dadb57abc3
efi_get_memory_map() allocates a buffer to store the memory map that it retrieves. This buffer may need to be reused by the client after ExitBootServices() is called, at which point allocations are not longer permitted. To support this usecase, provide the allocated buffer size back to the client, and allocate some additional headroom to account for any reasonable growth in the map that is likely to happen between the call to efi_get_memory_map() and the client reusing the buffer. Signed-off-by: Jeffrey Hugo <jhugo@codeaurora.org> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Leif Lindholm <leif.lindholm@linaro.org> Cc: Ingo Molnar <mingo@kernel.org> Cc: <stable@vger.kernel.org> Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
339 lines
9.5 KiB
C
339 lines
9.5 KiB
C
/*
|
|
* FDT related Helper functions used by the EFI stub on multiple
|
|
* architectures. This should be #included by the EFI stub
|
|
* implementation files.
|
|
*
|
|
* Copyright 2013 Linaro Limited; author Roy Franz
|
|
*
|
|
* This file is part of the Linux kernel, and is made available
|
|
* under the terms of the GNU General Public License version 2.
|
|
*
|
|
*/
|
|
|
|
#include <linux/efi.h>
|
|
#include <linux/libfdt.h>
|
|
#include <asm/efi.h>
|
|
|
|
#include "efistub.h"
|
|
|
|
efi_status_t update_fdt(efi_system_table_t *sys_table, void *orig_fdt,
|
|
unsigned long orig_fdt_size,
|
|
void *fdt, int new_fdt_size, char *cmdline_ptr,
|
|
u64 initrd_addr, u64 initrd_size,
|
|
efi_memory_desc_t *memory_map,
|
|
unsigned long map_size, unsigned long desc_size,
|
|
u32 desc_ver)
|
|
{
|
|
int node, num_rsv;
|
|
int status;
|
|
u32 fdt_val32;
|
|
u64 fdt_val64;
|
|
|
|
/* Do some checks on provided FDT, if it exists*/
|
|
if (orig_fdt) {
|
|
if (fdt_check_header(orig_fdt)) {
|
|
pr_efi_err(sys_table, "Device Tree header not valid!\n");
|
|
return EFI_LOAD_ERROR;
|
|
}
|
|
/*
|
|
* We don't get the size of the FDT if we get if from a
|
|
* configuration table.
|
|
*/
|
|
if (orig_fdt_size && fdt_totalsize(orig_fdt) > orig_fdt_size) {
|
|
pr_efi_err(sys_table, "Truncated device tree! foo!\n");
|
|
return EFI_LOAD_ERROR;
|
|
}
|
|
}
|
|
|
|
if (orig_fdt)
|
|
status = fdt_open_into(orig_fdt, fdt, new_fdt_size);
|
|
else
|
|
status = fdt_create_empty_tree(fdt, new_fdt_size);
|
|
|
|
if (status != 0)
|
|
goto fdt_set_fail;
|
|
|
|
/*
|
|
* Delete all memory reserve map entries. When booting via UEFI,
|
|
* kernel will use the UEFI memory map to find reserved regions.
|
|
*/
|
|
num_rsv = fdt_num_mem_rsv(fdt);
|
|
while (num_rsv-- > 0)
|
|
fdt_del_mem_rsv(fdt, num_rsv);
|
|
|
|
node = fdt_subnode_offset(fdt, 0, "chosen");
|
|
if (node < 0) {
|
|
node = fdt_add_subnode(fdt, 0, "chosen");
|
|
if (node < 0) {
|
|
status = node; /* node is error code when negative */
|
|
goto fdt_set_fail;
|
|
}
|
|
}
|
|
|
|
if ((cmdline_ptr != NULL) && (strlen(cmdline_ptr) > 0)) {
|
|
status = fdt_setprop(fdt, node, "bootargs", cmdline_ptr,
|
|
strlen(cmdline_ptr) + 1);
|
|
if (status)
|
|
goto fdt_set_fail;
|
|
}
|
|
|
|
/* Set initrd address/end in device tree, if present */
|
|
if (initrd_size != 0) {
|
|
u64 initrd_image_end;
|
|
u64 initrd_image_start = cpu_to_fdt64(initrd_addr);
|
|
|
|
status = fdt_setprop(fdt, node, "linux,initrd-start",
|
|
&initrd_image_start, sizeof(u64));
|
|
if (status)
|
|
goto fdt_set_fail;
|
|
initrd_image_end = cpu_to_fdt64(initrd_addr + initrd_size);
|
|
status = fdt_setprop(fdt, node, "linux,initrd-end",
|
|
&initrd_image_end, sizeof(u64));
|
|
if (status)
|
|
goto fdt_set_fail;
|
|
}
|
|
|
|
/* Add FDT entries for EFI runtime services in chosen node. */
|
|
node = fdt_subnode_offset(fdt, 0, "chosen");
|
|
fdt_val64 = cpu_to_fdt64((u64)(unsigned long)sys_table);
