linux/arch/powerpc/kernel/setup-common.c
Michael Neuling 59a53afe70 powerpc: Don't setup CPUs with bad status
OPAL will mark a CPU that is guarded as "bad" in the status property of the CPU
node.

Unfortunatley Linux doesn't check this property and will put the bad CPU in the
present map.  This has caused hangs on booting when we try to unsplit the core.

This patch checks the CPU is avaliable via this status property before putting
it in the present map.

Signed-off-by: Michael Neuling <mikey@neuling.org>
Tested-by: Anton Blanchard <anton@samba.org>
cc: stable@vger.kernel.org
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2014-06-11 17:03:01 +10:00

742 lines
18 KiB
C

/*
* Common boot and setup code for both 32-bit and 64-bit.
* Extracted from arch/powerpc/kernel/setup_64.c.
*
* Copyright (C) 2001 PPC64 Team, IBM Corp
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#undef DEBUG
#include <linux/export.h>
#include <linux/string.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/reboot.h>
#include <linux/delay.h>
#include <linux/initrd.h>
#include <linux/platform_device.h>
#include <linux/seq_file.h>
#include <linux/ioport.h>
#include <linux/console.h>
#include <linux/screen_info.h>
#include <linux/root_dev.h>
#include <linux/notifier.h>
#include <linux/cpu.h>
#include <linux/unistd.h>
#include <linux/serial.h>
#include <linux/serial_8250.h>
#include <linux/debugfs.h>
#include <linux/percpu.h>
#include <linux/memblock.h>
#include <linux/of_platform.h>
#include <asm/io.h>
#include <asm/paca.h>
#include <asm/prom.h>
#include <asm/processor.h>
#include <asm/vdso_datapage.h>
#include <asm/pgtable.h>
#include <asm/smp.h>
#include <asm/elf.h>
#include <asm/machdep.h>
#include <asm/time.h>
#include <asm/cputable.h>
#include <asm/sections.h>
#include <asm/firmware.h>
#include <asm/btext.h>
#include <asm/nvram.h>
#include <asm/setup.h>
#include <asm/rtas.h>
#include <asm/iommu.h>
#include <asm/serial.h>
#include <asm/cache.h>
#include <asm/page.h>
#include <asm/mmu.h>
#include <asm/xmon.h>
#include <asm/cputhreads.h>
#include <mm/mmu_decl.h>
#include <asm/fadump.h>
#ifdef DEBUG
#include <asm/udbg.h>
#define DBG(fmt...) udbg_printf(fmt)
#else
#define DBG(fmt...)
#endif
/* The main machine-dep calls structure
*/
struct machdep_calls ppc_md;
EXPORT_SYMBOL(ppc_md);
struct machdep_calls *machine_id;
EXPORT_SYMBOL(machine_id);
int boot_cpuid = -1;
EXPORT_SYMBOL_GPL(boot_cpuid);
unsigned long klimit = (unsigned long) _end;
char cmd_line[COMMAND_LINE_SIZE];
/*
* This still seems to be needed... -- paulus
*/
struct screen_info screen_info = {
.orig_x = 0,
.orig_y = 25,
.orig_video_cols = 80,
.orig_video_lines = 25,
.orig_video_isVGA = 1,
.orig_video_points = 16
};
/* Variables required to store legacy IO irq routing */
int of_i8042_kbd_irq;
EXPORT_SYMBOL_GPL(of_i8042_kbd_irq);
int of_i8042_aux_irq;
EXPORT_SYMBOL_GPL(of_i8042_aux_irq);
#ifdef __DO_IRQ_CANON
/* XXX should go elsewhere eventually */
int ppc_do_canonicalize_irqs;
EXPORT_SYMBOL(ppc_do_canonicalize_irqs);
#endif
/* also used by kexec */
void machine_shutdown(void)
{
#ifdef CONFIG_FA_DUMP
/*
* if fadump is active, cleanup the fadump registration before we
* shutdown.
