b4f501916c
__get_cpu_var() is used for multiple purposes in the kernel source. One of them is address calculation via the form &__get_cpu_var(x). This calculates the address for the instance of the percpu variable of the current processor based on an offset. Other use cases are for storing and retrieving data from the current processors percpu area. __get_cpu_var() can be used as an lvalue when writing data or on the right side of an assignment. __get_cpu_var() is defined as : #define __get_cpu_var(var) (*this_cpu_ptr(&(var))) __get_cpu_var() always only does an address determination. However, store and retrieve operations could use a segment prefix (or global register on other platforms) to avoid the address calculation. this_cpu_write() and this_cpu_read() can directly take an offset into a percpu area and use optimized assembly code to read and write per cpu variables. This patch converts __get_cpu_var into either an explicit address calculation using this_cpu_ptr() or into a use of this_cpu operations that use the offset. Thereby address calculations are avoided and less registers are used when code is generated. At the end of the patch set all uses of __get_cpu_var have been removed so the macro is removed too. The patch set includes passes over all arches as well. Once these operations are used throughout then specialized macros can be defined in non -x86 arches as well in order to optimize per cpu access by f.e. using a global register that may be set to the per cpu base. Transformations done to __get_cpu_var() 1. Determine the address of the percpu instance of the current processor. DEFINE_PER_CPU(int, y); int *x = &__get_cpu_var(y); Converts to int *x = this_cpu_ptr(&y); 2. Same as #1 but this time an array structure is involved. DEFINE_PER_CPU(int, y[20]); int *x = __get_cpu_var(y); Converts to int *x = this_cpu_ptr(y); 3. Retrieve the content of the current processors instance of a per cpu variable. DEFINE_PER_CPU(int, y); int x = __get_cpu_var(y) Converts to int x = __this_cpu_read(y); 4. Retrieve the content of a percpu struct DEFINE_PER_CPU(struct mystruct, y); struct mystruct x = __get_cpu_var(y); Converts to memcpy(&x, this_cpu_ptr(&y), sizeof(x)); 5. Assignment to a per cpu variable DEFINE_PER_CPU(int, y) __get_cpu_var(y) = x; Converts to __this_cpu_write(y, x); 6. Increment/Decrement etc of a per cpu variable DEFINE_PER_CPU(int, y); __get_cpu_var(y)++ Converts to __this_cpu_inc(y) Acked-by: Chris Metcalf <cmetcalf@tilera.com> Signed-off-by: Christoph Lameter <cl@linux.com> Signed-off-by: Tejun Heo <tj@kernel.org>
575 lines
17 KiB
C
575 lines
17 KiB
C
/*
|
|
* Copyright 2010 Tilera Corporation. All Rights Reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation, version 2.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
|
|
* NON INFRINGEMENT. See the GNU General Public License for
|
|
* more details.
|
|
*/
|
|
|
|
#include <linux/sched.h>
|
|
#include <linux/preempt.h>
|
|
#include <linux/module.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/kprobes.h>
|
|
#include <linux/elfcore.h>
|
|
#include <linux/tick.h>
|
|
#include <linux/init.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/compat.h>
|
|
#include <linux/hardirq.h>
|
|
#include <linux/syscalls.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/tracehook.h>
|
|
#include <linux/signal.h>
|
|
#include <asm/stack.h>
|
|
#include <asm/switch_to.h>
|
|
#include <asm/homecache.h>
|
|
#include <asm/syscalls.h>
|
|
#include <asm/traps.h>
|
|
#include <asm/setup.h>
|
|
#include <asm/uaccess.h>
|
|
#ifdef CONFIG_HARDWALL
|
|
#include <asm/hardwall.h>
|
|
#endif
|
|
#include <arch/chip.h>
|
|
#include <arch/abi.h>
|
|
#include <arch/sim_def.h>
|
|
|
|
/*
|
|
* Use the (x86) "idle=poll" option to prefer low latency when leaving the
|
|
* idle loop over low power while in the idle loop, e.g. if we have
|
|
* one thread per core and we want to get threads out of futex waits fast.
