linux/drivers/gpu/drm/i915/intel_display.c
Ville Syrjälä d492a29d8c drm/i915: Use mul_u32_u32() more
We have a lot of '(u64)foo * bar' everywhere. Replace with
mul_u32_u32() to avoid gcc failing to use a regular 32x32->64
multiply for this.

Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190408152702.4153-1-ville.syrjala@linux.intel.com
Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk>
2019-05-03 20:09:51 +03:00

16870 lines
477 KiB
C

/*
* Copyright © 2006-2007 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*
* Authors:
* Eric Anholt <eric@anholt.net>
*/
#include <linux/i2c.h>
#include <linux/input.h>
#include <linux/intel-iommu.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/reservation.h>
#include <linux/slab.h>
#include <linux/vgaarb.h>
#include <drm/drm_atomic.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_atomic_uapi.h>
#include <drm/drm_dp_helper.h>
#include <drm/drm_edid.h>
#include <drm/drm_fourcc.h>
#include <drm/drm_plane_helper.h>
#include <drm/drm_probe_helper.h>
#include <drm/drm_rect.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
#include "i915_gem_clflush.h"
#include "i915_trace.h"
#include "intel_acpi.h"
#include "intel_atomic.h"
#include "intel_atomic_plane.h"
#include "intel_color.h"
#include "intel_cdclk.h"
#include "intel_crt.h"
#include "intel_ddi.h"
#include "intel_dp.h"
#include "intel_drv.h"
#include "intel_dsi.h"
#include "intel_dvo.h"
#include "intel_fbc.h"
#include "intel_fbdev.h"
#include "intel_fifo_underrun.h"
#include "intel_frontbuffer.h"
#include "intel_gmbus.h"
#include "intel_hdcp.h"
#include "intel_hdmi.h"
#include "intel_hotplug.h"
#include "intel_lvds.h"
#include "intel_overlay.h"
#include "intel_pipe_crc.h"
#include "intel_pm.h"
#include "intel_psr.h"
#include "intel_quirks.h"
#include "intel_sdvo.h"
#include "intel_sideband.h"
#include "intel_sprite.h"
#include "intel_tv.h"
#include "intel_vdsc.h"
/* Primary plane formats for gen <= 3 */
static const u32 i8xx_primary_formats[] = {
DRM_FORMAT_C8,
DRM_FORMAT_RGB565,
DRM_FORMAT_XRGB1555,
DRM_FORMAT_XRGB8888,
};
/* Primary plane formats for gen >= 4 */
static const u32 i965_primary_formats[] = {
DRM_FORMAT_C8,
DRM_FORMAT_RGB565,
DRM_FORMAT_XRGB8888,
DRM_FORMAT_XBGR8888,
DRM_FORMAT_XRGB2101010,
DRM_FORMAT_XBGR2101010,
};
static const u64 i9xx_format_modifiers[] = {
I915_FORMAT_MOD_X_TILED,
DRM_FORMAT_MOD_LINEAR,
DRM_FORMAT_MOD_INVALID
};
/* Cursor formats */
static const u32 intel_cursor_formats[] = {
DRM_FORMAT_ARGB8888,
};
static const u64 cursor_format_modifiers[] = {
DRM_FORMAT_MOD_LINEAR,
DRM_FORMAT_MOD_INVALID
};
static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
struct intel_crtc_state *pipe_config);
static void ironlake_pch_clock_get(struct intel_crtc *crtc,
struct intel_crtc_state *pipe_config);
static int intel_framebuffer_init(struct intel_framebuffer *ifb,
struct drm_i915_gem_object *obj,
struct drm_mode_fb_cmd2 *mode_cmd);
static void intel_set_pipe_timings(const struct intel_crtc_state *crtc_state);
static void intel_set_pipe_src_size(const struct intel_crtc_state *crtc_state);
static void intel_cpu_transcoder_set_m_n(const struct intel_crtc_state *crtc_state,
const struct intel_link_m_n *m_n,
const struct intel_link_m_n *m2_n2);
static void i9xx_set_pipeconf(const struct intel_crtc_state *crtc_state);
static void ironlake_set_pipeconf(const struct intel_crtc_state *crtc_state);
static void haswell_set_pipeconf(const struct intel_crtc_state *crtc_state);
static void bdw_set_pipemisc(const struct intel_crtc_state *crtc_state);
static void vlv_prepare_pll(struct intel_crtc *crtc,
const struct intel_crtc_state *pipe_config);
static void chv_prepare_pll(struct intel_crtc *crtc,
const struct intel_crtc_state *pipe_config);
static void intel_begin_crtc_commit(struct intel_atomic_state *, struct intel_crtc *);
static void intel_finish_crtc_commit(struct intel_atomic_state *, struct intel_crtc *);
static void intel_crtc_init_scalers(struct intel_crtc *crtc,
struct intel_crtc_state *crtc_state);
static void skylake_pfit_enable(const struct intel_crtc_state *crtc_state);
static void ironlake_pfit_disable(const struct intel_crtc_state *old_crtc_state);
static void ironlake_pfit_enable(const struct intel_crtc_state *crtc_state);
static void intel_modeset_setup_hw_state(struct drm_device *dev,
struct drm_modeset_acquire_ctx *ctx);
static void intel_pre_disable_primary_noatomic(struct drm_crtc *crtc);
struct intel_limit {
struct {
int min, max;
} dot, vco, n, m, m1, m2, p, p1;
struct {
int dot_limit;
int p2_slow, p2_fast;
} p2;
};
/* returns HPLL frequency in kHz */
int vlv_get_hpll_vco(struct drm_i915_private *dev_priv)
{
int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
/* Obtain SKU information */
hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
CCK_FUSE_HPLL_FREQ_MASK;
return vco_freq[hpll_freq] * 1000;
}
int vlv_get_cck_clock(struct drm_i915_private *dev_priv,
const char *name, u32 reg, int ref_freq)
{
u32 val;
int divider;
val = vlv_cck_read(dev_priv, reg);
divider = val & CCK_FREQUENCY_VALUES;
WARN((val & CCK_FREQUENCY_STATUS) !=
(divider << CCK_FREQUENCY_STATUS_SHIFT),
"%s change in progress\n", name);
return DIV_ROUND_CLOSEST(ref_freq << 1, divider + 1);
}
int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv,
const char *name, u32 reg)
{
int hpll;