*/
fadump_cleanup();
#endif
if (ppc_md.machine_shutdown)
ppc_md.machine_shutdown();
}
void machine_restart(char *cmd)
{
machine_shutdown();
if (ppc_md.restart)
ppc_md.restart(cmd);
#ifdef CONFIG_SMP
smp_send_stop();
#endif
printk(KERN_EMERG "System Halted, OK to turn off power\n");
local_irq_disable();
while (1) ;
}
void machine_power_off(void)
{
machine_shutdown();
if (ppc_md.power_off)
ppc_md.power_off();
#ifdef CONFIG_SMP
smp_send_stop();
#endif
printk(KERN_EMERG "System Halted, OK to turn off power\n");
local_irq_disable();
while (1) ;
}
/* Used by the G5 thermal driver */
EXPORT_SYMBOL_GPL(machine_power_off);
void (*pm_power_off)(void) = machine_power_off;
EXPORT_SYMBOL_GPL(pm_power_off);
void machine_halt(void)
{
machine_shutdown();
if (ppc_md.halt)
ppc_md.halt();
#ifdef CONFIG_SMP
smp_send_stop();
#endif
printk(KERN_EMERG "System Halted, OK to turn off power\n");
local_irq_disable();
while (1) ;
}
#ifdef CONFIG_TAU
extern u32 cpu_temp(unsigned long cpu);
extern u32 cpu_temp_both(unsigned long cpu);
#endif /* CONFIG_TAU */
#ifdef CONFIG_SMP
DEFINE_PER_CPU(unsigned int, cpu_pvr);
#endif
static void show_cpuinfo_summary(struct seq_file *m)
{
struct device_node *root;
const char *model = NULL;
#if defined(CONFIG_SMP) && defined(CONFIG_PPC32)
unsigned long bogosum = 0;
int i;
for_each_online_cpu(i)
bogosum += loops_per_jiffy;
seq_printf(m, "total bogomips\t: %lu.%02lu\n",
bogosum/(500000/HZ), bogosum/(5000/HZ) % 100);
#endif /* CONFIG_SMP && CONFIG_PPC32 */
seq_printf(m, "timebase\t: %lu\n", ppc_tb_freq);
if (ppc_md.name)
seq_printf(m, "platform\t: %s\n", ppc_md.name);
root = of_find_node_by_path("/");
if (root)
model = of_get_property(root, "model", NULL);
if (model)
seq_printf(m, "model\t\t: %s\n", model);
of_node_put(root);
if (ppc_md.show_cpuinfo != NULL)
ppc_md.show_cpuinfo(m);
#ifdef CONFIG_PPC32
/* Display the amount of memory */
seq_printf(m, "Memory\t\t: %d MB\n",
(unsigned int)(total_memory / (1024 * 1024)));
#endif
}
static int show_cpuinfo(struct seq_file *m, void *v)
{
unsigned long cpu_id = (unsigned long)v - 1;
unsigned int pvr;
unsigned long proc_freq;
unsigned short maj;
unsigned short min;
/* We only show online cpus: disable preempt (overzealous, I
* knew) to prevent cpu going down. */
preempt_disable();
if (!cpu_online(cpu_id)) {
preempt_enable();
return 0;
}
#ifdef CONFIG_SMP
pvr = per_cpu(cpu_pvr, cpu_id);
#else
pvr = mfspr(SPRN_PVR);
#endif
maj = (pvr >> 8) & 0xFF;
min = pvr & 0xFF;
seq_printf(m, "processor\t: %lu\n", cpu_id);
seq_printf(m, "cpu\t\t: ");
if (cur_cpu_spec->pvr_mask)
seq_printf(m, "%s", cur_cpu_spec->cpu_name);
else
seq_printf(m, "unknown (%08x)", pvr);
#ifdef CONFIG_ALTIVEC
if (cpu_has_feature(CPU_FTR_ALTIVEC))
seq_printf(m, ", altivec supported");
#endif /* CONFIG_ALTIVEC */
seq_printf(m, "\n");
#ifdef CONFIG_TAU
if (cur_cpu_spec->cpu_features & CPU_FTR_TAU) {
#ifdef CONFIG_TAU_AVERAGE
/* more straightforward, but potentially misleading */
seq_printf(m, "temperature \t: %u C (uncalibrated)\n",
cpu_temp(cpu_id));
#else
/* show the actual temp sensor range */
u32 temp;
temp = cpu_temp_both(cpu_id);
seq_printf(m, "temperature \t: %u-%u C (uncalibrated)\n",
temp & 0xff, temp >> 16);
#endif
}
#endif /* CONFIG_TAU */
/*
* Platforms that have variable clock rates, should implement
* the method ppc_md.get_proc_freq() that reports the clock
* rate of a given cpu. The rest can use ppc_proc_freq to
* report the clock rate that is same across all cpus.