|
|
status = fdt_setprop(fdt, node, "linux,uefi-system-table",
|
|
&fdt_val64, sizeof(fdt_val64));
|
|
if (status)
|
|
goto fdt_set_fail;
|
|
|
|
fdt_val64 = cpu_to_fdt64((u64)(unsigned long)memory_map);
|
|
status = fdt_setprop(fdt, node, "linux,uefi-mmap-start",
|
|
&fdt_val64, sizeof(fdt_val64));
|
|
if (status)
|
|
goto fdt_set_fail;
|
|
|
|
fdt_val32 = cpu_to_fdt32(map_size);
|
|
status = fdt_setprop(fdt, node, "linux,uefi-mmap-size",
|
|
&fdt_val32, sizeof(fdt_val32));
|
|
if (status)
|
|
goto fdt_set_fail;
|
|
|
|
fdt_val32 = cpu_to_fdt32(desc_size);
|
|
status = fdt_setprop(fdt, node, "linux,uefi-mmap-desc-size",
|
|
&fdt_val32, sizeof(fdt_val32));
|
|
if (status)
|
|
goto fdt_set_fail;
|
|
|
|
fdt_val32 = cpu_to_fdt32(desc_ver);
|
|
status = fdt_setprop(fdt, node, "linux,uefi-mmap-desc-ver",
|
|
&fdt_val32, sizeof(fdt_val32));
|
|
if (status)
|
|
goto fdt_set_fail;
|
|
|
|
if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) {
|
|
efi_status_t efi_status;
|
|
|
|
efi_status = efi_get_random_bytes(sys_table, sizeof(fdt_val64),
|
|
(u8 *)&fdt_val64);
|
|
if (efi_status == EFI_SUCCESS) {
|
|
status = fdt_setprop(fdt, node, "kaslr-seed",
|
|
&fdt_val64, sizeof(fdt_val64));
|
|
if (status)
|
|
goto fdt_set_fail;
|
|
} else if (efi_status != EFI_NOT_FOUND) {
|
|
return efi_status;
|
|
}
|
|
}
|
|
return EFI_SUCCESS;
|
|
|
|
fdt_set_fail:
|
|
if (status == -FDT_ERR_NOSPACE)
|
|
return EFI_BUFFER_TOO_SMALL;
|
|
|
|
return EFI_LOAD_ERROR;
|
|
}
|
|
|
|
#ifndef EFI_FDT_ALIGN
|
|
#define EFI_FDT_ALIGN EFI_PAGE_SIZE
|
|
#endif
|
|
|
|
/*
|
|
* Allocate memory for a new FDT, then add EFI, commandline, and
|
|
* initrd related fields to the FDT. This routine increases the
|
|
* FDT allocation size until the allocated memory is large
|
|
* enough. EFI allocations are in EFI_PAGE_SIZE granules,
|
|
* which are fixed at 4K bytes, so in most cases the first
|
|
* allocation should succeed.
|
|
* EFI boot services are exited at the end of this function.
|
|
* There must be no allocations between the get_memory_map()
|
|
* call and the exit_boot_services() call, so the exiting of
|
|
* boot services is very tightly tied to the creation of the FDT
|
|
* with the final memory map in it.
|
|
*/
|
|
|
|
efi_status_t allocate_new_fdt_and_exit_boot(efi_system_table_t *sys_table,
|
|
void *handle,
|
|
unsigned long *new_fdt_addr,
|
|
unsigned long max_addr,
|
|
u64 initrd_addr, u64 initrd_size,
|
|
char *cmdline_ptr,
|
|
unsigned long fdt_addr,
|
|
unsigned long fdt_size)
|
|
{
|
|
unsigned long map_size, desc_size, buff_size;
|
|
u32 desc_ver;
|
|
unsigned long mmap_key;
|
|
efi_memory_desc_t *memory_map, *runtime_map;
|
|
unsigned long new_fdt_size;
|
|
efi_status_t status;
|
|
int runtime_entry_count = 0;
|
|
struct efi_boot_memmap map;
|
|
|
|
map.map = &runtime_map;
|
|
map.map_size = &map_size;
|
|
map.desc_size = &desc_size;
|
|
map.desc_ver = &desc_ver;
|
|
map.key_ptr = &mmap_key;
|
|
map.buff_size = &buff_size;
|
|
|
|
/*
|
|
* Get a copy of the current memory map that we will use to prepare
|
|
* the input for SetVirtualAddressMap(). We don't have to worry about
|
|
* subsequent allocations adding entries, since they could not affect
|
|
* the number of EFI_MEMORY_RUNTIME regions.
|
|
*/
|
|
status = efi_get_memory_map(sys_table, &map);
|
|
if (status != EFI_SUCCESS) {
|
|
pr_efi_err(sys_table, "Unable to retrieve UEFI memory map.\n");
|
|
return status;
|
|
}
|
|
|
|
pr_efi(sys_table,
|
|
"Exiting boot services and installing virtual address map...\n");
|
|
|
|
map.map = &memory_map;
|
|
/*
|
|
* Estimate size of new FDT, and allocate memory for it. We
|
|
* will allocate a bigger buffer if this ends up being too
|
|
* small, so a rough guess is OK here.