vlv_cck_get(dev_priv);
if (dev_priv->hpll_freq == 0)
dev_priv->hpll_freq = vlv_get_hpll_vco(dev_priv);
hpll = vlv_get_cck_clock(dev_priv, name, reg, dev_priv->hpll_freq);
vlv_cck_put(dev_priv);
return hpll;
}
static void intel_update_czclk(struct drm_i915_private *dev_priv)
{
if (!(IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)))
return;
dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk",
CCK_CZ_CLOCK_CONTROL);
DRM_DEBUG_DRIVER("CZ clock rate: %d kHz\n", dev_priv->czclk_freq);
}
static inline u32 /* units of 100MHz */
intel_fdi_link_freq(struct drm_i915_private *dev_priv,
const struct intel_crtc_state *pipe_config)
{
if (HAS_DDI(dev_priv))
return pipe_config->port_clock; /* SPLL */
else
return dev_priv->fdi_pll_freq;
}
static const struct intel_limit intel_limits_i8xx_dac = {
.dot = { .min = 25000, .max = 350000 },
.vco = { .min = 908000, .max = 1512000 },
.n = { .min = 2, .max = 16 },
.m = { .min = 96, .max = 140 },
.m1 = { .min = 18, .max = 26 },
.m2 = { .min = 6, .max = 16 },
.p = { .min = 4, .max = 128 },
.p1 = { .min = 2, .max = 33 },
.p2 = { .dot_limit = 165000,
.p2_slow = 4, .p2_fast = 2 },
};
static const struct intel_limit intel_limits_i8xx_dvo = {
.dot = { .min = 25000, .max = 350000 },
.vco = { .min = 908000, .max = 1512000 },
.n = { .min = 2, .max = 16 },
.m = { .min = 96, .max = 140 },
.m1 = { .min = 18, .max = 26 },
.m2 = { .min = 6, .max = 16 },
.p = { .min = 4, .max = 128 },
.p1 = { .min = 2, .max = 33 },
.p2 = { .dot_limit = 165000,
.p2_slow = 4, .p2_fast = 4 },
};
static const struct intel_limit intel_limits_i8xx_lvds = {
.dot = { .min = 25000, .max = 350000 },
.vco = { .min = 908000, .max = 1512000 },
.n = { .min = 2, .max = 16 },
.m = { .min = 96, .max = 140 },
.m1 = { .min = 18, .max = 26 },
.m2 = { .min = 6, .max = 16 },
.p = { .min = 4, .max = 128 },
.p1 = { .min = 1, .max = 6 },
.p2 = { .dot_limit = 165000,
.p2_slow = 14, .p2_fast = 7 },
};
static const struct intel_limit intel_limits_i9xx_sdvo = {
.dot = { .min = 20000, .max = 400000 },
.vco = { .min = 1400000, .max = 2800000 },
.n = { .min = 1, .max = 6 },
.m = { .min = 70, .max = 120 },
.m1 = { .min = 8, .max = 18 },
.m2 = { .min = 3, .max = 7 },
.p = { .min = 5, .max = 80 },
.p1 = { .min = 1, .max = 8 },
.p2 = { .dot_limit = 200000,
.p2_slow = 10, .p2_fast = 5 },
};
static const struct intel_limit intel_limits_i9xx_lvds = {
.dot = { .min = 20000, .max = 400000 },
.vco = { .min = 1400000, .max = 2800000 },
.n = { .min = 1, .max = 6 },
.m = { .min = 70, .max = 120 },
.m1 = { .min = 8, .max = 18 },
.m2 = { .min = 3, .max = 7 },
.p = { .min = 7, .max = 98 },
.p1 = { .min = 1, .max = 8 },
.p2 = { .dot_limit = 112000,
.p2_slow = 14, .p2_fast = 7 },
};
static const struct intel_limit intel_limits_g4x_sdvo = {
.dot = { .min = 25000, .max = 270000 },
.vco = { .min = 1750000, .max = 3500000},
.n = { .min = 1, .max = 4 },
.m = { .min = 104, .max = 138 },
.m1 = { .min = 17, .max = 23 },
.m2 = { .min = 5, .max = 11 },
.p = { .min = 10, .max = 30 },
.p1 = { .min = 1, .max = 3},
.p2 = { .dot_limit = 270000,
.p2_slow = 10,
.p2_fast = 10
},
};
static const struct intel_limit intel_limits_g4x_hdmi = {
.dot = { .min = 22000, .max = 400000 },
.vco = { .min = 1750000, .max = 3500000},
.n = { .min = 1, .max = 4 },
.m = { .min = 104, .max = 138 },
.m1 = { .min = 16, .max = 23 },
.m2 = { .min = 5, .max = 11 },
.p = { .min = 5, .max = 80 },
.p1 = { .min = 1, .max = 8},
.p2 = { .dot_limit = 165000,
.p2_slow = 10, .p2_fast = 5 },
};
static const struct intel_limit intel_limits_g4x_single_channel_lvds = {
.dot = { .min = 20000, .max = 115000 },
.vco = { .min = 1750000, .max = 3500000 },
.n = { .min = 1, .max = 3 },
.m = { .min = 104, .max = 138 },
.m1 = { .min = 17, .max = 23 },
.m2 = { .min = 5, .max = 11 },
.p = { .min = 28, .max = 112 },
.p1 = { .min = 2, .max = 8 },
.p2 = { .dot_limit = 0,
.p2_slow = 14, .p2_fast = 14
},
};
static const struct intel_limit intel_limits_g4x_dual_channel_lvds = {
.dot = { .min = 80000, .max = 224000 },
.vco = { .min = 1750000, .max = 3500000 },
.n = { .min = 1, .max = 3 },
.m = { .min = 104, .max = 138 },
.m1 = { .min = 17, .max = 23 },
.m2 = { .min = 5, .max = 11 },
.p = { .min = 14, .max = 42 },
.p1 = { .min = 2, .max = 6 },
.p2 = { .dot_limit = 0,
.p2_slow = 7, .p2_fast = 7
},
};
static const struct intel_limit intel_limits_pineview_sdvo = {
.dot = { .min = 20000, .max = 400000},
.vco = { .min = 1700000, .max = 3500000 },
/* Pineview's Ncounter is a ring counter */
.n = { .min = 3, .max = 6 },
.m = { .min = 2, .max = 256 },
/* Pineview only has one combined m divider, which we treat as m2. */
.m1 = { .min = 0, .max = 0 },
.m2 = { .min = 0, .max = 254 },
.p = { .min = 5, .max = 80 },
.p1 = { .min = 1, .max = 8 },
.p2 = { .dot_limit = 200000,
.p2_slow = 10, .p2_fast = 5 },
};
static const struct intel_limit intel_limits_pineview_lvds = {
.dot = { .min = 20000, .max = 400000 },
.vco = { .min = 1700000, .max = 3500000 },
.n = { .min = 3, .max = 6 },
.m = { .min = 2, .max = 256 },
.m1 = { .min = 0, .max = 0 },
.m2 = { .min = 0, .max = 254 },
.p = { .min = 7, .max = 112 },
.p1 = { .min = 1, .max = 8 },
.p2 = { .dot_limit = 112000,
.p2_slow = 14, .p2_fast = 14 },
};
/* Ironlake / Sandybridge
*
* We calculate clock using (register_value + 2) for N/M1/M2, so here
* the range value for them is (actual_value - 2).
