linux/drivers/gpu/drm/i915/intel_ringbuffer.c
Chris Wilson 5e5655c32d drm/i915: Micro-optimise hotpath through intel_ring_begin()
Typically, there is space available within the ring and if not we have
to wait (by definition a slow path). Rearrange the code to reduce the
number of branches and stack size for the hotpath, accomodating a slight
growth for the wait.

v2: Fix the new assert that packets are not larger than the actual ring.
v3: Make the parameters unsigned as well to make usage.

Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Mika Kuoppala <mika.kuoppala@intel.com>
Link: http://patchwork.freedesktop.org/patch/msgid/20170504130846.4807-3-chris@chris-wilson.co.uk
2017-05-04 15:40:38 +01:00

2283 lines
59 KiB
C

/*
* Copyright © 2008-2010 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Eric Anholt <eric@anholt.net>
* Zou Nan hai <nanhai.zou@intel.com>
* Xiang Hai hao<haihao.xiang@intel.com>
*
*/
#include <linux/log2.h>
#include <drm/drmP.h>
#include "i915_drv.h"
#include <drm/i915_drm.h>
#include "i915_trace.h"
#include "intel_drv.h"
/* Rough estimate of the typical request size, performing a flush,
* set-context and then emitting the batch.
*/
#define LEGACY_REQUEST_SIZE 200
static unsigned int __intel_ring_space(unsigned int head,
unsigned int tail,
unsigned int size)
{
/*
* "If the Ring Buffer Head Pointer and the Tail Pointer are on the
* same cacheline, the Head Pointer must not be greater than the Tail
* Pointer."
*/
GEM_BUG_ON(!is_power_of_2(size));
return (head - tail - CACHELINE_BYTES) & (size - 1);
}
unsigned int intel_ring_update_space(struct intel_ring *ring)
{
unsigned int space;
space = __intel_ring_space(ring->head, ring->emit, ring->size);
ring->space = space;
return space;
}
static int
gen2_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
{
u32 cmd, *cs;
cmd = MI_FLUSH;
if (mode & EMIT_INVALIDATE)
cmd |= MI_READ_FLUSH;
cs = intel_ring_begin(req, 2);
if (IS_ERR(cs))
return PTR_ERR(cs);
*cs++ = cmd;
*cs++ = MI_NOOP;
intel_ring_advance(req, cs);
return 0;
}
static int
gen4_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
{
u32 cmd, *cs;
/*
* read/write caches:
*
* I915_GEM_DOMAIN_RENDER is always invalidated, but is
* only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
* also flushed at 2d versus 3d pipeline switches.
*
* read-only caches:
*
* I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
* MI_READ_FLUSH is set, and is always flushed on 965.
*
* I915_GEM_DOMAIN_COMMAND may not exist?
*
* I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
* invalidated when MI_EXE_FLUSH is set.
*
* I915_GEM_DOMAIN_VERTEX, which exists on 965, is
* invalidated with every MI_FLUSH.
*
* TLBs:
*
* On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
* and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
* I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
* are flushed at any MI_FLUSH.
*/
cmd = MI_FLUSH;
if (mode & EMIT_INVALIDATE) {
cmd |= MI_EXE_FLUSH;
if (IS_G4X(req->i915) || IS_GEN5(req->i915))
cmd |= MI_INVALIDATE_ISP;
}
cs = intel_ring_begin(req, 2);
if (IS_ERR(cs))
return PTR_ERR(cs);
*cs++ = cmd;
*cs++ = MI_NOOP;
intel_ring_advance(req, cs);
return 0;
}
/**
* Emits a PIPE_CONTROL with a non-zero post-sync operation, for
* implementing two workarounds on gen6. From section 1.4.7.1
* "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
*
* [DevSNB-C+{W/A}] Before any depth stall flush (including those
* produced by non-pipelined state commands), software needs to first
* send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
* 0.
*
* [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
* =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
*
* And the workaround for these two requires this workaround first:
*
* [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
* BEFORE the pipe-control with a post-sync op and no write-cache
* flushes.
*
* And this last workaround is tricky because of the requirements on
* that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
* volume 2 part 1:
*
* "1 of the following must also be set:
* - Render Target Cache Flush Enable ([12] of DW1)
* - Depth Cache Flush Enable ([0] of DW1)
* - Stall at Pixel Scoreboard ([1] of DW1)
* - Depth Stall ([13] of DW1)
* - Post-Sync Operation ([13] of DW1)
* - Notify Enable ([8] of DW1)"
*
* The cache flushes require the workaround flush that triggered this
* one, so we can't use it. Depth stall would trigger the same.
* Post-sync nonzero is what triggered this second workaround, so we
* can't use that one either. Notify enable is IRQs, which aren't
* really our business. That leaves only stall at scoreboard.
*/
static int
intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
{
u32 scratch_addr =
i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
u32 *cs;
cs = intel_ring_begin(req, 6);
if (IS_ERR(cs))
return PTR_ERR(cs);
*cs++ = GFX_OP_PIPE_CONTROL(5);
*cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
*cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
*cs++ = 0; /* low dword */
*cs++ = 0; /* high dword */
*cs++ = MI_NOOP;
intel_ring_advance(req, cs);
cs = intel_ring_begin(req, 6);
if (IS_ERR(cs))
return PTR_ERR(cs);
*cs++ = GFX_OP_PIPE_CONTROL(5);
*cs++ = PIPE_CONTROL_QW_WRITE;
*cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
*cs++ = 0;
*cs++ = 0;
*cs++ = MI_NOOP;
intel_ring_advance(req, cs);
return 0;
}
static int
gen6_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
{
u32 scratch_addr =
i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
u32 *cs, flags = 0;
int ret;
/* Force SNB workarounds for PIPE_CONTROL flushes */
ret = intel_emit_post_sync_nonzero_flush(req);
if (ret)
return ret;
/* Just flush everything. Experiments have shown that reducing the
* number of bits based on the write domains has little performance
* impact.
*/
if (mode & EMIT_FLUSH) {
flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
/*
* Ensure that any following seqno writes only happen
* when the render cache is indeed flushed.
*/
flags |= PIPE_CONTROL_CS_STALL;
}
if (mode & EMIT_INVALIDATE) {
flags |= PIPE_CONTROL_TLB_INVALIDATE;
flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
/*
* TLB invalidate requires a post-sync write.
*/
flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
}
cs = intel_ring_begin(req, 4);
if (IS_ERR(cs))
return PTR_ERR(cs);
*cs++ = GFX_OP_PIPE_CONTROL(4);
*cs++ = flags;
*cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
*cs++ = 0;
intel_ring_advance(req, cs);
return 0;
}
static int
gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
{
u32 *cs;
cs = intel_ring_begin(req, 4);
if (IS_ERR(cs))
return PTR_ERR(cs);
*cs++ = GFX_OP_PIPE_CONTROL(4);
*cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
*cs++ = 0;
*cs++ = 0;
intel_ring_advance(req, cs);
return 0;
}
static int
gen7_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
{
u32 scratch_addr =
i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
u32 *cs, flags = 0;
/*
* Ensure that any following seqno writes only happen when the render
* cache is indeed flushed.
*
* Workaround: 4th PIPE_CONTROL command (except the ones with only
* read-cache invalidate bits set) must have the CS_STALL bit set. We
* don't try to be clever and just set it unconditionally.
*/
flags |= PIPE_CONTROL_CS_STALL;
/* Just flush everything. Experiments have shown that reducing the
* number of bits based on the write domains has little performance
* impact.
*/
if (mode & EMIT_FLUSH) {
flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
flags |= PIPE_CONTROL_FLUSH_ENABLE;
}
if (mode & EMIT_INVALIDATE) {
flags |= PIPE_CONTROL_TLB_INVALIDATE;
flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
/*
* TLB invalidate requires a post-sync write.