*/
if (ppc_md.get_proc_freq)
proc_freq = ppc_md.get_proc_freq(cpu_id);
else
proc_freq = ppc_proc_freq;
if (proc_freq)
seq_printf(m, "clock\t\t: %lu.%06luMHz\n",
proc_freq / 1000000, proc_freq % 1000000);
if (ppc_md.show_percpuinfo != NULL)
ppc_md.show_percpuinfo(m, cpu_id);
/* If we are a Freescale core do a simple check so
* we dont have to keep adding cases in the future */
if (PVR_VER(pvr) & 0x8000) {
switch (PVR_VER(pvr)) {
case 0x8000: /* 7441/7450/7451, Voyager */
case 0x8001: /* 7445/7455, Apollo 6 */
case 0x8002: /* 7447/7457, Apollo 7 */
case 0x8003: /* 7447A, Apollo 7 PM */
case 0x8004: /* 7448, Apollo 8 */
case 0x800c: /* 7410, Nitro */
maj = ((pvr >> 8) & 0xF);
min = PVR_MIN(pvr);
break;
default: /* e500/book-e */
maj = PVR_MAJ(pvr);
min = PVR_MIN(pvr);
break;
}
} else {
switch (PVR_VER(pvr)) {
case 0x0020: /* 403 family */
maj = PVR_MAJ(pvr) + 1;
min = PVR_MIN(pvr);
break;
case 0x1008: /* 740P/750P ?? */
maj = ((pvr >> 8) & 0xFF) - 1;
min = pvr & 0xFF;
break;
default:
maj = (pvr >> 8) & 0xFF;
min = pvr & 0xFF;
break;
}
}
seq_printf(m, "revision\t: %hd.%hd (pvr %04x %04x)\n",
maj, min, PVR_VER(pvr), PVR_REV(pvr));
#ifdef CONFIG_PPC32
seq_printf(m, "bogomips\t: %lu.%02lu\n",
loops_per_jiffy / (500000/HZ),
(loops_per_jiffy / (5000/HZ)) % 100);
#endif
#ifdef CONFIG_SMP
seq_printf(m, "\n");
#endif
preempt_enable();
/* If this is the last cpu, print the summary */
if (cpumask_next(cpu_id, cpu_online_mask) >= nr_cpu_ids)
show_cpuinfo_summary(m);
return 0;
}
static void *c_start(struct seq_file *m, loff_t *pos)
{
if (*pos == 0) /* just in case, cpu 0 is not the first */
*pos = cpumask_first(cpu_online_mask);
else
*pos = cpumask_next(*pos - 1, cpu_online_mask);
if ((*pos) < nr_cpu_ids)
return (void *)(unsigned long)(*pos + 1);
return NULL;
}
static void *c_next(struct seq_file *m, void *v, loff_t *pos)
{
(*pos)++;
return c_start(m, pos);
}
static void c_stop(struct seq_file *m, void *v)
{
}
const struct seq_operations cpuinfo_op = {
.start =c_start,
.next = c_next,
.stop = c_stop,
.show = show_cpuinfo,
};
void __init check_for_initrd(void)
{
#ifdef CONFIG_BLK_DEV_INITRD
DBG(" -> check_for_initrd() initrd_start=0x%lx initrd_end=0x%lx\n",
initrd_start, initrd_end);
/* If we were passed an initrd, set the ROOT_DEV properly if the values
* look sensible. If not, clear initrd reference.