*/
static const struct intel_limit intel_limits_ironlake_dac = {
.dot = { .min = 25000, .max = 350000 },
.vco = { .min = 1760000, .max = 3510000 },
.n = { .min = 1, .max = 5 },
.m = { .min = 79, .max = 127 },
.m1 = { .min = 12, .max = 22 },
.m2 = { .min = 5, .max = 9 },
.p = { .min = 5, .max = 80 },
.p1 = { .min = 1, .max = 8 },
.p2 = { .dot_limit = 225000,
.p2_slow = 10, .p2_fast = 5 },
};
static const struct intel_limit intel_limits_ironlake_single_lvds = {
.dot = { .min = 25000, .max = 350000 },
.vco = { .min = 1760000, .max = 3510000 },
.n = { .min = 1, .max = 3 },
.m = { .min = 79, .max = 118 },
.m1 = { .min = 12, .max = 22 },
.m2 = { .min = 5, .max = 9 },
.p = { .min = 28, .max = 112 },
.p1 = { .min = 2, .max = 8 },
.p2 = { .dot_limit = 225000,
.p2_slow = 14, .p2_fast = 14 },
};
static const struct intel_limit intel_limits_ironlake_dual_lvds = {
.dot = { .min = 25000, .max = 350000 },
.vco = { .min = 1760000, .max = 3510000 },
.n = { .min = 1, .max = 3 },
.m = { .min = 79, .max = 127 },
.m1 = { .min = 12, .max = 22 },
.m2 = { .min = 5, .max = 9 },
.p = { .min = 14, .max = 56 },
.p1 = { .min = 2, .max = 8 },
.p2 = { .dot_limit = 225000,
.p2_slow = 7, .p2_fast = 7 },
};
/* LVDS 100mhz refclk limits. */
static const struct intel_limit intel_limits_ironlake_single_lvds_100m = {
.dot = { .min = 25000, .max = 350000 },
.vco = { .min = 1760000, .max = 3510000 },
.n = { .min = 1, .max = 2 },
.m = { .min = 79, .max = 126 },
.m1 = { .min = 12, .max = 22 },
.m2 = { .min = 5, .max = 9 },
.p = { .min = 28, .max = 112 },
.p1 = { .min = 2, .max = 8 },
.p2 = { .dot_limit = 225000,
.p2_slow = 14, .p2_fast = 14 },
};
static const struct intel_limit intel_limits_ironlake_dual_lvds_100m = {
.dot = { .min = 25000, .max = 350000 },
.vco = { .min = 1760000, .max = 3510000 },
.n = { .min = 1, .max = 3 },
.m = { .min = 79, .max = 126 },
.m1 = { .min = 12, .max = 22 },
.m2 = { .min = 5, .max = 9 },
.p = { .min = 14, .max = 42 },
.p1 = { .min = 2, .max = 6 },
.p2 = { .dot_limit = 225000,
.p2_slow = 7, .p2_fast = 7 },
};
static const struct intel_limit intel_limits_vlv = {
/*
* These are the data rate limits (measured in fast clocks)
* since those are the strictest limits we have. The fast
* clock and actual rate limits are more relaxed, so checking
* them would make no difference.
*/
.dot = { .min = 25000 * 5, .max = 270000 * 5 },
.vco = { .min = 4000000, .max = 6000000 },
.n = { .min = 1, .max = 7 },
.m1 = { .min = 2, .max = 3 },
.m2 = { .min = 11, .max = 156 },
.p1 = { .min = 2, .max = 3 },
.p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
};
static const struct intel_limit intel_limits_chv = {
/*
* These are the data rate limits (measured in fast clocks)
* since those are the strictest limits we have. The fast
* clock and actual rate limits are more relaxed, so checking
* them would make no difference.
*/
.dot = { .min = 25000 * 5, .max = 540000 * 5},
.vco = { .min = 4800000, .max = 6480000 },
.n = { .min = 1, .max = 1 },
.m1 = { .min = 2, .max = 2 },
.m2 = { .min = 24 << 22, .max = 175 << 22 },
.p1 = { .min = 2, .max = 4 },
.p2 = { .p2_slow = 1, .p2_fast = 14 },
};
static const struct intel_limit intel_limits_bxt = {
/* FIXME: find real dot limits */
.dot = { .min = 0, .max = INT_MAX },
.vco = { .min = 4800000, .max = 6700000 },
.n = { .min = 1, .max = 1 },
.m1 = { .min = 2, .max = 2 },
/* FIXME: find real m2 limits */
.m2 = { .min = 2 << 22, .max = 255 << 22 },
.p1 = { .min = 2, .max = 4 },
.p2 = { .p2_slow = 1, .p2_fast = 20 },
};
/* WA Display #0827: Gen9:all */
static void
skl_wa_827(struct drm_i915_private *dev_priv, int pipe, bool enable)
{
if (enable)
I915_WRITE(CLKGATE_DIS_PSL(pipe),
I915_READ(CLKGATE_DIS_PSL(pipe)) |
DUPS1_GATING_DIS | DUPS2_GATING_DIS);
else
I915_WRITE(CLKGATE_DIS_PSL(pipe),
I915_READ(CLKGATE_DIS_PSL(pipe)) &
~(DUPS1_GATING_DIS | DUPS2_GATING_DIS));
}
/* Wa_2006604312:icl */
static void
icl_wa_scalerclkgating(struct drm_i915_private *dev_priv, enum pipe pipe,
bool enable)
{
if (enable)
I915_WRITE(CLKGATE_DIS_PSL(pipe),
I915_READ(CLKGATE_DIS_PSL(pipe)) | DPFR_GATING_DIS);
else
I915_WRITE(CLKGATE_DIS_PSL(pipe),
I915_READ(CLKGATE_DIS_PSL(pipe)) & ~DPFR_GATING_DIS);
}
static bool
needs_modeset(const struct drm_crtc_state *state)
{
return drm_atomic_crtc_needs_modeset(state);
}
/*
* Platform specific helpers to calculate the port PLL loopback- (clock.m),
* and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
* (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
* The helpers' return value is the rate of the clock that is fed to the
* display engine's pipe which can be the above fast dot clock rate or a
* divided-down version of it.