*/
flags |= PIPE_CONTROL_QW_WRITE;
flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
/* Workaround: we must issue a pipe_control with CS-stall bit
* set before a pipe_control command that has the state cache
* invalidate bit set. */
gen7_render_ring_cs_stall_wa(req);
}
cs = intel_ring_begin(req, 4);
if (IS_ERR(cs))
return PTR_ERR(cs);
*cs++ = GFX_OP_PIPE_CONTROL(4);
*cs++ = flags;
*cs++ = scratch_addr;
*cs++ = 0;
intel_ring_advance(req, cs);
return 0;
}
static int
gen8_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
{
u32 flags;
u32 *cs;
cs = intel_ring_begin(req, mode & EMIT_INVALIDATE ? 12 : 6);
if (IS_ERR(cs))
return PTR_ERR(cs);
flags = PIPE_CONTROL_CS_STALL;
if (mode & EMIT_FLUSH) {
flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
flags |= PIPE_CONTROL_FLUSH_ENABLE;
}
if (mode & EMIT_INVALIDATE) {
flags |= PIPE_CONTROL_TLB_INVALIDATE;
flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_QW_WRITE;
flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
/* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
cs = gen8_emit_pipe_control(cs,
PIPE_CONTROL_CS_STALL |
PIPE_CONTROL_STALL_AT_SCOREBOARD,
0);
}
cs = gen8_emit_pipe_control(cs, flags,
i915_ggtt_offset(req->engine->scratch) +
2 * CACHELINE_BYTES);
intel_ring_advance(req, cs);
return 0;
}
static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
{
struct drm_i915_private *dev_priv = engine->i915;
u32 addr;
addr = dev_priv->status_page_dmah->busaddr;
if (INTEL_GEN(dev_priv) >= 4)
addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
I915_WRITE(HWS_PGA, addr);
}
static void intel_ring_setup_status_page(struct intel_engine_cs *engine)
{
struct drm_i915_private *dev_priv = engine->i915;
i915_reg_t mmio;
/* The ring status page addresses are no longer next to the rest of
* the ring registers as of gen7.
*/
if (IS_GEN7(dev_priv)) {
switch (engine->id) {
case RCS:
mmio = RENDER_HWS_PGA_GEN7;
break;
case BCS:
mmio = BLT_HWS_PGA_GEN7;
break;
/*
* VCS2 actually doesn't exist on Gen7. Only shut up
* gcc switch check warning
*/
case VCS2:
case VCS:
mmio = BSD_HWS_PGA_GEN7;
break;
case VECS:
mmio = VEBOX_HWS_PGA_GEN7;
break;
}
} else if (IS_GEN6(dev_priv)) {
mmio = RING_HWS_PGA_GEN6(engine->mmio_base);
} else {
/* XXX: gen8 returns to sanity */
mmio = RING_HWS_PGA(engine->mmio_base);
}
I915_WRITE(mmio, engine->status_page.ggtt_offset);
POSTING_READ(mmio);
/*
* Flush the TLB for this page
*
* FIXME: These two bits have disappeared on gen8, so a question
* arises: do we still need this and if so how should we go about
* invalidating the TLB?
*/
if (IS_GEN(dev_priv, 6, 7)) {
i915_reg_t reg = RING_INSTPM(engine->mmio_base);
/* ring should be idle before issuing a sync flush*/
WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
I915_WRITE(reg,
_MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
INSTPM_SYNC_FLUSH));
if (intel_wait_for_register(dev_priv,
reg, INSTPM_SYNC_FLUSH, 0,
1000))
DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
engine->name);
}
}
static bool stop_ring(struct intel_engine_cs *engine)
{
struct drm_i915_private *dev_priv = engine->i915;
if (INTEL_GEN(dev_priv) > 2) {
I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
if (intel_wait_for_register(dev_priv,
RING_MI_MODE(engine->mmio_base),
MODE_IDLE,
MODE_IDLE,
1000)) {
DRM_ERROR("%s : timed out trying to stop ring\n",
engine->name);
/* Sometimes we observe that the idle flag is not
* set even though the ring is empty. So double
* check before giving up.
*/
if (I915_READ_HEAD(engine) != I915_READ_TAIL(engine))
return false;
}
}
I915_WRITE_CTL(engine, 0);
I915_WRITE_HEAD(engine, 0);
I915_WRITE_TAIL(engine, 0);
if (INTEL_GEN(dev_priv) > 2) {
(void)I915_READ_CTL(engine);
I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
}
return (I915_READ_HEAD(engine) & HEAD_ADDR) == 0;
}
static int init_ring_common(struct intel_engine_cs *engine)
{
struct drm_i915_private *dev_priv = engine->i915;
struct intel_ring *ring = engine->buffer;
int ret = 0;
intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
if (!stop_ring(engine)) {
/* G45 ring initialization often fails to reset head to zero */
DRM_DEBUG_KMS("%s head not reset to zero "
"ctl %08x head %08x tail %08x start %08x\n",
engine->name,
I915_READ_CTL(engine),
I915_READ_HEAD(engine),
I915_READ_TAIL(engine),
I915_READ_START(engine));
if (!stop_ring(engine)) {
DRM_ERROR("failed to set %s head to zero "
"ctl %08x head %08x tail %08x start %08x\n",
engine->name,
I915_READ_CTL(engine),
I915_READ_HEAD(engine),
I915_READ_TAIL(engine),
I915_READ_START(engine));
ret = -EIO;
goto out;
}
}
if (HWS_NEEDS_PHYSICAL(dev_priv))
ring_setup_phys_status_page(engine);
else
intel_ring_setup_status_page(engine);
intel_engine_reset_breadcrumbs(engine);
/* Enforce ordering by reading HEAD register back */
I915_READ_HEAD(engine);
/* Initialize the ring. This must happen _after_ we've cleared the ring
* registers with the above sequence (the readback of the HEAD registers
* also enforces ordering), otherwise the hw might lose the new ring
* register values. */
I915_WRITE_START(engine, i915_ggtt_offset(ring->vma));
/* WaClearRingBufHeadRegAtInit:ctg,elk */
if (I915_READ_HEAD(engine))
DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
engine->name, I915_READ_HEAD(engine));
intel_ring_update_space(ring);
I915_WRITE_HEAD(engine, ring->head);
I915_WRITE_TAIL(engine, ring->tail);
(void)I915_READ_TAIL(engine);
I915_WRITE_CTL(engine, RING_CTL_SIZE(ring->size) | RING_VALID);
/* If the head is still not zero, the ring is dead */
if (intel_wait_for_register(dev_priv, RING_CTL(engine->mmio_base),
RING_VALID, RING_VALID,
50)) {
DRM_ERROR("%s initialization failed "
"ctl %08x (valid? %d) head %08x [%08x] tail %08x [%08x] start %08x [expected %08x]\n",
engine->name,
I915_READ_CTL(engine),
I915_READ_CTL(engine) & RING_VALID,
I915_READ_HEAD(engine), ring->head,
I915_READ_TAIL(engine), ring->tail,
I915_READ_START(engine),
i915_ggtt_offset(ring->vma));
ret = -EIO;
goto out;
}
intel_engine_init_hangcheck(engine);
out:
intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
return ret;
}
static void reset_ring_common(struct intel_engine_cs *engine,
struct drm_i915_gem_request *request)
{
/* Try to restore the logical GPU state to match the continuation
* of the request queue. If we skip the context/PD restore, then
* the next request may try to execute assuming that its context
* is valid and loaded on the GPU and so may try to access invalid
* memory, prompting repeated GPU hangs.
*
* If the request was guilty, we still restore the logical state
* in case the next request requires it (e.g. the aliasing ppgtt),
* but skip over the hung batch.
*
* If the request was innocent, we try to replay the request with
* the restored context.
