm_area();
}
/*
* Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
* exiting, so only get here on cpu with PAUSE-Loop-Exiting.
*/
static int handle_pause(struct kvm_vcpu *vcpu)
{
if (ple_gap)
grow_ple_window(vcpu);
kvm_vcpu_on_spin(vcpu);
return kvm_skip_emulated_instruction(vcpu);
}
static int handle_nop(struct kvm_vcpu *vcpu)
{
return kvm_skip_emulated_instruction(vcpu);
}
static int handle_mwait(struct kvm_vcpu *vcpu)
{
printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
return handle_nop(vcpu);
}
static int handle_monitor_trap(struct kvm_vcpu *vcpu)
{
return 1;
}
static int handle_monitor(struct kvm_vcpu *vcpu)
{
printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
return handle_nop(vcpu);
}
/*
* To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
* We could reuse a single VMCS for all the L2 guests, but we also want the
* option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
* allows keeping them loaded on the processor, and in the future will allow
* optimizations where prepare_vmcs02 doesn't need to set all the fields on
* every entry if they never change.
* So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
* (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
*
* The following functions allocate and free a vmcs02 in this pool.
*/
/* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
{
struct vmcs02_list *item;
list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
if (item->vmptr == vmx->nested.current_vmptr) {
list_move(&item->list, &vmx->nested.vmcs02_pool);
return &item->vmcs02;
}
if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
/* Recycle the least recently used VMCS. */
item = list_last_entry(&vmx->nested.vmcs02_pool,
struct vmcs02_list, list);
item->vmptr = vmx->nested.current_vmptr;
list_move(&item->list, &vmx->nested.vmcs02_pool);
return &item->vmcs02;
}
/* Create a new VMCS */
item = kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
if (!item)
return NULL;
item->vmcs02.vmcs = alloc_vmcs();
item->vmcs02.shadow_vmcs = NULL;
if (!item->vmcs02.vmcs) {
kfree(item);
return NULL;
}
loaded_vmcs_init(&item->vmcs02);
item->vmptr = vmx->nested.current_vmptr;
list_add(&(item->list), &(vmx->nested.vmcs02_pool));
vmx->nested.vmcs02_num++;
return &item->vmcs02;
}
/* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
{
struct vmcs02_list *item;
list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
if (item->vmptr == vmptr) {
free_loaded_vmcs(&item->vmcs02);
list_del(&item->list);
kfree(item);
vmx->nested.vmcs02_num--;
return;
}
}
/*
* Free all VMCSs saved for this vcpu, except the one pointed by
* vmx->loaded_vmcs. We must be running L1, so vmx->loaded_vmcs
* must be &vmx->vmcs01.
*/
static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
{
struct vmcs02_list *item, *n;
WARN_ON(vmx->loaded_vmcs != &vmx->vmcs01);
list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
/*
* Something will leak if the above WARN triggers. Better than
* a use-after-free.
*/
if (vmx->loaded_vmcs == &item->vmcs02)
continue;
free_loaded_vmcs(&item->vmcs02);
list_del(&item->list);
kfree(item);
vmx->nested.vmcs02_num--;
}
}
/*
* The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
* set the success or error code of an emulated VMX instruction, as specified
* by Vol 2B, VMX Instruction Reference, "Conventions".
*/
static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
{
vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
& ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
}
static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
{
vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
& ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
X86_EFLAGS_SF | X86_EFLAGS_OF))
| X86_EFLAGS_CF);
}
static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
u32 vm_instruction_error)
{
if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
/*
* failValid writes the error number to the current VMCS, which
* can't be done there isn't a current VMCS.
*/
nested_vmx_failInvalid(vcpu);
return;
}
vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
& ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
X86_EFLAGS_SF | X86_EFLAGS_OF))
| X86_EFLAGS_ZF);
get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
/*
* We don't need to force a shadow sync because
* VM_INSTRUCTION_ERROR is not shadowed
*/
}
static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
{
/* TODO: not to reset guest simply here. */
kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
}
static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
{
struct vcpu_vmx *vmx =
container_of(timer, struct vcpu_vmx, nested.preemption_timer);
vmx->nested.preemption_timer_expired = true;
kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
kvm_vcpu_kick(&vmx->vcpu);
return HRTIMER_NORESTART;
}
/*
* Decode the memory-address operand of a vmx instruction, as recorded on an
* exit caused by such an instruction (run by a guest hypervisor).
* On success, returns 0. When the operand is invalid, returns 1 and throws
* #UD or #GP.
*/
static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
unsigned long exit_qualification,
u32 vmx_instruction_info, bool wr, gva_t *ret)
{
gva_t off;
bool exn;
struct kvm_segment s;
/*
* According to Vol. 3B, "Information for VM Exits Due to Instruction
* Execution", on an exit, vmx_instruction_info holds most of the
* addressing components of the operand. Only the displacement part
* is put in exit_qualification (see 3B, "Basic VM-Exit Information").
* For how an actual address is calculated from all these components,
* refer to Vol. 1, "Operand Addressing".
*/
int scaling = vmx_instruction_info & 3;
int addr_size = (vmx_instruction_info >> 7) & 7;
bool is_reg = vmx_instruction_info & (1u << 10);
int seg_reg = (vmx_instruction_info >> 15) & 7;
int index_reg = (vmx_instruction_info >> 18) & 0xf;
bool index_is_valid = !(vmx_instruction_info & (1u << 22));
int base_reg = (vmx_instruction_info >> 23) & 0xf;
bool base_is_valid = !(vmx_instruction_info & (1u << 27));
if (is_reg) {
kvm_queue_exception(vcpu, UD_VECTOR);
return 1;
}
/* Addr = segment_base + offset */
/* offset = base + [index * scale] + displacement */
off = exit_qualification; /* holds the displacement */
if (base_is_valid)
off += kvm_register_read(vcpu, base_reg);
if (index_is_valid)
off += kvm_register_read(vcpu, index_reg)<<scaling;
vmx_get_segment(vcpu, &s, seg_reg);
*ret = s.base + off;
if (addr_size == 1) /* 32 bit */
*ret &= 0xffffffff;
/* Checks for #GP/#SS exceptions. */
exn = false;
if (is_long_mode(vcpu)) {
/* Long mode: #GP(0)/#SS(0) if the memory address is in a
* non-canonical form. This is the only check on the memory
* destination for long mode!
*/
exn = is_noncanonical_address(*ret);
} else if (is_protmode(vcpu)) {
/* Protected mode: apply checks for segment validity in the
* following order:
* - segment type check (#GP(0) may be thrown)
* - usability check (#GP(0)/#SS(0))
* - limit check (#GP(0)/#SS(0))
*/
if (wr)
/* #GP(0) if the destination operand is located in a
* read-only data segment or any code segment.
*/
exn = ((s.type & 0xa) == 0 || (s.type & 8));
else
/* #GP(0) if the source operand is located in an
* execute-only code segment
*/
exn = ((s.type & 0xa) == 8);
if (exn) {
kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
return 1;
}
/* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
*/
exn = (s.unusable != 0);
/* Protected mode: #GP(0)/#SS(0) if the memory
* operand is outside the segment limit.
*/
exn = exn || (off + sizeof(u64) > s.limit);
}
if (exn) {
kvm_queue_exception_e(vcpu,
seg_reg == VCPU_SREG_SS ?
SS_VECTOR : GP_VECTOR,
0);
return 1;
}
return 0;
}
/*
* This function performs the various checks including
* - if it's 4KB aligned
* - No bits beyond the physical address width are set
* - Returns 0 on success or else 1
* (Intel SDM Section 30.3)
*/
static int nested_vmx_check_vmptr(struct kvm_vcpu *vcpu, int exit_reason,
gpa_t *vmpointer)
{
gva_t gva;
gpa_t vmptr;
struct x86_exception e;
struct page *page;
struct vcpu_vmx *vmx = to_vmx(vcpu);
int maxphyaddr = cpuid_maxphyaddr(vcpu);
if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
vmcs_read32(VMX_INSTRUCTION_INFO), false, &gva))
return 1;
if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
sizeof(vmptr), &e)) {
kvm_inject_page_fault(vcpu, &e);
return 1;
}
switch (exit_reason) {
case EXIT_REASON_VMON:
/*
* SDM 3: 24.11.5
* The first 4 bytes of VMXON region contain the supported
* VMCS revision identifier
*
* Note - IA32_VMX_BASIC[48] will never be 1
* for the nested case;
* which replaces physical address width with 32
*
*/
if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
nested_vmx_failInvalid(vcpu);
return kvm_skip_emulated_instruction(vcpu);
}
page = nested_get_page(vcpu, vmptr);
if (page == NULL) {
nested_vmx_failInvalid(vcpu);
return kvm_skip_emulated_instruction(vcpu);
}
if (*(u32 *)kmap(page) != VMCS12_REVISION) {
kunmap(page);
nested_release_page_clean(page);
nested_vmx_failInvalid(vcpu);
return kvm_skip_emulated_instruction(vcpu);
}
kunmap(page);
nested_release_page_clean(page);
vmx->nested.vmxon_ptr = vmptr;
break;
case EXIT_REASON_VMCLEAR:
if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
nested_vmx_failValid(vcpu,
VMXERR_VMCLEAR_INVALID_ADDRESS);
return kvm_skip_emulated_instruction(vcpu);
}
if (vmptr == vmx->nested.vmxon_ptr) {
nested_vmx_failValid(vcpu,
VMXERR_VMCLEAR_VMXON_POINTER);
return kvm_skip_emulated_instruction(vcpu);
}
break;
case EXIT_REASON_VMPTRLD:
if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
nested_vmx_failValid(vcpu,
VMXERR_VMPTRLD_INVALID_ADDRESS);
return kvm_skip_emulated_instruction(vcpu);
}
if (vmptr == vmx->nested.vmxon_ptr) {
nested_vmx_failValid(vcpu,
VMXERR_VMPTRLD_VMXON_POINTER);
return kvm_skip_emulated_instruction(vcpu);
}
break;
default:
return 1; /* shouldn't happen */
}
if (vmpointer)
*vmpointer = vmptr;
return 0;
}
static int enter_vmx_operation(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
struct vmcs *shadow_vmcs;
if (cpu_has_vmx_msr_bitmap()) {
vmx->nested.msr_bitmap =
(unsigned long *)__get_free_page(GFP_KERNEL);
if (!vmx->nested.msr_bitmap)
goto out_msr_bitmap;
}
vmx->nested.cached_vmcs12 = kmalloc(VMCS12_SIZE, GFP_KERNEL);
if (!vmx->nested.cached_vmcs12)
goto out_cached_vmcs12;
if (enable_shadow_vmcs) {
shadow_vmcs = alloc_vmcs();
if (!shadow_vmcs)
goto out_shadow_vmcs;
/* mark vmcs as shadow */
shadow_vmcs->revision_id |= (1u << 31);
/* init shadow vmcs */
vmcs_clear(shadow_vmcs);
vmx->vmcs01.shadow_vmcs = shadow_vmcs;
}
INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
vmx->nested.vmcs02_num = 0;
hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
HRTIMER_MODE_REL_PINNED);
vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
vmx->nested.vmxon = true;
return 0;
out_shadow_vmcs:
kfree(vmx->nested.cached_vmcs12);
out_cached_vmcs12:
free_page((unsigned long)vmx->nested.msr_bitmap);
out_msr_bitmap:
return -ENOMEM;
}
/*
* Emulate the VMXON instruction.
* Currently, we just remember that VMX is active, and do not save or even
* inspect the argument to VMXON (the so-called "VMXON pointer") because we
* do not currently need to store anything in that guest-allocated memory
* region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
* argument is different from the VMXON pointer (which the spec says they do).
*/
static int handle_vmon(struct kvm_vcpu *vcpu)
{
int ret;
struct kvm_segment cs;
struct vcpu_vmx *vmx = to_vmx(vcpu);
const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
| FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
/* The Intel VMX Instruction Reference lists a bunch of bits that
* are prerequisite to running VMXON, most notably cr4.VMXE must be
* set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
* Otherwise, we should fail with #UD. We test these now:
*/
if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
!kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
(vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
kvm_queue_exception(vcpu, UD_VECTOR);
return 1;
}
vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
if (is_long_mode(vcpu) && !cs.l) {
kvm_queue_exception(vcpu, UD_VECTOR);
return 1;
}
if (vmx_get_cpl(vcpu)) {
kvm_inject_gp(vcpu, 0);
return 1;
}
if (vmx->nested.vmxon) {
nested_vmx_failValid(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
return kvm_skip_emulated_instruction(vcpu);
}
if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
!= VMXON_NEEDED_FEATURES) {
kvm_inject_gp(vcpu, 0);
return 1;
}
if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMON, NULL))
return 1;
ret = enter_vmx_operation(vcpu);
if (ret)
return ret;
nested_vmx_succeed(vcpu);
return kvm_skip_emulated_instruction(vcpu);
}
/*
* Intel's VMX Instruction Reference specifies a common set of prerequisites
* for running VMX instructions (except VMXON, whose prerequisites are
* slightly different). It also specifies what exception to inject otherwise.
*/
static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
{
struct kvm_segment cs;
struct vcpu_vmx *vmx = to_vmx(vcpu);
if (!vmx->nested.vmxon) {
kvm_queue_exception(vcpu, UD_VECTOR);
return 0;
}
vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
(is_long_mode(vcpu) && !cs.l)) {
kvm_queue_exception(vcpu, UD_VECTOR);
return 0;
}
if (vmx_get_cpl(vcpu)) {
kvm_inject_gp(vcpu, 0);
return 0;
}
return 1;
}
static inline void nested_release_vmcs12(struct vcpu_vmx *vmx)
{
if (vmx->nested.current_vmptr == -1ull)
return;
/* current_vmptr and current_vmcs12 are always set/reset together */
if (WARN_ON(vmx->nested.current_vmcs12 == NULL))
return;
if (enable_shadow_vmcs) {
/* copy to memory all shadowed fields in case
they were modified */
copy_shadow_to_vmcs12(vmx);
vmx->nested.sync_shadow_vmcs = false;
vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
SECONDARY_EXEC_SHADOW_VMCS);
vmcs_write64(VMCS_LINK_POINTER, -1ull);
}
vmx->nested.posted_intr_nv = -1;
/* Flush VMCS12 to guest memory */
memcpy(vmx->nested.current_vmcs12, vmx->nested.cached_vmcs12,
VMCS12_SIZE);
kunmap(vmx->nested.current_vmcs12_page);
nested_release_page(vmx->nested.current_vmcs12_page);
vmx->nested.current_vmptr = -1ull;
vmx->nested.current_vmcs12 = NULL;
}
/*
* Free whatever needs to be freed from vmx->nested when L1 goes down, or
* just stops using VMX.
*/
static void free_nested(struct vcpu_vmx *vmx)
{
if (!vmx->nested.vmxon)
return;
vmx->nested.vmxon = false;
free_vpid(vmx->nested.vpid02);
nested_release_vmcs12(vmx);
if (vmx->nested.msr_bitmap) {
free_page((unsigned long)vmx->nested.msr_bitmap);
vmx->nested.msr_bitmap = NULL;
}
if (enable_shadow_vmcs) {
vmcs_clear(vmx->vmcs01.shadow_vmcs);
free_vmcs(vmx->vmcs01.shadow_vmcs);
vmx->vmcs01.shadow_vmcs = NULL;
}
kfree(vmx->nested.cached_vmcs12);
/* Unpin physical memory we referred to in current vmcs02 */
if (vmx->nested.apic_access_page) {
nested_release_page(vmx->nested.apic_access_page);
vmx->nested.apic_access_page = NULL;
}
if (vmx->nested.virtual_apic_page) {
nested_release_page(vmx->nested.virtual_apic_page);
vmx->nested.virtual_apic_page = NULL;
}
if (vmx->nested.pi_desc_page) {
kunmap(vmx->nested.pi_desc_page);
nested_release_page(vmx->nested.pi_desc_page);
vmx->nested.pi_desc_page = NULL;
vmx->nested.pi_desc = NULL;
}
nested_free_all_saved_vmcss(vmx);
}
/* Emulate the VMXOFF instruction */
static int handle_vmoff(struct kvm_vcpu *vcpu)
{
if (!nested_vmx_check_permission(vcpu))
return 1;
free_nested(to_vmx(vcpu));
nested_vmx_succeed(vcpu);
return kvm_skip_emulated_instruction(vcpu);
}
/* Emulate the VMCLEAR instruction */
static int handle_vmclear(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
u32 zero = 0;
gpa_t vmptr;
if (!nested_vmx_check_permission(vcpu))
return 1;
if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMCLEAR, &vmptr))
return 1;
if (vmptr == vmx->nested.current_vmptr)
nested_release_vmcs12(vmx);
kvm_vcpu_write_guest(vcpu,
vmptr + offsetof(struct vmcs12, launch_state),
&zero, sizeof(zero));
nested_free_vmcs02(vmx, vmptr);
nested_vmx_succeed(vcpu);
return kvm_skip_emulated_instruction(vcpu);
}
static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
/* Emulate the VMLAUNCH instruction */
static int handle_vmlaunch(struct kvm_vcpu *vcpu)
{
return nested_vmx_run(vcpu, true);
}
/* Emulate the VMRESUME instruction */
static int handle_vmresume(struct kvm_vcpu *vcpu)
{
return nested_vmx_run(vcpu, false);
}
enum vmcs_field_type {
VMCS_FIELD_TYPE_U16 = 0,
VMCS_FIELD_TYPE_U64 = 1,
VMCS_FIELD_TYPE_U32 = 2,
VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
};
static inline int vmcs_field_type(unsigned long field)
{
if (0x1 & field) /* the *_HIGH fields are all 32 bit */
return VMCS_FIELD_TYPE_U32;
return (field >> 13) & 0x3 ;
}
static inline int vmcs_field_readonly(unsigned long field)
{
return (((field >> 10) & 0x3) == 1);
}
/*
* Read a vmcs12 field. Since these can have varying lengths and we return
* one type, we chose the biggest type (u64) and zero-extend the return value
* to that size. Note that the caller, handle_vmread, might need to use only
* some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
* 64-bit fields are to be returned).