|
|
*/
|
|
static int __init idle_setup(char *str)
|
|
{
|
|
if (!str)
|
|
return -EINVAL;
|
|
|
|
if (!strcmp(str, "poll")) {
|
|
pr_info("using polling idle threads.\n");
|
|
cpu_idle_poll_ctrl(true);
|
|
return 0;
|
|
} else if (!strcmp(str, "halt")) {
|
|
return 0;
|
|
}
|
|
return -1;
|
|
}
|
|
early_param("idle", idle_setup);
|
|
|
|
void arch_cpu_idle(void)
|
|
{
|
|
__this_cpu_write(irq_stat.idle_timestamp, jiffies);
|
|
_cpu_idle();
|
|
}
|
|
|
|
/*
|
|
* Release a thread_info structure
|
|
*/
|
|
void arch_release_thread_info(struct thread_info *info)
|
|
{
|
|
struct single_step_state *step_state = info->step_state;
|
|
|
|
if (step_state) {
|
|
|
|
/*
|
|
* FIXME: we don't munmap step_state->buffer
|
|
* because the mm_struct for this process (info->task->mm)
|
|
* has already been zeroed in exit_mm(). Keeping a
|
|
* reference to it here seems like a bad move, so this
|
|
* means we can't munmap() the buffer, and therefore if we
|
|
* ptrace multiple threads in a process, we will slowly
|
|
* leak user memory. (Note that as soon as the last
|
|
* thread in a process dies, we will reclaim all user
|
|
* memory including single-step buffers in the usual way.)
|
|
* We should either assign a kernel VA to this buffer
|
|
* somehow, or we should associate the buffer(s) with the
|
|
* mm itself so we can clean them up that way.
|
|
*/
|
|
kfree(step_state);
|
|
}
|
|
}
|
|
|
|
static void save_arch_state(struct thread_struct *t);
|
|
|
|
int copy_thread(unsigned long clone_flags, unsigned long sp,
|
|
unsigned long arg, struct task_struct *p)
|
|
{
|
|
struct pt_regs *childregs = task_pt_regs(p);
|
|
unsigned long ksp;
|
|
unsigned long *callee_regs;
|
|
|
|
/*
|
|
* Set up the stack and stack pointer appropriately for the
|
|
* new child to find itself woken up in __switch_to().
|
|
* The callee-saved registers must be on the stack to be read;
|
|
* the new task will then jump to assembly support to handle
|
|
* calling schedule_tail(), etc., and (for userspace tasks)
|
|
* returning to the context set up in the pt_regs.
|
|
*/
|
|
ksp = (unsigned long) childregs;
|
|
ksp -= C_ABI_SAVE_AREA_SIZE; /* interrupt-entry save area */
|
|
((long *)ksp)[0] = ((long *)ksp)[1] = 0;
|
|
ksp -= CALLEE_SAVED_REGS_COUNT * sizeof(unsigned long);
|
|
callee_regs = (unsigned long *)ksp;
|
|
ksp -= C_ABI_SAVE_AREA_SIZE; /* __switch_to() save area */
|
|
((long *)ksp)[0] = ((long *)ksp)[1] = 0;
|
|
p->thread.ksp = ksp;
|
|
|
|
/* Record the pid of the task that created this one. */
|
|
p->thread.creator_pid = current->pid;
|
|
|
|
if (unlikely(p->flags & PF_KTHREAD)) {
|
|
/* kernel thread */
|
|
memset(childregs, 0, sizeof(struct pt_regs));
|
|
memset(&callee_regs[2], 0,
|
|
(CALLEE_SAVED_REGS_COUNT - 2) * sizeof(unsigned long));
|
|
callee_regs[0] = sp; /* r30 = function */
|
|
callee_regs[1] = arg; /* r31 = arg */
|
|
childregs->ex1 = PL_ICS_EX1(KERNEL_PL, 0);
|
|
p->thread.pc = (unsigned long) ret_from_kernel_thread;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Start new thread in ret_from_fork so it schedules properly
|
|
* and then return from interrupt like the parent.
|
|
*/
|
|
p->thread.pc = (unsigned long) ret_from_fork;
|
|
|
|
/*
|
|
* Do not clone step state from the parent; each thread
|
|
* must make its own lazily.