*/
if (request) {
struct drm_i915_private *dev_priv = request->i915;
struct intel_context *ce = &request->ctx->engine[engine->id];
struct i915_hw_ppgtt *ppgtt;
/* FIXME consider gen8 reset */
if (ce->state) {
I915_WRITE(CCID,
i915_ggtt_offset(ce->state) |
BIT(8) /* must be set! */ |
CCID_EXTENDED_STATE_SAVE |
CCID_EXTENDED_STATE_RESTORE |
CCID_EN);
}
ppgtt = request->ctx->ppgtt ?: engine->i915->mm.aliasing_ppgtt;
if (ppgtt) {
u32 pd_offset = ppgtt->pd.base.ggtt_offset << 10;
I915_WRITE(RING_PP_DIR_DCLV(engine), PP_DIR_DCLV_2G);
I915_WRITE(RING_PP_DIR_BASE(engine), pd_offset);
/* Wait for the PD reload to complete */
if (intel_wait_for_register(dev_priv,
RING_PP_DIR_BASE(engine),
BIT(0), 0,
10))
DRM_ERROR("Wait for reload of ppgtt page-directory timed out\n");
ppgtt->pd_dirty_rings &= ~intel_engine_flag(engine);
}
/* If the rq hung, jump to its breadcrumb and skip the batch */
if (request->fence.error == -EIO)
request->ring->head = request->postfix;
} else {
engine->legacy_active_context = NULL;
}
}
static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
{
int ret;
ret = intel_ring_workarounds_emit(req);
if (ret != 0)
return ret;
ret = i915_gem_render_state_emit(req);
if (ret)
return ret;
return 0;
}
static int init_render_ring(struct intel_engine_cs *engine)
{
struct drm_i915_private *dev_priv = engine->i915;
int ret = init_ring_common(engine);
if (ret)
return ret;
/* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
if (IS_GEN(dev_priv, 4, 6))
I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
/* We need to disable the AsyncFlip performance optimisations in order
* to use MI_WAIT_FOR_EVENT within the CS. It should already be
* programmed to '1' on all products.
*
* WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
*/
if (IS_GEN(dev_priv, 6, 7))
I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
/* Required for the hardware to program scanline values for waiting */
/* WaEnableFlushTlbInvalidationMode:snb */
if (IS_GEN6(dev_priv))
I915_WRITE(GFX_MODE,
_MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
/* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
if (IS_GEN7(dev_priv))
I915_WRITE(GFX_MODE_GEN7,
_MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
_MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
if (IS_GEN6(dev_priv)) {
/* From the Sandybridge PRM, volume 1 part 3, page 24:
* "If this bit is set, STCunit will have LRA as replacement
* policy. [...] This bit must be reset. LRA replacement
* policy is not supported."
*/
I915_WRITE(CACHE_MODE_0,
_MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
}
if (IS_GEN(dev_priv, 6, 7))
I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
if (INTEL_INFO(dev_priv)->gen >= 6)
I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
return init_workarounds_ring(engine);
}
static void render_ring_cleanup(struct intel_engine_cs *engine)
{
struct drm_i915_private *dev_priv = engine->i915;
i915_vma_unpin_and_release(&dev_priv->semaphore);
}
static u32 *gen8_rcs_signal(struct drm_i915_gem_request *req, u32 *cs)
{
struct drm_i915_private *dev_priv = req->i915;
struct intel_engine_cs *waiter;
enum intel_engine_id id;
for_each_engine(waiter, dev_priv, id) {
u64 gtt_offset = req->engine->semaphore.signal_ggtt[id];
if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
continue;
*cs++ = GFX_OP_PIPE_CONTROL(6);
*cs++ = PIPE_CONTROL_GLOBAL_GTT_IVB | PIPE_CONTROL_QW_WRITE |
PIPE_CONTROL_CS_STALL;
*cs++ = lower_32_bits(gtt_offset);
*cs++ = upper_32_bits(gtt_offset);
*cs++ = req->global_seqno;
*cs++ = 0;
*cs++ = MI_SEMAPHORE_SIGNAL |
MI_SEMAPHORE_TARGET(waiter->hw_id);
*cs++ = 0;
}
return cs;
}
static u32 *gen8_xcs_signal(struct drm_i915_gem_request *req, u32 *cs)
{
struct drm_i915_private *dev_priv = req->i915;
struct intel_engine_cs *waiter;
enum intel_engine_id id;
for_each_engine(waiter, dev_priv, id) {
u64 gtt_offset = req->engine->semaphore.signal_ggtt[id];
if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
continue;
*cs++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW;
*cs++ = lower_32_bits(gtt_offset) | MI_FLUSH_DW_USE_GTT;
*cs++ = upper_32_bits(gtt_offset);
*cs++ = req->global_seqno;
*cs++ = MI_SEMAPHORE_SIGNAL |
MI_SEMAPHORE_TARGET(waiter->hw_id);
*cs++ = 0;
}
return cs;
}
static u32 *gen6_signal(struct drm_i915_gem_request *req, u32 *cs)
{
struct drm_i915_private *dev_priv = req->i915;
struct intel_engine_cs *engine;
enum intel_engine_id id;
int num_rings = 0;
for_each_engine(engine, dev_priv, id) {
i915_reg_t mbox_reg;
if (!(BIT(engine->hw_id) & GEN6_SEMAPHORES_MASK))
continue;
mbox_reg = req->engine->semaphore.mbox.signal[engine->hw_id];
if (i915_mmio_reg_valid(mbox_reg)) {
*cs++ = MI_LOAD_REGISTER_IMM(1);
*cs++ = i915_mmio_reg_offset(mbox_reg);
*cs++ = req->global_seqno;
num_rings++;
}
}
if (num_rings & 1)
*cs++ = MI_NOOP;
return cs;
}
static void i9xx_submit_request(struct drm_i915_gem_request *request)
{
struct drm_i915_private *dev_priv = request->i915;
i915_gem_request_submit(request);
I915_WRITE_TAIL(request->engine,
intel_ring_set_tail(request->ring, request->tail));
}
static void i9xx_emit_breadcrumb(struct drm_i915_gem_request *req, u32 *cs)
{
*cs++ = MI_STORE_DWORD_INDEX;
*cs++ = I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT;
*cs++ = req->global_seqno;
*cs++ = MI_USER_INTERRUPT;
req->tail = intel_ring_offset(req, cs);
assert_ring_tail_valid(req->ring, req->tail);
}
static const int i9xx_emit_breadcrumb_sz = 4;
/**
* gen6_sema_emit_breadcrumb - Update the semaphore mailbox registers
*
* @request - request to write to the ring
*
* Update the mailbox registers in the *other* rings with the current seqno.
* This acts like a signal in the canonical semaphore.
*/
static void gen6_sema_emit_breadcrumb(struct drm_i915_gem_request *req, u32 *cs)
{
return i9xx_emit_breadcrumb(req,
req->engine->semaphore.signal(req, cs));
}
static void gen8_render_emit_breadcrumb(struct drm_i915_gem_request *req,
u32 *cs)
{
struct intel_engine_cs *engine = req->engine;
if (engine->semaphore.signal)
cs = engine->semaphore.signal(req, cs);
*cs++ = GFX_OP_PIPE_CONTROL(6);
*cs++ = PIPE_CONTROL_GLOBAL_GTT_IVB | PIPE_CONTROL_CS_STALL |
PIPE_CONTROL_QW_WRITE;
*cs++ = intel_hws_seqno_address(engine);
*cs++ = 0;
*cs++ = req->global_seqno;
/* We're thrashing one dword of HWS. */
*cs++ = 0;
*cs++ = MI_USER_INTERRUPT;
*cs++ = MI_NOOP;
req->tail = intel_ring_offset(req, cs);
assert_ring_tail_valid(req->ring, req->tail);
}
static const int gen8_render_emit_breadcrumb_sz = 8;
/**
* intel_ring_sync - sync the waiter to the signaller on seqno
*
* @waiter - ring that is waiting
* @signaller - ring which has, or will signal
* @seqno - seqno which the waiter will block on
*/
static int
gen8_ring_sync_to(struct drm_i915_gem_request *req,
struct drm_i915_gem_request *signal)
{
struct drm_i915_private *dev_priv = req->i915;
u64 offset = GEN8_WAIT_OFFSET(req->engine, signal->engine->id);
struct i915_hw_ppgtt *ppgtt;
u32 *cs;
cs = intel_ring_begin(req, 4);
if (IS_ERR(cs))
return PTR_ERR(cs);
*cs++ = MI_SEMAPHORE_WAIT | MI_SEMAPHORE_GLOBAL_GTT |
MI_SEMAPHORE_SAD_GTE_SDD;
*cs++ = signal->global_seqno;
*cs++ = lower_32_bits(offset);
*cs++ = upper_32_bits(offset);
intel_ring_advance(req, cs);
/* When the !RCS engines idle waiting upon a semaphore, they lose their
* pagetables and we must reload them before executing the batch.
* We do this on the i915_switch_context() following the wait and
* before the dispatch.