*/
if (is_kernel_addr(initrd_start) && is_kernel_addr(initrd_end) &&
initrd_end > initrd_start)
ROOT_DEV = Root_RAM0;
else
initrd_start = initrd_end = 0;
if (initrd_start)
printk("Found initrd at 0x%lx:0x%lx\n", initrd_start, initrd_end);
DBG(" <- check_for_initrd()\n");
#endif /* CONFIG_BLK_DEV_INITRD */
}
#ifdef CONFIG_SMP
int threads_per_core, threads_per_subcore, threads_shift;
cpumask_t threads_core_mask;
EXPORT_SYMBOL_GPL(threads_per_core);
EXPORT_SYMBOL_GPL(threads_per_subcore);
EXPORT_SYMBOL_GPL(threads_shift);
EXPORT_SYMBOL_GPL(threads_core_mask);
static void __init cpu_init_thread_core_maps(int tpc)
{
int i;
threads_per_core = tpc;
threads_per_subcore = tpc;
cpumask_clear(&threads_core_mask);
/* This implementation only supports power of 2 number of threads
* for simplicity and performance
*/
threads_shift = ilog2(tpc);
BUG_ON(tpc != (1 << threads_shift));
for (i = 0; i < tpc; i++)
cpumask_set_cpu(i, &threads_core_mask);
printk(KERN_INFO "CPU maps initialized for %d thread%s per core\n",
tpc, tpc > 1 ? "s" : "");
printk(KERN_DEBUG " (thread shift is %d)\n", threads_shift);
}
/**
* setup_cpu_maps - initialize the following cpu maps:
* cpu_possible_mask
* cpu_present_mask
*
* Having the possible map set up early allows us to restrict allocations
* of things like irqstacks to nr_cpu_ids rather than NR_CPUS.
*
* We do not initialize the online map here; cpus set their own bits in
* cpu_online_mask as they come up.
*
* This function is valid only for Open Firmware systems. finish_device_tree
* must be called before using this.
*
* While we're here, we may as well set the "physical" cpu ids in the paca.
*
* NOTE: This must match the parsing done in early_init_dt_scan_cpus.
*/
void __init smp_setup_cpu_maps(void)
{
struct device_node *dn = NULL;
int cpu = 0;
int nthreads = 1;
DBG("smp_setup_cpu_maps()\n");
while ((dn = of_find_node_by_type(dn, "cpu")) && cpu < nr_cpu_ids) {
const __be32 *intserv;
__be32 cpu_be;
int j, len;
DBG(" * %s...\n", dn->full_name);
intserv = of_get_property(dn, "ibm,ppc-interrupt-server#s",
&len);
if (intserv) {
nthreads = len / sizeof(int);
DBG(" ibm,ppc-interrupt-server#s -> %d threads\n",
nthreads);
} else {
DBG(" no ibm,ppc-interrupt-server#s -> 1 thread\n");
intserv = of_get_property(dn, "reg", NULL);
if (!intserv) {
cpu_be = cpu_to_be32(cpu);
intserv = &cpu_be; /* assume logical == phys */
}
}
for (j = 0; j < nthreads && cpu < nr_cpu_ids; j++) {
DBG(" thread %d -> cpu %d (hard id %d)\n",
j, cpu, be32_to_cpu(intserv[j]));
set_cpu_present(cpu, of_device_is_available(dn));
set_hard_smp_processor_id(cpu, be32_to_cpu(intserv[j]));
set_cpu_possible(cpu, true);
cpu++;
}
}
/* If no SMT supported, nthreads is forced to 1 */
if (!cpu_has_feature(CPU_FTR_SMT)) {
DBG(" SMT disabled ! nthreads forced to 1\n");
nthreads = 1;
}
#ifdef CONFIG_PPC64
/*
* On pSeries LPAR, we need to know how many cpus
* could possibly be added to this partition.