|
|
*/
|
|
task_thread_info(p)->step_state = NULL;
|
|
|
|
#ifdef __tilegx__
|
|
/*
|
|
* Do not clone unalign jit fixup from the parent; each thread
|
|
* must allocate its own on demand.
|
|
*/
|
|
task_thread_info(p)->unalign_jit_base = NULL;
|
|
#endif
|
|
|
|
/*
|
|
* Copy the registers onto the kernel stack so the
|
|
* return-from-interrupt code will reload it into registers.
|
|
*/
|
|
*childregs = *current_pt_regs();
|
|
childregs->regs[0] = 0; /* return value is zero */
|
|
if (sp)
|
|
childregs->sp = sp; /* override with new user stack pointer */
|
|
memcpy(callee_regs, &childregs->regs[CALLEE_SAVED_FIRST_REG],
|
|
CALLEE_SAVED_REGS_COUNT * sizeof(unsigned long));
|
|
|
|
/* Save user stack top pointer so we can ID the stack vm area later. */
|
|
p->thread.usp0 = childregs->sp;
|
|
|
|
/*
|
|
* If CLONE_SETTLS is set, set "tp" in the new task to "r4",
|
|
* which is passed in as arg #5 to sys_clone().
|
|
*/
|
|
if (clone_flags & CLONE_SETTLS)
|
|
childregs->tp = childregs->regs[4];
|
|
|
|
|
|
#if CHIP_HAS_TILE_DMA()
|
|
/*
|
|
* No DMA in the new thread. We model this on the fact that
|
|
* fork() clears the pending signals, alarms, and aio for the child.
|
|
*/
|
|
memset(&p->thread.tile_dma_state, 0, sizeof(struct tile_dma_state));
|
|
memset(&p->thread.dma_async_tlb, 0, sizeof(struct async_tlb));
|
|
#endif
|
|
|
|
/* New thread has its miscellaneous processor state bits clear. */
|
|
p->thread.proc_status = 0;
|
|
|
|
#ifdef CONFIG_HARDWALL
|
|
/* New thread does not own any networks. */
|
|
memset(&p->thread.hardwall[0], 0,
|
|
sizeof(struct hardwall_task) * HARDWALL_TYPES);
|
|
#endif
|
|
|
|
|
|
/*
|
|
* Start the new thread with the current architecture state
|
|
* (user interrupt masks, etc.).
|
|
*/
|
|
save_arch_state(&p->thread);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
|
|
{
|
|
task_thread_info(tsk)->align_ctl = val;
|
|
return 0;
|
|
}
|
|
|
|
int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
|
|
{
|
|
return put_user(task_thread_info(tsk)->align_ctl,
|
|
(unsigned int __user *)adr);
|
|
}
|
|
|
|
static struct task_struct corrupt_current = { .comm = "<corrupt>" };
|
|
|
|
/*
|
|
* Return "current" if it looks plausible, or else a pointer to a dummy.
|
|
* This can be helpful if we are just trying to emit a clean panic.
