linux/mm/slob.c
Hyeonggon Yoo 8dfa9d5540 mm/slab_common: move declaration of __ksize() to mm/slab.h
__ksize() is only called by KASAN. Remove export symbol and move
declaration to mm/slab.h as we don't want to grow its callers.

Signed-off-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
2022-09-01 11:44:39 +02:00

744 lines
18 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* SLOB Allocator: Simple List Of Blocks
*
* Matt Mackall <mpm@selenic.com> 12/30/03
*
* NUMA support by Paul Mundt, 2007.
*
* How SLOB works:
*
* The core of SLOB is a traditional K&R style heap allocator, with
* support for returning aligned objects. The granularity of this
* allocator is as little as 2 bytes, however typically most architectures
* will require 4 bytes on 32-bit and 8 bytes on 64-bit.
*
* The slob heap is a set of linked list of pages from alloc_pages(),
* and within each page, there is a singly-linked list of free blocks
* (slob_t). The heap is grown on demand. To reduce fragmentation,
* heap pages are segregated into three lists, with objects less than
* 256 bytes, objects less than 1024 bytes, and all other objects.
*
* Allocation from heap involves first searching for a page with
* sufficient free blocks (using a next-fit-like approach) followed by
* a first-fit scan of the page. Deallocation inserts objects back
* into the free list in address order, so this is effectively an
* address-ordered first fit.
*
* Above this is an implementation of kmalloc/kfree. Blocks returned
* from kmalloc are prepended with a 4-byte header with the kmalloc size.
* If kmalloc is asked for objects of PAGE_SIZE or larger, it calls
* alloc_pages() directly, allocating compound pages so the page order
* does not have to be separately tracked.
* These objects are detected in kfree() because folio_test_slab()
* is false for them.
*
* SLAB is emulated on top of SLOB by simply calling constructors and
* destructors for every SLAB allocation. Objects are returned with the
* 4-byte alignment unless the SLAB_HWCACHE_ALIGN flag is set, in which
* case the low-level allocator will fragment blocks to create the proper
* alignment. Again, objects of page-size or greater are allocated by
* calling alloc_pages(). As SLAB objects know their size, no separate
* size bookkeeping is necessary and there is essentially no allocation
* space overhead, and compound pages aren't needed for multi-page
* allocations.
*
* NUMA support in SLOB is fairly simplistic, pushing most of the real
* logic down to the page allocator, and simply doing the node accounting
* on the upper levels. In the event that a node id is explicitly
* provided, __alloc_pages_node() with the specified node id is used
* instead. The common case (or when the node id isn't explicitly provided)
* will default to the current node, as per numa_node_id().
*
* Node aware pages are still inserted in to the global freelist, and
* these are scanned for by matching against the node id encoded in the
* page flags. As a result, block allocations that can be satisfied from
* the freelist will only be done so on pages residing on the same node,
* in order to prevent random node placement.
*/
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/mm.h>
#include <linux/swap.h> /* struct reclaim_state */
#include <linux/cache.h>
#include <linux/init.h>
#include <linux/export.h>
#include <linux/rcupdate.h>
#include <linux/list.h>
#include <linux/kmemleak.h>
#include <trace/events/kmem.h>
#include <linux/atomic.h>
#include "slab.h"
/*
* slob_block has a field 'units', which indicates size of block if +ve,
* or offset of next block if -ve (in SLOB_UNITs).
*
* Free blocks of size 1 unit simply contain the offset of the next block.
* Those with larger size contain their size in the first SLOB_UNIT of
* memory, and the offset of the next free block in the second SLOB_UNIT.
*/
#if PAGE_SIZE <= (32767 * 2)
typedef s16 slobidx_t;
#else
typedef s32 slobidx_t;
#endif
struct slob_block {
slobidx_t units;
};
typedef struct slob_block slob_t;
/*
* All partially free slob pages go on these lists.
*/
#define SLOB_BREAK1 256
#define SLOB_BREAK2 1024
static LIST_HEAD(free_slob_small);
static LIST_HEAD(free_slob_medium);
static LIST_HEAD(free_slob_large);
/*
* slob_page_free: true for pages on free_slob_pages list.