*/
/* m1 is reserved as 0 in Pineview, n is a ring counter */
static int pnv_calc_dpll_params(int refclk, struct dpll *clock)
{
clock->m = clock->m2 + 2;
clock->p = clock->p1 * clock->p2;
if (WARN_ON(clock->n == 0 || clock->p == 0))
return 0;
clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
return clock->dot;
}
static u32 i9xx_dpll_compute_m(struct dpll *dpll)
{
return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
}
static int i9xx_calc_dpll_params(int refclk, struct dpll *clock)
{
clock->m = i9xx_dpll_compute_m(clock);
clock->p = clock->p1 * clock->p2;
if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
return 0;
clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
return clock->dot;
}
static int vlv_calc_dpll_params(int refclk, struct dpll *clock)
{
clock->m = clock->m1 * clock->m2;
clock->p = clock->p1 * clock->p2;
if (WARN_ON(clock->n == 0 || clock->p == 0))
return 0;
clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
return clock->dot / 5;
}
int chv_calc_dpll_params(int refclk, struct dpll *clock)
{
clock->m = clock->m1 * clock->m2;
clock->p = clock->p1 * clock->p2;
if (WARN_ON(clock->n == 0 || clock->p == 0))
return 0;
clock->vco = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(refclk, clock->m),
clock->n << 22);
clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
return clock->dot / 5;
}
#define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
/*
* Returns whether the given set of divisors are valid for a given refclk with
* the given connectors.
*/
static bool intel_PLL_is_valid(struct drm_i915_private *dev_priv,
const struct intel_limit *limit,
const struct dpll *clock)
{
if (clock->n < limit->n.min || limit->n.max < clock->n)
INTELPllInvalid("n out of range\n");
if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
INTELPllInvalid("p1 out of range\n");
if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
INTELPllInvalid("m2 out of range\n");
if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
INTELPllInvalid("m1 out of range\n");
if (!IS_PINEVIEW(dev_priv) && !IS_VALLEYVIEW(dev_priv) &&
!IS_CHERRYVIEW(dev_priv) && !IS_GEN9_LP(dev_priv))
if (clock->m1 <= clock->m2)
INTELPllInvalid("m1 <= m2\n");
if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
!IS_GEN9_LP(dev_priv)) {
if (clock->p < limit->p.min || limit->p.max < clock->p)
INTELPllInvalid("p out of range\n");
if (clock->m < limit->m.min || limit->m.max < clock->m)
INTELPllInvalid("m out of range\n");
}
if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
INTELPllInvalid("vco out of range\n");
/* XXX: We may need to be checking "Dot clock" depending on the multiplier,
* connector, etc., rather than just a single range.
*/
if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
INTELPllInvalid("dot out of range\n");
return true;
}
static int
i9xx_select_p2_div(const struct intel_limit *limit,
const struct intel_crtc_state *crtc_state,
int target)
{
struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
/*
* For LVDS just rely on its current settings for dual-channel.
* We haven't figured out how to reliably set up different
* single/dual channel state, if we even can.
*/
if (intel_is_dual_link_lvds(dev_priv))
return limit->p2.p2_fast;
else
return limit->p2.p2_slow;
} else {
if (target < limit->p2.dot_limit)
return limit->p2.p2_slow;
else
return limit->p2.p2_fast;
}
}
/*
* Returns a set of divisors for the desired target clock with the given
* refclk, or FALSE. The returned values represent the clock equation:
* reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
*
* Target and reference clocks are specified in kHz.
*
* If match_clock is provided, then best_clock P divider must match the P
* divider from @match_clock used for LVDS downclocking.
*/
static bool
i9xx_find_best_dpll(const struct intel_limit *limit,
struct intel_crtc_state *crtc_state,
int target, int refclk, struct dpll *match_clock,
struct dpll *best_clock)
{
struct drm_device *dev = crtc_state->base.crtc->dev;
struct dpll clock;
int err = target;
memset(best_clock, 0, sizeof(*best_clock));
clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
clock.m1++) {
for (clock.m2 = limit->m2.min;
clock.m2 <= limit->m2.max; clock.m2++) {
if (clock.m2 >= clock.m1)
break;
for (clock.n = limit->n.min;
clock.n <= limit->n.max; clock.n++) {
for (clock.p1 = limit->p1.min;
clock.p1 <= limit->p1.max; clock.p1++) {
int this_err;
i9xx_calc_dpll_params(refclk, &clock);
if (!intel_PLL_is_valid(to_i915(dev),
limit,
&clock))
continue;
if (match_clock &&
clock.p != match_clock->p)
continue;
this_err = abs(clock.dot - target);
if (this_err < err) {
*best_clock = clock;
err = this_err;
}
}
}
}
}
return (err != target);
}
/*
* Returns a set of divisors for the desired target clock with the given
* refclk, or FALSE. The returned values represent the clock equation:
* reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
*
* Target and reference clocks are specified in kHz.
*
* If match_clock is provided, then best_clock P divider must match the P
* divider from @match_clock used for LVDS downclocking.
*/
static bool
pnv_find_best_dpll(const struct intel_limit *limit,
struct intel_crtc_state *crtc_state,
int target, int refclk, struct dpll *match_clock,
struct dpll *best_clock)
{
struct drm_device *dev = crtc_state->base.crtc->dev;
struct dpll clock;
int err = target;
memset(best_clock, 0, sizeof(*best_clock));
clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
clock.m1++) {
for (clock.m2 = limit->m2.min;
clock.m2 <= limit->m2.max; clock.m2++) {
for (clock.n = limit->n.min;
clock.n <= limit->n.max; clock.n++) {
for (clock.p1 = limit->p1.min;
clock.p1 <= limit->p1.max; clock.p1++) {
int this_err;
pnv_calc_dpll_params(refclk, &clock);
if (!intel_PLL_is_valid(to_i915(dev),
limit,
&clock))
continue;
if (match_clock &&
clock.p != match_clock->p)
continue;
this_err = abs(clock.dot - target);
if (this_err < err) {
*best_clock = clock;
err = this_err;
}
}
}
}
}
return (err != target);
}
/*
* Returns a set of divisors for the desired target clock with the given
* refclk, or FALSE. The returned values represent the clock equation:
* reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
*
* Target and reference clocks are specified in kHz.
*
* If match_clock is provided, then best_clock P divider must match the P
* divider from @match_clock used for LVDS downclocking.