*/
ppgtt = req->ctx->ppgtt;
if (ppgtt && req->engine->id != RCS)
ppgtt->pd_dirty_rings |= intel_engine_flag(req->engine);
return 0;
}
static int
gen6_ring_sync_to(struct drm_i915_gem_request *req,
struct drm_i915_gem_request *signal)
{
u32 dw1 = MI_SEMAPHORE_MBOX |
MI_SEMAPHORE_COMPARE |
MI_SEMAPHORE_REGISTER;
u32 wait_mbox = signal->engine->semaphore.mbox.wait[req->engine->hw_id];
u32 *cs;
WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
cs = intel_ring_begin(req, 4);
if (IS_ERR(cs))
return PTR_ERR(cs);
*cs++ = dw1 | wait_mbox;
/* Throughout all of the GEM code, seqno passed implies our current
* seqno is >= the last seqno executed. However for hardware the
* comparison is strictly greater than.
*/
*cs++ = signal->global_seqno - 1;
*cs++ = 0;
*cs++ = MI_NOOP;
intel_ring_advance(req, cs);
return 0;
}
static void
gen5_seqno_barrier(struct intel_engine_cs *engine)
{
/* MI_STORE are internally buffered by the GPU and not flushed
* either by MI_FLUSH or SyncFlush or any other combination of
* MI commands.
*
* "Only the submission of the store operation is guaranteed.
* The write result will be complete (coherent) some time later
* (this is practically a finite period but there is no guaranteed
* latency)."
*
* Empirically, we observe that we need a delay of at least 75us to
* be sure that the seqno write is visible by the CPU.
*/
usleep_range(125, 250);
}
static void
gen6_seqno_barrier(struct intel_engine_cs *engine)
{
struct drm_i915_private *dev_priv = engine->i915;
/* Workaround to force correct ordering between irq and seqno writes on
* ivb (and maybe also on snb) by reading from a CS register (like
* ACTHD) before reading the status page.
*
* Note that this effectively stalls the read by the time it takes to
* do a memory transaction, which more or less ensures that the write
* from the GPU has sufficient time to invalidate the CPU cacheline.
* Alternatively we could delay the interrupt from the CS ring to give
* the write time to land, but that would incur a delay after every
* batch i.e. much more frequent than a delay when waiting for the
* interrupt (with the same net latency).
*
* Also note that to prevent whole machine hangs on gen7, we have to
* take the spinlock to guard against concurrent cacheline access.
*/
spin_lock_irq(&dev_priv->uncore.lock);
POSTING_READ_FW(RING_ACTHD(engine->mmio_base));
spin_unlock_irq(&dev_priv->uncore.lock);
}
static void
gen5_irq_enable(struct intel_engine_cs *engine)
{
gen5_enable_gt_irq(engine->i915, engine->irq_enable_mask);
}
static void
gen5_irq_disable(struct intel_engine_cs *engine)
{
gen5_disable_gt_irq(engine->i915, engine->irq_enable_mask);
}
static void
i9xx_irq_enable(struct intel_engine_cs *engine)
{
struct drm_i915_private *dev_priv = engine->i915;
dev_priv->irq_mask &= ~engine->irq_enable_mask;
I915_WRITE(IMR, dev_priv->irq_mask);
POSTING_READ_FW(RING_IMR(engine->mmio_base));
}
static void
i9xx_irq_disable(struct intel_engine_cs *engine)
{
struct drm_i915_private *dev_priv = engine->i915;
dev_priv->irq_mask |= engine->irq_enable_mask;
I915_WRITE(IMR, dev_priv->irq_mask);
}
static void
i8xx_irq_enable(struct intel_engine_cs *engine)
{
struct drm_i915_private *dev_priv = engine->i915;
dev_priv->irq_mask &= ~engine->irq_enable_mask;
I915_WRITE16(IMR, dev_priv->irq_mask);
POSTING_READ16(RING_IMR(engine->mmio_base));
}
static void
i8xx_irq_disable(struct intel_engine_cs *engine)
{
struct drm_i915_private *dev_priv = engine->i915;
dev_priv->irq_mask |= engine->irq_enable_mask;
I915_WRITE16(IMR, dev_priv->irq_mask);
}
static int
bsd_ring_flush(struct drm_i915_gem_request *req, u32 mode)
{
u32 *cs;
cs = intel_ring_begin(req, 2);
if (IS_ERR(cs))
return PTR_ERR(cs);
*cs++ = MI_FLUSH;
*cs++ = MI_NOOP;
intel_ring_advance(req, cs);
return 0;
}
static void
gen6_irq_enable(struct intel_engine_cs *engine)
{
struct drm_i915_private *dev_priv = engine->i915;
I915_WRITE_IMR(engine,
~(engine->irq_enable_mask |
engine->irq_keep_mask));
gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
}
static void
gen6_irq_disable(struct intel_engine_cs *engine)
{
struct drm_i915_private *dev_priv = engine->i915;
I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
}
static void
hsw_vebox_irq_enable(struct intel_engine_cs *engine)
{
struct drm_i915_private *dev_priv = engine->i915;
I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
gen6_unmask_pm_irq(dev_priv, engine->irq_enable_mask);
}
static void
hsw_vebox_irq_disable(struct intel_engine_cs *engine)
{
struct drm_i915_private *dev_priv = engine->i915;
I915_WRITE_IMR(engine, ~0);
gen6_mask_pm_irq(dev_priv, engine->irq_enable_mask);
}
static void
gen8_irq_enable(struct intel_engine_cs *engine)
{
struct drm_i915_private *dev_priv = engine->i915;
I915_WRITE_IMR(engine,
~(engine->irq_enable_mask |
engine->irq_keep_mask));
POSTING_READ_FW(RING_IMR(engine->mmio_base));
}
static void
gen8_irq_disable(struct intel_engine_cs *engine)
{
struct drm_i915_private *dev_priv = engine->i915;
I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
}
static int
i965_emit_bb_start(struct drm_i915_gem_request *req,
u64 offset, u32 length,
unsigned int dispatch_flags)
{
u32 *cs;
cs = intel_ring_begin(req, 2);
if (IS_ERR(cs))
return PTR_ERR(cs);
*cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT | (dispatch_flags &
I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965);
*cs++ = offset;
intel_ring_advance(req, cs);
return 0;
}
/* Just userspace ABI convention to limit the wa batch bo to a resonable size */
#define I830_BATCH_LIMIT (256*1024)
#define I830_TLB_ENTRIES (2)
#define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
static int
i830_emit_bb_start(struct drm_i915_gem_request *req,
u64 offset, u32 len,
unsigned int dispatch_flags)
{
u32 *cs, cs_offset = i915_ggtt_offset(req->engine->scratch);
cs = intel_ring_begin(req, 6);
if (IS_ERR(cs))
return PTR_ERR(cs);
/* Evict the invalid PTE TLBs */
*cs++ = COLOR_BLT_CMD | BLT_WRITE_RGBA;
*cs++ = BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096;
*cs++ = I830_TLB_ENTRIES << 16 | 4; /* load each page */
*cs++ = cs_offset;
*cs++ = 0xdeadbeef;
*cs++ = MI_NOOP;
intel_ring_advance(req, cs);
if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
if (len > I830_BATCH_LIMIT)
return -ENOSPC;
cs = intel_ring_begin(req, 6 + 2);
if (IS_ERR(cs))
return PTR_ERR(cs);
/* Blit the batch (which has now all relocs applied) to the
* stable batch scratch bo area (so that the CS never
* stumbles over its tlb invalidation bug) ...