*/
if (machine_is(pseries) && firmware_has_feature(FW_FEATURE_LPAR) &&
(dn = of_find_node_by_path("/rtas"))) {
int num_addr_cell, num_size_cell, maxcpus;
const __be32 *ireg;
num_addr_cell = of_n_addr_cells(dn);
num_size_cell = of_n_size_cells(dn);
ireg = of_get_property(dn, "ibm,lrdr-capacity", NULL);
if (!ireg)
goto out;
maxcpus = be32_to_cpup(ireg + num_addr_cell + num_size_cell);
/* Double maxcpus for processors which have SMT capability */
if (cpu_has_feature(CPU_FTR_SMT))
maxcpus *= nthreads;
if (maxcpus > nr_cpu_ids) {
printk(KERN_WARNING
"Partition configured for %d cpus, "
"operating system maximum is %d.\n",
maxcpus, nr_cpu_ids);
maxcpus = nr_cpu_ids;
} else
printk(KERN_INFO "Partition configured for %d cpus.\n",
maxcpus);
for (cpu = 0; cpu < maxcpus; cpu++)
set_cpu_possible(cpu, true);
out:
of_node_put(dn);
}
vdso_data->processorCount = num_present_cpus();
#endif /* CONFIG_PPC64 */
/* Initialize CPU <=> thread mapping/
*
* WARNING: We assume that the number of threads is the same for
* every CPU in the system. If that is not the case, then some code
* here will have to be reworked
*/
cpu_init_thread_core_maps(nthreads);
/* Now that possible cpus are set, set nr_cpu_ids for later use */
setup_nr_cpu_ids();
free_unused_pacas();
}
#endif /* CONFIG_SMP */
#ifdef CONFIG_PCSPKR_PLATFORM
static __init int add_pcspkr(void)
{
struct device_node *np;
struct platform_device *pd;
int ret;
np = of_find_compatible_node(NULL, NULL, "pnpPNP,100");
of_node_put(np);
if (!np)
return -ENODEV;
pd = platform_device_alloc("pcspkr", -1);
if (!pd)
return -ENOMEM;
ret = platform_device_add(pd);
if (ret)
platform_device_put(pd);
return ret;
}
device_initcall(add_pcspkr);
#endif /* CONFIG_PCSPKR_PLATFORM */
void probe_machine(void)
{
extern struct machdep_calls __machine_desc_start;
extern struct machdep_calls __machine_desc_end;
/*
* Iterate all ppc_md structures until we find the proper
* one for the current machine type
*/
DBG("Probing machine type ...\n");
for (machine_id = &__machine_desc_start;
machine_id < &__machine_desc_end;
machine_id++) {
DBG(" %s ...", machine_id->name);
memcpy(&ppc_md, machine_id, sizeof(struct machdep_calls));
if (ppc_md.probe()) {
DBG(" match !\n");
break;
}
DBG("\n");
}
/* What can we do if we didn't find ? */
if (machine_id >= &__machine_desc_end) {
DBG("No suitable machine found !\n");
for (;;);
}
printk(KERN_INFO "Using %s machine description\n", ppc_md.name);
}
/* Match a class of boards, not a specific device configuration. */
int check_legacy_ioport(unsigned long base_port)
{
struct device_node *parent, *np = NULL;
int ret = -ENODEV;
switch(base_port) {
case I8042_DATA_REG:
if (!(np = of_find_compatible_node(NULL, NULL, "pnpPNP,303")))
np = of_find_compatible_node(NULL, NULL, "pnpPNP,f03");
if (np) {
parent = of_get_parent(np);
of_i8042_kbd_irq = irq_of_parse_and_map(parent, 0);
