Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
440 lines
12 KiB
ArmAsm
440 lines
12 KiB
ArmAsm
/* SPDX-License-Identifier: GPL-2.0 */
|
|
/*
|
|
* CRISv32 kernel startup code.
|
|
*
|
|
* Copyright (C) 2003, Axis Communications AB
|
|
*/
|
|
|
|
#include <linux/init.h>
|
|
|
|
#define ASSEMBLER_MACROS_ONLY
|
|
|
|
/*
|
|
* The macros found in mmu_defs_asm.h uses the ## concatenation operator, so
|
|
* -traditional must not be used when assembling this file.
|
|
*/
|
|
#include <arch/memmap.h>
|
|
#include <hwregs/reg_rdwr.h>
|
|
#include <hwregs/intr_vect.h>
|
|
#include <hwregs/asm/mmu_defs_asm.h>
|
|
#include <hwregs/asm/reg_map_asm.h>
|
|
#include <mach/startup.inc>
|
|
|
|
#define CRAMFS_MAGIC 0x28cd3d45
|
|
#define JHEAD_MAGIC 0x1FF528A6
|
|
#define JHEAD_SIZE 8
|
|
#define RAM_INIT_MAGIC 0x56902387
|
|
#define COMMAND_LINE_MAGIC 0x87109563
|
|
#define NAND_BOOT_MAGIC 0x9a9db001
|
|
|
|
;; NOTE: R8 and R9 carry information from the decompressor (if the
|
|
;; kernel was compressed). They must not be used in the code below
|
|
;; until they are read!
|
|
|
|
;; Exported symbols.
|
|
.global etrax_irv
|
|
.global romfs_start
|
|
.global romfs_length
|
|
.global romfs_in_flash
|
|
.global nand_boot
|
|
.global swapper_pg_dir
|
|
|
|
__HEAD
|
|
tstart:
|
|
;; This is the entry point of the kernel. The CPU is currently in
|
|
;; supervisor mode.
|
|
;;
|
|
;; 0x00000000 if flash.
|
|
;; 0x40004000 if DRAM.
|
|
;;
|
|
di
|
|
|
|
START_CLOCKS
|
|
|
|
SETUP_WAIT_STATES
|
|
|
|
GIO_INIT
|
|
|
|
;; Setup and enable the MMU. Use same configuration for both the data
|
|
;; and the instruction MMU.
|
|
;;
|
|
;; Note; 3 cycles is needed for a bank-select to take effect. Further;
|
|
;; bank 1 is the instruction MMU, bank 2 is the data MMU.
|
|
|
|
#ifdef CONFIG_CRIS_MACH_ARTPEC3
|
|
move.d REG_FIELD(mmu, rw_mm_kbase_hi, base_e, 8) \
|
|
| REG_FIELD(mmu, rw_mm_kbase_hi, base_c, 4) \
|
|
| REG_FIELD(mmu, rw_mm_kbase_hi, base_d, 5) \
|
|
| REG_FIELD(mmu, rw_mm_kbase_hi, base_b, 0xb), $r0
|
|
#else
|
|
move.d REG_FIELD(mmu, rw_mm_kbase_hi, base_e, 8) \
|
|
| REG_FIELD(mmu, rw_mm_kbase_hi, base_c, 4) \
|
|
| REG_FIELD(mmu, rw_mm_kbase_hi, base_b, 0xb), $r0
|
|
#endif
|
|
|
|
;; Temporary map of 0x40 -> 0x40 and 0x00 -> 0x00.
|
|
move.d REG_FIELD(mmu, rw_mm_kbase_lo, base_4, 4) \
|
|
| REG_FIELD(mmu, rw_mm_kbase_lo, base_0, 0), $r1
|
|
|
|
;; Enable certain page protections and setup linear mapping
|
|
;; for f,e,c,b,4,0.