*/
static inline int slob_page_free(struct slab *slab)
{
return PageSlobFree(slab_page(slab));
}
static void set_slob_page_free(struct slab *slab, struct list_head *list)
{
list_add(&slab->slab_list, list);
__SetPageSlobFree(slab_page(slab));
}
static inline void clear_slob_page_free(struct slab *slab)
{
list_del(&slab->slab_list);
__ClearPageSlobFree(slab_page(slab));
}
#define SLOB_UNIT sizeof(slob_t)
#define SLOB_UNITS(size) DIV_ROUND_UP(size, SLOB_UNIT)
/*
* struct slob_rcu is inserted at the tail of allocated slob blocks, which
* were created with a SLAB_TYPESAFE_BY_RCU slab. slob_rcu is used to free
* the block using call_rcu.
*/
struct slob_rcu {
struct rcu_head head;
int size;
};
/*
* slob_lock protects all slob allocator structures.
*/
static DEFINE_SPINLOCK(slob_lock);
/*
* Encode the given size and next info into a free slob block s.
*/
static void set_slob(slob_t *s, slobidx_t size, slob_t *next)
{
slob_t *base = (slob_t *)((unsigned long)s & PAGE_MASK);
slobidx_t offset = next - base;
if (size > 1) {
s[0].units = size;
s[1].units = offset;
} else
s[0].units = -offset;
}
/*
* Return the size of a slob block.
*/
static slobidx_t slob_units(slob_t *s)
{
if (s->units > 0)
return s->units;
return 1;
}
/*
* Return the next free slob block pointer after this one.
*/
static slob_t *slob_next(slob_t *s)
{
slob_t *base = (slob_t *)((unsigned long)s & PAGE_MASK);
slobidx_t next;
if (s[0].units < 0)
next = -s[0].units;
else
next = s[1].units;
return base+next;
}
/*
* Returns true if s is the last free block in its page.
*/
static int slob_last(slob_t *s)
{
return !((unsigned long)slob_next(s) & ~PAGE_MASK);
}
static void *slob_new_pages(gfp_t gfp, int order, int node)
{
struct page *page;
#ifdef CONFIG_NUMA
if (node != NUMA_NO_NODE)
page = __alloc_pages_node(node, gfp, order);
else
#endif
page = alloc_pages(gfp, order);
if (!page)
return NULL;
mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE_B,
PAGE_SIZE << order);
return page_address(page);
}
static void slob_free_pages(void *b, int order)
{
struct page *sp = virt_to_page(b);
if (current->reclaim_state)
current->reclaim_state->reclaimed_slab += 1 << order;
mod_node_page_state(page_pgdat(sp), NR_SLAB_UNRECLAIMABLE_B,
-(PAGE_SIZE << order));
__free_pages(sp, order);
}
/*
* slob_page_alloc() - Allocate a slob block within a given slob_page sp.
* @sp: Page to look in.
* @size: Size of the allocation.
* @align: Allocation alignment.
* @align_offset: Offset in the allocated block that will be aligned.
* @page_removed_from_list: Return parameter.
*
* Tries to find a chunk of memory at least @size bytes big within @page.
*
* Return: Pointer to memory if allocated, %NULL otherwise. If the
* allocation fills up @page then the page is removed from the
* freelist, in this case @page_removed_from_list will be set to
* true (set to false otherwise).
*/
static void *slob_page_alloc(struct slab *sp, size_t size, int align,
int align_offset, bool *page_removed_from_list)
{
slob_t *prev, *cur, *aligned = NULL;
int delta = 0, units = SLOB_UNITS(size);
*page_removed_from_list = false;
for (prev = NULL, cur = sp->freelist; ; prev = cur, cur = slob_next(cur)) {
slobidx_t avail = slob_units(cur);
/*
* 'aligned' will hold the address of the slob block so that the
* address 'aligned'+'align_offset' is aligned according to the
* 'align' parameter. This is for kmalloc() which prepends the
* allocated block with its size, so that the block itself is
* aligned when needed.