*/
static inline int vmcs12_read_any(struct kvm_vcpu *vcpu,
unsigned long field, u64 *ret)
{
short offset = vmcs_field_to_offset(field);
char *p;
if (offset < 0)
return offset;
p = ((char *)(get_vmcs12(vcpu))) + offset;
switch (vmcs_field_type(field)) {
case VMCS_FIELD_TYPE_NATURAL_WIDTH:
*ret = *((natural_width *)p);
return 0;
case VMCS_FIELD_TYPE_U16:
*ret = *((u16 *)p);
return 0;
case VMCS_FIELD_TYPE_U32:
*ret = *((u32 *)p);
return 0;
case VMCS_FIELD_TYPE_U64:
*ret = *((u64 *)p);
return 0;
default:
WARN_ON(1);
return -ENOENT;
}
}
static inline int vmcs12_write_any(struct kvm_vcpu *vcpu,
unsigned long field, u64 field_value){
short offset = vmcs_field_to_offset(field);
char *p = ((char *) get_vmcs12(vcpu)) + offset;
if (offset < 0)
return offset;
switch (vmcs_field_type(field)) {
case VMCS_FIELD_TYPE_U16:
*(u16 *)p = field_value;
return 0;
case VMCS_FIELD_TYPE_U32:
*(u32 *)p = field_value;
return 0;
case VMCS_FIELD_TYPE_U64:
*(u64 *)p = field_value;
return 0;
case VMCS_FIELD_TYPE_NATURAL_WIDTH:
*(natural_width *)p = field_value;
return 0;
default:
WARN_ON(1);
return -ENOENT;
}
}
static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
{
int i;
unsigned long field;
u64 field_value;
struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
const unsigned long *fields = shadow_read_write_fields;
const int num_fields = max_shadow_read_write_fields;
preempt_disable();
vmcs_load(shadow_vmcs);
for (i = 0; i < num_fields; i++) {
field = fields[i];
switch (vmcs_field_type(field)) {
case VMCS_FIELD_TYPE_U16:
field_value = vmcs_read16(field);
break;
case VMCS_FIELD_TYPE_U32:
field_value = vmcs_read32(field);
break;
case VMCS_FIELD_TYPE_U64:
field_value = vmcs_read64(field);
break;
case VMCS_FIELD_TYPE_NATURAL_WIDTH:
field_value = vmcs_readl(field);
break;
default:
WARN_ON(1);
continue;
}
vmcs12_write_any(&vmx->vcpu, field, field_value);
}
vmcs_clear(shadow_vmcs);
vmcs_load(vmx->loaded_vmcs->vmcs);
preempt_enable();
}
static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
{
const unsigned long *fields[] = {
shadow_read_write_fields,
shadow_read_only_fields
};
const int max_fields[] = {
max_shadow_read_write_fields,
max_shadow_read_only_fields
};
int i, q;
unsigned long field;
u64 field_value = 0;
struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
vmcs_load(shadow_vmcs);
for (q = 0; q < ARRAY_SIZE(fields); q++) {
for (i = 0; i < max_fields[q]; i++) {
field = fields[q][i];
vmcs12_read_any(&vmx->vcpu, field, &field_value);
switch (vmcs_field_type(field)) {
case VMCS_FIELD_TYPE_U16:
vmcs_write16(field, (u16)field_value);
break;
case VMCS_FIELD_TYPE_U32:
vmcs_write32(field, (u32)field_value);
break;
case VMCS_FIELD_TYPE_U64:
vmcs_write64(field, (u64)field_value);
break;
case VMCS_FIELD_TYPE_NATURAL_WIDTH:
vmcs_writel(field, (long)field_value);
break;
default:
WARN_ON(1);
break;
}
}
}
vmcs_clear(shadow_vmcs);
vmcs_load(vmx->loaded_vmcs->vmcs);
}
/*
* VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
* used before) all generate the same failure when it is missing.
*/
static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
if (vmx->nested.current_vmptr == -1ull) {
nested_vmx_failInvalid(vcpu);
return 0;
}
return 1;
}
static int handle_vmread(struct kvm_vcpu *vcpu)
{
unsigned long field;
u64 field_value;
unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
gva_t gva = 0;
if (!nested_vmx_check_permission(vcpu))
return 1;
if (!nested_vmx_check_vmcs12(vcpu))
return kvm_skip_emulated_instruction(vcpu);
/* Decode instruction info and find the field to read */
field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
/* Read the field, zero-extended to a u64 field_value */
if (vmcs12_read_any(vcpu, field, &field_value) < 0) {
nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
return kvm_skip_emulated_instruction(vcpu);
}
/*
* Now copy part of this value to register or memory, as requested.
* Note that the number of bits actually copied is 32 or 64 depending
* on the guest's mode (32 or 64 bit), not on the given field's length.
*/
if (vmx_instruction_info & (1u << 10)) {
kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
field_value);
} else {
if (get_vmx_mem_address(vcpu, exit_qualification,
vmx_instruction_info, true, &gva))
return 1;
/* _system ok, as nested_vmx_check_permission verified cpl=0 */
kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
&field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
}
nested_vmx_succeed(vcpu);
return kvm_skip_emulated_instruction(vcpu);
}
static int handle_vmwrite(struct kvm_vcpu *vcpu)
{
unsigned long field;
gva_t gva;
unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
/* The value to write might be 32 or 64 bits, depending on L1's long
* mode, and eventually we need to write that into a field of several
* possible lengths. The code below first zero-extends the value to 64
* bit (field_value), and then copies only the appropriate number of
* bits into the vmcs12 field.
*/
u64 field_value = 0;
struct x86_exception e;
if (!nested_vmx_check_permission(vcpu))
return 1;
if (!nested_vmx_check_vmcs12(vcpu))
return kvm_skip_emulated_instruction(vcpu);
if (vmx_instruction_info & (1u << 10))
field_value = kvm_register_readl(vcpu,
(((vmx_instruction_info) >> 3) & 0xf));
else {
if (get_vmx_mem_address(vcpu, exit_qualification,
vmx_instruction_info, false, &gva))
return 1;
if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
&field_value, (is_64_bit_mode(vcpu) ? 8 : 4), &e)) {
kvm_inject_page_fault(vcpu, &e);
return 1;
}
}
field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
if (vmcs_field_readonly(field)) {
nested_vmx_failValid(vcpu,
VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
return kvm_skip_emulated_instruction(vcpu);
}
if (vmcs12_write_any(vcpu, field, field_value) < 0) {
nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
return kvm_skip_emulated_instruction(vcpu);
}
nested_vmx_succeed(vcpu);
return kvm_skip_emulated_instruction(vcpu);
}
static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
{
vmx->nested.current_vmptr = vmptr;
if (enable_shadow_vmcs) {
vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
SECONDARY_EXEC_SHADOW_VMCS);
vmcs_write64(VMCS_LINK_POINTER,
__pa(vmx->vmcs01.shadow_vmcs));
vmx->nested.sync_shadow_vmcs = true;
}
}
/* Emulate the VMPTRLD instruction */
static int handle_vmptrld(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
gpa_t vmptr;
if (!nested_vmx_check_permission(vcpu))
return 1;
if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMPTRLD, &vmptr))
return 1;
if (vmx->nested.current_vmptr != vmptr) {
struct vmcs12 *new_vmcs12;
struct page *page;
page = nested_get_page(vcpu, vmptr);
if (page == NULL) {
nested_vmx_failInvalid(vcpu);
return kvm_skip_emulated_instruction(vcpu);
}
new_vmcs12 = kmap(page);
if (new_vmcs12->revision_id != VMCS12_REVISION) {
kunmap(page);
nested_release_page_clean(page);
nested_vmx_failValid(vcpu,
VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
return kvm_skip_emulated_instruction(vcpu);
}
nested_release_vmcs12(vmx);
vmx->nested.current_vmcs12 = new_vmcs12;
vmx->nested.current_vmcs12_page = page;
/*
* Load VMCS12 from guest memory since it is not already
* cached.
*/
memcpy(vmx->nested.cached_vmcs12,
vmx->nested.current_vmcs12, VMCS12_SIZE);
set_current_vmptr(vmx, vmptr);
}
nested_vmx_succeed(vcpu);
return kvm_skip_emulated_instruction(vcpu);
}
/* Emulate the VMPTRST instruction */
static int handle_vmptrst(struct kvm_vcpu *vcpu)
{
unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
gva_t vmcs_gva;
struct x86_exception e;
if (!nested_vmx_check_permission(vcpu))
return 1;
if (get_vmx_mem_address(vcpu, exit_qualification,
vmx_instruction_info, true, &vmcs_gva))
return 1;
/* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
(void *)&to_vmx(vcpu)->nested.current_vmptr,
sizeof(u64), &e)) {
kvm_inject_page_fault(vcpu, &e);
return 1;
}
nested_vmx_succeed(vcpu);
return kvm_skip_emulated_instruction(vcpu);
}
/* Emulate the INVEPT instruction */
static int handle_invept(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
u32 vmx_instruction_info, types;
unsigned long type;
gva_t gva;
struct x86_exception e;
struct {
u64 eptp, gpa;
} operand;
if (!(vmx->nested.nested_vmx_secondary_ctls_high &
SECONDARY_EXEC_ENABLE_EPT) ||
!(vmx->nested.nested_vmx_ept_caps & VMX_EPT_INVEPT_BIT)) {
kvm_queue_exception(vcpu, UD_VECTOR);
return 1;
}
if (!nested_vmx_check_permission(vcpu))
return 1;
if (!kvm_read_cr0_bits(vcpu, X86_CR0_PE)) {
kvm_queue_exception(vcpu, UD_VECTOR);
return 1;
}
vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
types = (vmx->nested.nested_vmx_ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
if (type >= 32 || !(types & (1 << type))) {
nested_vmx_failValid(vcpu,
VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
return kvm_skip_emulated_instruction(vcpu);
}
/* According to the Intel VMX instruction reference, the memory
* operand is read even if it isn't needed (e.g., for type==global)
*/
if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
vmx_instruction_info, false, &gva))
return 1;
if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &operand,
sizeof(operand), &e)) {
kvm_inject_page_fault(vcpu, &e);
return 1;
}
switch (type) {
case VMX_EPT_EXTENT_GLOBAL:
/*
* TODO: track mappings and invalidate
* single context requests appropriately
*/
case VMX_EPT_EXTENT_CONTEXT:
kvm_mmu_sync_roots(vcpu);
kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
nested_vmx_succeed(vcpu);
break;
default:
BUG_ON(1);
break;
}
return kvm_skip_emulated_instruction(vcpu);
}
static int handle_invvpid(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
u32 vmx_instruction_info;
unsigned long type, types;
gva_t gva;
struct x86_exception e;
int vpid;
if (!(vmx->nested.nested_vmx_secondary_ctls_high &
SECONDARY_EXEC_ENABLE_VPID) ||
!(vmx->nested.nested_vmx_vpid_caps & VMX_VPID_INVVPID_BIT)) {
kvm_queue_exception(vcpu, UD_VECTOR);
return 1;
}
if (!nested_vmx_check_permission(vcpu))
return 1;
vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
types = (vmx->nested.nested_vmx_vpid_caps &
VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
if (type >= 32 || !(types & (1 << type))) {
nested_vmx_failValid(vcpu,
VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
return kvm_skip_emulated_instruction(vcpu);
}
/* according to the intel vmx instruction reference, the memory
* operand is read even if it isn't needed (e.g., for type==global)
*/
if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
vmx_instruction_info, false, &gva))
return 1;
if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vpid,
sizeof(u32), &e)) {
kvm_inject_page_fault(vcpu, &e);
return 1;
}
switch (type) {
case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
case VMX_VPID_EXTENT_SINGLE_CONTEXT:
case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
if (!vpid) {
nested_vmx_failValid(vcpu,
VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
return kvm_skip_emulated_instruction(vcpu);
}
break;
case VMX_VPID_EXTENT_ALL_CONTEXT:
break;
default:
WARN_ON_ONCE(1);
return kvm_skip_emulated_instruction(vcpu);
}
__vmx_flush_tlb(vcpu, vmx->nested.vpid02);
nested_vmx_succeed(vcpu);
return kvm_skip_emulated_instruction(vcpu);
}
static int handle_pml_full(struct kvm_vcpu *vcpu)
{
unsigned long exit_qualification;
trace_kvm_pml_full(vcpu->vcpu_id);
exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
/*
* PML buffer FULL happened while executing iret from NMI,
* "blocked by NMI" bit has to be set before next VM entry.
*/
if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
cpu_has_virtual_nmis() &&
(exit_qualification & INTR_INFO_UNBLOCK_NMI))
vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
GUEST_INTR_STATE_NMI);
/*
* PML buffer already flushed at beginning of VMEXIT. Nothing to do
* here.., and there's no userspace involvement needed for PML.
*/
return 1;
}
static int handle_preemption_timer(struct kvm_vcpu *vcpu)
{
kvm_lapic_expired_hv_timer(vcpu);
return 1;
}
/*
* The exit handlers return 1 if the exit was handled fully and guest execution
* may resume. Otherwise they set the kvm_run parameter to indicate what needs
* to be done to userspace and return 0.
*/
static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
[EXIT_REASON_EXCEPTION_NMI] = handle_exception,
[EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
[EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
[EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
[EXIT_REASON_IO_INSTRUCTION] = handle_io,
[EXIT_REASON_CR_ACCESS] = handle_cr,
[EXIT_REASON_DR_ACCESS] = handle_dr,
[EXIT_REASON_CPUID] = handle_cpuid,
[EXIT_REASON_MSR_READ] = handle_rdmsr,
[EXIT_REASON_MSR_WRITE] = handle_wrmsr,
[EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
[EXIT_REASON_HLT] = handle_halt,
[EXIT_REASON_INVD] = handle_invd,
[EXIT_REASON_INVLPG] = handle_invlpg,
[EXIT_REASON_RDPMC] = handle_rdpmc,
[EXIT_REASON_VMCALL] = handle_vmcall,
[EXIT_REASON_VMCLEAR] = handle_vmclear,
[EXIT_REASON_VMLAUNCH] = handle_vmlaunch,
[EXIT_REASON_VMPTRLD] = handle_vmptrld,
[EXIT_REASON_VMPTRST] = handle_vmptrst,
[EXIT_REASON_VMREAD] = handle_vmread,
[EXIT_REASON_VMRESUME] = handle_vmresume,
[EXIT_REASON_VMWRITE] = handle_vmwrite,
[EXIT_REASON_VMOFF] = handle_vmoff,
[EXIT_REASON_VMON] = handle_vmon,
[EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
[EXIT_REASON_APIC_ACCESS] = handle_apic_access,
[EXIT_REASON_APIC_WRITE] = handle_apic_write,
[EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced,
[EXIT_REASON_WBINVD] = handle_wbinvd,
[EXIT_REASON_XSETBV] = handle_xsetbv,
[EXIT_REASON_TASK_SWITCH] = handle_task_switch,
[EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
[EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
[EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
[EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
[EXIT_REASON_MWAIT_INSTRUCTION] = handle_mwait,
[EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap,
[EXIT_REASON_MONITOR_INSTRUCTION] = handle_monitor,
[EXIT_REASON_INVEPT] = handle_invept,
[EXIT_REASON_INVVPID] = handle_invvpid,
[EXIT_REASON_XSAVES] = handle_xsaves,
[EXIT_REASON_XRSTORS] = handle_xrstors,
[EXIT_REASON_PML_FULL] = handle_pml_full,
[EXIT_REASON_PREEMPTION_TIMER] = handle_preemption_timer,
};
static const int kvm_vmx_max_exit_handlers =
ARRAY_SIZE(kvm_vmx_exit_handlers);
static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
struct vmcs12 *vmcs12)
{
unsigned long exit_qualification;
gpa_t bitmap, last_bitmap;
unsigned int port;
int size;
u8 b;
if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
port = exit_qualification >> 16;
size = (exit_qualification & 7) + 1;
last_bitmap = (gpa_t)-1;
b = -1;
while (size > 0) {
if (port < 0x8000)
bitmap = vmcs12->io_bitmap_a;
else if (port < 0x10000)
bitmap = vmcs12->io_bitmap_b;
else
return true;
bitmap += (port & 0x7fff) / 8;
if (last_bitmap != bitmap)
if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
return true;
if (b & (1 << (port & 7)))
return true;
port++;
size--;
last_bitmap = bitmap;
}
return false;
}
/*
* Return 1 if we should exit from L2 to L1 to handle an MSR access access,
* rather than handle it ourselves in L0. I.e., check whether L1 expressed
* disinterest in the current event (read or write a specific MSR) by using an
* MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
*/
static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
struct vmcs12 *vmcs12, u32 exit_reason)
{
u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
gpa_t bitmap;
if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
return true;
/*
* The MSR_BITMAP page is divided into four 1024-byte bitmaps,
* for the four combinations of read/write and low/high MSR numbers.