|
|
|
|
;; ARTPEC-3:
|
|
;; c,d used for linear kernel mapping, up to 512 MB
|
|
;; e used for vmalloc
|
|
;; f unused, but page mapped to get page faults
|
|
|
|
;; ETRAX FS:
|
|
;; c used for linear kernel mapping, up to 256 MB
|
|
;; d used for vmalloc
|
|
;; e,f used for memory-mapped NOR flash
|
|
|
|
#ifdef CONFIG_CRIS_MACH_ARTPEC3
|
|
move.d REG_STATE(mmu, rw_mm_cfg, we, on) \
|
|
| REG_STATE(mmu, rw_mm_cfg, acc, on) \
|
|
| REG_STATE(mmu, rw_mm_cfg, ex, on) \
|
|
| REG_STATE(mmu, rw_mm_cfg, inv, on) \
|
|
| REG_STATE(mmu, rw_mm_cfg, seg_f, page) \
|
|
| REG_STATE(mmu, rw_mm_cfg, seg_e, page) \
|
|
| REG_STATE(mmu, rw_mm_cfg, seg_d, linear) \
|
|
| REG_STATE(mmu, rw_mm_cfg, seg_c, linear) \
|
|
| REG_STATE(mmu, rw_mm_cfg, seg_b, linear) \
|
|
| REG_STATE(mmu, rw_mm_cfg, seg_a, page) \
|
|
| REG_STATE(mmu, rw_mm_cfg, seg_9, page) \
|
|
| REG_STATE(mmu, rw_mm_cfg, seg_8, page) \
|
|
| REG_STATE(mmu, rw_mm_cfg, seg_7, page) \
|
|
| REG_STATE(mmu, rw_mm_cfg, seg_6, page) \
|
|
| REG_STATE(mmu, rw_mm_cfg, seg_5, page) \
|
|
| REG_STATE(mmu, rw_mm_cfg, seg_4, linear) \
|
|
| REG_STATE(mmu, rw_mm_cfg, seg_3, page) \
|
|
| REG_STATE(mmu, rw_mm_cfg, seg_2, page) \
|
|
| REG_STATE(mmu, rw_mm_cfg, seg_1, page) \
|
|
| REG_STATE(mmu, rw_mm_cfg, seg_0, linear), $r2
|
|
#else
|
|
move.d REG_STATE(mmu, rw_mm_cfg, we, on) \
|
|
| REG_STATE(mmu, rw_mm_cfg, acc, on) \
|
|
| REG_STATE(mmu, rw_mm_cfg, ex, on) \
|
|
| REG_STATE(mmu, rw_mm_cfg, inv, on) \
|
|
| REG_STATE(mmu, rw_mm_cfg, seg_f, linear) \
|
|
| REG_STATE(mmu, rw_mm_cfg, seg_e, linear) \
|
|
| REG_STATE(mmu, rw_mm_cfg, seg_d, page) \
|
|
| REG_STATE(mmu, rw_mm_cfg, seg_c, linear) \
|
|
| REG_STATE(mmu, rw_mm_cfg, seg_b, linear) \
|
|
| REG_STATE(mmu, rw_mm_cfg, seg_a, page) \
|
|
| REG_STATE(mmu, rw_mm_cfg, seg_9, page) \
|
|
| REG_STATE(mmu, rw_mm_cfg, seg_8, page) \
|
|
| REG_STATE(mmu, rw_mm_cfg, seg_7, page) \
|
|
| REG_STATE(mmu, rw_mm_cfg, seg_6, page) \
|
|
| REG_STATE(mmu, rw_mm_cfg, seg_5, page) \
|
|
| REG_STATE(mmu, rw_mm_cfg, seg_4, linear) \
|
|
| REG_STATE(mmu, rw_mm_cfg, seg_3, page) \
|
|
| REG_STATE(mmu, rw_mm_cfg, seg_2, page) \
|
|
| REG_STATE(mmu, rw_mm_cfg, seg_1, page) \
|
|
| REG_STATE(mmu, rw_mm_cfg, seg_0, linear), $r2
|
|
#endif
|
|
|
|
;; Update instruction MMU.
|
|
move 1, $srs
|
|
nop
|
|
nop
|
|
nop
|
|
move $r0, $s2 ; kbase_hi.
|
|
move $r1, $s1 ; kbase_lo.
|
|
move $r2, $s0 ; mm_cfg, virtual memory configuration.