*/
if (align) {
aligned = (slob_t *)
(ALIGN((unsigned long)cur + align_offset, align)
- align_offset);
delta = aligned - cur;
}
if (avail >= units + delta) { /* room enough? */
slob_t *next;
if (delta) { /* need to fragment head to align? */
next = slob_next(cur);
set_slob(aligned, avail - delta, next);
set_slob(cur, delta, aligned);
prev = cur;
cur = aligned;
avail = slob_units(cur);
}
next = slob_next(cur);
if (avail == units) { /* exact fit? unlink. */
if (prev)
set_slob(prev, slob_units(prev), next);
else
sp->freelist = next;
} else { /* fragment */
if (prev)
set_slob(prev, slob_units(prev), cur + units);
else
sp->freelist = cur + units;
set_slob(cur + units, avail - units, next);
}
sp->units -= units;
if (!sp->units) {
clear_slob_page_free(sp);
*page_removed_from_list = true;
}
return cur;
}
if (slob_last(cur))
return NULL;
}
}
/*
* slob_alloc: entry point into the slob allocator.
*/
static void *slob_alloc(size_t size, gfp_t gfp, int align, int node,
int align_offset)
{
struct folio *folio;
struct slab *sp;
struct list_head *slob_list;
slob_t *b = NULL;
unsigned long flags;
bool _unused;
if (size < SLOB_BREAK1)
slob_list = &free_slob_small;
else if (size < SLOB_BREAK2)
slob_list = &free_slob_medium;
else
slob_list = &free_slob_large;
spin_lock_irqsave(&slob_lock, flags);
/* Iterate through each partially free page, try to find room */
list_for_each_entry(sp, slob_list, slab_list) {
bool page_removed_from_list = false;
#ifdef CONFIG_NUMA
/*
* If there's a node specification, search for a partial
* page with a matching node id in the freelist.
*/
if (node != NUMA_NO_NODE && slab_nid(sp) != node)
continue;
#endif
/* Enough room on this page? */
if (sp->units < SLOB_UNITS(size))
continue;
b = slob_page_alloc(sp, size, align, align_offset, &page_removed_from_list);
if (!b)
continue;
/*
* If slob_page_alloc() removed sp from the list then we
* cannot call list functions on sp. If so allocation
* did not fragment the page anyway so optimisation is
* unnecessary.
*/
if (!page_removed_from_list) {
/*
* Improve fragment distribution and reduce our average
* search time by starting our next search here. (see
* Knuth vol 1, sec 2.5, pg 449)
*/
if (!list_is_first(&sp->slab_list, slob_list))
list_rotate_to_front(&sp->slab_list, slob_list);
}
break;
}
spin_unlock_irqrestore(&slob_lock, flags);
/* Not enough space: must allocate a new page */
if (!b) {
b = slob_new_pages(gfp & ~__GFP_ZERO, 0, node);
if (!b)
return NULL;
folio = virt_to_folio(b);
__folio_set_slab(folio);
sp = folio_slab(folio);
spin_lock_irqsave(&slob_lock, flags);
sp->units = SLOB_UNITS(PAGE_SIZE);
sp->freelist = b;
INIT_LIST_HEAD(&sp->slab_list);
set_slob(b, SLOB_UNITS(PAGE_SIZE), b + SLOB_UNITS(PAGE_SIZE));
set_slob_page_free(sp, slob_list);
b = slob_page_alloc(sp, size, align, align_offset, &_unused);
BUG_ON(!b);
spin_unlock_irqrestore(&slob_lock, flags);
}
if (unlikely(gfp & __GFP_ZERO))
memset(b, 0, size);
return b;
}
/*
* slob_free: entry point into the slob allocator.
*/
static void slob_free(void *block, int size)
{
struct slab *sp;
slob_t *prev, *next, *b = (slob_t *)block;
slobidx_t units;
unsigned long flags;
struct list_head *slob_list;
if (unlikely(ZERO_OR_NULL_PTR(block)))
return;
BUG_ON(!size);
sp = virt_to_slab(block);
units = SLOB_UNITS(size);
spin_lock_irqsave(&slob_lock, flags);
if (sp->units + units == SLOB_UNITS(PAGE_SIZE)) {
/* Go directly to page allocator. Do not pass slob allocator */
if (slob_page_free(sp))
clear_slob_page_free(sp);
spin_unlock_irqrestore(&slob_lock, flags);
__folio_clear_slab(slab_folio(sp));
slob_free_pages(b, 0);
return;
}
if (!slob_page_free(sp)) {
/* This slob page is about to become partially free. Easy! */
sp->units = units;
sp->freelist = b;
set_slob(b, units,
(void *)((unsigned long)(b +
SLOB_UNITS(PAGE_SIZE)) & PAGE_MASK));
if (size < SLOB_BREAK1)
slob_list = &free_slob_small;
else if (size < SLOB_BREAK2)
slob_list = &free_slob_medium;
else
slob_list = &free_slob_large;
set_slob_page_free(sp, slob_list);
goto out;
}
/*
* Otherwise the page is already partially free, so find reinsertion
* point.