* First we need to figure out which of the four to use:
*/
bitmap = vmcs12->msr_bitmap;
if (exit_reason == EXIT_REASON_MSR_WRITE)
bitmap += 2048;
if (msr_index >= 0xc0000000) {
msr_index -= 0xc0000000;
bitmap += 1024;
}
/* Then read the msr_index'th bit from this bitmap: */
if (msr_index < 1024*8) {
unsigned char b;
if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
return true;
return 1 & (b >> (msr_index & 7));
} else
return true; /* let L1 handle the wrong parameter */
}
/*
* Return 1 if we should exit from L2 to L1 to handle a CR access exit,
* rather than handle it ourselves in L0. I.e., check if L1 wanted to
* intercept (via guest_host_mask etc.) the current event.
*/
static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
struct vmcs12 *vmcs12)
{
unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
int cr = exit_qualification & 15;
int reg = (exit_qualification >> 8) & 15;
unsigned long val = kvm_register_readl(vcpu, reg);
switch ((exit_qualification >> 4) & 3) {
case 0: /* mov to cr */
switch (cr) {
case 0:
if (vmcs12->cr0_guest_host_mask &
(val ^ vmcs12->cr0_read_shadow))
return true;
break;
case 3:
if ((vmcs12->cr3_target_count >= 1 &&
vmcs12->cr3_target_value0 == val) ||
(vmcs12->cr3_target_count >= 2 &&
vmcs12->cr3_target_value1 == val) ||
(vmcs12->cr3_target_count >= 3 &&
vmcs12->cr3_target_value2 == val) ||
(vmcs12->cr3_target_count >= 4 &&
vmcs12->cr3_target_value3 == val))
return false;
if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
return true;
break;
case 4:
if (vmcs12->cr4_guest_host_mask &
(vmcs12->cr4_read_shadow ^ val))
return true;
break;
case 8:
if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
return true;
break;
}
break;
case 2: /* clts */
if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
(vmcs12->cr0_read_shadow & X86_CR0_TS))
return true;
break;
case 1: /* mov from cr */
switch (cr) {
case 3:
if (vmcs12->cpu_based_vm_exec_control &
CPU_BASED_CR3_STORE_EXITING)
return true;
break;
case 8:
if (vmcs12->cpu_based_vm_exec_control &
CPU_BASED_CR8_STORE_EXITING)
return true;
break;
}
break;
case 3: /* lmsw */
/*
* lmsw can change bits 1..3 of cr0, and only set bit 0 of
* cr0. Other attempted changes are ignored, with no exit.
*/
if (vmcs12->cr0_guest_host_mask & 0xe &
(val ^ vmcs12->cr0_read_shadow))
return true;
if ((vmcs12->cr0_guest_host_mask & 0x1) &&
!(vmcs12->cr0_read_shadow & 0x1) &&
(val & 0x1))
return true;
break;
}
return false;
}
/*
* Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
* should handle it ourselves in L0 (and then continue L2). Only call this
* when in is_guest_mode (L2).
*/
static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
{
u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
struct vcpu_vmx *vmx = to_vmx(vcpu);
struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
u32 exit_reason = vmx->exit_reason;
trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
vmcs_readl(EXIT_QUALIFICATION),
vmx->idt_vectoring_info,
intr_info,
vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
KVM_ISA_VMX);
if (vmx->nested.nested_run_pending)
return false;
if (unlikely(vmx->fail)) {
pr_info_ratelimited("%s failed vm entry %x\n", __func__,
vmcs_read32(VM_INSTRUCTION_ERROR));
return true;
}
switch (exit_reason) {
case EXIT_REASON_EXCEPTION_NMI:
if (is_nmi(intr_info))
return false;
else if (is_page_fault(intr_info))
return enable_ept;
else if (is_no_device(intr_info) &&
!(vmcs12->guest_cr0 & X86_CR0_TS))
return false;
else if (is_debug(intr_info) &&
vcpu->guest_debug &
(KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
return false;
else if (is_breakpoint(intr_info) &&
vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
return false;
return vmcs12->exception_bitmap &
(1u << (intr_info & INTR_INFO_VECTOR_MASK));
case EXIT_REASON_EXTERNAL_INTERRUPT:
return false;
case EXIT_REASON_TRIPLE_FAULT:
return true;
case EXIT_REASON_PENDING_INTERRUPT:
return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
case EXIT_REASON_NMI_WINDOW:
return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
case EXIT_REASON_TASK_SWITCH:
return true;
case EXIT_REASON_CPUID:
return true;
case EXIT_REASON_HLT:
return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
case EXIT_REASON_INVD:
return true;
case EXIT_REASON_INVLPG:
return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
case EXIT_REASON_RDPMC:
return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
/*
* VMX instructions trap unconditionally. This allows L1 to
* emulate them for its L2 guest, i.e., allows 3-level nesting!
*/
return true;
case EXIT_REASON_CR_ACCESS:
return nested_vmx_exit_handled_cr(vcpu, vmcs12);
case EXIT_REASON_DR_ACCESS:
return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
case EXIT_REASON_IO_INSTRUCTION:
return nested_vmx_exit_handled_io(vcpu, vmcs12);
case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
case EXIT_REASON_MSR_READ:
case EXIT_REASON_MSR_WRITE:
return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
case EXIT_REASON_INVALID_STATE:
return true;
case EXIT_REASON_MWAIT_INSTRUCTION:
return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
case EXIT_REASON_MONITOR_TRAP_FLAG:
return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_TRAP_FLAG);
case EXIT_REASON_MONITOR_INSTRUCTION:
return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
case EXIT_REASON_PAUSE_INSTRUCTION:
return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
nested_cpu_has2(vmcs12,
SECONDARY_EXEC_PAUSE_LOOP_EXITING);
case EXIT_REASON_MCE_DURING_VMENTRY:
return false;
case EXIT_REASON_TPR_BELOW_THRESHOLD:
return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
case EXIT_REASON_APIC_ACCESS:
return nested_cpu_has2(vmcs12,
SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
case EXIT_REASON_APIC_WRITE:
case EXIT_REASON_EOI_INDUCED:
/* apic_write and eoi_induced should exit unconditionally. */
return true;
case EXIT_REASON_EPT_VIOLATION:
/*
* L0 always deals with the EPT violation. If nested EPT is
* used, and the nested mmu code discovers that the address is
* missing in the guest EPT table (EPT12), the EPT violation
* will be injected with nested_ept_inject_page_fault()
*/
return false;
case EXIT_REASON_EPT_MISCONFIG:
/*
* L2 never uses directly L1's EPT, but rather L0's own EPT
* table (shadow on EPT) or a merged EPT table that L0 built
* (EPT on EPT). So any problems with the structure of the
* table is L0's fault.
*/
return false;
case EXIT_REASON_WBINVD:
return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
case EXIT_REASON_XSETBV:
return true;
case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
/*
* This should never happen, since it is not possible to
* set XSS to a non-zero value---neither in L1 nor in L2.
* If if it were, XSS would have to be checked against
* the XSS exit bitmap in vmcs12.
*/
return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
case EXIT_REASON_PREEMPTION_TIMER:
return false;
default:
return true;
}
}
static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
{
*info1 = vmcs_readl(EXIT_QUALIFICATION);
*info2 = vmcs_read32(VM_EXIT_INTR_INFO);
}
static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
{
if (vmx->pml_pg) {
__free_page(vmx->pml_pg);
vmx->pml_pg = NULL;
}
}
static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
u64 *pml_buf;
u16 pml_idx;
pml_idx = vmcs_read16(GUEST_PML_INDEX);
/* Do nothing if PML buffer is empty */
if (pml_idx == (PML_ENTITY_NUM - 1))
return;
/* PML index always points to next available PML buffer entity */
if (pml_idx >= PML_ENTITY_NUM)
pml_idx = 0;
else
pml_idx++;
pml_buf = page_address(vmx->pml_pg);
for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
u64 gpa;
gpa = pml_buf[pml_idx];
WARN_ON(gpa & (PAGE_SIZE - 1));
kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
}
/* reset PML index */
vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
}
/*
* Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
* Called before reporting dirty_bitmap to userspace.
*/
static void kvm_flush_pml_buffers(struct kvm *kvm)
{
int i;
struct kvm_vcpu *vcpu;
/*
* We only need to kick vcpu out of guest mode here, as PML buffer
* is flushed at beginning of all VMEXITs, and it's obvious that only
* vcpus running in guest are possible to have unflushed GPAs in PML
* buffer.
*/
kvm_for_each_vcpu(i, vcpu, kvm)
kvm_vcpu_kick(vcpu);
}
static void vmx_dump_sel(char *name, uint32_t sel)
{
pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
name, vmcs_read16(sel),
vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
}
static void vmx_dump_dtsel(char *name, uint32_t limit)
{
pr_err("%s limit=0x%08x, base=0x%016lx\n",
name, vmcs_read32(limit),
vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
}
static void dump_vmcs(void)
{
u32 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
u32 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
u32 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
u32 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
u32 secondary_exec_control = 0;
unsigned long cr4 = vmcs_readl(GUEST_CR4);
u64 efer = vmcs_read64(GUEST_IA32_EFER);
int i, n;
if (cpu_has_secondary_exec_ctrls())
secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
pr_err("*** Guest State ***\n");
pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
vmcs_readl(CR0_GUEST_HOST_MASK));
pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
(cr4 & X86_CR4_PAE) && !(efer & EFER_LMA))
{
pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n",
vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n",
vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
}
pr_err("RSP = 0x%016lx RIP = 0x%016lx\n",
vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n",
vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
vmcs_readl(GUEST_SYSENTER_ESP),
vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
vmx_dump_sel("CS: ", GUEST_CS_SELECTOR);
vmx_dump_sel("DS: ", GUEST_DS_SELECTOR);
vmx_dump_sel("SS: ", GUEST_SS_SELECTOR);
vmx_dump_sel("ES: ", GUEST_ES_SELECTOR);
vmx_dump_sel("FS: ", GUEST_FS_SELECTOR);
vmx_dump_sel("GS: ", GUEST_GS_SELECTOR);
vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
vmx_dump_sel("TR: ", GUEST_TR_SELECTOR);
if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
(vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
pr_err("EFER = 0x%016llx PAT = 0x%016llx\n",
efer, vmcs_read64(GUEST_IA32_PAT));
pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n",
vmcs_read64(GUEST_IA32_DEBUGCTL),
vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
pr_err("PerfGlobCtl = 0x%016llx\n",
vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
pr_err("Interruptibility = %08x ActivityState = %08x\n",
vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
vmcs_read32(GUEST_ACTIVITY_STATE));
if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
pr_err("InterruptStatus = %04x\n",
vmcs_read16(GUEST_INTR_STATUS));
pr_err("*** Host State ***\n");
pr_err("RIP = 0x%016lx RSP = 0x%016lx\n",
vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
vmcs_read16(HOST_TR_SELECTOR));
pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
vmcs_readl(HOST_TR_BASE));
pr_err("GDTBase=%016lx IDTBase=%016lx\n",
vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
vmcs_readl(HOST_CR4));
pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
vmcs_readl(HOST_IA32_SYSENTER_ESP),
vmcs_read32(HOST_IA32_SYSENTER_CS),
vmcs_readl(HOST_IA32_SYSENTER_EIP));
if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
pr_err("EFER = 0x%016llx PAT = 0x%016llx\n",
vmcs_read64(HOST_IA32_EFER),
vmcs_read64(HOST_IA32_PAT));
if (vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
pr_err("PerfGlobCtl = 0x%016llx\n",
vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
pr_err("*** Control State ***\n");
pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
vmcs_read32(EXCEPTION_BITMAP),
vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
vmcs_read32(VM_EXIT_INTR_INFO),
vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
pr_err(" reason=%08x qualification=%016lx\n",
vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
pr_err("IDTVectoring: info=%08x errcode=%08x\n",
vmcs_read32(IDT_VECTORING_INFO_FIELD),
vmcs_read32(IDT_VECTORING_ERROR_CODE));
pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
pr_err("TSC Multiplier = 0x%016llx\n",
vmcs_read64(TSC_MULTIPLIER));
if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW)
pr_err("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
n = vmcs_read32(CR3_TARGET_COUNT);
for (i = 0; i + 1 < n; i += 4)
pr_err("CR3 target%u=%016lx target%u=%016lx\n",
i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2),
i + 1, vmcs_readl(CR3_TARGET_VALUE0 + i * 2 + 2));
if (i < n)
pr_err("CR3 target%u=%016lx\n",
i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2));
if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
pr_err("PLE Gap=%08x Window=%08x\n",
vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
pr_err("Virtual processor ID = 0x%04x\n",
vmcs_read16(VIRTUAL_PROCESSOR_ID));
}
/*
* The guest has exited. See if we can fix it or if we need userspace
* assistance.
*/
static int vmx_handle_exit(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
u32 exit_reason = vmx->exit_reason;
u32 vectoring_info = vmx->idt_vectoring_info;
trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);
vcpu->arch.gpa_available = false;
/*
* Flush logged GPAs PML buffer, this will make dirty_bitmap more
* updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
* querying dirty_bitmap, we only need to kick all vcpus out of guest
* mode as if vcpus is in root mode, the PML buffer must has been
* flushed already.
*/
if (enable_pml)
vmx_flush_pml_buffer(vcpu);
/* If guest state is invalid, start emulating */
if (vmx->emulation_required)
return handle_invalid_guest_state(vcpu);
if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
nested_vmx_vmexit(vcpu, exit_reason,
vmcs_read32(VM_EXIT_INTR_INFO),
vmcs_readl(EXIT_QUALIFICATION));
return 1;
}
if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
dump_vmcs();
vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
vcpu->run->fail_entry.hardware_entry_failure_reason
= exit_reason;
return 0;
}
if (unlikely(vmx->fail)) {
vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
vcpu->run->fail_entry.hardware_entry_failure_reason
= vmcs_read32(VM_INSTRUCTION_ERROR);
return 0;
}
/*
* Note:
* Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
* delivery event since it indicates guest is accessing MMIO.
* The vm-exit can be triggered again after return to guest that
* will cause infinite loop.
*/
if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
(exit_reason != EXIT_REASON_EXCEPTION_NMI &&
exit_reason != EXIT_REASON_EPT_VIOLATION &&
exit_reason != EXIT_REASON_PML_FULL &&
exit_reason != EXIT_REASON_TASK_SWITCH)) {
vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
vcpu->run->internal.ndata = 2;
vcpu->run->internal.data[0] = vectoring_info;
vcpu->run->internal.data[1] = exit_reason;
return 0;
}
if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked &&
!(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis(
get_vmcs12(vcpu))))) {
if (vmx_interrupt_allowed(vcpu)) {
vmx->soft_vnmi_blocked = 0;
} else if (vmx->vnmi_blocked_time > 1000000000LL &&
vcpu->arch.nmi_pending) {
/*
* This CPU don't support us in finding the end of an
* NMI-blocked window if the guest runs with IRQs
* disabled. So we pull the trigger after 1 s of
* futile waiting, but inform the user about this.
*/
printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
"state on VCPU %d after 1 s timeout\n",
__func__, vcpu->vcpu_id);
vmx->soft_vnmi_blocked = 0;
}
}
if (exit_reason < kvm_vmx_max_exit_handlers
&& kvm_vmx_exit_handlers[exit_reason])
return kvm_vmx_exit_handlers[exit_reason](vcpu);
else {
WARN_ONCE(1, "vmx: unexpected exit reason 0x%x\n", exit_reason);
kvm_queue_exception(vcpu, UD_VECTOR);
return 1;
}
}
static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
{
struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
if (is_guest_mode(vcpu) &&
nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
return;
if (irr == -1 || tpr < irr) {
vmcs_write32(TPR_THRESHOLD, 0);
return;
}
vmcs_write32(TPR_THRESHOLD, irr);
}
static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
{
u32 sec_exec_control;
/* Postpone execution until vmcs01 is the current VMCS. */
if (is_guest_mode(vcpu)) {
to_vmx(vcpu)->nested.change_vmcs01_virtual_x2apic_mode = true;
return;
}
if (!cpu_has_vmx_virtualize_x2apic_mode())
return;
if (!cpu_need_tpr_shadow(vcpu))
return;
sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
if (set) {
sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
} else {
sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
}
vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
vmx_set_msr_bitmap(vcpu);
}
static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
/*
* Currently we do not handle the nested case where L2 has an
* APIC access page of its own; that page is still pinned.