|
|
*/
|
|
new_fdt_size = fdt_size + EFI_PAGE_SIZE;
|
|
while (1) {
|
|
status = efi_high_alloc(sys_table, new_fdt_size, EFI_FDT_ALIGN,
|
|
new_fdt_addr, max_addr);
|
|
if (status != EFI_SUCCESS) {
|
|
pr_efi_err(sys_table, "Unable to allocate memory for new device tree.\n");
|
|
goto fail;
|
|
}
|
|
|
|
/*
|
|
* Now that we have done our final memory allocation (and free)
|
|
* we can get the memory map key needed for
|
|
* exit_boot_services().
|
|
*/
|
|
status = efi_get_memory_map(sys_table, &map);
|
|
if (status != EFI_SUCCESS)
|
|
goto fail_free_new_fdt;
|
|
|
|
status = update_fdt(sys_table,
|
|
(void *)fdt_addr, fdt_size,
|
|
(void *)*new_fdt_addr, new_fdt_size,
|
|
cmdline_ptr, initrd_addr, initrd_size,
|
|
memory_map, map_size, desc_size, desc_ver);
|
|
|
|
/* Succeeding the first time is the expected case. */
|
|
if (status == EFI_SUCCESS)
|
|
break;
|
|
|
|
if (status == EFI_BUFFER_TOO_SMALL) {
|
|
/*
|
|
* We need to allocate more space for the new
|
|
* device tree, so free existing buffer that is
|
|
* too small. Also free memory map, as we will need
|
|
* to get new one that reflects the free/alloc we do
|
|
* on the device tree buffer.
|
|
*/
|
|
efi_free(sys_table, new_fdt_size, *new_fdt_addr);
|
|
sys_table->boottime->free_pool(memory_map);
|
|
new_fdt_size += EFI_PAGE_SIZE;
|
|
} else {
|
|
pr_efi_err(sys_table, "Unable to construct new device tree.\n");
|
|
goto fail_free_mmap;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Update the memory map with virtual addresses. The function will also
|
|
* populate @runtime_map with copies of just the EFI_MEMORY_RUNTIME
|
|
* entries so that we can pass it straight into SetVirtualAddressMap()
|
|
*/
|
|
efi_get_virtmap(memory_map, map_size, desc_size, runtime_map,
|
|
&runtime_entry_count);
|
|
|
|
/* Now we are ready to exit_boot_services.*/
|
|
status = sys_table->boottime->exit_boot_services(handle, mmap_key);
|
|
|
|
if (status == EFI_SUCCESS) {
|
|
efi_set_virtual_address_map_t *svam;
|
|
|
|
/* Install the new virtual address map */
|
|
svam = sys_table->runtime->set_virtual_address_map;
|
|
status = svam(runtime_entry_count * desc_size, desc_size,
|
|
desc_ver, runtime_map);
|
|
|
|
/*
|
|
* We are beyond the point of no return here, so if the call to
|
|
* SetVirtualAddressMap() failed, we need to signal that to the
|
|
* incoming kernel but proceed normally otherwise.
|
|
*/
|
|
if (status != EFI_SUCCESS) {
|
|
int l;
|
|
|
|
/*
|
|
* Set the virtual address field of all
|
|
* EFI_MEMORY_RUNTIME entries to 0. This will signal
|
|
* the incoming kernel that no virtual translation has
|
|
* been installed.
|
|
*/
|
|
for (l = 0; l < map_size; l += desc_size) {
|
|
efi_memory_desc_t *p = (void *)memory_map + l;
|
|
|
|
if (p->attribute & EFI_MEMORY_RUNTIME)
|
|
p->virt_addr = 0;
|
|
}
|
|
}
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
pr_efi_err(sys_table, "Exit boot services failed.\n");
|
|
|
|
fail_free_mmap:
|
|
sys_table->boottime->free_pool(memory_map);
|
|
|
|
fail_free_new_fdt:
|
|
efi_free(sys_table, new_fdt_size, *new_fdt_addr);
|
|
|
|
fail:
|
|
sys_table->boottime->free_pool(runtime_map);
|
|
return EFI_LOAD_ERROR;
|
|
}
|
|
|
|
void *get_fdt(efi_system_table_t *sys_table, unsigned long *fdt_size)
|
|
{
|
|
efi_guid_t fdt_guid = DEVICE_TREE_GUID;
|
|
efi_config_table_t *tables;
|
|
void *fdt;
|
|
int i;
|
|
|
|
tables = (efi_config_table_t *) sys_table->tables;
|
|
fdt = NULL;
|
|
|
|
for (i = 0; i < sys_table->nr_tables; i++)
|
|
if (efi_guidcmp(tables[i].guid, fdt_guid) == 0) {
|
|
fdt = (void *) tables[i].table;
|
|
if (fdt_check_header(fdt) != 0) {
|
|
pr_efi_err(sys_table, "Invalid header detected on UEFI supplied FDT, ignoring ...\n");
|
|
return NULL;
|
|
}
|
|
*fdt_size = fdt_totalsize(fdt);
|
|
break;
|
|
}
|
|
|
|
return fdt;
|
|
}
|