d86b8da04d
Boqun Feng reported a rather nasty ordering issue with spin_unlock_wait on architectures implementing spin_lock with LL/SC sequences and acquire semantics: | CPU 1 CPU 2 CPU 3 | ================== ==================== ============== | spin_unlock(&lock); | spin_lock(&lock): | r1 = *lock; // r1 == 0; | o = READ_ONCE(object); // reordered here | object = NULL; | smp_mb(); | spin_unlock_wait(&lock); | *lock = 1; | smp_mb(); | o->dead = true; | if (o) // true | BUG_ON(o->dead); // true!! The crux of the problem is that spin_unlock_wait(&lock) can return on CPU 1 whilst CPU 2 is in the process of taking the lock. This can be resolved by upgrading spin_unlock_wait to a LOCK operation, forcing it to serialise against a concurrent locker and giving it acquire semantics in the process (although it is not at all clear whether this is needed - different callers seem to assume different things about the barrier semantics and architectures are similarly disjoint in their implementations of the macro). This patch implements spin_unlock_wait using an LL/SC sequence with acquire semantics on arm64. For v8.1 systems with the LSE atomics, the exclusive writeback is omitted, since the spin_lock operation is indivisible and no intermediate state can be observed. Signed-off-by: Will Deacon <will.deacon@arm.com> |
||
---|---|---|
.. | ||
alpha | ||
arc | ||
arm | ||
arm64 | ||
avr32 | ||
blackfin | ||
c6x | ||
cris | ||
frv | ||
h8300 | ||
hexagon | ||
ia64 | ||
m32r | ||
m68k | ||
metag | ||
microblaze | ||
mips | ||
mn10300 | ||
nios2 | ||
openrisc | ||
parisc | ||
powerpc | ||
s390 | ||
score | ||
sh | ||
sparc | ||
tile | ||
um | ||
unicore32 | ||
x86 | ||
xtensa | ||
.gitignore | ||
Kconfig |