*/
*cs++ = SRC_COPY_BLT_CMD | BLT_WRITE_RGBA;
*cs++ = BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096;
*cs++ = DIV_ROUND_UP(len, 4096) << 16 | 4096;
*cs++ = cs_offset;
*cs++ = 4096;
*cs++ = offset;
*cs++ = MI_FLUSH;
*cs++ = MI_NOOP;
intel_ring_advance(req, cs);
/* ... and execute it. */
offset = cs_offset;
}
cs = intel_ring_begin(req, 2);
if (IS_ERR(cs))
return PTR_ERR(cs);
*cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
*cs++ = offset | (dispatch_flags & I915_DISPATCH_SECURE ? 0 :
MI_BATCH_NON_SECURE);
intel_ring_advance(req, cs);
return 0;
}
static int
i915_emit_bb_start(struct drm_i915_gem_request *req,
u64 offset, u32 len,
unsigned int dispatch_flags)
{
u32 *cs;
cs = intel_ring_begin(req, 2);
if (IS_ERR(cs))
return PTR_ERR(cs);
*cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
*cs++ = offset | (dispatch_flags & I915_DISPATCH_SECURE ? 0 :
MI_BATCH_NON_SECURE);
intel_ring_advance(req, cs);
return 0;
}
static void cleanup_phys_status_page(struct intel_engine_cs *engine)
{
struct drm_i915_private *dev_priv = engine->i915;
if (!dev_priv->status_page_dmah)
return;
drm_pci_free(&dev_priv->drm, dev_priv->status_page_dmah);
engine->status_page.page_addr = NULL;
}
static void cleanup_status_page(struct intel_engine_cs *engine)
{
struct i915_vma *vma;
struct drm_i915_gem_object *obj;
vma = fetch_and_zero(&engine->status_page.vma);
if (!vma)
return;
obj = vma->obj;
i915_vma_unpin(vma);
i915_vma_close(vma);
i915_gem_object_unpin_map(obj);
__i915_gem_object_release_unless_active(obj);
}
static int init_status_page(struct intel_engine_cs *engine)
{
struct drm_i915_gem_object *obj;
struct i915_vma *vma;
unsigned int flags;
void *vaddr;
int ret;
obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
if (IS_ERR(obj)) {
DRM_ERROR("Failed to allocate status page\n");
return PTR_ERR(obj);
}
ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
if (ret)
goto err;
vma = i915_vma_instance(obj, &engine->i915->ggtt.base, NULL);
if (IS_ERR(vma)) {
ret = PTR_ERR(vma);
goto err;
}
flags = PIN_GLOBAL;
if (!HAS_LLC(engine->i915))
/* On g33, we cannot place HWS above 256MiB, so
* restrict its pinning to the low mappable arena.
* Though this restriction is not documented for
* gen4, gen5, or byt, they also behave similarly
* and hang if the HWS is placed at the top of the
* GTT. To generalise, it appears that all !llc
* platforms have issues with us placing the HWS
* above the mappable region (even though we never
* actualy map it).
*/
flags |= PIN_MAPPABLE;
ret = i915_vma_pin(vma, 0, 4096, flags);
if (ret)
goto err;
vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
if (IS_ERR(vaddr)) {
ret = PTR_ERR(vaddr);
goto err_unpin;
}
engine->status_page.vma = vma;
engine->status_page.ggtt_offset = i915_ggtt_offset(vma);
engine->status_page.page_addr = memset(vaddr, 0, PAGE_SIZE);
DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
engine->name, i915_ggtt_offset(vma));
return 0;
err_unpin:
i915_vma_unpin(vma);
err:
i915_gem_object_put(obj);
return ret;
}
static int init_phys_status_page(struct intel_engine_cs *engine)
{
struct drm_i915_private *dev_priv = engine->i915;
GEM_BUG_ON(engine->id != RCS);
dev_priv->status_page_dmah =
drm_pci_alloc(&dev_priv->drm, PAGE_SIZE, PAGE_SIZE);
if (!dev_priv->status_page_dmah)
return -ENOMEM;
engine->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
memset(engine->status_page.page_addr, 0, PAGE_SIZE);
return 0;
}
int intel_ring_pin(struct intel_ring *ring,
struct drm_i915_private *i915,
unsigned int offset_bias)
{
enum i915_map_type map = HAS_LLC(i915) ? I915_MAP_WB : I915_MAP_WC;
struct i915_vma *vma = ring->vma;
unsigned int flags;
void *addr;
int ret;
GEM_BUG_ON(ring->vaddr);
flags = PIN_GLOBAL;
if (offset_bias)
flags |= PIN_OFFSET_BIAS | offset_bias;
if (vma->obj->stolen)
flags |= PIN_MAPPABLE;
if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
if (flags & PIN_MAPPABLE || map == I915_MAP_WC)
ret = i915_gem_object_set_to_gtt_domain(vma->obj, true);
else
ret = i915_gem_object_set_to_cpu_domain(vma->obj, true);
if (unlikely(ret))
return ret;
}
ret = i915_vma_pin(vma, 0, PAGE_SIZE, flags);
if (unlikely(ret))
return ret;
if (i915_vma_is_map_and_fenceable(vma))
addr = (void __force *)i915_vma_pin_iomap(vma);
else
addr = i915_gem_object_pin_map(vma->obj, map);
if (IS_ERR(addr))
goto err;
ring->vaddr = addr;
return 0;
err:
i915_vma_unpin(vma);
return PTR_ERR(addr);
}
void intel_ring_reset(struct intel_ring *ring, u32 tail)
{
GEM_BUG_ON(!list_empty(&ring->request_list));
ring->tail = tail;
ring->head = tail;
ring->emit = tail;
intel_ring_update_space(ring);
}
void intel_ring_unpin(struct intel_ring *ring)
{
GEM_BUG_ON(!ring->vma);
GEM_BUG_ON(!ring->vaddr);
/* Discard any unused bytes beyond that submitted to hw. */
intel_ring_reset(ring, ring->tail);
if (i915_vma_is_map_and_fenceable(ring->vma))
i915_vma_unpin_iomap(ring->vma);
else
i915_gem_object_unpin_map(ring->vma->obj);
ring->vaddr = NULL;
i915_vma_unpin(ring->vma);
}
static struct i915_vma *
intel_ring_create_vma(struct drm_i915_private *dev_priv, int size)
{
struct drm_i915_gem_object *obj;
struct i915_vma *vma;
obj = i915_gem_object_create_stolen(dev_priv, size);
if (!obj)
obj = i915_gem_object_create_internal(dev_priv, size);
if (IS_ERR(obj))
return ERR_CAST(obj);
/* mark ring buffers as read-only from GPU side by default */
obj->gt_ro = 1;
vma = i915_vma_instance(obj, &dev_priv->ggtt.base, NULL);
if (IS_ERR(vma))
goto err;
return vma;
err:
i915_gem_object_put(obj);
return vma;
}
struct intel_ring *
intel_engine_create_ring(struct intel_engine_cs *engine, int size)
{
struct intel_ring *ring;
struct i915_vma *vma;
GEM_BUG_ON(!is_power_of_2(size));
GEM_BUG_ON(RING_CTL_SIZE(size) & ~RING_NR_PAGES);
ring = kzalloc(sizeof(*ring), GFP_KERNEL);
if (!ring)
return ERR_PTR(-ENOMEM);
INIT_LIST_HEAD(&ring->request_list);
ring->size = size;
/* Workaround an erratum on the i830 which causes a hang if
* the TAIL pointer points to within the last 2 cachelines
* of the buffer.
*/
ring->effective_size = size;
if (IS_I830(engine->i915) || IS_I845G(engine->i915))
ring->effective_size -= 2 * CACHELINE_BYTES;
intel_ring_update_space(ring);
vma = intel_ring_create_vma(engine->i915, size);
if (IS_ERR(vma)) {
kfree(ring);
return ERR_CAST(vma);
}
ring->vma = vma;
return ring;
}
void
intel_ring_free(struct intel_ring *ring)
{
struct drm_i915_gem_object *obj = ring->vma->obj;
i915_vma_close(ring->vma);
__i915_gem_object_release_unless_active(obj);
kfree(ring);
}
static int context_pin(struct i915_gem_context *ctx)
{
struct i915_vma *vma = ctx->engine[RCS].state;
int ret;
/* Clear this page out of any CPU caches for coherent swap-in/out.
* We only want to do this on the first bind so that we do not stall
* on an active context (which by nature is already on the GPU).
*/
if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
ret = i915_gem_object_set_to_gtt_domain(vma->obj, false);
if (ret)
return ret;
}
return i915_vma_pin(vma, 0, I915_GTT_MIN_ALIGNMENT,
PIN_GLOBAL | PIN_HIGH);
}
static struct i915_vma *
alloc_context_vma(struct intel_engine_cs *engine)
{
struct drm_i915_private *i915 = engine->i915;
struct drm_i915_gem_object *obj;
struct i915_vma *vma;
obj = i915_gem_object_create(i915, engine->context_size);
if (IS_ERR(obj))
return ERR_CAST(obj);
/*
* Try to make the context utilize L3 as well as LLC.