|
|
*/
|
|
struct task_struct *validate_current(void)
|
|
{
|
|
struct task_struct *tsk = current;
|
|
if (unlikely((unsigned long)tsk < PAGE_OFFSET ||
|
|
(high_memory && (void *)tsk > high_memory) ||
|
|
((unsigned long)tsk & (__alignof__(*tsk) - 1)) != 0)) {
|
|
pr_err("Corrupt 'current' %p (sp %#lx)\n", tsk, stack_pointer);
|
|
tsk = &corrupt_current;
|
|
}
|
|
return tsk;
|
|
}
|
|
|
|
/* Take and return the pointer to the previous task, for schedule_tail(). */
|
|
struct task_struct *sim_notify_fork(struct task_struct *prev)
|
|
{
|
|
struct task_struct *tsk = current;
|
|
__insn_mtspr(SPR_SIM_CONTROL, SIM_CONTROL_OS_FORK_PARENT |
|
|
(tsk->thread.creator_pid << _SIM_CONTROL_OPERATOR_BITS));
|
|
__insn_mtspr(SPR_SIM_CONTROL, SIM_CONTROL_OS_FORK |
|
|
(tsk->pid << _SIM_CONTROL_OPERATOR_BITS));
|
|
return prev;
|
|
}
|
|
|
|
int dump_task_regs(struct task_struct *tsk, elf_gregset_t *regs)
|
|
{
|
|
struct pt_regs *ptregs = task_pt_regs(tsk);
|
|
elf_core_copy_regs(regs, ptregs);
|
|
return 1;
|
|
}
|
|
|
|
#if CHIP_HAS_TILE_DMA()
|
|
|
|
/* Allow user processes to access the DMA SPRs */
|
|
void grant_dma_mpls(void)
|
|
{
|
|
#if CONFIG_KERNEL_PL == 2
|
|
__insn_mtspr(SPR_MPL_DMA_CPL_SET_1, 1);
|
|
__insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_1, 1);
|
|
#else
|
|
__insn_mtspr(SPR_MPL_DMA_CPL_SET_0, 1);
|
|
__insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_0, 1);
|
|
#endif
|
|
}
|
|
|
|
/* Forbid user processes from accessing the DMA SPRs */
|
|
void restrict_dma_mpls(void)
|
|
{
|
|
#if CONFIG_KERNEL_PL == 2
|
|
__insn_mtspr(SPR_MPL_DMA_CPL_SET_2, 1);
|
|
__insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_2, 1);
|
|
#else
|
|
__insn_mtspr(SPR_MPL_DMA_CPL_SET_1, 1);
|
|
__insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_1, 1);
|
|
#endif
|
|
}
|
|
|
|
/* Pause the DMA engine, then save off its state registers. */
|
|
static void save_tile_dma_state(struct tile_dma_state *dma)
|
|
{
|
|
unsigned long state = __insn_mfspr(SPR_DMA_USER_STATUS);
|
|
unsigned long post_suspend_state;
|
|
|
|
/* If we're running, suspend the engine. */
|
|
if ((state & DMA_STATUS_MASK) == SPR_DMA_STATUS__RUNNING_MASK)
|
|
__insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__SUSPEND_MASK);
|
|
|
|
/*
|
|
* Wait for the engine to idle, then save regs. Note that we
|
|
* want to record the "running" bit from before suspension,
|
|
* and the "done" bit from after, so that we can properly
|
|
* distinguish a case where the user suspended the engine from
|
|
* the case where the kernel suspended as part of the context
|
|
* swap.
|
|
*/
|
|
do {
|
|
post_suspend_state = __insn_mfspr(SPR_DMA_USER_STATUS);
|
|
} while (post_suspend_state & SPR_DMA_STATUS__BUSY_MASK);
|
|
|
|
dma->src = __insn_mfspr(SPR_DMA_SRC_ADDR);
|
|
dma->src_chunk = __insn_mfspr(SPR_DMA_SRC_CHUNK_ADDR);
|
|
dma->dest = __insn_mfspr(SPR_DMA_DST_ADDR);
|
|
dma->dest_chunk = __insn_mfspr(SPR_DMA_DST_CHUNK_ADDR);
|
|
dma->strides = __insn_mfspr(SPR_DMA_STRIDE);
|
|
dma->chunk_size = __insn_mfspr(SPR_DMA_CHUNK_SIZE);
|
|
dma->byte = __insn_mfspr(SPR_DMA_BYTE);
|
|
dma->status = (state & SPR_DMA_STATUS__RUNNING_MASK) |
|
|
(post_suspend_state & SPR_DMA_STATUS__DONE_MASK);
|
|
}
|
|
|
|
/* Restart a DMA that was running before we were context-switched out. */
|
|
static void restore_tile_dma_state(struct thread_struct *t)
|
|
{
|
|
const struct tile_dma_state *dma = &t->tile_dma_state;
|
|
|
|
/*
|
|
* The only way to restore the done bit is to run a zero
|
|
* length transaction.