* Hence, we skip the case where the VCPU is in guest mode _and_
* L1 prepared an APIC access page for L2.
*
* For the case where L1 and L2 share the same APIC access page
* (flexpriority=Y but SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES clear
* in the vmcs12), this function will only update either the vmcs01
* or the vmcs02. If the former, the vmcs02 will be updated by
* prepare_vmcs02. If the latter, the vmcs01 will be updated in
* the next L2->L1 exit.
*/
if (!is_guest_mode(vcpu) ||
!nested_cpu_has2(get_vmcs12(&vmx->vcpu),
SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
vmcs_write64(APIC_ACCESS_ADDR, hpa);
}
static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
{
u16 status;
u8 old;
if (max_isr == -1)
max_isr = 0;
status = vmcs_read16(GUEST_INTR_STATUS);
old = status >> 8;
if (max_isr != old) {
status &= 0xff;
status |= max_isr << 8;
vmcs_write16(GUEST_INTR_STATUS, status);
}
}
static void vmx_set_rvi(int vector)
{
u16 status;
u8 old;
if (vector == -1)
vector = 0;
status = vmcs_read16(GUEST_INTR_STATUS);
old = (u8)status & 0xff;
if ((u8)vector != old) {
status &= ~0xff;
status |= (u8)vector;
vmcs_write16(GUEST_INTR_STATUS, status);
}
}
static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
{
if (!is_guest_mode(vcpu)) {
vmx_set_rvi(max_irr);
return;
}
if (max_irr == -1)
return;
/*
* In guest mode. If a vmexit is needed, vmx_check_nested_events
* handles it.
*/
if (nested_exit_on_intr(vcpu))
return;
/*
* Else, fall back to pre-APICv interrupt injection since L2
* is run without virtual interrupt delivery.
*/
if (!kvm_event_needs_reinjection(vcpu) &&
vmx_interrupt_allowed(vcpu)) {
kvm_queue_interrupt(vcpu, max_irr, false);
vmx_inject_irq(vcpu);
}
}
static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
int max_irr;
WARN_ON(!vcpu->arch.apicv_active);
if (pi_test_on(&vmx->pi_desc)) {
pi_clear_on(&vmx->pi_desc);
/*
* IOMMU can write to PIR.ON, so the barrier matters even on UP.
* But on x86 this is just a compiler barrier anyway.
*/
smp_mb__after_atomic();
max_irr = kvm_apic_update_irr(vcpu, vmx->pi_desc.pir);
} else {
max_irr = kvm_lapic_find_highest_irr(vcpu);
}
vmx_hwapic_irr_update(vcpu, max_irr);
return max_irr;
}
static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
{
if (!kvm_vcpu_apicv_active(vcpu))
return;
vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
}
static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
pi_clear_on(&vmx->pi_desc);
memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
}
static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
{
u32 exit_intr_info;
if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
|| vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
return;
vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
exit_intr_info = vmx->exit_intr_info;
/* Handle machine checks before interrupts are enabled */
if (is_machine_check(exit_intr_info))
kvm_machine_check();
/* We need to handle NMIs before interrupts are enabled */
if (is_nmi(exit_intr_info)) {
kvm_before_handle_nmi(&vmx->vcpu);
asm("int $2");
kvm_after_handle_nmi(&vmx->vcpu);
}
}
static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
{
u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
register void *__sp asm(_ASM_SP);
if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
== (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
unsigned int vector;
unsigned long entry;
gate_desc *desc;
struct vcpu_vmx *vmx = to_vmx(vcpu);
#ifdef CONFIG_X86_64
unsigned long tmp;
#endif
vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
desc = (gate_desc *)vmx->host_idt_base + vector;
entry = gate_offset(*desc);
asm volatile(
#ifdef CONFIG_X86_64
"mov %%" _ASM_SP ", %[sp]\n\t"
"and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
"push $%c[ss]\n\t"
"push %[sp]\n\t"
#endif
"pushf\n\t"
__ASM_SIZE(push) " $%c[cs]\n\t"
"call *%[entry]\n\t"
:
#ifdef CONFIG_X86_64
[sp]"=&r"(tmp),
#endif
"+r"(__sp)
:
[entry]"r"(entry),
[ss]"i"(__KERNEL_DS),
[cs]"i"(__KERNEL_CS)
);
}
}
static bool vmx_has_high_real_mode_segbase(void)
{
return enable_unrestricted_guest || emulate_invalid_guest_state;
}
static bool vmx_mpx_supported(void)
{
return (vmcs_config.vmexit_ctrl & VM_EXIT_CLEAR_BNDCFGS) &&
(vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_BNDCFGS);
}
static bool vmx_xsaves_supported(void)
{
return vmcs_config.cpu_based_2nd_exec_ctrl &
SECONDARY_EXEC_XSAVES;
}
static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
{
u32 exit_intr_info;
bool unblock_nmi;
u8 vector;
bool idtv_info_valid;
idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
if (cpu_has_virtual_nmis()) {
if (vmx->nmi_known_unmasked)
return;
/*
* Can't use vmx->exit_intr_info since we're not sure what
* the exit reason is.
*/
exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
/*
* SDM 3: 27.7.1.2 (September 2008)
* Re-set bit "block by NMI" before VM entry if vmexit caused by
* a guest IRET fault.
* SDM 3: 23.2.2 (September 2008)
* Bit 12 is undefined in any of the following cases:
* If the VM exit sets the valid bit in the IDT-vectoring
* information field.
* If the VM exit is due to a double fault.
*/
if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
vector != DF_VECTOR && !idtv_info_valid)
vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
GUEST_INTR_STATE_NMI);
else
vmx->nmi_known_unmasked =
!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
& GUEST_INTR_STATE_NMI);
} else if (unlikely(vmx->soft_vnmi_blocked))
vmx->vnmi_blocked_time +=
ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
}
static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
u32 idt_vectoring_info,
int instr_len_field,
int error_code_field)
{
u8 vector;
int type;
bool idtv_info_valid;
idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
vcpu->arch.nmi_injected = false;
kvm_clear_exception_queue(vcpu);
kvm_clear_interrupt_queue(vcpu);
if (!idtv_info_valid)
return;
kvm_make_request(KVM_REQ_EVENT, vcpu);
vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
switch (type) {
case INTR_TYPE_NMI_INTR:
vcpu->arch.nmi_injected = true;
/*
* SDM 3: 27.7.1.2 (September 2008)
* Clear bit "block by NMI" before VM entry if a NMI
* delivery faulted.
*/
vmx_set_nmi_mask(vcpu, false);
break;
case INTR_TYPE_SOFT_EXCEPTION:
vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
/* fall through */
case INTR_TYPE_HARD_EXCEPTION:
if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
u32 err = vmcs_read32(error_code_field);
kvm_requeue_exception_e(vcpu, vector, err);
} else
kvm_requeue_exception(vcpu, vector);
break;
case INTR_TYPE_SOFT_INTR:
vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
/* fall through */
case INTR_TYPE_EXT_INTR:
kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
break;
default:
break;
}
}
static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
{
__vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
VM_EXIT_INSTRUCTION_LEN,
IDT_VECTORING_ERROR_CODE);
}
static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
{
__vmx_complete_interrupts(vcpu,
vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
VM_ENTRY_INSTRUCTION_LEN,
VM_ENTRY_EXCEPTION_ERROR_CODE);
vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
}
static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
{
int i, nr_msrs;
struct perf_guest_switch_msr *msrs;
msrs = perf_guest_get_msrs(&nr_msrs);
if (!msrs)
return;
for (i = 0; i < nr_msrs; i++)
if (msrs[i].host == msrs[i].guest)
clear_atomic_switch_msr(vmx, msrs[i].msr);
else
add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
msrs[i].host);
}
static void vmx_arm_hv_timer(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
u64 tscl;
u32 delta_tsc;
if (vmx->hv_deadline_tsc == -1)
return;
tscl = rdtsc();
if (vmx->hv_deadline_tsc > tscl)
/* sure to be 32 bit only because checked on set_hv_timer */
delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
cpu_preemption_timer_multi);
else
delta_tsc = 0;
vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
}
static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
unsigned long debugctlmsr, cr4;
/* Record the guest's net vcpu time for enforced NMI injections. */
if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
vmx->entry_time = ktime_get();
/* Don't enter VMX if guest state is invalid, let the exit handler
start emulation until we arrive back to a valid state */
if (vmx->emulation_required)
return;
if (vmx->ple_window_dirty) {
vmx->ple_window_dirty = false;
vmcs_write32(PLE_WINDOW, vmx->ple_window);
}
if (vmx->nested.sync_shadow_vmcs) {
copy_vmcs12_to_shadow(vmx);
vmx->nested.sync_shadow_vmcs = false;
}
if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
cr4 = cr4_read_shadow();
if (unlikely(cr4 != vmx->host_state.vmcs_host_cr4)) {
vmcs_writel(HOST_CR4, cr4);
vmx->host_state.vmcs_host_cr4 = cr4;
}
/* When single-stepping over STI and MOV SS, we must clear the
* corresponding interruptibility bits in the guest state. Otherwise
* vmentry fails as it then expects bit 14 (BS) in pending debug
* exceptions being set, but that's not correct for the guest debugging
* case. */
if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
vmx_set_interrupt_shadow(vcpu, 0);
if (vmx->guest_pkru_valid)
__write_pkru(vmx->guest_pkru);
atomic_switch_perf_msrs(vmx);
debugctlmsr = get_debugctlmsr();
vmx_arm_hv_timer(vcpu);
vmx->__launched = vmx->loaded_vmcs->launched;
asm(
/* Store host registers */
"push %%" _ASM_DX "; push %%" _ASM_BP ";"
"push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
"push %%" _ASM_CX " \n\t"
"cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
"je 1f \n\t"
"mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
__ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
"1: \n\t"
/* Reload cr2 if changed */
"mov %c[cr2](%0), %%" _ASM_AX " \n\t"
"mov %%cr2, %%" _ASM_DX " \n\t"
"cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
"je 2f \n\t"
"mov %%" _ASM_AX", %%cr2 \n\t"
"2: \n\t"
/* Check if vmlaunch of vmresume is needed */
"cmpl $0, %c[launched](%0) \n\t"
/* Load guest registers. Don't clobber flags. */
"mov %c[rax](%0), %%" _ASM_AX " \n\t"
"mov %c[rbx](%0), %%" _ASM_BX " \n\t"
"mov %c[rdx](%0), %%" _ASM_DX " \n\t"
"mov %c[rsi](%0), %%" _ASM_SI " \n\t"
"mov %c[rdi](%0), %%" _ASM_DI " \n\t"
"mov %c[rbp](%0), %%" _ASM_BP " \n\t"
#ifdef CONFIG_X86_64
"mov %c[r8](%0), %%r8 \n\t"
"mov %c[r9](%0), %%r9 \n\t"
"mov %c[r10](%0), %%r10 \n\t"
"mov %c[r11](%0), %%r11 \n\t"
"mov %c[r12](%0), %%r12 \n\t"
"mov %c[r13](%0), %%r13 \n\t"
"mov %c[r14](%0), %%r14 \n\t"
"mov %c[r15](%0), %%r15 \n\t"
#endif
"mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
/* Enter guest mode */
"jne 1f \n\t"
__ex(ASM_VMX_VMLAUNCH) "\n\t"
"jmp 2f \n\t"
"1: " __ex(ASM_VMX_VMRESUME) "\n\t"
"2: "
/* Save guest registers, load host registers, keep flags */
"mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
"pop %0 \n\t"
"mov %%" _ASM_AX ", %c[rax](%0) \n\t"
"mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
__ASM_SIZE(pop) " %c[rcx](%0) \n\t"
"mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
"mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
"mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
"mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
#ifdef CONFIG_X86_64
"mov %%r8, %c[r8](%0) \n\t"
"mov %%r9, %c[r9](%0) \n\t"
"mov %%r10, %c[r10](%0) \n\t"
"mov %%r11, %c[r11](%0) \n\t"
"mov %%r12, %c[r12](%0) \n\t"
"mov %%r13, %c[r13](%0) \n\t"
"mov %%r14, %c[r14](%0) \n\t"
"mov %%r15, %c[r15](%0) \n\t"
#endif
"mov %%cr2, %%" _ASM_AX " \n\t"
"mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
"pop %%" _ASM_BP "; pop %%" _ASM_DX " \n\t"
"setbe %c[fail](%0) \n\t"
".pushsection .rodata \n\t"
".global vmx_return \n\t"
"vmx_return: " _ASM_PTR " 2b \n\t"
".popsection"
: : "c"(vmx), "d"((unsigned long)HOST_RSP),
[launched]"i"(offsetof(struct vcpu_vmx, __launched)),
[fail]"i"(offsetof(struct vcpu_vmx, fail)),
[host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
[rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
[rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
[rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
[rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
[rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
[rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
[rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
#ifdef CONFIG_X86_64
[r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
[r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
[r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
[r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
[r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
[r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
[r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
[r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
#endif
[cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
[wordsize]"i"(sizeof(ulong))
: "cc", "memory"
#ifdef CONFIG_X86_64
, "rax", "rbx", "rdi", "rsi"
, "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
#else
, "eax", "ebx", "edi", "esi"
#endif
);
/* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
if (debugctlmsr)
update_debugctlmsr(debugctlmsr);
#ifndef CONFIG_X86_64
/*
* The sysexit path does not restore ds/es, so we must set them to
* a reasonable value ourselves.
*
* We can't defer this to vmx_load_host_state() since that function
* may be executed in interrupt context, which saves and restore segments
* around it, nullifying its effect.
*/
loadsegment(ds, __USER_DS);
loadsegment(es, __USER_DS);
#endif
vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
| (1 << VCPU_EXREG_RFLAGS)
| (1 << VCPU_EXREG_PDPTR)
| (1 << VCPU_EXREG_SEGMENTS)
| (1 << VCPU_EXREG_CR3));
vcpu->arch.regs_dirty = 0;
vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
vmx->loaded_vmcs->launched = 1;
vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
/*
* eager fpu is enabled if PKEY is supported and CR4 is switched
* back on host, so it is safe to read guest PKRU from current
* XSAVE.
*/
if (boot_cpu_has(X86_FEATURE_OSPKE)) {
vmx->guest_pkru = __read_pkru();
if (vmx->guest_pkru != vmx->host_pkru) {
vmx->guest_pkru_valid = true;
__write_pkru(vmx->host_pkru);
} else
vmx->guest_pkru_valid = false;
}
/*
* the KVM_REQ_EVENT optimization bit is only on for one entry, and if
* we did not inject a still-pending event to L1 now because of
* nested_run_pending, we need to re-enable this bit.
*/
if (vmx->nested.nested_run_pending)
kvm_make_request(KVM_REQ_EVENT, vcpu);
vmx->nested.nested_run_pending = 0;
vmx_complete_atomic_exit(vmx);
vmx_recover_nmi_blocking(vmx);
vmx_complete_interrupts(vmx);
}
static void vmx_load_vmcs01(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
int cpu;
if (vmx->loaded_vmcs == &vmx->vmcs01)
return;
cpu = get_cpu();
vmx->loaded_vmcs = &vmx->vmcs01;
vmx_vcpu_put(vcpu);
vmx_vcpu_load(vcpu, cpu);
vcpu->cpu = cpu;
put_cpu();
}
/*
* Ensure that the current vmcs of the logical processor is the
* vmcs01 of the vcpu before calling free_nested().
*/
static void vmx_free_vcpu_nested(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
int r;
r = vcpu_load(vcpu);
BUG_ON(r);
vmx_load_vmcs01(vcpu);
free_nested(vmx);
vcpu_put(vcpu);
}
static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
if (enable_pml)
vmx_destroy_pml_buffer(vmx);
free_vpid(vmx->vpid);
leave_guest_mode(vcpu);
vmx_free_vcpu_nested(vcpu);
free_loaded_vmcs(vmx->loaded_vmcs);
kfree(vmx->guest_msrs);
kvm_vcpu_uninit(vcpu);
kmem_cache_free(kvm_vcpu_cache, vmx);
}
static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
{
int err;
struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
int cpu;
if (!vmx)
return ERR_PTR(-ENOMEM);
vmx->vpid = allocate_vpid();
err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
if (err)
goto free_vcpu;
err = -ENOMEM;
/*
* If PML is turned on, failure on enabling PML just results in failure
* of creating the vcpu, therefore we can simplify PML logic (by
* avoiding dealing with cases, such as enabling PML partially on vcpus
* for the guest, etc.