*/
sp->units += units;
if (b < (slob_t *)sp->freelist) {
if (b + units == sp->freelist) {
units += slob_units(sp->freelist);
sp->freelist = slob_next(sp->freelist);
}
set_slob(b, units, sp->freelist);
sp->freelist = b;
} else {
prev = sp->freelist;
next = slob_next(prev);
while (b > next) {
prev = next;
next = slob_next(prev);
}
if (!slob_last(prev) && b + units == next) {
units += slob_units(next);
set_slob(b, units, slob_next(next));
} else
set_slob(b, units, next);
if (prev + slob_units(prev) == b) {
units = slob_units(b) + slob_units(prev);
set_slob(prev, units, slob_next(b));
} else
set_slob(prev, slob_units(prev), b);
}
out:
spin_unlock_irqrestore(&slob_lock, flags);
}
#ifdef CONFIG_PRINTK
void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
{
kpp->kp_ptr = object;
kpp->kp_slab = slab;
}
#endif
/*
* End of slob allocator proper. Begin kmem_cache_alloc and kmalloc frontend.
*/
static __always_inline void *
__do_kmalloc_node(size_t size, gfp_t gfp, int node, unsigned long caller)
{
unsigned int *m;
unsigned int minalign;
void *ret;
minalign = max_t(unsigned int, ARCH_KMALLOC_MINALIGN,
arch_slab_minalign());
gfp &= gfp_allowed_mask;
might_alloc(gfp);
if (size < PAGE_SIZE - minalign) {
int align = minalign;
/*
* For power of two sizes, guarantee natural alignment for
* kmalloc()'d objects.
*/
if (is_power_of_2(size))
align = max_t(unsigned int, minalign, size);
if (!size)
return ZERO_SIZE_PTR;
m = slob_alloc(size + minalign, gfp, align, node, minalign);
if (!m)
return NULL;
*m = size;
ret = (void *)m + minalign;
trace_kmalloc(caller, ret, size, size + minalign, gfp, node);
} else {
unsigned int order = get_order(size);
if (likely(order))
gfp |= __GFP_COMP;
ret = slob_new_pages(gfp, order, node);
trace_kmalloc(caller, ret, size, PAGE_SIZE << order, gfp, node);
}
kmemleak_alloc(ret, size, 1, gfp);
return ret;
}
void *__kmalloc(size_t size, gfp_t gfp)
{
return __do_kmalloc_node(size, gfp, NUMA_NO_NODE, _RET_IP_);
}
EXPORT_SYMBOL(__kmalloc);
void *__kmalloc_node_track_caller(size_t size, gfp_t gfp,
int node, unsigned long caller)
{
return __do_kmalloc_node(size, gfp, node, caller);
}
EXPORT_SYMBOL(__kmalloc_node_track_caller);
void kfree(const void *block)
{
struct folio *sp;
trace_kfree(_RET_IP_, block);
if (unlikely(ZERO_OR_NULL_PTR(block)))
return;
kmemleak_free(block);
sp = virt_to_folio(block);
if (folio_test_slab(sp)) {
unsigned int align = max_t(unsigned int,
ARCH_KMALLOC_MINALIGN,
arch_slab_minalign());
unsigned int *m = (unsigned int *)(block - align);
slob_free(m, *m + align);
} else {
unsigned int order = folio_order(sp);
mod_node_page_state(folio_pgdat(sp), NR_SLAB_UNRECLAIMABLE_B,
-(PAGE_SIZE << order));
__free_pages(folio_page(sp, 0), order);
}
}
EXPORT_SYMBOL(kfree);
/* can't use ksize for kmem_cache_alloc memory, only kmalloc */
size_t __ksize(const void *block)
{
struct folio *folio;
unsigned int align;
unsigned int *m;
BUG_ON(!block);
if (unlikely(block == ZERO_SIZE_PTR))
return 0;
folio = virt_to_folio(block);
if (unlikely(!folio_test_slab(folio)))
return folio_size(folio);
align = max_t(unsigned int, ARCH_KMALLOC_MINALIGN,
arch_slab_minalign());
m = (unsigned int *)(block - align);
return SLOB_UNITS(*m) * SLOB_UNIT;