*/
static bool
g4x_find_best_dpll(const struct intel_limit *limit,
struct intel_crtc_state *crtc_state,
int target, int refclk, struct dpll *match_clock,
struct dpll *best_clock)
{
struct drm_device *dev = crtc_state->base.crtc->dev;
struct dpll clock;
int max_n;
bool found = false;
/* approximately equals target * 0.00585 */
int err_most = (target >> 8) + (target >> 9);
memset(best_clock, 0, sizeof(*best_clock));
clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
max_n = limit->n.max;
/* based on hardware requirement, prefer smaller n to precision */
for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
/* based on hardware requirement, prefere larger m1,m2 */
for (clock.m1 = limit->m1.max;
clock.m1 >= limit->m1.min; clock.m1--) {
for (clock.m2 = limit->m2.max;
clock.m2 >= limit->m2.min; clock.m2--) {
for (clock.p1 = limit->p1.max;
clock.p1 >= limit->p1.min; clock.p1--) {
int this_err;
i9xx_calc_dpll_params(refclk, &clock);
if (!intel_PLL_is_valid(to_i915(dev),
limit,
&clock))
continue;
this_err = abs(clock.dot - target);
if (this_err < err_most) {
*best_clock = clock;
err_most = this_err;
max_n = clock.n;
found = true;
}
}
}
}
}
return found;
}
/*
* Check if the calculated PLL configuration is more optimal compared to the
* best configuration and error found so far. Return the calculated error.
*/
static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
const struct dpll *calculated_clock,
const struct dpll *best_clock,
unsigned int best_error_ppm,
unsigned int *error_ppm)
{
/*
* For CHV ignore the error and consider only the P value.
* Prefer a bigger P value based on HW requirements.
*/
if (IS_CHERRYVIEW(to_i915(dev))) {
*error_ppm = 0;
return calculated_clock->p > best_clock->p;
}
if (WARN_ON_ONCE(!target_freq))
return false;
*error_ppm = div_u64(1000000ULL *
abs(target_freq - calculated_clock->dot),
target_freq);
/*
* Prefer a better P value over a better (smaller) error if the error
* is small. Ensure this preference for future configurations too by
* setting the error to 0.
*/
if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
*error_ppm = 0;
return true;
}
return *error_ppm + 10 < best_error_ppm;
}
/*
* Returns a set of divisors for the desired target clock with the given
* refclk, or FALSE. The returned values represent the clock equation:
* reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
*/
static bool
vlv_find_best_dpll(const struct intel_limit *limit,
struct intel_crtc_state *crtc_state,
int target, int refclk, struct dpll *match_clock,
struct dpll *best_clock)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
struct drm_device *dev = crtc->base.dev;
struct dpll clock;
unsigned int bestppm = 1000000;
/* min update 19.2 MHz */
int max_n = min(limit->n.max, refclk / 19200);
bool found = false;
target *= 5; /* fast clock */
memset(best_clock, 0, sizeof(*best_clock));
/* based on hardware requirement, prefer smaller n to precision */
for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
clock.p2 -= clock.p2 > 10 ? 2 : 1) {
clock.p = clock.p1 * clock.p2;
/* based on hardware requirement, prefer bigger m1,m2 values */
for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
unsigned int ppm;
clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
refclk * clock.m1);
vlv_calc_dpll_params(refclk, &clock);
if (!intel_PLL_is_valid(to_i915(dev),
limit,
&clock))
continue;
if (!vlv_PLL_is_optimal(dev, target,
&clock,
best_clock,
bestppm, &ppm))
continue;
*best_clock = clock;
bestppm = ppm;
found = true;
}
}
}
}
return found;
}
/*
* Returns a set of divisors for the desired target clock with the given
* refclk, or FALSE. The returned values represent the clock equation:
* reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
*/
static bool
chv_find_best_dpll(const struct intel_limit *limit,
struct intel_crtc_state *crtc_state,
int target, int refclk, struct dpll *match_clock,
struct dpll *best_clock)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
struct drm_device *dev = crtc->base.dev;
unsigned int best_error_ppm;
struct dpll clock;
u64 m2;
int found = false;
memset(best_clock, 0, sizeof(*best_clock));
best_error_ppm = 1000000;
/*
* Based on hardware doc, the n always set to 1, and m1 always
* set to 2. If requires to support 200Mhz refclk, we need to
* revisit this because n may not 1 anymore.
*/
clock.n = 1, clock.m1 = 2;
target *= 5; /* fast clock */
for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
for (clock.p2 = limit->p2.p2_fast;
clock.p2 >= limit->p2.p2_slow;
clock.p2 -= clock.p2 > 10 ? 2 : 1) {
unsigned int error_ppm;
clock.p = clock.p1 * clock.p2;
m2 = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(target, clock.p * clock.n) << 22,
refclk * clock.m1);
if (m2 > INT_MAX/clock.m1)
continue;
clock.m2 = m2;
chv_calc_dpll_params(refclk, &clock);
if (!intel_PLL_is_valid(to_i915(dev), limit, &clock))
continue;
if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
best_error_ppm, &error_ppm))
continue;
*best_clock = clock;
best_error_ppm = error_ppm;
found = true;
}
}
return found;
}
bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state,
struct dpll *best_clock)
{
int refclk = 100000;
const struct intel_limit *limit = &intel_limits_bxt;
return chv_find_best_dpll(limit, crtc_state,
crtc_state->port_clock, refclk,
NULL, best_clock);
}
bool intel_crtc_active(struct intel_crtc *crtc)
{
/* Be paranoid as we can arrive here with only partial
* state retrieved from the hardware during setup.
*
* We can ditch the adjusted_mode.crtc_clock check as soon
* as Haswell has gained clock readout/fastboot support.
*
* We can ditch the crtc->primary->state->fb check as soon as we can
* properly reconstruct framebuffers.
*
* FIXME: The intel_crtc->active here should be switched to
* crtc->state->active once we have proper CRTC states wired up
* for atomic.