*/
if (enable_pml) {
vmx->pml_pg = alloc_page(GFP_KERNEL | __GFP_ZERO);
if (!vmx->pml_pg)
goto uninit_vcpu;
}
vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0])
> PAGE_SIZE);
if (!vmx->guest_msrs)
goto free_pml;
vmx->loaded_vmcs = &vmx->vmcs01;
vmx->loaded_vmcs->vmcs = alloc_vmcs();
vmx->loaded_vmcs->shadow_vmcs = NULL;
if (!vmx->loaded_vmcs->vmcs)
goto free_msrs;
if (!vmm_exclusive)
kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
loaded_vmcs_init(vmx->loaded_vmcs);
if (!vmm_exclusive)
kvm_cpu_vmxoff();
cpu = get_cpu();
vmx_vcpu_load(&vmx->vcpu, cpu);
vmx->vcpu.cpu = cpu;
err = vmx_vcpu_setup(vmx);
vmx_vcpu_put(&vmx->vcpu);
put_cpu();
if (err)
goto free_vmcs;
if (cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
err = alloc_apic_access_page(kvm);
if (err)
goto free_vmcs;
}
if (enable_ept) {
if (!kvm->arch.ept_identity_map_addr)
kvm->arch.ept_identity_map_addr =
VMX_EPT_IDENTITY_PAGETABLE_ADDR;
err = init_rmode_identity_map(kvm);
if (err)
goto free_vmcs;
}
if (nested) {
nested_vmx_setup_ctls_msrs(vmx);
vmx->nested.vpid02 = allocate_vpid();
}
vmx->nested.posted_intr_nv = -1;
vmx->nested.current_vmptr = -1ull;
vmx->nested.current_vmcs12 = NULL;
vmx->msr_ia32_feature_control_valid_bits = FEATURE_CONTROL_LOCKED;
return &vmx->vcpu;
free_vmcs:
free_vpid(vmx->nested.vpid02);
free_loaded_vmcs(vmx->loaded_vmcs);
free_msrs:
kfree(vmx->guest_msrs);
free_pml:
vmx_destroy_pml_buffer(vmx);
uninit_vcpu:
kvm_vcpu_uninit(&vmx->vcpu);
free_vcpu:
free_vpid(vmx->vpid);
kmem_cache_free(kvm_vcpu_cache, vmx);
return ERR_PTR(err);
}
static void __init vmx_check_processor_compat(void *rtn)
{
struct vmcs_config vmcs_conf;
*(int *)rtn = 0;
if (setup_vmcs_config(&vmcs_conf) < 0)
*(int *)rtn = -EIO;
if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
smp_processor_id());
*(int *)rtn = -EIO;
}
}
static int get_ept_level(void)
{
return VMX_EPT_DEFAULT_GAW + 1;
}
static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
{
u8 cache;
u64 ipat = 0;
/* For VT-d and EPT combination
* 1. MMIO: always map as UC
* 2. EPT with VT-d:
* a. VT-d without snooping control feature: can't guarantee the
* result, try to trust guest.
* b. VT-d with snooping control feature: snooping control feature of
* VT-d engine can guarantee the cache correctness. Just set it
* to WB to keep consistent with host. So the same as item 3.
* 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
* consistent with host MTRR
*/
if (is_mmio) {
cache = MTRR_TYPE_UNCACHABLE;
goto exit;
}
if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
ipat = VMX_EPT_IPAT_BIT;
cache = MTRR_TYPE_WRBACK;
goto exit;
}
if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
ipat = VMX_EPT_IPAT_BIT;
if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
cache = MTRR_TYPE_WRBACK;
else
cache = MTRR_TYPE_UNCACHABLE;
goto exit;
}
cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
exit:
return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
}
static int vmx_get_lpage_level(void)
{
if (enable_ept && !cpu_has_vmx_ept_1g_page())
return PT_DIRECTORY_LEVEL;
else
/* For shadow and EPT supported 1GB page */
return PT_PDPE_LEVEL;
}
static void vmcs_set_secondary_exec_control(u32 new_ctl)
{
/*
* These bits in the secondary execution controls field
* are dynamic, the others are mostly based on the hypervisor
* architecture and the guest's CPUID. Do not touch the
* dynamic bits.
*/
u32 mask =
SECONDARY_EXEC_SHADOW_VMCS |
SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
u32 cur_ctl = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
(new_ctl & ~mask) | (cur_ctl & mask));
}
/*
* Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
* (indicating "allowed-1") if they are supported in the guest's CPUID.
*/
static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
struct kvm_cpuid_entry2 *entry;
vmx->nested.nested_vmx_cr0_fixed1 = 0xffffffff;
vmx->nested.nested_vmx_cr4_fixed1 = X86_CR4_PCE;
#define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do { \
if (entry && (entry->_reg & (_cpuid_mask))) \
vmx->nested.nested_vmx_cr4_fixed1 |= (_cr4_mask); \
} while (0)
entry = kvm_find_cpuid_entry(vcpu, 0x1, 0);
cr4_fixed1_update(X86_CR4_VME, edx, bit(X86_FEATURE_VME));
cr4_fixed1_update(X86_CR4_PVI, edx, bit(X86_FEATURE_VME));
cr4_fixed1_update(X86_CR4_TSD, edx, bit(X86_FEATURE_TSC));
cr4_fixed1_update(X86_CR4_DE, edx, bit(X86_FEATURE_DE));
cr4_fixed1_update(X86_CR4_PSE, edx, bit(X86_FEATURE_PSE));
cr4_fixed1_update(X86_CR4_PAE, edx, bit(X86_FEATURE_PAE));
cr4_fixed1_update(X86_CR4_MCE, edx, bit(X86_FEATURE_MCE));
cr4_fixed1_update(X86_CR4_PGE, edx, bit(X86_FEATURE_PGE));
cr4_fixed1_update(X86_CR4_OSFXSR, edx, bit(X86_FEATURE_FXSR));
cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, bit(X86_FEATURE_XMM));
cr4_fixed1_update(X86_CR4_VMXE, ecx, bit(X86_FEATURE_VMX));
cr4_fixed1_update(X86_CR4_SMXE, ecx, bit(X86_FEATURE_SMX));
cr4_fixed1_update(X86_CR4_PCIDE, ecx, bit(X86_FEATURE_PCID));
cr4_fixed1_update(X86_CR4_OSXSAVE, ecx, bit(X86_FEATURE_XSAVE));
entry = kvm_find_cpuid_entry(vcpu, 0x7, 0);
cr4_fixed1_update(X86_CR4_FSGSBASE, ebx, bit(X86_FEATURE_FSGSBASE));
cr4_fixed1_update(X86_CR4_SMEP, ebx, bit(X86_FEATURE_SMEP));
cr4_fixed1_update(X86_CR4_SMAP, ebx, bit(X86_FEATURE_SMAP));
cr4_fixed1_update(X86_CR4_PKE, ecx, bit(X86_FEATURE_PKU));
/* TODO: Use X86_CR4_UMIP and X86_FEATURE_UMIP macros */
cr4_fixed1_update(bit(11), ecx, bit(2));
#undef cr4_fixed1_update
}
static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
{
struct kvm_cpuid_entry2 *best;
struct vcpu_vmx *vmx = to_vmx(vcpu);
u32 secondary_exec_ctl = vmx_secondary_exec_control(vmx);
if (vmx_rdtscp_supported()) {
bool rdtscp_enabled = guest_cpuid_has_rdtscp(vcpu);
if (!rdtscp_enabled)
secondary_exec_ctl &= ~SECONDARY_EXEC_RDTSCP;
if (nested) {
if (rdtscp_enabled)
vmx->nested.nested_vmx_secondary_ctls_high |=
SECONDARY_EXEC_RDTSCP;
else
vmx->nested.nested_vmx_secondary_ctls_high &=
~SECONDARY_EXEC_RDTSCP;
}
}
/* Exposing INVPCID only when PCID is exposed */
best = kvm_find_cpuid_entry(vcpu, 0x7, 0);
if (vmx_invpcid_supported() &&
(!best || !(best->ebx & bit(X86_FEATURE_INVPCID)) ||
!guest_cpuid_has_pcid(vcpu))) {
secondary_exec_ctl &= ~SECONDARY_EXEC_ENABLE_INVPCID;
if (best)
best->ebx &= ~bit(X86_FEATURE_INVPCID);
}
if (cpu_has_secondary_exec_ctrls())
vmcs_set_secondary_exec_control(secondary_exec_ctl);
if (nested_vmx_allowed(vcpu))
to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
else
to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
~FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
if (nested_vmx_allowed(vcpu))
nested_vmx_cr_fixed1_bits_update(vcpu);
}
static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
{
if (func == 1 && nested)
entry->ecx |= bit(X86_FEATURE_VMX);
}
static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
struct x86_exception *fault)
{
struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
u32 exit_reason;
if (fault->error_code & PFERR_RSVD_MASK)
exit_reason = EXIT_REASON_EPT_MISCONFIG;
else
exit_reason = EXIT_REASON_EPT_VIOLATION;
nested_vmx_vmexit(vcpu, exit_reason, 0, vcpu->arch.exit_qualification);
vmcs12->guest_physical_address = fault->address;
}
/* Callbacks for nested_ept_init_mmu_context: */
static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu)
{
/* return the page table to be shadowed - in our case, EPT12 */
return get_vmcs12(vcpu)->ept_pointer;
}
static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
{
WARN_ON(mmu_is_nested(vcpu));
kvm_init_shadow_ept_mmu(vcpu,
to_vmx(vcpu)->nested.nested_vmx_ept_caps &
VMX_EPT_EXECUTE_ONLY_BIT);
vcpu->arch.mmu.set_cr3 = vmx_set_cr3;
vcpu->arch.mmu.get_cr3 = nested_ept_get_cr3;
vcpu->arch.mmu.inject_page_fault = nested_ept_inject_page_fault;
vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
}
static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
{
vcpu->arch.walk_mmu = &vcpu->arch.mmu;
}
static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
u16 error_code)
{
bool inequality, bit;
bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
inequality =
(error_code & vmcs12->page_fault_error_code_mask) !=
vmcs12->page_fault_error_code_match;
return inequality ^ bit;
}
static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
struct x86_exception *fault)
{
struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
WARN_ON(!is_guest_mode(vcpu));
if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code))
nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
vmcs_read32(VM_EXIT_INTR_INFO),
vmcs_readl(EXIT_QUALIFICATION));
else
kvm_inject_page_fault(vcpu, fault);
}
static inline bool nested_vmx_merge_msr_bitmap(struct kvm_vcpu *vcpu,
struct vmcs12 *vmcs12);
static void nested_get_vmcs12_pages(struct kvm_vcpu *vcpu,
struct vmcs12 *vmcs12)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
u64 hpa;
if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
/*
* Translate L1 physical address to host physical
* address for vmcs02. Keep the page pinned, so this
* physical address remains valid. We keep a reference
* to it so we can release it later.
*/
if (vmx->nested.apic_access_page) /* shouldn't happen */
nested_release_page(vmx->nested.apic_access_page);
vmx->nested.apic_access_page =
nested_get_page(vcpu, vmcs12->apic_access_addr);
/*
* If translation failed, no matter: This feature asks
* to exit when accessing the given address, and if it
* can never be accessed, this feature won't do
* anything anyway.
*/
if (vmx->nested.apic_access_page) {
hpa = page_to_phys(vmx->nested.apic_access_page);
vmcs_write64(APIC_ACCESS_ADDR, hpa);
} else {
vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
}
} else if (!(nested_cpu_has_virt_x2apic_mode(vmcs12)) &&
cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
kvm_vcpu_reload_apic_access_page(vcpu);
}
if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
if (vmx->nested.virtual_apic_page) /* shouldn't happen */
nested_release_page(vmx->nested.virtual_apic_page);
vmx->nested.virtual_apic_page =
nested_get_page(vcpu, vmcs12->virtual_apic_page_addr);
/*
* If translation failed, VM entry will fail because
* prepare_vmcs02 set VIRTUAL_APIC_PAGE_ADDR to -1ull.
* Failing the vm entry is _not_ what the processor
* does but it's basically the only possibility we
* have. We could still enter the guest if CR8 load
* exits are enabled, CR8 store exits are enabled, and
* virtualize APIC access is disabled; in this case
* the processor would never use the TPR shadow and we
* could simply clear the bit from the execution
* control. But such a configuration is useless, so
* let's keep the code simple.
*/
if (vmx->nested.virtual_apic_page) {
hpa = page_to_phys(vmx->nested.virtual_apic_page);
vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, hpa);
}
}
if (nested_cpu_has_posted_intr(vmcs12)) {
if (vmx->nested.pi_desc_page) { /* shouldn't happen */
kunmap(vmx->nested.pi_desc_page);
nested_release_page(vmx->nested.pi_desc_page);
}
vmx->nested.pi_desc_page =
nested_get_page(vcpu, vmcs12->posted_intr_desc_addr);
vmx->nested.pi_desc =
(struct pi_desc *)kmap(vmx->nested.pi_desc_page);
if (!vmx->nested.pi_desc) {
nested_release_page_clean(vmx->nested.pi_desc_page);
return;
}
vmx->nested.pi_desc =
(struct pi_desc *)((void *)vmx->nested.pi_desc +
(unsigned long)(vmcs12->posted_intr_desc_addr &
(PAGE_SIZE - 1)));
vmcs_write64(POSTED_INTR_DESC_ADDR,
page_to_phys(vmx->nested.pi_desc_page) +
(unsigned long)(vmcs12->posted_intr_desc_addr &
(PAGE_SIZE - 1)));
}
if (cpu_has_vmx_msr_bitmap() &&
nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS) &&
nested_vmx_merge_msr_bitmap(vcpu, vmcs12))
;
else
vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
CPU_BASED_USE_MSR_BITMAPS);
}
static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
{
u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
struct vcpu_vmx *vmx = to_vmx(vcpu);
if (vcpu->arch.virtual_tsc_khz == 0)
return;
/* Make sure short timeouts reliably trigger an immediate vmexit.
* hrtimer_start does not guarantee this. */
if (preemption_timeout <= 1) {
vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
return;
}
preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
preemption_timeout *= 1000000;
do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
hrtimer_start(&vmx->nested.preemption_timer,
ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
}
static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
struct vmcs12 *vmcs12)
{
int maxphyaddr;
u64 addr;
if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
return 0;
if (vmcs12_read_any(vcpu, MSR_BITMAP, &addr)) {
WARN_ON(1);
return -EINVAL;
}
maxphyaddr = cpuid_maxphyaddr(vcpu);
if (!PAGE_ALIGNED(vmcs12->msr_bitmap) ||
((addr + PAGE_SIZE) >> maxphyaddr))
return -EINVAL;
return 0;
}
/*
* Merge L0's and L1's MSR bitmap, return false to indicate that
* we do not use the hardware.
*/
static inline bool nested_vmx_merge_msr_bitmap(struct kvm_vcpu *vcpu,
struct vmcs12 *vmcs12)
{
int msr;
struct page *page;
unsigned long *msr_bitmap_l1;
unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.msr_bitmap;
/* This shortcut is ok because we support only x2APIC MSRs so far. */
if (!nested_cpu_has_virt_x2apic_mode(vmcs12))
return false;
page = nested_get_page(vcpu, vmcs12->msr_bitmap);
if (!page)
return false;
msr_bitmap_l1 = (unsigned long *)kmap(page);
memset(msr_bitmap_l0, 0xff, PAGE_SIZE);
if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
if (nested_cpu_has_apic_reg_virt(vmcs12))
for (msr = 0x800; msr <= 0x8ff; msr++)
nested_vmx_disable_intercept_for_msr(
msr_bitmap_l1, msr_bitmap_l0,
msr, MSR_TYPE_R);
nested_vmx_disable_intercept_for_msr(
msr_bitmap_l1, msr_bitmap_l0,
APIC_BASE_MSR + (APIC_TASKPRI >> 4),
MSR_TYPE_R | MSR_TYPE_W);
if (nested_cpu_has_vid(vmcs12)) {
nested_vmx_disable_intercept_for_msr(
msr_bitmap_l1, msr_bitmap_l0,
APIC_BASE_MSR + (APIC_EOI >> 4),
MSR_TYPE_W);
nested_vmx_disable_intercept_for_msr(
msr_bitmap_l1, msr_bitmap_l0,
APIC_BASE_MSR + (APIC_SELF_IPI >> 4),
MSR_TYPE_W);
}
}
kunmap(page);
nested_release_page_clean(page);
return true;
}
static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
struct vmcs12 *vmcs12)
{
if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
!nested_cpu_has_apic_reg_virt(vmcs12) &&
!nested_cpu_has_vid(vmcs12) &&
!nested_cpu_has_posted_intr(vmcs12))
return 0;
/*
* If virtualize x2apic mode is enabled,
* virtualize apic access must be disabled.
*/
if (nested_cpu_has_virt_x2apic_mode(vmcs12) &&
nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
return -EINVAL;
/*
* If virtual interrupt delivery is enabled,
* we must exit on external interrupts.