}
int __kmem_cache_create(struct kmem_cache *c, slab_flags_t flags)
{
if (flags & SLAB_TYPESAFE_BY_RCU) {
/* leave room for rcu footer at the end of object */
c->size += sizeof(struct slob_rcu);
}
/* Actual size allocated */
c->size = SLOB_UNITS(c->size) * SLOB_UNIT;
c->flags = flags;
return 0;
}
static void *slob_alloc_node(struct kmem_cache *c, gfp_t flags, int node)
{
void *b;
flags &= gfp_allowed_mask;
might_alloc(flags);
if (c->size < PAGE_SIZE) {
b = slob_alloc(c->size, flags, c->align, node, 0);
trace_kmem_cache_alloc(_RET_IP_, b, c, flags, node);
} else {
b = slob_new_pages(flags, get_order(c->size), node);
trace_kmem_cache_alloc(_RET_IP_, b, c, flags, node);
}
if (b && c->ctor) {
WARN_ON_ONCE(flags & __GFP_ZERO);
c->ctor(b);
}
kmemleak_alloc_recursive(b, c->size, 1, c->flags, flags);
return b;
}
void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
{
return slob_alloc_node(cachep, flags, NUMA_NO_NODE);
}
EXPORT_SYMBOL(kmem_cache_alloc);
void *kmem_cache_alloc_lru(struct kmem_cache *cachep, struct list_lru *lru, gfp_t flags)
{
return slob_alloc_node(cachep, flags, NUMA_NO_NODE);
}
EXPORT_SYMBOL(kmem_cache_alloc_lru);
void *__kmalloc_node(size_t size, gfp_t gfp, int node)
{
return __do_kmalloc_node(size, gfp, node, _RET_IP_);
}
EXPORT_SYMBOL(__kmalloc_node);
void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t gfp, int node)
{
return slob_alloc_node(cachep, gfp, node);
}
EXPORT_SYMBOL(kmem_cache_alloc_node);
static void __kmem_cache_free(void *b, int size)
{
if (size < PAGE_SIZE)
slob_free(b, size);
else
slob_free_pages(b, get_order(size));
}
static void kmem_rcu_free(struct rcu_head *head)
{
struct slob_rcu *slob_rcu = (struct slob_rcu *)head;
void *b = (void *)slob_rcu - (slob_rcu->size - sizeof(struct slob_rcu));
__kmem_cache_free(b, slob_rcu->size);
}
void kmem_cache_free(struct kmem_cache *c, void *b)
{
kmemleak_free_recursive(b, c->flags);
trace_kmem_cache_free(_RET_IP_, b, c);
if (unlikely(c->flags & SLAB_TYPESAFE_BY_RCU)) {
struct slob_rcu *slob_rcu;
slob_rcu = b + (c->size - sizeof(struct slob_rcu));
slob_rcu->size = c->size;
call_rcu(&slob_rcu->head, kmem_rcu_free);
} else {
__kmem_cache_free(b, c->size);
}
}
EXPORT_SYMBOL(kmem_cache_free);
void kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p)
{
size_t i;
for (i = 0; i < nr; i++) {
if (s)
kmem_cache_free(s, p[i]);
else
kfree(p[i]);
}
}
EXPORT_SYMBOL(kmem_cache_free_bulk);
int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr,
void **p)
{
size_t i;
for (i = 0; i < nr; i++) {
void *x = p[i] = kmem_cache_alloc(s, flags);
if (!x) {
kmem_cache_free_bulk(s, i, p);
return 0;
}
}
return i;
}
EXPORT_SYMBOL(kmem_cache_alloc_bulk);
int __kmem_cache_shutdown(struct kmem_cache *c)
{
/* No way to check for remaining objects */
return 0;
}
void __kmem_cache_release(struct kmem_cache *c)
{
}
int __kmem_cache_shrink(struct kmem_cache *d)
{
return 0;
}
static struct kmem_cache kmem_cache_boot = {
.name = "kmem_cache",
.size = sizeof(struct kmem_cache),
.flags = SLAB_PANIC,
.align = ARCH_KMALLOC_MINALIGN,
};
void __init kmem_cache_init(void)
{
kmem_cache = &kmem_cache_boot;
slab_state = UP;
}
void __init kmem_cache_init_late(void)
{
slab_state = FULL;
}