*/
return crtc->active && crtc->base.primary->state->fb &&
crtc->config->base.adjusted_mode.crtc_clock;
}
enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
enum pipe pipe)
{
struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
return crtc->config->cpu_transcoder;
}
static bool pipe_scanline_is_moving(struct drm_i915_private *dev_priv,
enum pipe pipe)
{
i915_reg_t reg = PIPEDSL(pipe);
u32 line1, line2;
u32 line_mask;
if (IS_GEN(dev_priv, 2))
line_mask = DSL_LINEMASK_GEN2;
else
line_mask = DSL_LINEMASK_GEN3;
line1 = I915_READ(reg) & line_mask;
msleep(5);
line2 = I915_READ(reg) & line_mask;
return line1 != line2;
}
static void wait_for_pipe_scanline_moving(struct intel_crtc *crtc, bool state)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum pipe pipe = crtc->pipe;
/* Wait for the display line to settle/start moving */
if (wait_for(pipe_scanline_is_moving(dev_priv, pipe) == state, 100))
DRM_ERROR("pipe %c scanline %s wait timed out\n",
pipe_name(pipe), onoff(state));
}
static void intel_wait_for_pipe_scanline_stopped(struct intel_crtc *crtc)
{
wait_for_pipe_scanline_moving(crtc, false);
}
static void intel_wait_for_pipe_scanline_moving(struct intel_crtc *crtc)
{
wait_for_pipe_scanline_moving(crtc, true);
}
static void
intel_wait_for_pipe_off(const struct intel_crtc_state *old_crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
if (INTEL_GEN(dev_priv) >= 4) {
enum transcoder cpu_transcoder = old_crtc_state->cpu_transcoder;
i915_reg_t reg = PIPECONF(cpu_transcoder);
/* Wait for the Pipe State to go off */
if (intel_wait_for_register(&dev_priv->uncore,
reg, I965_PIPECONF_ACTIVE, 0,
100))
WARN(1, "pipe_off wait timed out\n");
} else {
intel_wait_for_pipe_scanline_stopped(crtc);
}
}
/* Only for pre-ILK configs */
void assert_pll(struct drm_i915_private *dev_priv,
enum pipe pipe, bool state)
{
u32 val;
bool cur_state;
val = I915_READ(DPLL(pipe));
cur_state = !!(val & DPLL_VCO_ENABLE);
I915_STATE_WARN(cur_state != state,
"PLL state assertion failure (expected %s, current %s)\n",
onoff(state), onoff(cur_state));
}
/* XXX: the dsi pll is shared between MIPI DSI ports */
void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
{
u32 val;
bool cur_state;
vlv_cck_get(dev_priv);
val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
vlv_cck_put(dev_priv);
cur_state = val & DSI_PLL_VCO_EN;
I915_STATE_WARN(cur_state != state,
"DSI PLL state assertion failure (expected %s, current %s)\n",
onoff(state), onoff(cur_state));
}
static void assert_fdi_tx(struct drm_i915_private *dev_priv,
enum pipe pipe, bool state)
{
bool cur_state;
enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
pipe);
if (HAS_DDI(dev_priv)) {
/* DDI does not have a specific FDI_TX register */
u32 val = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
} else {
u32 val = I915_READ(FDI_TX_CTL(pipe));
cur_state = !!(val & FDI_TX_ENABLE);
}
I915_STATE_WARN(cur_state != state,
"FDI TX state assertion failure (expected %s, current %s)\n",
onoff(state), onoff(cur_state));
}
#define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
#define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
static void assert_fdi_rx(struct drm_i915_private *dev_priv,
enum pipe pipe, bool state)
{
u32 val;
bool cur_state;
val = I915_READ(FDI_RX_CTL(pipe));
cur_state = !!(val & FDI_RX_ENABLE);
I915_STATE_WARN(cur_state != state,
"FDI RX state assertion failure (expected %s, current %s)\n",
onoff(state), onoff(cur_state));
}
#define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
#define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
enum pipe pipe)
{
u32 val;
/* ILK FDI PLL is always enabled */
if (IS_GEN(dev_priv, 5))
return;
/* On Haswell, DDI ports are responsible for the FDI PLL setup */
if (HAS_DDI(dev_priv))
return;
val = I915_READ(FDI_TX_CTL(pipe));
I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
}
void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
enum pipe pipe, bool state)
{
u32 val;
bool cur_state;
val = I915_READ(FDI_RX_CTL(pipe));
cur_state = !!(val & FDI_RX_PLL_ENABLE);
I915_STATE_WARN(cur_state != state,
"FDI RX PLL assertion failure (expected %s, current %s)\n",
onoff(state), onoff(cur_state));
}
void assert_panel_unlocked(struct drm_i915_private *dev_priv, enum pipe pipe)
{
i915_reg_t pp_reg;
u32 val;
enum pipe panel_pipe = INVALID_PIPE;
bool locked = true;
if (WARN_ON(HAS_DDI(dev_priv)))
return;
if (HAS_PCH_SPLIT(dev_priv)) {
u32 port_sel;
pp_reg = PP_CONTROL(0);
port_sel = I915_READ(PP_ON_DELAYS(0)) & PANEL_PORT_SELECT_MASK;
switch (port_sel) {
case PANEL_PORT_SELECT_LVDS:
intel_lvds_port_enabled(dev_priv, PCH_LVDS, &panel_pipe);
break;
case PANEL_PORT_SELECT_DPA:
intel_dp_port_enabled(dev_priv, DP_A, PORT_A, &panel_pipe);
break;
case PANEL_PORT_SELECT_DPC:
intel_dp_port_enabled(dev_priv, PCH_DP_C, PORT_C, &panel_pipe);
break;
case PANEL_PORT_SELECT_DPD:
intel_dp_port_enabled(dev_priv, PCH_DP_D, PORT_D, &panel_pipe);
break;
default:
MISSING_CASE(port_sel);
break;
}
} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
/* presumably write lock depends on pipe, not port select */
pp_reg = PP_CONTROL(pipe);
panel_pipe = pipe;
} else {
u32 port_sel;
pp_reg = PP_CONTROL(0);
port_sel = I915_READ(PP_ON_DELAYS(0)) & PANEL_PORT_SELECT_MASK;
WARN_ON(port_sel != PANEL_PORT_SELECT_LVDS);
intel_lvds_port_enabled(dev_priv, LVDS, &panel_pipe);
}
val = I915_READ(pp_reg);
if (!(val & PANEL_POWER_ON) ||
((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
locked = false;
I915_STATE_WARN(panel_pipe == pipe && locked,
"panel assertion failure, pipe %c regs locked\n",
pipe_name(pipe));
}
void assert_pipe(struct drm_i915_private *dev_priv,
enum pipe pipe, bool state)
{
bool cur_state;
enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
pipe);
enum intel_display_power_domain power_domain;
intel_wakeref_t wakeref;
/* we keep both pipes enabled on 830 */
if (IS_I830(dev_priv))