*
* On VLV we don't have L3 controls in the PTEs so we
* shouldn't touch the cache level, especially as that
* would make the object snooped which might have a
* negative performance impact.
*
* Snooping is required on non-llc platforms in execlist
* mode, but since all GGTT accesses use PAT entry 0 we
* get snooping anyway regardless of cache_level.
*
* This is only applicable for Ivy Bridge devices since
* later platforms don't have L3 control bits in the PTE.
*/
if (IS_IVYBRIDGE(i915)) {
/* Ignore any error, regard it as a simple optimisation */
i915_gem_object_set_cache_level(obj, I915_CACHE_L3_LLC);
}
vma = i915_vma_instance(obj, &i915->ggtt.base, NULL);
if (IS_ERR(vma))
i915_gem_object_put(obj);
return vma;
}
static struct intel_ring *
intel_ring_context_pin(struct intel_engine_cs *engine,
struct i915_gem_context *ctx)
{
struct intel_context *ce = &ctx->engine[engine->id];
int ret;
lockdep_assert_held(&ctx->i915->drm.struct_mutex);
if (likely(ce->pin_count++))
goto out;
GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
if (!ce->state && engine->context_size) {
struct i915_vma *vma;
vma = alloc_context_vma(engine);
if (IS_ERR(vma)) {
ret = PTR_ERR(vma);
goto err;
}
ce->state = vma;
}
if (ce->state) {
ret = context_pin(ctx);
if (ret)
goto err;
ce->state->obj->mm.dirty = true;
}
/* The kernel context is only used as a placeholder for flushing the
* active context. It is never used for submitting user rendering and
* as such never requires the golden render context, and so we can skip
* emitting it when we switch to the kernel context. This is required
* as during eviction we cannot allocate and pin the renderstate in
* order to initialise the context.
*/
if (i915_gem_context_is_kernel(ctx))
ce->initialised = true;
i915_gem_context_get(ctx);
out:
/* One ringbuffer to rule them all */
return engine->buffer;
err:
ce->pin_count = 0;
return ERR_PTR(ret);
}
static void intel_ring_context_unpin(struct intel_engine_cs *engine,
struct i915_gem_context *ctx)
{
struct intel_context *ce = &ctx->engine[engine->id];
lockdep_assert_held(&ctx->i915->drm.struct_mutex);
GEM_BUG_ON(ce->pin_count == 0);
if (--ce->pin_count)
return;
if (ce->state)
i915_vma_unpin(ce->state);
i915_gem_context_put(ctx);
}
static int intel_init_ring_buffer(struct intel_engine_cs *engine)
{
struct intel_ring *ring;
int err;
intel_engine_setup_common(engine);
err = intel_engine_init_common(engine);
if (err)
goto err;
if (HWS_NEEDS_PHYSICAL(engine->i915))
err = init_phys_status_page(engine);
else
err = init_status_page(engine);
if (err)
goto err;
ring = intel_engine_create_ring(engine, 32 * PAGE_SIZE);
if (IS_ERR(ring)) {
err = PTR_ERR(ring);
goto err_hws;
}
/* Ring wraparound at offset 0 sometimes hangs. No idea why. */
err = intel_ring_pin(ring, engine->i915, I915_GTT_PAGE_SIZE);
if (err)
goto err_ring;
GEM_BUG_ON(engine->buffer);
engine->buffer = ring;
return 0;
err_ring:
intel_ring_free(ring);
err_hws:
if (HWS_NEEDS_PHYSICAL(engine->i915))
cleanup_phys_status_page(engine);
else
cleanup_status_page(engine);
err:
intel_engine_cleanup_common(engine);
return err;
}
void intel_engine_cleanup(struct intel_engine_cs *engine)
{
struct drm_i915_private *dev_priv = engine->i915;
WARN_ON(INTEL_GEN(dev_priv) > 2 &&
(I915_READ_MODE(engine) & MODE_IDLE) == 0);
intel_ring_unpin(engine->buffer);
intel_ring_free(engine->buffer);
if (engine->cleanup)
engine->cleanup(engine);
if (HWS_NEEDS_PHYSICAL(dev_priv))
cleanup_phys_status_page(engine);
else
cleanup_status_page(engine);
intel_engine_cleanup_common(engine);
dev_priv->engine[engine->id] = NULL;
kfree(engine);
}
void intel_legacy_submission_resume(struct drm_i915_private *dev_priv)
{
struct intel_engine_cs *engine;
enum intel_engine_id id;
/* Restart from the beginning of the rings for convenience */
for_each_engine(engine, dev_priv, id)
intel_ring_reset(engine->buffer, 0);
}
static int ring_request_alloc(struct drm_i915_gem_request *request)
{
u32 *cs;
GEM_BUG_ON(!request->ctx->engine[request->engine->id].pin_count);
/* Flush enough space to reduce the likelihood of waiting after
* we start building the request - in which case we will just
* have to repeat work.
*/
request->reserved_space += LEGACY_REQUEST_SIZE;
cs = intel_ring_begin(request, 0);
if (IS_ERR(cs))
return PTR_ERR(cs);
request->reserved_space -= LEGACY_REQUEST_SIZE;
return 0;
}
static noinline int wait_for_space(struct drm_i915_gem_request *req,
unsigned int bytes)
{
struct intel_ring *ring = req->ring;
struct drm_i915_gem_request *target;
long timeout;
lockdep_assert_held(&req->i915->drm.struct_mutex);
if (intel_ring_update_space(ring) >= bytes)
return 0;
/*
* Space is reserved in the ringbuffer for finalising the request,
* as that cannot be allowed to fail. During request finalisation,
* reserved_space is set to 0 to stop the overallocation and the
* assumption is that then we never need to wait (which has the
* risk of failing with EINTR).
*
* See also i915_gem_request_alloc() and i915_add_request().
*/
GEM_BUG_ON(!req->reserved_space);
list_for_each_entry(target, &ring->request_list, ring_link) {
/* Would completion of this request free enough space? */
if (bytes <= __intel_ring_space(target->postfix,
ring->emit, ring->size))
break;
}
if (WARN_ON(&target->ring_link == &ring->request_list))
return -ENOSPC;
timeout = i915_wait_request(target,
I915_WAIT_INTERRUPTIBLE | I915_WAIT_LOCKED,
MAX_SCHEDULE_TIMEOUT);
if (timeout < 0)
return timeout;
i915_gem_request_retire_upto(target);
intel_ring_update_space(ring);
GEM_BUG_ON(ring->space < bytes);
return 0;
}
u32 *intel_ring_begin(struct drm_i915_gem_request *req,
unsigned int num_dwords)
{
struct intel_ring *ring = req->ring;
const unsigned int remain_usable = ring->effective_size - ring->emit;
const unsigned int bytes = num_dwords * sizeof(u32);
unsigned int need_wrap = 0;
unsigned int total_bytes;
u32 *cs;
total_bytes = bytes + req->reserved_space;
GEM_BUG_ON(total_bytes > ring->effective_size);
if (unlikely(total_bytes > remain_usable)) {
const int remain_actual = ring->size - ring->emit;
if (bytes > remain_usable) {
/*
* Not enough space for the basic request. So need to
* flush out the remainder and then wait for
* base + reserved.
*/
total_bytes += remain_actual;
need_wrap = remain_actual | 1;
} else {
/*
* The base request will fit but the reserved space
* falls off the end. So we don't need an immediate
* wrap and only need to effectively wait for the
* reserved size from the start of ringbuffer.