|
|
|
|
;; Update data MMU.
|
|
move 2, $srs
|
|
nop
|
|
nop
|
|
nop
|
|
move $r0, $s2 ; kbase_hi.
|
|
move $r1, $s1 ; kbase_lo
|
|
move $r2, $s0 ; mm_cfg, virtual memory configuration.
|
|
|
|
;; Enable data and instruction MMU.
|
|
move 0, $srs
|
|
moveq 0xf, $r0 ; IMMU, DMMU, DCache, Icache on
|
|
nop
|
|
nop
|
|
nop
|
|
move $r0, $s0
|
|
nop
|
|
nop
|
|
nop
|
|
|
|
; Check if starting from DRAM (network->RAM boot or unpacked
|
|
; compressed kernel), or directly from flash.
|
|
lapcq ., $r0
|
|
and.d 0x7fffffff, $r0 ; Mask off the non-cache bit.
|
|
cmp.d 0x10000, $r0 ; Arbitrary, something above this code.
|
|
blo _inflash0
|
|
nop
|
|
|
|
jump _inram ; Jump to cached RAM.
|
|
nop
|
|
|
|
;; Jumpgate.
|
|
_inflash0:
|
|
jump _inflash
|
|
nop
|
|
|
|
;; Put the following in a section so that storage for it can be
|
|
;; reclaimed after init is finished.
|
|
__INIT
|
|
|
|
_inflash:
|
|
|
|
;; Initialize DRAM.
|
|
cmp.d RAM_INIT_MAGIC, $r8 ; Already initialized?
|
|
beq _dram_initialized
|
|
nop
|
|
|
|
#if defined CONFIG_ETRAXFS
|
|
#include "../mach-fs/dram_init.S"
|
|
#elif defined CONFIG_CRIS_MACH_ARTPEC3
|
|
#include "../mach-a3/dram_init.S"
|
|
#else
|
|
#error Only ETRAXFS and ARTPEC-3 supported!
|
|
#endif
|
|
|
|
|
|
_dram_initialized:
|
|
;; Copy the text and data section to DRAM. This depends on that the
|
|
;; variables used below are correctly set up by the linker script.
|
|
;; The calculated value stored in R4 is used below.
|
|
;; Leave the cramfs file system (piggybacked after the kernel) in flash.
|
|
moveq 0, $r0 ; Source.
|
|
move.d text_start, $r1 ; Destination.
|
|
move.d __vmlinux_end, $r2
|
|
move.d $r2, $r4
|
|
sub.d $r1, $r4
|
|
1: move.w [$r0+], $r3
|
|
move.w $r3, [$r1+]
|
|
cmp.d $r2, $r1
|
|
blo 1b
|
|
nop
|
|
|
|
;; Check for cramfs.
|
|
moveq 0, $r0
|
|
move.d romfs_length, $r1
|
|
move.d $r0, [$r1]
|
|
move.d [$r4], $r0 ; cramfs_super.magic
|
|
cmp.d CRAMFS_MAGIC, $r0
|
|
bne 1f
|
|
nop
|
|
|
|
;; Set length and start of cramfs, set romfs_in_flash flag
|
|
addoq +4, $r4, $acr
|
|
move.d [$acr], $r0
|
|
move.d romfs_length, $r1
|
|
move.d $r0, [$r1]
|
|
add.d 0xf0000000, $r4 ; Add cached flash start in virtual memory.
|
|
move.d romfs_start, $r1
|
|
move.d $r4, [$r1]
|
|
1: moveq 1, $r0
|
|
move.d romfs_in_flash, $r1
|
|
move.d $r0, [$r1]
|
|
|
|
jump _start_it ; Jump to cached code.
|
|
nop
|
|
|
|
_inram:
|
|
;; Check if booting from NAND flash; if so, set appropriate flags
|
|
;; and move on.