|
|
*/
|
|
if ((dma->status & SPR_DMA_STATUS__DONE_MASK) &&
|
|
!(__insn_mfspr(SPR_DMA_USER_STATUS) & SPR_DMA_STATUS__DONE_MASK)) {
|
|
__insn_mtspr(SPR_DMA_BYTE, 0);
|
|
__insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__REQUEST_MASK);
|
|
while (__insn_mfspr(SPR_DMA_USER_STATUS) &
|
|
SPR_DMA_STATUS__BUSY_MASK)
|
|
;
|
|
}
|
|
|
|
__insn_mtspr(SPR_DMA_SRC_ADDR, dma->src);
|
|
__insn_mtspr(SPR_DMA_SRC_CHUNK_ADDR, dma->src_chunk);
|
|
__insn_mtspr(SPR_DMA_DST_ADDR, dma->dest);
|
|
__insn_mtspr(SPR_DMA_DST_CHUNK_ADDR, dma->dest_chunk);
|
|
__insn_mtspr(SPR_DMA_STRIDE, dma->strides);
|
|
__insn_mtspr(SPR_DMA_CHUNK_SIZE, dma->chunk_size);
|
|
__insn_mtspr(SPR_DMA_BYTE, dma->byte);
|
|
|
|
/*
|
|
* Restart the engine if we were running and not done.
|
|
* Clear a pending async DMA fault that we were waiting on return
|
|
* to user space to execute, since we expect the DMA engine
|
|
* to regenerate those faults for us now. Note that we don't
|
|
* try to clear the TIF_ASYNC_TLB flag, since it's relatively
|
|
* harmless if set, and it covers both DMA and the SN processor.
|
|
*/
|
|
if ((dma->status & DMA_STATUS_MASK) == SPR_DMA_STATUS__RUNNING_MASK) {
|
|
t->dma_async_tlb.fault_num = 0;
|
|
__insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__REQUEST_MASK);
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
static void save_arch_state(struct thread_struct *t)
|
|
{
|
|
#if CHIP_HAS_SPLIT_INTR_MASK()
|
|
t->interrupt_mask = __insn_mfspr(SPR_INTERRUPT_MASK_0_0) |
|
|
((u64)__insn_mfspr(SPR_INTERRUPT_MASK_0_1) << 32);
|
|
#else
|
|
t->interrupt_mask = __insn_mfspr(SPR_INTERRUPT_MASK_0);
|
|
#endif
|
|
t->ex_context[0] = __insn_mfspr(SPR_EX_CONTEXT_0_0);
|
|
t->ex_context[1] = __insn_mfspr(SPR_EX_CONTEXT_0_1);
|
|
t->system_save[0] = __insn_mfspr(SPR_SYSTEM_SAVE_0_0);
|
|
t->system_save[1] = __insn_mfspr(SPR_SYSTEM_SAVE_0_1);
|
|
t->system_save[2] = __insn_mfspr(SPR_SYSTEM_SAVE_0_2);
|
|
t->system_save[3] = __insn_mfspr(SPR_SYSTEM_SAVE_0_3);
|
|
t->intctrl_0 = __insn_mfspr(SPR_INTCTRL_0_STATUS);
|
|
t->proc_status = __insn_mfspr(SPR_PROC_STATUS);
|
|
#if !CHIP_HAS_FIXED_INTVEC_BASE()
|
|
t->interrupt_vector_base = __insn_mfspr(SPR_INTERRUPT_VECTOR_BASE_0);
|
|
#endif
|
|
t->tile_rtf_hwm = __insn_mfspr(SPR_TILE_RTF_HWM);
|
|
#if CHIP_HAS_DSTREAM_PF()
|
|
t->dstream_pf = __insn_mfspr(SPR_DSTREAM_PF);
|
|
#endif
|
|
}
|
|
|
|
static void restore_arch_state(const struct thread_struct *t)
|
|
{
|
|
#if CHIP_HAS_SPLIT_INTR_MASK()
|
|
__insn_mtspr(SPR_INTERRUPT_MASK_0_0, (u32) t->interrupt_mask);
|
|
__insn_mtspr(SPR_INTERRUPT_MASK_0_1, t->interrupt_mask >> 32);
|
|
#else
|
|
__insn_mtspr(SPR_INTERRUPT_MASK_0, t->interrupt_mask);
|
|
#endif
|
|
__insn_mtspr(SPR_EX_CONTEXT_0_0, t->ex_context[0]);
|
|