*/
total_bytes = req->reserved_space + remain_actual;
}
}
if (unlikely(total_bytes > ring->space)) {
int ret = wait_for_space(req, total_bytes);
if (unlikely(ret))
return ERR_PTR(ret);
}
if (unlikely(need_wrap)) {
need_wrap &= ~1;
GEM_BUG_ON(need_wrap > ring->space);
GEM_BUG_ON(ring->emit + need_wrap > ring->size);
/* Fill the tail with MI_NOOP */
memset(ring->vaddr + ring->emit, 0, need_wrap);
ring->emit = 0;
ring->space -= need_wrap;
}
GEM_BUG_ON(ring->emit > ring->size - bytes);
GEM_BUG_ON(ring->space < bytes);
cs = ring->vaddr + ring->emit;
GEM_DEBUG_EXEC(memset(cs, POISON_INUSE, bytes));
ring->emit += bytes;
ring->space -= bytes;
return cs;
}
/* Align the ring tail to a cacheline boundary */
int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
{
int num_dwords =
(req->ring->emit & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
u32 *cs;
if (num_dwords == 0)
return 0;
num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
cs = intel_ring_begin(req, num_dwords);
if (IS_ERR(cs))
return PTR_ERR(cs);
while (num_dwords--)
*cs++ = MI_NOOP;
intel_ring_advance(req, cs);
return 0;
}
static void gen6_bsd_submit_request(struct drm_i915_gem_request *request)
{
struct drm_i915_private *dev_priv = request->i915;
intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
/* Every tail move must follow the sequence below */
/* Disable notification that the ring is IDLE. The GT
* will then assume that it is busy and bring it out of rc6.
*/
I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
_MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
/* Clear the context id. Here be magic! */
I915_WRITE64_FW(GEN6_BSD_RNCID, 0x0);
/* Wait for the ring not to be idle, i.e. for it to wake up. */
if (__intel_wait_for_register_fw(dev_priv,
GEN6_BSD_SLEEP_PSMI_CONTROL,
GEN6_BSD_SLEEP_INDICATOR,
0,
1000, 0, NULL))
DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
/* Now that the ring is fully powered up, update the tail */
i9xx_submit_request(request);
/* Let the ring send IDLE messages to the GT again,
* and so let it sleep to conserve power when idle.
*/
I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
_MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}
static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req, u32 mode)
{
u32 cmd, *cs;
cs = intel_ring_begin(req, 4);
if (IS_ERR(cs))
return PTR_ERR(cs);
cmd = MI_FLUSH_DW;
if (INTEL_GEN(req->i915) >= 8)
cmd += 1;
/* We always require a command barrier so that subsequent
* commands, such as breadcrumb interrupts, are strictly ordered
* wrt the contents of the write cache being flushed to memory
* (and thus being coherent from the CPU).
*/
cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
/*
* Bspec vol 1c.5 - video engine command streamer:
* "If ENABLED, all TLBs will be invalidated once the flush
* operation is complete. This bit is only valid when the
* Post-Sync Operation field is a value of 1h or 3h."
*/
if (mode & EMIT_INVALIDATE)
cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
*cs++ = cmd;
*cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
if (INTEL_GEN(req->i915) >= 8) {
*cs++ = 0; /* upper addr */
*cs++ = 0; /* value */
} else {
*cs++ = 0;
*cs++ = MI_NOOP;
}
intel_ring_advance(req, cs);
return 0;
}
static int
gen8_emit_bb_start(struct drm_i915_gem_request *req,
u64 offset, u32 len,
unsigned int dispatch_flags)
{
bool ppgtt = USES_PPGTT(req->i915) &&
!(dispatch_flags & I915_DISPATCH_SECURE);
u32 *cs;
cs = intel_ring_begin(req, 4);
if (IS_ERR(cs))
return PTR_ERR(cs);
/* FIXME(BDW): Address space and security selectors. */
*cs++ = MI_BATCH_BUFFER_START_GEN8 | (ppgtt << 8) | (dispatch_flags &
I915_DISPATCH_RS ? MI_BATCH_RESOURCE_STREAMER : 0);
*cs++ = lower_32_bits(offset);
*cs++ = upper_32_bits(offset);
*cs++ = MI_NOOP;
intel_ring_advance(req, cs);
return 0;
}
static int
hsw_emit_bb_start(struct drm_i915_gem_request *req,
u64 offset, u32 len,
unsigned int dispatch_flags)
{
u32 *cs;
cs = intel_ring_begin(req, 2);
if (IS_ERR(cs))
return PTR_ERR(cs);
*cs++ = MI_BATCH_BUFFER_START | (dispatch_flags & I915_DISPATCH_SECURE ?
0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
(dispatch_flags & I915_DISPATCH_RS ?
MI_BATCH_RESOURCE_STREAMER : 0);
/* bit0-7 is the length on GEN6+ */
*cs++ = offset;
intel_ring_advance(req, cs);
return 0;
}
static int
gen6_emit_bb_start(struct drm_i915_gem_request *req,
u64 offset, u32 len,
unsigned int dispatch_flags)
{
u32 *cs;
cs = intel_ring_begin(req, 2);
if (IS_ERR(cs))
return PTR_ERR(cs);
*cs++ = MI_BATCH_BUFFER_START | (dispatch_flags & I915_DISPATCH_SECURE ?
0 : MI_BATCH_NON_SECURE_I965);
/* bit0-7 is the length on GEN6+ */
*cs++ = offset;
intel_ring_advance(req, cs);
return 0;
}
/* Blitter support (SandyBridge+) */
static int gen6_ring_flush(struct drm_i915_gem_request *req, u32 mode)
{
u32 cmd, *cs;
cs = intel_ring_begin(req, 4);
if (IS_ERR(cs))
return PTR_ERR(cs);
cmd = MI_FLUSH_DW;
if (INTEL_GEN(req->i915) >= 8)
cmd += 1;
/* We always require a command barrier so that subsequent
* commands, such as breadcrumb interrupts, are strictly ordered
* wrt the contents of the write cache being flushed to memory
* (and thus being coherent from the CPU).
*/
cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
/*
* Bspec vol 1c.3 - blitter engine command streamer:
* "If ENABLED, all TLBs will be invalidated once the flush
* operation is complete. This bit is only valid when the
* Post-Sync Operation field is a value of 1h or 3h."
*/
if (mode & EMIT_INVALIDATE)
cmd |= MI_INVALIDATE_TLB;
*cs++ = cmd;
*cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
if (INTEL_GEN(req->i915) >= 8) {
*cs++ = 0; /* upper addr */
*cs++ = 0; /* value */
} else {
*cs++ = 0;
*cs++ = MI_NOOP;
}
intel_ring_advance(req, cs);
return 0;
}
static void intel_ring_init_semaphores(struct drm_i915_private *dev_priv,
struct intel_engine_cs *engine)
{
struct drm_i915_gem_object *obj;
int ret, i;
if (!i915.semaphores)
return;
if (INTEL_GEN(dev_priv) >= 8 && !dev_priv->semaphore) {
struct i915_vma *vma;
obj = i915_gem_object_create(dev_priv, PAGE_SIZE);
if (IS_ERR(obj))
goto err;
vma = i915_vma_instance(obj, &dev_priv->ggtt.base, NULL);
if (IS_ERR(vma))
goto err_obj;
ret = i915_gem_object_set_to_gtt_domain(obj, false);
if (ret)
goto err_obj;
ret = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
if (ret)
goto err_obj;
dev_priv->semaphore = vma;
}
if (INTEL_GEN(dev_priv) >= 8) {
u32 offset = i915_ggtt_offset(dev_priv->semaphore);
engine->semaphore.sync_to = gen8_ring_sync_to;
engine->semaphore.signal = gen8_xcs_signal;
for (i = 0; i < I915_NUM_ENGINES; i++) {
u32 ring_offset;
if (i != engine->id)
ring_offset = offset + GEN8_SEMAPHORE_OFFSET(engine->id, i);
else
ring_offset = MI_SEMAPHORE_SYNC_INVALID;
engine->semaphore.signal_ggtt[i] = ring_offset;
}
} else if (INTEL_GEN(dev_priv) >= 6) {
engine->semaphore.sync_to = gen6_ring_sync_to;
engine->semaphore.signal = gen6_signal;
/*
* The current semaphore is only applied on pre-gen8
* platform. And there is no VCS2 ring on the pre-gen8
* platform. So the semaphore between RCS and VCS2 is
* initialized as INVALID. Gen8 will initialize the
* sema between VCS2 and RCS later.