*/
if (nested_cpu_has_vid(vmcs12) &&
!nested_exit_on_intr(vcpu))
return -EINVAL;
/*
* bits 15:8 should be zero in posted_intr_nv,
* the descriptor address has been already checked
* in nested_get_vmcs12_pages.
*/
if (nested_cpu_has_posted_intr(vmcs12) &&
(!nested_cpu_has_vid(vmcs12) ||
!nested_exit_intr_ack_set(vcpu) ||
vmcs12->posted_intr_nv & 0xff00))
return -EINVAL;
/* tpr shadow is needed by all apicv features. */
if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
return -EINVAL;
return 0;
}
static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
unsigned long count_field,
unsigned long addr_field)
{
int maxphyaddr;
u64 count, addr;
if (vmcs12_read_any(vcpu, count_field, &count) ||
vmcs12_read_any(vcpu, addr_field, &addr)) {
WARN_ON(1);
return -EINVAL;
}
if (count == 0)
return 0;
maxphyaddr = cpuid_maxphyaddr(vcpu);
if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
(addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr) {
pr_debug_ratelimited(
"nVMX: invalid MSR switch (0x%lx, %d, %llu, 0x%08llx)",
addr_field, maxphyaddr, count, addr);
return -EINVAL;
}
return 0;
}
static int nested_vmx_check_msr_switch_controls(struct kvm_vcpu *vcpu,
struct vmcs12 *vmcs12)
{
if (vmcs12->vm_exit_msr_load_count == 0 &&
vmcs12->vm_exit_msr_store_count == 0 &&
vmcs12->vm_entry_msr_load_count == 0)
return 0; /* Fast path */
if (nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_LOAD_COUNT,
VM_EXIT_MSR_LOAD_ADDR) ||
nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_STORE_COUNT,
VM_EXIT_MSR_STORE_ADDR) ||
nested_vmx_check_msr_switch(vcpu, VM_ENTRY_MSR_LOAD_COUNT,
VM_ENTRY_MSR_LOAD_ADDR))
return -EINVAL;
return 0;
}
static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
struct vmx_msr_entry *e)
{
/* x2APIC MSR accesses are not allowed */
if (vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8)
return -EINVAL;
if (e->index == MSR_IA32_UCODE_WRITE || /* SDM Table 35-2 */
e->index == MSR_IA32_UCODE_REV)
return -EINVAL;
if (e->reserved != 0)
return -EINVAL;
return 0;
}
static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
struct vmx_msr_entry *e)
{
if (e->index == MSR_FS_BASE ||
e->index == MSR_GS_BASE ||
e->index == MSR_IA32_SMM_MONITOR_CTL || /* SMM is not supported */
nested_vmx_msr_check_common(vcpu, e))
return -EINVAL;
return 0;
}
static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
struct vmx_msr_entry *e)
{
if (e->index == MSR_IA32_SMBASE || /* SMM is not supported */
nested_vmx_msr_check_common(vcpu, e))
return -EINVAL;
return 0;
}
/*
* Load guest's/host's msr at nested entry/exit.
* return 0 for success, entry index for failure.
*/
static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
{
u32 i;
struct vmx_msr_entry e;
struct msr_data msr;
msr.host_initiated = false;
for (i = 0; i < count; i++) {
if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
&e, sizeof(e))) {
pr_debug_ratelimited(
"%s cannot read MSR entry (%u, 0x%08llx)\n",
__func__, i, gpa + i * sizeof(e));
goto fail;
}
if (nested_vmx_load_msr_check(vcpu, &e)) {
pr_debug_ratelimited(
"%s check failed (%u, 0x%x, 0x%x)\n",
__func__, i, e.index, e.reserved);
goto fail;
}
msr.index = e.index;
msr.data = e.value;
if (kvm_set_msr(vcpu, &msr)) {
pr_debug_ratelimited(
"%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
__func__, i, e.index, e.value);
goto fail;
}
}
return 0;
fail:
return i + 1;
}
static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
{
u32 i;
struct vmx_msr_entry e;
for (i = 0; i < count; i++) {
struct msr_data msr_info;
if (kvm_vcpu_read_guest(vcpu,
gpa + i * sizeof(e),
&e, 2 * sizeof(u32))) {
pr_debug_ratelimited(
"%s cannot read MSR entry (%u, 0x%08llx)\n",
__func__, i, gpa + i * sizeof(e));
return -EINVAL;
}
if (nested_vmx_store_msr_check(vcpu, &e)) {
pr_debug_ratelimited(
"%s check failed (%u, 0x%x, 0x%x)\n",
__func__, i, e.index, e.reserved);
return -EINVAL;
}
msr_info.host_initiated = false;
msr_info.index = e.index;
if (kvm_get_msr(vcpu, &msr_info)) {
pr_debug_ratelimited(
"%s cannot read MSR (%u, 0x%x)\n",
__func__, i, e.index);
return -EINVAL;
}
if (kvm_vcpu_write_guest(vcpu,
gpa + i * sizeof(e) +
offsetof(struct vmx_msr_entry, value),
&msr_info.data, sizeof(msr_info.data))) {
pr_debug_ratelimited(
"%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
__func__, i, e.index, msr_info.data);
return -EINVAL;
}
}
return 0;
}
static bool nested_cr3_valid(struct kvm_vcpu *vcpu, unsigned long val)
{
unsigned long invalid_mask;
invalid_mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
return (val & invalid_mask) == 0;
}
/*
* Load guest's/host's cr3 at nested entry/exit. nested_ept is true if we are
* emulating VM entry into a guest with EPT enabled.
* Returns 0 on success, 1 on failure. Invalid state exit qualification code
* is assigned to entry_failure_code on failure.
*/
static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3, bool nested_ept,
u32 *entry_failure_code)
{
if (cr3 != kvm_read_cr3(vcpu) || (!nested_ept && pdptrs_changed(vcpu))) {
if (!nested_cr3_valid(vcpu, cr3)) {
*entry_failure_code = ENTRY_FAIL_DEFAULT;
return 1;
}
/*
* If PAE paging and EPT are both on, CR3 is not used by the CPU and
* must not be dereferenced.
*/
if (!is_long_mode(vcpu) && is_pae(vcpu) && is_paging(vcpu) &&
!nested_ept) {
if (!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) {
*entry_failure_code = ENTRY_FAIL_PDPTE;
return 1;
}
}
vcpu->arch.cr3 = cr3;
__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
}
kvm_mmu_reset_context(vcpu);
return 0;
}
/*
* prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
* L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
* with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
* guest in a way that will both be appropriate to L1's requests, and our
* needs. In addition to modifying the active vmcs (which is vmcs02), this
* function also has additional necessary side-effects, like setting various
* vcpu->arch fields.
* Returns 0 on success, 1 on failure. Invalid state exit qualification code
* is assigned to entry_failure_code on failure.
*/
static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
bool from_vmentry, u32 *entry_failure_code)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
u32 exec_control;
bool nested_ept_enabled = false;
vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
if (from_vmentry &&
(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
} else {
kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
}
if (from_vmentry) {
vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
vmcs12->vm_entry_intr_info_field);
vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
vmcs12->vm_entry_exception_error_code);
vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
vmcs12->vm_entry_instruction_len);
vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
vmcs12->guest_interruptibility_info);
} else {
vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
}
vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
vmx_set_rflags(vcpu, vmcs12->guest_rflags);
vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
vmcs12->guest_pending_dbg_exceptions);
vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
if (nested_cpu_has_xsaves(vmcs12))
vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
vmcs_write64(VMCS_LINK_POINTER, -1ull);
exec_control = vmcs12->pin_based_vm_exec_control;
/* Preemption timer setting is only taken from vmcs01. */
exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
exec_control |= vmcs_config.pin_based_exec_ctrl;
if (vmx->hv_deadline_tsc == -1)
exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
/* Posted interrupts setting is only taken from vmcs12. */
if (nested_cpu_has_posted_intr(vmcs12)) {
/*
* Note that we use L0's vector here and in
* vmx_deliver_nested_posted_interrupt.
*/
vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
vmx->nested.pi_pending = false;
vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
} else {
exec_control &= ~PIN_BASED_POSTED_INTR;
}
vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control);
vmx->nested.preemption_timer_expired = false;
if (nested_cpu_has_preemption_timer(vmcs12))
vmx_start_preemption_timer(vcpu);
/*
* Whether page-faults are trapped is determined by a combination of
* 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
* If enable_ept, L0 doesn't care about page faults and we should
* set all of these to L1's desires. However, if !enable_ept, L0 does
* care about (at least some) page faults, and because it is not easy
* (if at all possible?) to merge L0 and L1's desires, we simply ask
* to exit on each and every L2 page fault. This is done by setting
* MASK=MATCH=0 and (see below) EB.PF=1.
* Note that below we don't need special code to set EB.PF beyond the
* "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
* vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
* !enable_ept, EB.PF is 1, so the "or" will always be 1.
*
* A problem with this approach (when !enable_ept) is that L1 may be
* injected with more page faults than it asked for. This could have
* caused problems, but in practice existing hypervisors don't care.
* To fix this, we will need to emulate the PFEC checking (on the L1
* page tables), using walk_addr(), when injecting PFs to L1.
*/
vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
enable_ept ? vmcs12->page_fault_error_code_mask : 0);
vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
enable_ept ? vmcs12->page_fault_error_code_match : 0);
if (cpu_has_secondary_exec_ctrls()) {
exec_control = vmx_secondary_exec_control(vmx);
/* Take the following fields only from vmcs12 */
exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
SECONDARY_EXEC_RDTSCP |
SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
SECONDARY_EXEC_APIC_REGISTER_VIRT);
if (nested_cpu_has(vmcs12,
CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
exec_control |= vmcs12->secondary_vm_exec_control;
if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
vmcs_write64(EOI_EXIT_BITMAP0,
vmcs12->eoi_exit_bitmap0);
vmcs_write64(EOI_EXIT_BITMAP1,
vmcs12->eoi_exit_bitmap1);
vmcs_write64(EOI_EXIT_BITMAP2,
vmcs12->eoi_exit_bitmap2);
vmcs_write64(EOI_EXIT_BITMAP3,
vmcs12->eoi_exit_bitmap3);
vmcs_write16(GUEST_INTR_STATUS,
vmcs12->guest_intr_status);
}
nested_ept_enabled = (exec_control & SECONDARY_EXEC_ENABLE_EPT) != 0;
/*
* Write an illegal value to APIC_ACCESS_ADDR. Later,
* nested_get_vmcs12_pages will either fix it up or
* remove the VM execution control.
*/
if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
vmcs_write64(APIC_ACCESS_ADDR, -1ull);
vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
}
/*
* Set host-state according to L0's settings (vmcs12 is irrelevant here)
* Some constant fields are set here by vmx_set_constant_host_state().
* Other fields are different per CPU, and will be set later when
* vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
*/
vmx_set_constant_host_state(vmx);
/*
* Set the MSR load/store lists to match L0's settings.
*/
vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
/*
* HOST_RSP is normally set correctly in vmx_vcpu_run() just before
* entry, but only if the current (host) sp changed from the value
* we wrote last (vmx->host_rsp). This cache is no longer relevant
* if we switch vmcs, and rather than hold a separate cache per vmcs,
* here we just force the write to happen on entry.
*/
vmx->host_rsp = 0;
exec_control = vmx_exec_control(vmx); /* L0's desires */
exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
exec_control &= ~CPU_BASED_TPR_SHADOW;
exec_control |= vmcs12->cpu_based_vm_exec_control;
/*
* Write an illegal value to VIRTUAL_APIC_PAGE_ADDR. Later, if
* nested_get_vmcs12_pages can't fix it up, the illegal value
* will result in a VM entry failure.
*/
if (exec_control & CPU_BASED_TPR_SHADOW) {
vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, -1ull);
vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
}
/*
* Merging of IO bitmap not currently supported.
* Rather, exit every time.
*/
exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
exec_control |= CPU_BASED_UNCOND_IO_EXITING;
vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
/* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
* bitwise-or of what L1 wants to trap for L2, and what we want to
* trap. Note that CR0.TS also needs updating - we do this later.
*/
update_exception_bitmap(vcpu);
vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
/* L2->L1 exit controls are emulated - the hardware exit is to L0 so
* we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
* bits are further modified by vmx_set_efer() below.
*/
vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
/* vmcs12's VM_ENTRY_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE are
* emulated by vmx_set_efer(), below.
*/
vm_entry_controls_init(vmx,
(vmcs12->vm_entry_controls & ~VM_ENTRY_LOAD_IA32_EFER &
~VM_ENTRY_IA32E_MODE) |
(vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
if (from_vmentry &&
(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
vcpu->arch.pat = vmcs12->guest_ia32_pat;
} else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
}
set_cr4_guest_host_mask(vmx);
if (from_vmentry &&
vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)
vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
vmcs_write64(TSC_OFFSET,
vcpu->arch.tsc_offset + vmcs12->tsc_offset);
else
vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
if (kvm_has_tsc_control)
decache_tsc_multiplier(vmx);
if (enable_vpid) {
/*
* There is no direct mapping between vpid02 and vpid12, the
* vpid02 is per-vCPU for L0 and reused while the value of
* vpid12 is changed w/ one invvpid during nested vmentry.
* The vpid12 is allocated by L1 for L2, so it will not
* influence global bitmap(for vpid01 and vpid02 allocation)
* even if spawn a lot of nested vCPUs.
*/
if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02) {
vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
if (vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
vmx->nested.last_vpid = vmcs12->virtual_processor_id;
__vmx_flush_tlb(vcpu, to_vmx(vcpu)->nested.vpid02);
}
} else {
vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
vmx_flush_tlb(vcpu);
}
}
if (nested_cpu_has_ept(vmcs12)) {
kvm_mmu_unload(vcpu);
nested_ept_init_mmu_context(vcpu);
}
/*
* This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
* bits which we consider mandatory enabled.
* The CR0_READ_SHADOW is what L2 should have expected to read given
* the specifications by L1; It's not enough to take
* vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
* have more bits than L1 expected.
*/
vmx_set_cr0(vcpu, vmcs12->guest_cr0);
vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
vmx_set_cr4(vcpu, vmcs12->guest_cr4);
vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
if (from_vmentry &&
(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
vcpu->arch.efer = vmcs12->guest_ia32_efer;
else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
vcpu->arch.efer |= (EFER_LMA | EFER_LME);
else
vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
/* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
vmx_set_efer(vcpu, vcpu->arch.efer);
/* Shadow page tables on either EPT or shadow page tables. */
if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_ept_enabled,
entry_failure_code))
return 1;
kvm_mmu_reset_context(vcpu);
if (!enable_ept)
vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
/*
* L1 may access the L2's PDPTR, so save them to construct vmcs12
*/
if (enable_ept) {
vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
}
kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
return 0;
}
static int check_vmentry_prereqs(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT)
return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
if (nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12))
return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
if (nested_vmx_check_apicv_controls(vcpu, vmcs12))
return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
if (nested_vmx_check_msr_switch_controls(vcpu, vmcs12))
return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
vmx->nested.nested_vmx_procbased_ctls_low,
vmx->nested.nested_vmx_procbased_ctls_high) ||
!vmx_control_verify(vmcs12->secondary_vm_exec_control,
vmx->nested.nested_vmx_secondary_ctls_low,
vmx->nested.nested_vmx_secondary_ctls_high) ||
!vmx_control_verify(vmcs12->pin_based_vm_exec_control,
vmx->nested.nested_vmx_pinbased_ctls_low,
vmx->nested.nested_vmx_pinbased_ctls_high) ||
!vmx_control_verify(vmcs12->vm_exit_controls,
vmx->nested.nested_vmx_exit_ctls_low,
vmx->nested.nested_vmx_exit_ctls_high) ||
!vmx_control_verify(vmcs12->vm_entry_controls,
vmx->nested.nested_vmx_entry_ctls_low,
vmx->nested.nested_vmx_entry_ctls_high))
return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
if (!nested_host_cr0_valid(vcpu, vmcs12->host_cr0) ||
!nested_host_cr4_valid(vcpu, vmcs12->host_cr4) ||
!nested_cr3_valid(vcpu, vmcs12->host_cr3))
return VMXERR_ENTRY_INVALID_HOST_STATE_FIELD;
return 0;
}
static int check_vmentry_postreqs(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
u32 *exit_qual)
{
bool ia32e;
*exit_qual = ENTRY_FAIL_DEFAULT;
if (!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0) ||
!nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4))
return 1;
if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_SHADOW_VMCS) &&
vmcs12->vmcs_link_pointer != -1ull) {
*exit_qual = ENTRY_FAIL_VMCS_LINK_PTR;
return 1;
}
/*
* If the load IA32_EFER VM-entry control is 1, the following checks
* are performed on the field for the IA32_EFER MSR:
* - Bits reserved in the IA32_EFER MSR must be 0.
* - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
* the IA-32e mode guest VM-exit control. It must also be identical
* to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
* CR0.PG) is 1.