__insn_mtspr(SPR_EX_CONTEXT_0_1, t->ex_context[1]);
|
|
__insn_mtspr(SPR_SYSTEM_SAVE_0_0, t->system_save[0]);
|
|
__insn_mtspr(SPR_SYSTEM_SAVE_0_1, t->system_save[1]);
|
|
__insn_mtspr(SPR_SYSTEM_SAVE_0_2, t->system_save[2]);
|
|
__insn_mtspr(SPR_SYSTEM_SAVE_0_3, t->system_save[3]);
|
|
__insn_mtspr(SPR_INTCTRL_0_STATUS, t->intctrl_0);
|
|
__insn_mtspr(SPR_PROC_STATUS, t->proc_status);
|
|
#if !CHIP_HAS_FIXED_INTVEC_BASE()
|
|
__insn_mtspr(SPR_INTERRUPT_VECTOR_BASE_0, t->interrupt_vector_base);
|
|
#endif
|
|
__insn_mtspr(SPR_TILE_RTF_HWM, t->tile_rtf_hwm);
|
|
#if CHIP_HAS_DSTREAM_PF()
|
|
__insn_mtspr(SPR_DSTREAM_PF, t->dstream_pf);
|
|
#endif
|
|
}
|
|
|
|
|
|
void _prepare_arch_switch(struct task_struct *next)
|
|
{
|
|
#if CHIP_HAS_TILE_DMA()
|
|
struct tile_dma_state *dma = ¤t->thread.tile_dma_state;
|
|
if (dma->enabled)
|
|
save_tile_dma_state(dma);
|
|
#endif
|
|
}
|
|
|
|
|
|
struct task_struct *__sched _switch_to(struct task_struct *prev,
|
|
struct task_struct *next)
|
|
{
|
|
/* DMA state is already saved; save off other arch state. */
|
|
save_arch_state(&prev->thread);
|
|
|
|
#if CHIP_HAS_TILE_DMA()
|
|
/*
|
|
* Restore DMA in new task if desired.
|
|
* Note that it is only safe to restart here since interrupts
|
|
* are disabled, so we can't take any DMATLB miss or access
|
|
* interrupts before we have finished switching stacks.
|
|
*/
|
|
if (next->thread.tile_dma_state.enabled) {
|
|
restore_tile_dma_state(&next->thread);
|
|
grant_dma_mpls();
|
|
} else {
|
|
restrict_dma_mpls();
|
|
}
|
|
#endif
|
|
|
|
/* Restore other arch state. */
|
|
restore_arch_state(&next->thread);
|
|
|
|
#ifdef CONFIG_HARDWALL
|
|
/* Enable or disable access to the network registers appropriately. */
|
|
hardwall_switch_tasks(prev, next);
|
|
#endif
|
|
|
|
/*
|
|
* Switch kernel SP, PC, and callee-saved registers.
|
|
* In the context of the new task, return the old task pointer
|
|
* (i.e. the task that actually called __switch_to).
|
|
* Pass the value to use for SYSTEM_SAVE_K_0 when we reset our sp.
|
|
*/
|
|
return __switch_to(prev, next, next_current_ksp0(next));
|
|
}
|
|
|
|
/*
|
|
* This routine is called on return from interrupt if any of the
|
|
* TIF_WORK_MASK flags are set in thread_info->flags. It is
|
|
* entered with interrupts disabled so we don't miss an event
|
|
* that modified the thread_info flags. If any flag is set, we
|
|
* handle it and return, and the calling assembly code will
|
|
* re-disable interrupts, reload the thread flags, and call back
|
|
* if more flags need to be handled.
|
|
*
|
|
* We return whether we need to check the thread_info flags again
|
|
* or not. Note that we don't clear TIF_SINGLESTEP here, so it's
|
|
* important that it be tested last, and then claim that we don't
|
|
* need to recheck the flags.