|
|
cmp.d NAND_BOOT_MAGIC, $r12
|
|
bne move_cramfs ; not nand, jump
|
|
moveq 1, $r0
|
|
move.d nand_boot, $r1 ; tell axisflashmap we're booting from NAND
|
|
move.d $r0, [$r1]
|
|
moveq 0, $r0 ; tell axisflashmap romfs is not in
|
|
move.d romfs_in_flash, $r1 ; (directly accessed) flash
|
|
move.d $r0, [$r1]
|
|
jump _start_it ; continue with boot
|
|
nop
|
|
|
|
move_cramfs:
|
|
;; kernel is in DRAM.
|
|
;; Must figure out if there is a piggybacked rootfs image or not.
|
|
;; Set romfs_length to 0 => no rootfs image available by default.
|
|
moveq 0, $r0
|
|
move.d romfs_length, $r1
|
|
move.d $r0, [$r1]
|
|
|
|
;; The kernel could have been unpacked to DRAM by the loader, but
|
|
;; the cramfs image could still be in the flash immediately
|
|
;; following the compressed kernel image. The loader passes the address
|
|
;; of the byte succeeding the last compressed byte in the flash in
|
|
;; register R9 when starting the kernel.
|
|
cmp.d 0x0ffffff8, $r9
|
|
bhs _no_romfs_in_flash ; R9 points outside the flash area.
|
|
nop
|
|
;; cramfs rootfs might to be in flash. Check for it.
|
|
move.d [$r9], $r0 ; cramfs_super.magic
|
|
cmp.d CRAMFS_MAGIC, $r0
|
|
bne _no_romfs_in_flash
|
|
nop
|
|
|
|
;; found cramfs in flash. set address and size, and romfs_in_flash flag.
|
|
addoq +4, $r9, $acr
|
|
move.d [$acr], $r0
|
|
move.d romfs_length, $r1
|
|
move.d $r0, [$r1]
|
|
add.d 0xf0000000, $r9 ; Add cached flash start in virtual memory.
|
|
move.d romfs_start, $r1
|
|
move.d $r9, [$r1]
|
|
moveq 1, $r0
|
|
move.d romfs_in_flash, $r1
|
|
move.d $r0, [$r1]
|
|
|
|
jump _start_it ; Jump to cached code.
|
|
nop
|
|
|
|
_no_romfs_in_flash:
|
|
;; No romfs in flash, so look for cramfs, or jffs2 with jhead,
|
|
;; after kernel in RAM, as is the case with network->RAM boot.
|
|
;; For cramfs, partition starts with magic and length.
|
|
;; For jffs2, a jhead is prepended which contains with magic and length.
|
|
;; The jhead is not part of the jffs2 partition however.
|
|
move.d __bss_start, $r0
|
|
move.d [$r0], $r1
|
|
cmp.d CRAMFS_MAGIC, $r1 ; cramfs magic?
|
|
beq 2f ; yes, jump
|
|
nop
|
|
cmp.d JHEAD_MAGIC, $r1 ; jffs2 (jhead) magic?
|
|
bne 4f ; no, skip copy
|
|
nop
|
|
addq 4, $r0 ; location of jffs2 size
|
|
move.d [$r0+], $r2 ; fetch jffs2 size -> r2
|
|
; r0 now points to start of jffs2
|
|
ba 3f
|
|
nop
|
|
2:
|
|
addoq +4, $r0, $acr ; location of cramfs size
|
|
move.d [$acr], $r2 ; fetch cramfs size -> r2
|
|
; r0 still points to start of cramfs
|
|
3:
|
|
;; Now, move the root fs to after kernel's BSS
|
|
|
|
move.d _end, $r1 ; start of cramfs -> r1
|
|
move.d romfs_start, $r3
|
|
move.d $r1, [$r3] ; store at romfs_start (for axisflashmap)
|
|
move.d romfs_length, $r3
|
|
move.d $r2, [$r3] ; store size at romfs_length
|
|
|
|
add.d $r2, $r0 ; copy from end and downwards
|
|
add.d $r2, $r1
|
|
|
|
lsrq 1, $r2 ; Size is in bytes, we copy words.
|
|
addq 1, $r2
|
|
1:
|
|
move.w [$r0], $r3
|
|
move.w $r3, [$r1]
|
|
subq 2, $r0
|
|
subq 2, $r1
|
|
subq 1, $r2
|
|
bne 1b
|
|
nop
|
|
|
|
4:
|
|
;; BSS move done.