*/
for (i = 0; i < GEN6_NUM_SEMAPHORES; i++) {
static const struct {
u32 wait_mbox;
i915_reg_t mbox_reg;
} sem_data[GEN6_NUM_SEMAPHORES][GEN6_NUM_SEMAPHORES] = {
[RCS_HW] = {
[VCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_RV, .mbox_reg = GEN6_VRSYNC },
[BCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_RB, .mbox_reg = GEN6_BRSYNC },
[VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_RVE, .mbox_reg = GEN6_VERSYNC },
},
[VCS_HW] = {
[RCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VR, .mbox_reg = GEN6_RVSYNC },
[BCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VB, .mbox_reg = GEN6_BVSYNC },
[VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VVE, .mbox_reg = GEN6_VEVSYNC },
},
[BCS_HW] = {
[RCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_BR, .mbox_reg = GEN6_RBSYNC },
[VCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_BV, .mbox_reg = GEN6_VBSYNC },
[VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_BVE, .mbox_reg = GEN6_VEBSYNC },
},
[VECS_HW] = {
[RCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VER, .mbox_reg = GEN6_RVESYNC },
[VCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VEV, .mbox_reg = GEN6_VVESYNC },
[BCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VEB, .mbox_reg = GEN6_BVESYNC },
},
};
u32 wait_mbox;
i915_reg_t mbox_reg;
if (i == engine->hw_id) {
wait_mbox = MI_SEMAPHORE_SYNC_INVALID;
mbox_reg = GEN6_NOSYNC;
} else {
wait_mbox = sem_data[engine->hw_id][i].wait_mbox;
mbox_reg = sem_data[engine->hw_id][i].mbox_reg;
}
engine->semaphore.mbox.wait[i] = wait_mbox;
engine->semaphore.mbox.signal[i] = mbox_reg;
}
}
return;
err_obj:
i915_gem_object_put(obj);
err:
DRM_DEBUG_DRIVER("Failed to allocate space for semaphores, disabling\n");
i915.semaphores = 0;
}
static void intel_ring_init_irq(struct drm_i915_private *dev_priv,
struct intel_engine_cs *engine)
{
engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << engine->irq_shift;
if (INTEL_GEN(dev_priv) >= 8) {
engine->irq_enable = gen8_irq_enable;
engine->irq_disable = gen8_irq_disable;
engine->irq_seqno_barrier = gen6_seqno_barrier;
} else if (INTEL_GEN(dev_priv) >= 6) {
engine->irq_enable = gen6_irq_enable;
engine->irq_disable = gen6_irq_disable;
engine->irq_seqno_barrier = gen6_seqno_barrier;
} else if (INTEL_GEN(dev_priv) >= 5) {
engine->irq_enable = gen5_irq_enable;
engine->irq_disable = gen5_irq_disable;
engine->irq_seqno_barrier = gen5_seqno_barrier;
} else if (INTEL_GEN(dev_priv) >= 3) {
engine->irq_enable = i9xx_irq_enable;
engine->irq_disable = i9xx_irq_disable;
} else {
engine->irq_enable = i8xx_irq_enable;
engine->irq_disable = i8xx_irq_disable;
}
}
static void i9xx_set_default_submission(struct intel_engine_cs *engine)
{
engine->submit_request = i9xx_submit_request;
}
static void gen6_bsd_set_default_submission(struct intel_engine_cs *engine)
{
engine->submit_request = gen6_bsd_submit_request;
}
static void intel_ring_default_vfuncs(struct drm_i915_private *dev_priv,
struct intel_engine_cs *engine)
{
intel_ring_init_irq(dev_priv, engine);
intel_ring_init_semaphores(dev_priv, engine);
engine->init_hw = init_ring_common;
engine->reset_hw = reset_ring_common;
engine->context_pin = intel_ring_context_pin;
engine->context_unpin = intel_ring_context_unpin;
engine->request_alloc = ring_request_alloc;
engine->emit_breadcrumb = i9xx_emit_breadcrumb;
engine->emit_breadcrumb_sz = i9xx_emit_breadcrumb_sz;
if (i915.semaphores) {
int num_rings;
engine->emit_breadcrumb = gen6_sema_emit_breadcrumb;
num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask) - 1;
if (INTEL_GEN(dev_priv) >= 8) {
engine->emit_breadcrumb_sz += num_rings * 6;
} else {
engine->emit_breadcrumb_sz += num_rings * 3;
if (num_rings & 1)
engine->emit_breadcrumb_sz++;
}
}
engine->set_default_submission = i9xx_set_default_submission;
if (INTEL_GEN(dev_priv) >= 8)
engine->emit_bb_start = gen8_emit_bb_start;
else if (INTEL_GEN(dev_priv) >= 6)
engine->emit_bb_start = gen6_emit_bb_start;
else if (INTEL_GEN(dev_priv) >= 4)
engine->emit_bb_start = i965_emit_bb_start;
else if (IS_I830(dev_priv) || IS_I845G(dev_priv))
engine->emit_bb_start = i830_emit_bb_start;
else
engine->emit_bb_start = i915_emit_bb_start;
}
int intel_init_render_ring_buffer(struct intel_engine_cs *engine)
{
struct drm_i915_private *dev_priv = engine->i915;
int ret;
intel_ring_default_vfuncs(dev_priv, engine);
if (HAS_L3_DPF(dev_priv))
engine->irq_keep_mask = GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
if (INTEL_GEN(dev_priv) >= 8) {
engine->init_context = intel_rcs_ctx_init;
engine->emit_breadcrumb = gen8_render_emit_breadcrumb;
engine->emit_breadcrumb_sz = gen8_render_emit_breadcrumb_sz;
engine->emit_flush = gen8_render_ring_flush;
if (i915.semaphores) {
int num_rings;
engine->semaphore.signal = gen8_rcs_signal;
num_rings =
hweight32(INTEL_INFO(dev_priv)->ring_mask) - 1;
engine->emit_breadcrumb_sz += num_rings * 8;
}
} else if (INTEL_GEN(dev_priv) >= 6) {
engine->init_context = intel_rcs_ctx_init;
engine->emit_flush = gen7_render_ring_flush;
if (IS_GEN6(dev_priv))
engine->emit_flush = gen6_render_ring_flush;
} else if (IS_GEN5(dev_priv)) {
engine->emit_flush = gen4_render_ring_flush;
} else {
if (INTEL_GEN(dev_priv) < 4)
engine->emit_flush = gen2_render_ring_flush;
else
engine->emit_flush = gen4_render_ring_flush;
engine->irq_enable_mask = I915_USER_INTERRUPT;
}
if (IS_HASWELL(dev_priv))
engine->emit_bb_start = hsw_emit_bb_start;
engine->init_hw = init_render_ring;
engine->cleanup = render_ring_cleanup;
ret = intel_init_ring_buffer(engine);
if (ret)
return ret;
if (INTEL_GEN(dev_priv) >= 6) {
ret = intel_engine_create_scratch(engine, PAGE_SIZE);
if (ret)
return ret;
} else if (HAS_BROKEN_CS_TLB(dev_priv)) {
ret = intel_engine_create_scratch(engine, I830_WA_SIZE);
if (ret)
return ret;
}
return 0;
}
int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine)
{
struct drm_i915_private *dev_priv = engine->i915;
intel_ring_default_vfuncs(dev_priv, engine);
if (INTEL_GEN(dev_priv) >= 6) {
/* gen6 bsd needs a special wa for tail updates */
if (IS_GEN6(dev_priv))
engine->set_default_submission = gen6_bsd_set_default_submission;
engine->emit_flush = gen6_bsd_ring_flush;
if (INTEL_GEN(dev_priv) < 8)
engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
} else {
engine->mmio_base = BSD_RING_BASE;
engine->emit_flush = bsd_ring_flush;
if (IS_GEN5(dev_priv))
engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
else
engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
}
return intel_init_ring_buffer(engine);
}
int intel_init_blt_ring_buffer(struct intel_engine_cs *engine)
{
struct drm_i915_private *dev_priv = engine->i915;
intel_ring_default_vfuncs(dev_priv, engine);
engine->emit_flush = gen6_ring_flush;
if (INTEL_GEN(dev_priv) < 8)
engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
return intel_init_ring_buffer(engine);
}
int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine)
{
struct drm_i915_private *dev_priv = engine->i915;
intel_ring_default_vfuncs(dev_priv, engine);
engine->emit_flush = gen6_ring_flush;
if (INTEL_GEN(dev_priv) < 8) {
engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
engine->irq_enable = hsw_vebox_irq_enable;
engine->irq_disable = hsw_vebox_irq_disable;
}
return intel_init_ring_buffer(engine);
}