|
|
*/
|
|
int do_work_pending(struct pt_regs *regs, u32 thread_info_flags)
|
|
{
|
|
/* If we enter in kernel mode, do nothing and exit the caller loop. */
|
|
if (!user_mode(regs))
|
|
return 0;
|
|
|
|
/* Enable interrupts; they are disabled again on return to caller. */
|
|
local_irq_enable();
|
|
|
|
if (thread_info_flags & _TIF_NEED_RESCHED) {
|
|
schedule();
|
|
return 1;
|
|
}
|
|
#if CHIP_HAS_TILE_DMA()
|
|
if (thread_info_flags & _TIF_ASYNC_TLB) {
|
|
do_async_page_fault(regs);
|
|
return 1;
|
|
}
|
|
#endif
|
|
if (thread_info_flags & _TIF_SIGPENDING) {
|
|
do_signal(regs);
|
|
return 1;
|
|
}
|
|
if (thread_info_flags & _TIF_NOTIFY_RESUME) {
|
|
clear_thread_flag(TIF_NOTIFY_RESUME);
|
|
tracehook_notify_resume(regs);
|
|
return 1;
|
|
}
|
|
if (thread_info_flags & _TIF_SINGLESTEP) {
|
|
single_step_once(regs);
|
|
return 0;
|
|
}
|
|
panic("work_pending: bad flags %#x\n", thread_info_flags);
|
|
}
|
|
|
|
unsigned long get_wchan(struct task_struct *p)
|
|
{
|
|
struct KBacktraceIterator kbt;
|
|
|
|
if (!p || p == current || p->state == TASK_RUNNING)
|
|
return 0;
|
|
|
|
for (KBacktraceIterator_init(&kbt, p, NULL);
|
|
!KBacktraceIterator_end(&kbt);
|
|
KBacktraceIterator_next(&kbt)) {
|
|
if (!in_sched_functions(kbt.it.pc))
|
|
return kbt.it.pc;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Flush thread state. */
|
|
void flush_thread(void)
|
|
{
|
|
/* Nothing */
|
|
}
|
|
|
|
/*
|
|
* Free current thread data structures etc..
|
|
*/
|
|
void exit_thread(void)
|
|
{
|
|
#ifdef CONFIG_HARDWALL
|
|
/*
|
|
* Remove the task from the list of tasks that are associated
|
|
* with any live hardwalls. (If the task that is exiting held
|
|
* the last reference to a hardwall fd, it would already have
|
|
* been released and deactivated at this point.)
|
|
*/
|
|
hardwall_deactivate_all(current);
|
|
#endif
|
|
}
|
|
|
|
void show_regs(struct pt_regs *regs)
|
|
{
|
|
struct task_struct *tsk = validate_current();
|
|
int i;
|
|
|
|
pr_err("\n");
|
|
if (tsk != &corrupt_current)
|
|
show_regs_print_info(KERN_ERR);
|
|
#ifdef __tilegx__
|
|
for (i = 0; i < 17; i++)
|
|
pr_err(" r%-2d: "REGFMT" r%-2d: "REGFMT" r%-2d: "REGFMT"\n",
|
|
i, regs->regs[i], i+18, regs->regs[i+18],
|
|
i+36, regs->regs[i+36]);
|
|
pr_err(" r17: "REGFMT" r35: "REGFMT" tp : "REGFMT"\n",
|
|
regs->regs[17], regs->regs[35], regs->tp);
|
|
pr_err(" sp : "REGFMT" lr : "REGFMT"\n", regs->sp, regs->lr);
|
|
#else
|
|
for (i = 0; i < 13; i++)
|
|
pr_err(" r%-2d: "REGFMT" r%-2d: "REGFMT
|
|
" r%-2d: "REGFMT" r%-2d: "REGFMT"\n",
|
|
i, regs->regs[i], i+14, regs->regs[i+14],
|
|
i+27, regs->regs[i+27], i+40, regs->regs[i+40]);
|
|
pr_err(" r13: "REGFMT" tp : "REGFMT" sp : "REGFMT" lr : "REGFMT"\n",
|
|
regs->regs[13], regs->tp, regs->sp, regs->lr);
|
|
#endif
|
|
pr_err(" pc : "REGFMT" ex1: %ld faultnum: %ld\n",
|
|
regs->pc, regs->ex1, regs->faultnum);
|
|
|
|
dump_stack_regs(regs);
|
|
}
|