|
|
;; Clear romfs_in_flash flag, as we now know romfs is in DRAM
|
|
;; Also clear nand_boot flag; if we got here, we know we've not
|
|
;; booted from NAND flash.
|
|
moveq 0, $r0
|
|
move.d romfs_in_flash, $r1
|
|
move.d $r0, [$r1]
|
|
moveq 0, $r0
|
|
move.d nand_boot, $r1
|
|
move.d $r0, [$r1]
|
|
|
|
jump _start_it ; Jump to cached code.
|
|
nop
|
|
|
|
_start_it:
|
|
|
|
;; Check if kernel command line is supplied
|
|
cmp.d COMMAND_LINE_MAGIC, $r10
|
|
bne no_command_line
|
|
nop
|
|
|
|
move.d 256, $r13
|
|
move.d cris_command_line, $r10
|
|
or.d 0x80000000, $r11 ; Make it virtual
|
|
1:
|
|
move.b [$r11+], $r1
|
|
move.b $r1, [$r10+]
|
|
subq 1, $r13
|
|
bne 1b
|
|
nop
|
|
|
|
no_command_line:
|
|
|
|
;; The kernel stack contains a task structure for each task. This
|
|
;; the initial kernel stack is in the same page as the init_task,
|
|
;; but starts at the top of the page, i.e. + 8192 bytes.
|
|
move.d init_thread_union + 8192, $sp
|
|
move.d ebp_start, $r0 ; Defined in linker-script.
|
|
move $r0, $ebp
|
|
move.d etrax_irv, $r1 ; Set the exception base register and pointer.
|
|
move.d $r0, [$r1]
|
|
|
|
;; Clear the BSS region from _bss_start to _end.
|
|
move.d __bss_start, $r0
|
|
move.d _end, $r1
|
|
1: clear.d [$r0+]
|
|
cmp.d $r1, $r0
|
|
blo 1b
|
|
nop
|
|
|
|
; Initialize registers to increase determinism
|
|
move.d __bss_start, $r0
|
|
movem [$r0], $r13
|
|
|
|
#ifdef CONFIG_ETRAX_L2CACHE
|
|
jsr l2cache_init
|
|
nop
|
|
#endif
|
|
|
|
jump start_kernel ; Jump to start_kernel() in init/main.c.
|
|
nop
|
|
|
|
.data
|
|
etrax_irv:
|
|
.dword 0
|
|
|
|
; Variables for communication with the Axis flash map driver (axisflashmap),
|
|
; and for setting up memory in arch/cris/kernel/setup.c .
|
|
|
|
; romfs_start is set to the start of the root file system, if it exists
|
|
; in directly accessible memory (i.e. NOR Flash when booting from Flash,
|
|
; or RAM when booting directly from a network-downloaded RAM image)
|
|
romfs_start:
|
|
.dword 0
|
|
|
|
; romfs_length is set to the size of the root file system image, if it exists
|
|
; in directly accessible memory (see romfs_start). Otherwise it is set to 0.
|
|
romfs_length:
|
|
.dword 0
|
|
|
|
; romfs_in_flash is set to 1 if the root file system resides in directly
|
|
; accessible flash memory (i.e. NOR flash). It is set to 0 for RAM boot
|
|
; or NAND flash boot.
|
|
romfs_in_flash:
|
|
.dword 0
|
|
|
|
; nand_boot is set to 1 when the kernel has been booted from NAND flash
|
|
nand_boot:
|
|
.dword 0
|
|
|
|
swapper_pg_dir = 0xc0002000
|
|
|
|
.section ".init.data", "aw"
|
|
|
|
#if defined CONFIG_ETRAXFS
|
|
#include "../mach-fs/hw_settings.S"
|
|
#elif defined CONFIG_CRIS_MACH_ARTPEC3
|
|
#include "../mach-a3/hw_settings.S"
|
|
#else
|
|
#error Only ETRAXFS and ARTPEC-3 supported!
|
|
#endif
|