*/
if (to_vmx(vcpu)->nested.nested_run_pending &&
(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
((vmcs12->guest_cr0 & X86_CR0_PG) &&
ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME)))
return 1;
}
/*
* If the load IA32_EFER VM-exit control is 1, bits reserved in the
* IA32_EFER MSR must be 0 in the field for that register. In addition,
* the values of the LMA and LME bits in the field must each be that of
* the host address-space size VM-exit control.
*/
if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
ia32e = (vmcs12->vm_exit_controls &
VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
ia32e != !!(vmcs12->host_ia32_efer & EFER_LME))
return 1;
}
return 0;
}
static int enter_vmx_non_root_mode(struct kvm_vcpu *vcpu, bool from_vmentry)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
struct loaded_vmcs *vmcs02;
int cpu;
u32 msr_entry_idx;
u32 exit_qual;
vmcs02 = nested_get_current_vmcs02(vmx);
if (!vmcs02)
return -ENOMEM;
enter_guest_mode(vcpu);
if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
cpu = get_cpu();
vmx->loaded_vmcs = vmcs02;
vmx_vcpu_put(vcpu);
vmx_vcpu_load(vcpu, cpu);
vcpu->cpu = cpu;
put_cpu();
vmx_segment_cache_clear(vmx);
if (prepare_vmcs02(vcpu, vmcs12, from_vmentry, &exit_qual)) {
leave_guest_mode(vcpu);
vmx_load_vmcs01(vcpu);
nested_vmx_entry_failure(vcpu, vmcs12,
EXIT_REASON_INVALID_STATE, exit_qual);
return 1;
}
nested_get_vmcs12_pages(vcpu, vmcs12);
msr_entry_idx = nested_vmx_load_msr(vcpu,
vmcs12->vm_entry_msr_load_addr,
vmcs12->vm_entry_msr_load_count);
if (msr_entry_idx) {
leave_guest_mode(vcpu);
vmx_load_vmcs01(vcpu);
nested_vmx_entry_failure(vcpu, vmcs12,
EXIT_REASON_MSR_LOAD_FAIL, msr_entry_idx);
return 1;
}
vmcs12->launch_state = 1;
/*
* Note no nested_vmx_succeed or nested_vmx_fail here. At this point
* we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
* returned as far as L1 is concerned. It will only return (and set
* the success flag) when L2 exits (see nested_vmx_vmexit()).
*/
return 0;
}
/*
* nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
* for running an L2 nested guest.
*/
static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
{
struct vmcs12 *vmcs12;
struct vcpu_vmx *vmx = to_vmx(vcpu);
u32 exit_qual;
int ret;
if (!nested_vmx_check_permission(vcpu))
return 1;
if (!nested_vmx_check_vmcs12(vcpu))
goto out;
vmcs12 = get_vmcs12(vcpu);
if (enable_shadow_vmcs)
copy_shadow_to_vmcs12(vmx);
/*
* The nested entry process starts with enforcing various prerequisites
* on vmcs12 as required by the Intel SDM, and act appropriately when
* they fail: As the SDM explains, some conditions should cause the
* instruction to fail, while others will cause the instruction to seem
* to succeed, but return an EXIT_REASON_INVALID_STATE.
* To speed up the normal (success) code path, we should avoid checking
* for misconfigurations which will anyway be caught by the processor
* when using the merged vmcs02.
*/
if (vmcs12->launch_state == launch) {
nested_vmx_failValid(vcpu,
launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
: VMXERR_VMRESUME_NONLAUNCHED_VMCS);
goto out;
}
ret = check_vmentry_prereqs(vcpu, vmcs12);
if (ret) {
nested_vmx_failValid(vcpu, ret);
goto out;
}
/*
* After this point, the trap flag no longer triggers a singlestep trap
* on the vm entry instructions; don't call kvm_skip_emulated_instruction.
* This is not 100% correct; for performance reasons, we delegate most
* of the checks on host state to the processor. If those fail,
* the singlestep trap is missed.
*/
skip_emulated_instruction(vcpu);
ret = check_vmentry_postreqs(vcpu, vmcs12, &exit_qual);
if (ret) {
nested_vmx_entry_failure(vcpu, vmcs12,
EXIT_REASON_INVALID_STATE, exit_qual);
return 1;
}
/*
* We're finally done with prerequisite checking, and can start with
* the nested entry.
*/
ret = enter_vmx_non_root_mode(vcpu, true);
if (ret)
return ret;
if (vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT)
return kvm_vcpu_halt(vcpu);
vmx->nested.nested_run_pending = 1;
return 1;
out:
return kvm_skip_emulated_instruction(vcpu);
}
/*
* On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
* because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
* This function returns the new value we should put in vmcs12.guest_cr0.
* It's not enough to just return the vmcs02 GUEST_CR0. Rather,
* 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
* available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
* didn't trap the bit, because if L1 did, so would L0).
* 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
* been modified by L2, and L1 knows it. So just leave the old value of
* the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
* isn't relevant, because if L0 traps this bit it can set it to anything.
* 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
* changed these bits, and therefore they need to be updated, but L0
* didn't necessarily allow them to be changed in GUEST_CR0 - and rather
* put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
*/
static inline unsigned long
vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
{
return
/*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
/*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
/*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
vcpu->arch.cr0_guest_owned_bits));
}
static inline unsigned long
vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
{
return
/*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
/*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
/*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
vcpu->arch.cr4_guest_owned_bits));
}
static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
struct vmcs12 *vmcs12)
{
u32 idt_vectoring;
unsigned int nr;
if (vcpu->arch.exception.pending && vcpu->arch.exception.reinject) {
nr = vcpu->arch.exception.nr;
idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
if (kvm_exception_is_soft(nr)) {
vmcs12->vm_exit_instruction_len =
vcpu->arch.event_exit_inst_len;
idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
} else
idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
if (vcpu->arch.exception.has_error_code) {
idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
vmcs12->idt_vectoring_error_code =
vcpu->arch.exception.error_code;
}
vmcs12->idt_vectoring_info_field = idt_vectoring;
} else if (vcpu->arch.nmi_injected) {
vmcs12->idt_vectoring_info_field =
INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
} else if (vcpu->arch.interrupt.pending) {
nr = vcpu->arch.interrupt.nr;
idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
if (vcpu->arch.interrupt.soft) {
idt_vectoring |= INTR_TYPE_SOFT_INTR;
vmcs12->vm_entry_instruction_len =
vcpu->arch.event_exit_inst_len;
} else
idt_vectoring |= INTR_TYPE_EXT_INTR;
vmcs12->idt_vectoring_info_field = idt_vectoring;
}
}
static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
if (vcpu->arch.exception.pending ||
vcpu->arch.nmi_injected ||
vcpu->arch.interrupt.pending)
return -EBUSY;
if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
vmx->nested.preemption_timer_expired) {
if (vmx->nested.nested_run_pending)
return -EBUSY;
nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
return 0;
}
if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
if (vmx->nested.nested_run_pending)
return -EBUSY;
nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
NMI_VECTOR | INTR_TYPE_NMI_INTR |
INTR_INFO_VALID_MASK, 0);
/*
* The NMI-triggered VM exit counts as injection:
* clear this one and block further NMIs.
*/
vcpu->arch.nmi_pending = 0;
vmx_set_nmi_mask(vcpu, true);
return 0;
}
if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
nested_exit_on_intr(vcpu)) {
if (vmx->nested.nested_run_pending)
return -EBUSY;
nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
return 0;
}
vmx_complete_nested_posted_interrupt(vcpu);
return 0;
}
static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
{
ktime_t remaining =
hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
u64 value;
if (ktime_to_ns(remaining) <= 0)
return 0;
value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
do_div(value, 1000000);
return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
}
/*
* Update the guest state fields of vmcs12 to reflect changes that
* occurred while L2 was running. (The "IA-32e mode guest" bit of the
* VM-entry controls is also updated, since this is really a guest
* state bit.)
*/
static void sync_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
{
vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
vmcs12->guest_interruptibility_info =
vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
vmcs12->guest_pending_dbg_exceptions =
vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
else
vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
if (nested_cpu_has_preemption_timer(vmcs12)) {
if (vmcs12->vm_exit_controls &
VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
vmcs12->vmx_preemption_timer_value =
vmx_get_preemption_timer_value(vcpu);
hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
}
/*
* In some cases (usually, nested EPT), L2 is allowed to change its
* own CR3 without exiting. If it has changed it, we must keep it.
* Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
* by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
*
* Additionally, restore L2's PDPTR to vmcs12.
*/
if (enable_ept) {
vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
}
if (nested_cpu_has_ept(vmcs12))
vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
if (nested_cpu_has_vid(vmcs12))
vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
vmcs12->vm_entry_controls =
(vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
(vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) {
kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
}
/* TODO: These cannot have changed unless we have MSR bitmaps and
* the relevant bit asks not to trap the change */
if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
vmcs12->guest_ia32_efer = vcpu->arch.efer;
vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
if (kvm_mpx_supported())
vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
if (nested_cpu_has_xsaves(vmcs12))
vmcs12->xss_exit_bitmap = vmcs_read64(XSS_EXIT_BITMAP);
}
/*
* prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
* and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
* and this function updates it to reflect the changes to the guest state while
* L2 was running (and perhaps made some exits which were handled directly by L0
* without going back to L1), and to reflect the exit reason.
* Note that we do not have to copy here all VMCS fields, just those that
* could have changed by the L2 guest or the exit - i.e., the guest-state and
* exit-information fields only. Other fields are modified by L1 with VMWRITE,
* which already writes to vmcs12 directly.
*/
static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
u32 exit_reason, u32 exit_intr_info,
unsigned long exit_qualification)
{
/* update guest state fields: */
sync_vmcs12(vcpu, vmcs12);
/* update exit information fields: */
vmcs12->vm_exit_reason = exit_reason;
vmcs12->exit_qualification = exit_qualification;
vmcs12->vm_exit_intr_info = exit_intr_info;
if ((vmcs12->vm_exit_intr_info &
(INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
(INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK))
vmcs12->vm_exit_intr_error_code =
vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
vmcs12->idt_vectoring_info_field = 0;
vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
/* vm_entry_intr_info_field is cleared on exit. Emulate this
* instead of reading the real value. */
vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
/*
* Transfer the event that L0 or L1 may wanted to inject into
* L2 to IDT_VECTORING_INFO_FIELD.
*/
vmcs12_save_pending_event(vcpu, vmcs12);
}
/*
* Drop what we picked up for L2 via vmx_complete_interrupts. It is
* preserved above and would only end up incorrectly in L1.
*/
vcpu->arch.nmi_injected = false;
kvm_clear_exception_queue(vcpu);
kvm_clear_interrupt_queue(vcpu);
}
/*
* A part of what we need to when the nested L2 guest exits and we want to
* run its L1 parent, is to reset L1's guest state to the host state specified
* in vmcs12.
* This function is to be called not only on normal nested exit, but also on
* a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
* Failures During or After Loading Guest State").
* This function should be called when the active VMCS is L1's (vmcs01).
*/
static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
struct vmcs12 *vmcs12)
{
struct kvm_segment seg;
u32 entry_failure_code;
if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
vcpu->arch.efer = vmcs12->host_ia32_efer;
else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
vcpu->arch.efer |= (EFER_LMA | EFER_LME);
else
vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
vmx_set_efer(vcpu, vcpu->arch.efer);
kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
/*
* Note that calling vmx_set_cr0 is important, even if cr0 hasn't
* actually changed, because vmx_set_cr0 refers to efer set above.
*
* CR0_GUEST_HOST_MASK is already set in the original vmcs01
* (KVM doesn't change it);
*/
vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
vmx_set_cr0(vcpu, vmcs12->host_cr0);
/* Same as above - no reason to call set_cr4_guest_host_mask(). */
vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
kvm_set_cr4(vcpu, vmcs12->host_cr4);
nested_ept_uninit_mmu_context(vcpu);
/*
* Only PDPTE load can fail as the value of cr3 was checked on entry and
* couldn't have changed.
*/
if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, &entry_failure_code))
nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
if (!enable_ept)
vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
if (enable_vpid) {
/*
* Trivially support vpid by letting L2s share their parent
* L1's vpid. TODO: move to a more elaborate solution, giving
* each L2 its own vpid and exposing the vpid feature to L1.
*/
vmx_flush_tlb(vcpu);
}
vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
/* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1. */
if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
vmcs_write64(GUEST_BNDCFGS, 0);
if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
vcpu->arch.pat = vmcs12->host_ia32_pat;
}
if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
vmcs12->host_ia32_perf_global_ctrl);
/* Set L1 segment info according to Intel SDM
27.5.2 Loading Host Segment and Descriptor-Table Registers */
seg = (struct kvm_segment) {
.base = 0,
.limit = 0xFFFFFFFF,
.selector = vmcs12->host_cs_selector,
.type = 11,
.present = 1,
.s = 1,
.g = 1
};
if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
seg.l = 1;
else
seg.db = 1;
vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
seg = (struct kvm_segment) {
.base = 0,
.limit = 0xFFFFFFFF,
.type = 3,
.present = 1,
.s = 1,
.db = 1,
.g = 1
};
seg.selector = vmcs12->host_ds_selector;
vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
seg.selector = vmcs12->host_es_selector;
vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
seg.selector = vmcs12->host_ss_selector;
vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
seg.selector = vmcs12->host_fs_selector;
seg.base = vmcs12->host_fs_base;
vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
seg.selector = vmcs12->host_gs_selector;
seg.base = vmcs12->host_gs_base;
vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
seg = (struct kvm_segment) {
.base = vmcs12->host_tr_base,
.limit = 0x67,
.selector = vmcs12->host_tr_selector,
.type = 11,
.present = 1
};
vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
kvm_set_dr(vcpu, 7, 0x400);
vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
if (cpu_has_vmx_msr_bitmap())
vmx_set_msr_bitmap(vcpu);
if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
vmcs12->vm_exit_msr_load_count))
nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
}
/*
* Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
* and modify vmcs12 to make it see what it would expect to see there if
* L2 was its real guest. Must only be called when in L2 (is_guest_mode())
*/
static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
u32 exit_intr_info,
unsigned long exit_qualification)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
u32 vm_inst_error = 0;
/* trying to cancel vmlaunch/vmresume is a bug */
WARN_ON_ONCE(vmx->nested.nested_run_pending);
leave_guest_mode(vcpu);
prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
exit_qualification);
if (nested_vmx_store_msr(vcpu, vmcs12->vm_exit_msr_store_addr,
vmcs12->vm_exit_msr_store_count))
nested_vmx_abort(vcpu, VMX_ABORT_SAVE_GUEST_MSR_FAIL);
if (unlikely(vmx->fail))
vm_inst_error = vmcs_read32(VM_INSTRUCTION_ERROR);
vmx_load_vmcs01(vcpu);
if ((exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT)
&& nested_exit_intr_ack_set(vcpu)) {
int irq = kvm_cpu_get_interrupt(vcpu);
WARN_ON(irq < 0);
vmcs12->vm_exit_intr_info = irq |
INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
}
trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
vmcs12->exit_qualification,
vmcs12->idt_vectoring_info_field,
vmcs12->vm_exit_intr_info,
vmcs12->vm_exit_intr_error_code,
KVM_ISA_VMX);
vm_entry_controls_reset_shadow(vmx);
vm_exit_controls_reset_shadow(vmx);
vmx_segment_cache_clear(vmx);
/* if no vmcs02 cache requested, remove the one we used */
if (VMCS02_POOL_SIZE == 0)
nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
load_vmcs12_host_state(vcpu, vmcs12);
/* Update any VMCS fields that might have changed while L2 ran */
vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
if (vmx->hv_deadline_tsc == -1)
vmcs_clear_bits(PIN_BASED_VM_EXEC_CONTROL,
PIN_BASED_VMX_PREEMPTION_TIMER);
else
vmcs_set_bits(PIN_BASED_VM_EXEC_CONTROL,
PIN_BASED_VMX_PREEMPTION_TIMER);
if (kvm_has_tsc_control)
decache_tsc_multiplier(vmx);
if (vmx->nested.change_vmcs01_virtual_x2apic_mode) {
vmx->nested.change_vmcs01_virtual_x2apic_mode = false;
vmx_set_virtual_x2apic_mode(vcpu,
vcpu->arch.apic_base & X2APIC_ENABLE);
}
/* This is needed for same reason as it was needed in prepare_vmcs02 */
vmx->host_rsp = 0;
/* Unpin physical memory we referred to in vmcs02 */
if (vmx->nested.apic_access_page) {
nested_release_page(vmx->nested.apic_access_page);
vmx->nested.apic_access_page = NULL;
}
if (vmx->nested.virtual_apic_page) {
nested_release_page(vmx->nested.virtual_apic_page);
vmx->nested.virtual_apic_page = NULL;
}
if (vmx->nested.pi_desc_page) {
kunmap(vmx->nested.pi_desc_page);
nested_release_page(vmx->nested.pi_desc_page);
vmx->nested.pi_desc_page = NULL;
vmx->nested.pi_desc = NULL;
}
/*
* We are now running in L2, mmu_notifier will force to reload the
* page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
*/
kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
/*
* Exiting from L2 to L1, we're now back to L1 which thinks it just
* finished a VMLAUNCH or VMRESUME instruction, so we need to set the
* success or failure flag accordingly.
