forked from Minki/linux
d93814cfad
xHCI roothubs go through slightly different port state machines when either a device initiates a remote wakeup and signals resume, or when the host initiates a resume. According to section 4.19.1.2.13 of the xHCI 1.0 spec, on host-initiated resume, the xHC port state machine automatically goes through the U3Exit state into the U0 state, setting the port link state change (PLC) bit in the process. When a device initiates resume, the xHCI port state machine goes into the "Resume" state and sets the PLC bit. Then the xHCI driver writes U0 into the port link state register to transition the port to U0 from the Resume state. We can't be sure the device is actually in the U0 state until we receive the next port status change event with the PLC bit set. We really don't want khubd to be polling the roothub port status bits until the device is really in U0. Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com> Acked-by: Andiry Xu <andiry.xu@amd.com> |
||
---|---|---|
.. | ||
atm | ||
c67x00 | ||
class | ||
core | ||
dwc3 | ||
early | ||
gadget | ||
host | ||
image | ||
misc | ||
mon | ||
musb | ||
otg | ||
renesas_usbhs | ||
serial | ||
storage | ||
wusbcore | ||
Kconfig | ||
Makefile | ||
README | ||
usb-common.c | ||
usb-skeleton.c |
To understand all the Linux-USB framework, you'll use these resources: * This source code. This is necessarily an evolving work, and includes kerneldoc that should help you get a current overview. ("make pdfdocs", and then look at "usb.pdf" for host side and "gadget.pdf" for peripheral side.) Also, Documentation/usb has more information. * The USB 2.0 specification (from www.usb.org), with supplements such as those for USB OTG and the various device classes. The USB specification has a good overview chapter, and USB peripherals conform to the widely known "Chapter 9". * Chip specifications for USB controllers. Examples include host controllers (on PCs, servers, and more); peripheral controllers (in devices with Linux firmware, like printers or cell phones); and hard-wired peripherals like Ethernet adapters. * Specifications for other protocols implemented by USB peripheral functions. Some are vendor-specific; others are vendor-neutral but just standardized outside of the www.usb.org team. Here is a list of what each subdirectory here is, and what is contained in them. core/ - This is for the core USB host code, including the usbfs files and the hub class driver ("khubd"). host/ - This is for USB host controller drivers. This includes UHCI, OHCI, EHCI, and others that might be used with more specialized "embedded" systems. gadget/ - This is for USB peripheral controller drivers and the various gadget drivers which talk to them. Individual USB driver directories. A new driver should be added to the first subdirectory in the list below that it fits into. image/ - This is for still image drivers, like scanners or digital cameras. ../input/ - This is for any driver that uses the input subsystem, like keyboard, mice, touchscreens, tablets, etc. ../media/ - This is for multimedia drivers, like video cameras, radios, and any other drivers that talk to the v4l subsystem. ../net/ - This is for network drivers. serial/ - This is for USB to serial drivers. storage/ - This is for USB mass-storage drivers. class/ - This is for all USB device drivers that do not fit into any of the above categories, and work for a range of USB Class specified devices. misc/ - This is for all USB device drivers that do not fit into any of the above categories.