state = true;
power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
if (wakeref) {
u32 val = I915_READ(PIPECONF(cpu_transcoder));
cur_state = !!(val & PIPECONF_ENABLE);
intel_display_power_put(dev_priv, power_domain, wakeref);
} else {
cur_state = false;
}
I915_STATE_WARN(cur_state != state,
"pipe %c assertion failure (expected %s, current %s)\n",
pipe_name(pipe), onoff(state), onoff(cur_state));
}
static void assert_plane(struct intel_plane *plane, bool state)
{
enum pipe pipe;
bool cur_state;
cur_state = plane->get_hw_state(plane, &pipe);
I915_STATE_WARN(cur_state != state,
"%s assertion failure (expected %s, current %s)\n",
plane->base.name, onoff(state), onoff(cur_state));
}
#define assert_plane_enabled(p) assert_plane(p, true)
#define assert_plane_disabled(p) assert_plane(p, false)
static void assert_planes_disabled(struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
struct intel_plane *plane;
for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane)
assert_plane_disabled(plane);
}
static void assert_vblank_disabled(struct drm_crtc *crtc)
{
if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
drm_crtc_vblank_put(crtc);
}
void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
enum pipe pipe)
{
u32 val;
bool enabled;
val = I915_READ(PCH_TRANSCONF(pipe));
enabled = !!(val & TRANS_ENABLE);
I915_STATE_WARN(enabled,
"transcoder assertion failed, should be off on pipe %c but is still active\n",
pipe_name(pipe));
}
static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
enum pipe pipe, enum port port,
i915_reg_t dp_reg)
{
enum pipe port_pipe;
bool state;
state = intel_dp_port_enabled(dev_priv, dp_reg, port, &port_pipe);
I915_STATE_WARN(state && port_pipe == pipe,
"PCH DP %c enabled on transcoder %c, should be disabled\n",
port_name(port), pipe_name(pipe));
I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && !state && port_pipe == PIPE_B,
"IBX PCH DP %c still using transcoder B\n",
port_name(port));
}
static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
enum pipe pipe, enum port port,
i915_reg_t hdmi_reg)
{
enum pipe port_pipe;
bool state;
state = intel_sdvo_port_enabled(dev_priv, hdmi_reg, &port_pipe);
I915_STATE_WARN(state && port_pipe == pipe,
"PCH HDMI %c enabled on transcoder %c, should be disabled\n",
port_name(port), pipe_name(pipe));
I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && !state && port_pipe == PIPE_B,
"IBX PCH HDMI %c still using transcoder B\n",
port_name(port));
}
static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
enum pipe pipe)
{
enum pipe port_pipe;
assert_pch_dp_disabled(dev_priv, pipe, PORT_B, PCH_DP_B);
assert_pch_dp_disabled(dev_priv, pipe, PORT_C, PCH_DP_C);
assert_pch_dp_disabled(dev_priv, pipe, PORT_D, PCH_DP_D);
I915_STATE_WARN(intel_crt_port_enabled(dev_priv, PCH_ADPA, &port_pipe) &&
port_pipe == pipe,
"PCH VGA enabled on transcoder %c, should be disabled\n",
pipe_name(pipe));
I915_STATE_WARN(intel_lvds_port_enabled(dev_priv, PCH_LVDS, &port_pipe) &&
port_pipe == pipe,
"PCH LVDS enabled on transcoder %c, should be disabled\n",
pipe_name(pipe));
/* PCH SDVOB multiplex with HDMIB */
assert_pch_hdmi_disabled(dev_priv, pipe, PORT_B, PCH_HDMIB);
assert_pch_hdmi_disabled(dev_priv, pipe, PORT_C, PCH_HDMIC);
assert_pch_hdmi_disabled(dev_priv, pipe, PORT_D, PCH_HDMID);
}
static void _vlv_enable_pll(struct intel_crtc *crtc,
const struct intel_crtc_state *pipe_config)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum pipe pipe = crtc->pipe;
I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
POSTING_READ(DPLL(pipe));
udelay(150);
if (intel_wait_for_register(&dev_priv->uncore,
DPLL(pipe),
DPLL_LOCK_VLV,
DPLL_LOCK_VLV,
1))
DRM_ERROR("DPLL %d failed to lock\n", pipe);
}
static void vlv_enable_pll(struct intel_crtc *crtc,
const struct intel_crtc_state *pipe_config)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum pipe pipe = crtc->pipe;
assert_pipe_disabled(dev_priv, pipe);
/* PLL is protected by panel, make sure we can write it */
assert_panel_unlocked(dev_priv, pipe);
if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
_vlv_enable_pll(crtc, pipe_config);
I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
POSTING_READ(DPLL_MD(pipe));
}
static void _chv_enable_pll(struct intel_crtc *crtc,
const struct intel_crtc_state *pipe_config)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum pipe pipe = crtc->pipe;
enum dpio_channel port = vlv_pipe_to_channel(pipe);
u32 tmp;
vlv_dpio_get(dev_priv);
/* Enable back the 10bit clock to display controller */
tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
tmp |= DPIO_DCLKP_EN;
vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
vlv_dpio_put(dev_priv);
/*
* Need to wait > 100ns between dclkp clock enable bit and PLL enable.
*/
udelay(1);
/* Enable PLL */
I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
/* Check PLL is locked */
if (intel_wait_for_register(&dev_priv->uncore,
DPLL(pipe), DPLL_LOCK_VLV, DPLL_LOCK_VLV,
1))
DRM_ERROR("PLL %d failed to lock\n", pipe);
}
static void chv_enable_pll(struct intel_crtc *crtc,
const struct intel_crtc_state *pipe_config)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum pipe pipe = crtc->pipe;
assert_pipe_disabled(dev_priv, pipe);
/* PLL is protected by panel, make sure we can write it */
assert_panel_unlocked(dev_priv, pipe);
if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
_chv_enable_pll(crtc, pipe_config);
if (pipe != PIPE_A) {
/*
* WaPixelRepeatModeFixForC0:chv
*
* DPLLCMD is AWOL. Use chicken bits to propagate
* the value from DPLLBMD to either pipe B or C.
*/
I915_WRITE(CBR4_VLV, CBR_DPLLBMD_PIPE(pipe));
I915_WRITE(DPLL_MD(PIPE_B), pipe_config->dpll_hw_state.dpll_md);
I915_WRITE(CBR4_VLV, 0);
dev_priv->chv_dpll_md[pipe] = pipe_config->dpll_hw_state.dpll_md;
/*
* DPLLB VGA mode also seems to cause problems.
* We should always have it disabled.