if (!of_i8042_kbd_irq)
of_i8042_kbd_irq = 1;
of_i8042_aux_irq = irq_of_parse_and_map(parent, 1);
if (!of_i8042_aux_irq)
of_i8042_aux_irq = 12;
of_node_put(np);
np = parent;
break;
}
np = of_find_node_by_type(NULL, "8042");
/* Pegasos has no device_type on its 8042 node, look for the
* name instead */
if (!np)
np = of_find_node_by_name(NULL, "8042");
if (np) {
of_i8042_kbd_irq = 1;
of_i8042_aux_irq = 12;
}
break;
case FDC_BASE: /* FDC1 */
np = of_find_node_by_type(NULL, "fdc");
break;
default:
/* ipmi is supposed to fail here */
break;
}
if (!np)
return ret;
parent = of_get_parent(np);
if (parent) {
if (strcmp(parent->type, "isa") == 0)
ret = 0;
of_node_put(parent);
}
of_node_put(np);
return ret;
}
EXPORT_SYMBOL(check_legacy_ioport);
static int ppc_panic_event(struct notifier_block *this,
unsigned long event, void *ptr)
{
/*
* If firmware-assisted dump has been registered then trigger
* firmware-assisted dump and let firmware handle everything else.
*/
crash_fadump(NULL, ptr);
ppc_md.panic(ptr); /* May not return */
return NOTIFY_DONE;
}
static struct notifier_block ppc_panic_block = {
.notifier_call = ppc_panic_event,
.priority = INT_MIN /* may not return; must be done last */
};
void __init setup_panic(void)
{
atomic_notifier_chain_register(&panic_notifier_list, &ppc_panic_block);
}
#ifdef CONFIG_CHECK_CACHE_COHERENCY
/*
* For platforms that have configurable cache-coherency. This function
* checks that the cache coherency setting of the kernel matches the setting
* left by the firmware, as indicated in the device tree. Since a mismatch
* will eventually result in DMA failures, we print * and error and call
* BUG() in that case.
*/
#ifdef CONFIG_NOT_COHERENT_CACHE
#define KERNEL_COHERENCY 0
#else
#define KERNEL_COHERENCY 1
#endif
static int __init check_cache_coherency(void)
{
struct device_node *np;
const void *prop;
int devtree_coherency;
np = of_find_node_by_path("/");
prop = of_get_property(np, "coherency-off", NULL);
of_node_put(np);
devtree_coherency = prop ? 0 : 1;
if (devtree_coherency != KERNEL_COHERENCY) {
printk(KERN_ERR
"kernel coherency:%s != device tree_coherency:%s\n",
KERNEL_COHERENCY ? "on" : "off",
devtree_coherency ? "on" : "off");
BUG();
}
return 0;
}
late_initcall(check_cache_coherency);
#endif /* CONFIG_CHECK_CACHE_COHERENCY */
#ifdef CONFIG_DEBUG_FS
struct dentry *powerpc_debugfs_root;
EXPORT_SYMBOL(powerpc_debugfs_root);
static int powerpc_debugfs_init(void)
{
powerpc_debugfs_root = debugfs_create_dir("powerpc", NULL);
return powerpc_debugfs_root == NULL;
}
arch_initcall(powerpc_debugfs_init);
#endif
void ppc_printk_progress(char *s, unsigned short hex)
{
pr_info("%s\n", s);
}
void arch_setup_pdev_archdata(struct platform_device *pdev)
{
pdev->archdata.dma_mask = DMA_BIT_MASK(32);
pdev->dev.dma_mask = &pdev->archdata.dma_mask;
set_dma_ops(&pdev->dev, &dma_direct_ops);
}