*/
if (unlikely(vmx->fail)) {
vmx->fail = 0;
nested_vmx_failValid(vcpu, vm_inst_error);
} else
nested_vmx_succeed(vcpu);
if (enable_shadow_vmcs)
vmx->nested.sync_shadow_vmcs = true;
/* in case we halted in L2 */
vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
}
/*
* Forcibly leave nested mode in order to be able to reset the VCPU later on.
*/
static void vmx_leave_nested(struct kvm_vcpu *vcpu)
{
if (is_guest_mode(vcpu)) {
to_vmx(vcpu)->nested.nested_run_pending = 0;
nested_vmx_vmexit(vcpu, -1, 0, 0);
}
free_nested(to_vmx(vcpu));
}
/*
* L1's failure to enter L2 is a subset of a normal exit, as explained in
* 23.7 "VM-entry failures during or after loading guest state" (this also
* lists the acceptable exit-reason and exit-qualification parameters).
* It should only be called before L2 actually succeeded to run, and when
* vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
*/
static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
struct vmcs12 *vmcs12,
u32 reason, unsigned long qualification)
{
load_vmcs12_host_state(vcpu, vmcs12);
vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
vmcs12->exit_qualification = qualification;
nested_vmx_succeed(vcpu);
if (enable_shadow_vmcs)
to_vmx(vcpu)->nested.sync_shadow_vmcs = true;
}
static int vmx_check_intercept(struct kvm_vcpu *vcpu,
struct x86_instruction_info *info,
enum x86_intercept_stage stage)
{
return X86EMUL_CONTINUE;
}
#ifdef CONFIG_X86_64
/* (a << shift) / divisor, return 1 if overflow otherwise 0 */
static inline int u64_shl_div_u64(u64 a, unsigned int shift,
u64 divisor, u64 *result)
{
u64 low = a << shift, high = a >> (64 - shift);
/* To avoid the overflow on divq */
if (high >= divisor)
return 1;
/* Low hold the result, high hold rem which is discarded */
asm("divq %2\n\t" : "=a" (low), "=d" (high) :
"rm" (divisor), "0" (low), "1" (high));
*result = low;
return 0;
}
static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
u64 tscl = rdtsc();
u64 guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
u64 delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
/* Convert to host delta tsc if tsc scaling is enabled */
if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
u64_shl_div_u64(delta_tsc,
kvm_tsc_scaling_ratio_frac_bits,
vcpu->arch.tsc_scaling_ratio,
&delta_tsc))
return -ERANGE;
/*
* If the delta tsc can't fit in the 32 bit after the multi shift,
* we can't use the preemption timer.
* It's possible that it fits on later vmentries, but checking
* on every vmentry is costly so we just use an hrtimer.
*/
if (delta_tsc >> (cpu_preemption_timer_multi + 32))
return -ERANGE;
vmx->hv_deadline_tsc = tscl + delta_tsc;
vmcs_set_bits(PIN_BASED_VM_EXEC_CONTROL,
PIN_BASED_VMX_PREEMPTION_TIMER);
return 0;
}
static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
vmx->hv_deadline_tsc = -1;
vmcs_clear_bits(PIN_BASED_VM_EXEC_CONTROL,
PIN_BASED_VMX_PREEMPTION_TIMER);
}
#endif
static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
{
if (ple_gap)
shrink_ple_window(vcpu);
}
static void vmx_slot_enable_log_dirty(struct kvm *kvm,
struct kvm_memory_slot *slot)
{
kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
}
static void vmx_slot_disable_log_dirty(struct kvm *kvm,
struct kvm_memory_slot *slot)
{
kvm_mmu_slot_set_dirty(kvm, slot);
}
static void vmx_flush_log_dirty(struct kvm *kvm)
{
kvm_flush_pml_buffers(kvm);
}
static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
struct kvm_memory_slot *memslot,
gfn_t offset, unsigned long mask)
{
kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
}
/*
* This routine does the following things for vCPU which is going
* to be blocked if VT-d PI is enabled.
* - Store the vCPU to the wakeup list, so when interrupts happen
* we can find the right vCPU to wake up.
* - Change the Posted-interrupt descriptor as below:
* 'NDST' <-- vcpu->pre_pcpu
* 'NV' <-- POSTED_INTR_WAKEUP_VECTOR
* - If 'ON' is set during this process, which means at least one
* interrupt is posted for this vCPU, we cannot block it, in
* this case, return 1, otherwise, return 0.
*
*/
static int pi_pre_block(struct kvm_vcpu *vcpu)
{
unsigned long flags;
unsigned int dest;
struct pi_desc old, new;
struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
!irq_remapping_cap(IRQ_POSTING_CAP) ||
!kvm_vcpu_apicv_active(vcpu))
return 0;
vcpu->pre_pcpu = vcpu->cpu;
spin_lock_irqsave(&per_cpu(blocked_vcpu_on_cpu_lock,
vcpu->pre_pcpu), flags);
list_add_tail(&vcpu->blocked_vcpu_list,
&per_cpu(blocked_vcpu_on_cpu,
vcpu->pre_pcpu));
spin_unlock_irqrestore(&per_cpu(blocked_vcpu_on_cpu_lock,
vcpu->pre_pcpu), flags);
do {
old.control = new.control = pi_desc->control;
/*
* We should not block the vCPU if
* an interrupt is posted for it.
*/
if (pi_test_on(pi_desc) == 1) {
spin_lock_irqsave(&per_cpu(blocked_vcpu_on_cpu_lock,
vcpu->pre_pcpu), flags);
list_del(&vcpu->blocked_vcpu_list);
spin_unlock_irqrestore(
&per_cpu(blocked_vcpu_on_cpu_lock,
vcpu->pre_pcpu), flags);
vcpu->pre_pcpu = -1;
return 1;
}
WARN((pi_desc->sn == 1),
"Warning: SN field of posted-interrupts "
"is set before blocking\n");
/*
* Since vCPU can be preempted during this process,
* vcpu->cpu could be different with pre_pcpu, we
* need to set pre_pcpu as the destination of wakeup
* notification event, then we can find the right vCPU
* to wakeup in wakeup handler if interrupts happen
* when the vCPU is in blocked state.
*/
dest = cpu_physical_id(vcpu->pre_pcpu);
if (x2apic_enabled())
new.ndst = dest;
else
new.ndst = (dest << 8) & 0xFF00;
/* set 'NV' to 'wakeup vector' */
new.nv = POSTED_INTR_WAKEUP_VECTOR;
} while (cmpxchg(&pi_desc->control, old.control,
new.control) != old.control);
return 0;
}
static int vmx_pre_block(struct kvm_vcpu *vcpu)
{
if (pi_pre_block(vcpu))
return 1;
if (kvm_lapic_hv_timer_in_use(vcpu))
kvm_lapic_switch_to_sw_timer(vcpu);
return 0;
}
static void pi_post_block(struct kvm_vcpu *vcpu)
{
struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
struct pi_desc old, new;
unsigned int dest;
unsigned long flags;
if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
!irq_remapping_cap(IRQ_POSTING_CAP) ||
!kvm_vcpu_apicv_active(vcpu))
return;
do {
old.control = new.control = pi_desc->control;
dest = cpu_physical_id(vcpu->cpu);
if (x2apic_enabled())
new.ndst = dest;
else
new.ndst = (dest << 8) & 0xFF00;
/* Allow posting non-urgent interrupts */
new.sn = 0;
/* set 'NV' to 'notification vector' */
new.nv = POSTED_INTR_VECTOR;
} while (cmpxchg(&pi_desc->control, old.control,
new.control) != old.control);
if(vcpu->pre_pcpu != -1) {
spin_lock_irqsave(
&per_cpu(blocked_vcpu_on_cpu_lock,
vcpu->pre_pcpu), flags);
list_del(&vcpu->blocked_vcpu_list);
spin_unlock_irqrestore(
&per_cpu(blocked_vcpu_on_cpu_lock,
vcpu->pre_pcpu), flags);
vcpu->pre_pcpu = -1;
}
}
static void vmx_post_block(struct kvm_vcpu *vcpu)
{
if (kvm_x86_ops->set_hv_timer)
kvm_lapic_switch_to_hv_timer(vcpu);
pi_post_block(vcpu);
}
/*
* vmx_update_pi_irte - set IRTE for Posted-Interrupts
*
* @kvm: kvm
* @host_irq: host irq of the interrupt
* @guest_irq: gsi of the interrupt
* @set: set or unset PI
* returns 0 on success, < 0 on failure
*/
static int vmx_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
uint32_t guest_irq, bool set)
{
struct kvm_kernel_irq_routing_entry *e;
struct kvm_irq_routing_table *irq_rt;
struct kvm_lapic_irq irq;
struct kvm_vcpu *vcpu;
struct vcpu_data vcpu_info;
int idx, ret = -EINVAL;
if (!kvm_arch_has_assigned_device(kvm) ||
!irq_remapping_cap(IRQ_POSTING_CAP) ||
!kvm_vcpu_apicv_active(kvm->vcpus[0]))
return 0;
idx = srcu_read_lock(&kvm->irq_srcu);
irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
BUG_ON(guest_irq >= irq_rt->nr_rt_entries);
hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
if (e->type != KVM_IRQ_ROUTING_MSI)
continue;
/*
* VT-d PI cannot support posting multicast/broadcast
* interrupts to a vCPU, we still use interrupt remapping
* for these kind of interrupts.
*
* For lowest-priority interrupts, we only support
* those with single CPU as the destination, e.g. user
* configures the interrupts via /proc/irq or uses
* irqbalance to make the interrupts single-CPU.
*
* We will support full lowest-priority interrupt later.
*/
kvm_set_msi_irq(kvm, e, &irq);
if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) {
/*
* Make sure the IRTE is in remapped mode if
* we don't handle it in posted mode.
*/
ret = irq_set_vcpu_affinity(host_irq, NULL);
if (ret < 0) {
printk(KERN_INFO
"failed to back to remapped mode, irq: %u\n",
host_irq);
goto out;
}
continue;
}
vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu));
vcpu_info.vector = irq.vector;
trace_kvm_pi_irte_update(vcpu->vcpu_id, host_irq, e->gsi,
vcpu_info.vector, vcpu_info.pi_desc_addr, set);
if (set)
ret = irq_set_vcpu_affinity(host_irq, &vcpu_info);
else {
/* suppress notification event before unposting */
pi_set_sn(vcpu_to_pi_desc(vcpu));
ret = irq_set_vcpu_affinity(host_irq, NULL);
pi_clear_sn(vcpu_to_pi_desc(vcpu));
}
if (ret < 0) {
printk(KERN_INFO "%s: failed to update PI IRTE\n",
__func__);
goto out;
}
}
ret = 0;
out:
srcu_read_unlock(&kvm->irq_srcu, idx);
return ret;
}
static void vmx_setup_mce(struct kvm_vcpu *vcpu)
{
if (vcpu->arch.mcg_cap & MCG_LMCE_P)
to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
FEATURE_CONTROL_LMCE;
else
to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
~FEATURE_CONTROL_LMCE;
}
static struct kvm_x86_ops vmx_x86_ops __ro_after_init = {
.cpu_has_kvm_support = cpu_has_kvm_support,
.disabled_by_bios = vmx_disabled_by_bios,
.hardware_setup = hardware_setup,
.hardware_unsetup = hardware_unsetup,
.check_processor_compatibility = vmx_check_processor_compat,
.hardware_enable = hardware_enable,
.hardware_disable = hardware_disable,
.cpu_has_accelerated_tpr = report_flexpriority,
.cpu_has_high_real_mode_segbase = vmx_has_high_real_mode_segbase,
.vcpu_create = vmx_create_vcpu,
.vcpu_free = vmx_free_vcpu,
.vcpu_reset = vmx_vcpu_reset,
.prepare_guest_switch = vmx_save_host_state,
.vcpu_load = vmx_vcpu_load,
.vcpu_put = vmx_vcpu_put,
.update_bp_intercept = update_exception_bitmap,
.get_msr = vmx_get_msr,
.set_msr = vmx_set_msr,
.get_segment_base = vmx_get_segment_base,
.get_segment = vmx_get_segment,
.set_segment = vmx_set_segment,
.get_cpl = vmx_get_cpl,
.get_cs_db_l_bits = vmx_get_cs_db_l_bits,
.decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
.decache_cr3 = vmx_decache_cr3,
.decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
.set_cr0 = vmx_set_cr0,
.set_cr3 = vmx_set_cr3,
.set_cr4 = vmx_set_cr4,
.set_efer = vmx_set_efer,
.get_idt = vmx_get_idt,
.set_idt = vmx_set_idt,
.get_gdt = vmx_get_gdt,
.set_gdt = vmx_set_gdt,
.get_dr6 = vmx_get_dr6,
.set_dr6 = vmx_set_dr6,
.set_dr7 = vmx_set_dr7,
.sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
.cache_reg = vmx_cache_reg,
.get_rflags = vmx_get_rflags,
.set_rflags = vmx_set_rflags,
.get_pkru = vmx_get_pkru,
.tlb_flush = vmx_flush_tlb,
.run = vmx_vcpu_run,
.handle_exit = vmx_handle_exit,
.skip_emulated_instruction = skip_emulated_instruction,
.set_interrupt_shadow = vmx_set_interrupt_shadow,
.get_interrupt_shadow = vmx_get_interrupt_shadow,
.patch_hypercall = vmx_patch_hypercall,
.set_irq = vmx_inject_irq,
.set_nmi = vmx_inject_nmi,
.queue_exception = vmx_queue_exception,
.cancel_injection = vmx_cancel_injection,
.interrupt_allowed = vmx_interrupt_allowed,
.nmi_allowed = vmx_nmi_allowed,
.get_nmi_mask = vmx_get_nmi_mask,
.set_nmi_mask = vmx_set_nmi_mask,
.enable_nmi_window = enable_nmi_window,
.enable_irq_window = enable_irq_window,
.update_cr8_intercept = update_cr8_intercept,
.set_virtual_x2apic_mode = vmx_set_virtual_x2apic_mode,
.set_apic_access_page_addr = vmx_set_apic_access_page_addr,
.get_enable_apicv = vmx_get_enable_apicv,
.refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
.load_eoi_exitmap = vmx_load_eoi_exitmap,
.apicv_post_state_restore = vmx_apicv_post_state_restore,
.hwapic_irr_update = vmx_hwapic_irr_update,
.hwapic_isr_update = vmx_hwapic_isr_update,
.sync_pir_to_irr = vmx_sync_pir_to_irr,
.deliver_posted_interrupt = vmx_deliver_posted_interrupt,
.set_tss_addr = vmx_set_tss_addr,
.get_tdp_level = get_ept_level,
.get_mt_mask = vmx_get_mt_mask,
.get_exit_info = vmx_get_exit_info,
.get_lpage_level = vmx_get_lpage_level,
.cpuid_update = vmx_cpuid_update,
.rdtscp_supported = vmx_rdtscp_supported,
.invpcid_supported = vmx_invpcid_supported,
.set_supported_cpuid = vmx_set_supported_cpuid,
.has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
.write_tsc_offset = vmx_write_tsc_offset,
.set_tdp_cr3 = vmx_set_cr3,
.check_intercept = vmx_check_intercept,
.handle_external_intr = vmx_handle_external_intr,
.mpx_supported = vmx_mpx_supported,
.xsaves_supported = vmx_xsaves_supported,
.check_nested_events = vmx_check_nested_events,
.sched_in = vmx_sched_in,
.slot_enable_log_dirty = vmx_slot_enable_log_dirty,
.slot_disable_log_dirty = vmx_slot_disable_log_dirty,
.flush_log_dirty = vmx_flush_log_dirty,
.enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
.pre_block = vmx_pre_block,
.post_block = vmx_post_block,
.pmu_ops = &intel_pmu_ops,
.update_pi_irte = vmx_update_pi_irte,
#ifdef CONFIG_X86_64
.set_hv_timer = vmx_set_hv_timer,
.cancel_hv_timer = vmx_cancel_hv_timer,
#endif
.setup_mce = vmx_setup_mce,
};
static int __init vmx_init(void)
{
int r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
__alignof__(struct vcpu_vmx), THIS_MODULE);
if (r)
return r;
#ifdef CONFIG_KEXEC_CORE
rcu_assign_pointer(crash_vmclear_loaded_vmcss,
crash_vmclear_local_loaded_vmcss);
#endif
return 0;
}
static void __exit vmx_exit(void)
{
#ifdef CONFIG_KEXEC_CORE
RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
synchronize_rcu();
#endif
kvm_exit();
}
module_init(vmx_init)
module_exit(vmx_exit)