*/
WARN_ON((I915_READ(DPLL(PIPE_B)) & DPLL_VGA_MODE_DIS) == 0);
} else {
I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
POSTING_READ(DPLL_MD(pipe));
}
}
static bool i9xx_has_pps(struct drm_i915_private *dev_priv)
{
if (IS_I830(dev_priv))
return false;
return IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv);
}
static void i9xx_enable_pll(struct intel_crtc *crtc,
const struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
i915_reg_t reg = DPLL(crtc->pipe);
u32 dpll = crtc_state->dpll_hw_state.dpll;
int i;
assert_pipe_disabled(dev_priv, crtc->pipe);
/* PLL is protected by panel, make sure we can write it */
if (i9xx_has_pps(dev_priv))
assert_panel_unlocked(dev_priv, crtc->pipe);
/*
* Apparently we need to have VGA mode enabled prior to changing
* the P1/P2 dividers. Otherwise the DPLL will keep using the old
* dividers, even though the register value does change.
*/
I915_WRITE(reg, dpll & ~DPLL_VGA_MODE_DIS);
I915_WRITE(reg, dpll);
/* Wait for the clocks to stabilize. */
POSTING_READ(reg);
udelay(150);
if (INTEL_GEN(dev_priv) >= 4) {
I915_WRITE(DPLL_MD(crtc->pipe),
crtc_state->dpll_hw_state.dpll_md);
} else {
/* The pixel multiplier can only be updated once the
* DPLL is enabled and the clocks are stable.
*
* So write it again.
*/
I915_WRITE(reg, dpll);
}
/* We do this three times for luck */
for (i = 0; i < 3; i++) {
I915_WRITE(reg, dpll);
POSTING_READ(reg);
udelay(150); /* wait for warmup */
}
}
static void i9xx_disable_pll(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum pipe pipe = crtc->pipe;
/* Don't disable pipe or pipe PLLs if needed */
if (IS_I830(dev_priv))
return;
/* Make sure the pipe isn't still relying on us */
assert_pipe_disabled(dev_priv, pipe);
I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
POSTING_READ(DPLL(pipe));
}
static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
{
u32 val;
/* Make sure the pipe isn't still relying on us */
assert_pipe_disabled(dev_priv, pipe);
val = DPLL_INTEGRATED_REF_CLK_VLV |
DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
if (pipe != PIPE_A)
val |= DPLL_INTEGRATED_CRI_CLK_VLV;
I915_WRITE(DPLL(pipe), val);
POSTING_READ(DPLL(pipe));
}
static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
{
enum dpio_channel port = vlv_pipe_to_channel(pipe);
u32 val;
/* Make sure the pipe isn't still relying on us */
assert_pipe_disabled(dev_priv, pipe);
val = DPLL_SSC_REF_CLK_CHV |
DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
if (pipe != PIPE_A)
val |= DPLL_INTEGRATED_CRI_CLK_VLV;
I915_WRITE(DPLL(pipe), val);
POSTING_READ(DPLL(pipe));
vlv_dpio_get(dev_priv);
/* Disable 10bit clock to display controller */
val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
val &= ~DPIO_DCLKP_EN;
vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
vlv_dpio_put(dev_priv);
}
void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
struct intel_digital_port *dport,
unsigned int expected_mask)
{
u32 port_mask;
i915_reg_t dpll_reg;
switch (dport->base.port) {
case PORT_B:
port_mask = DPLL_PORTB_READY_MASK;
dpll_reg = DPLL(0);
break;
case PORT_C:
port_mask = DPLL_PORTC_READY_MASK;
dpll_reg = DPLL(0);
expected_mask <<= 4;
break;
case PORT_D:
port_mask = DPLL_PORTD_READY_MASK;
dpll_reg = DPIO_PHY_STATUS;
break;
default:
BUG();
}
if (intel_wait_for_register(&dev_priv->uncore,
dpll_reg, port_mask, expected_mask,
1000))
WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
port_name(dport->base.port),
I915_READ(dpll_reg) & port_mask, expected_mask);
}
static void ironlake_enable_pch_transcoder(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum pipe pipe = crtc->pipe;
i915_reg_t reg;
u32 val, pipeconf_val;
/* Make sure PCH DPLL is enabled */
assert_shared_dpll_enabled(dev_priv, crtc_state->shared_dpll);
/* FDI must be feeding us bits for PCH ports */
assert_fdi_tx_enabled(dev_priv, pipe);
assert_fdi_rx_enabled(dev_priv, pipe);
if (HAS_PCH_CPT(dev_priv)) {
/* Workaround: Set the timing override bit before enabling the
* pch transcoder. */
reg = TRANS_CHICKEN2(pipe);
val = I915_READ(reg);
val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
I915_WRITE(reg, val);
}
reg = PCH_TRANSCONF(pipe);
val = I915_READ(reg);
pipeconf_val = I915_READ(PIPECONF(pipe));
if (HAS_PCH_IBX(dev_priv)) {
/*
* Make the BPC in transcoder be consistent with
* that in pipeconf reg. For HDMI we must use 8bpc
* here for both 8bpc and 12bpc.
*/
val &= ~PIPECONF_BPC_MASK;
if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
val |= PIPECONF_8BPC;
else
val |= pipeconf_val & PIPECONF_BPC_MASK;
}
val &= ~TRANS_INTERLACE_MASK;
if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK) {
if (HAS_PCH_IBX(dev_priv) &&
intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO))
val |= TRANS_LEGACY_INTERLACED_ILK;
else
val |= TRANS_INTERLACED;
} else {
val |= TRANS_PROGRESSIVE;
}
I915_WRITE(reg, val | TRANS_ENABLE);
if (intel_wait_for_register(&dev_priv->uncore,
reg, TRANS_STATE_ENABLE, TRANS_STATE_ENABLE,
100))
DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
}
static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
enum transcoder cpu_transcoder)
{
u32 val, pipeconf_val;
/* FDI must be feeding us bits for PCH ports */
assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
assert_fdi_rx_enabled(dev_priv, PIPE_A);
/* Workaround: set timing override bit. */
val = I915_READ(TRANS_CHICKEN2(PIPE_A));
val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
val = TRANS_ENABLE;
pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
PIPECONF_INTERLACED_ILK)
val |= TRANS_INTERLACED;
else
val |= TRANS_PROGRESSIVE;
I915_WRITE(LPT_TRANSCONF, val);
if (intel_wait_for_register(&dev_priv->uncore,
LPT_TRANSCONF,
TRANS_STATE_ENABLE,
TRANS_STATE_ENABLE,
100))
DRM_ERROR("Failed to enable PCH transcoder\n");
}
static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
enum pipe pipe)
{
i915_reg_t reg;
u32 val;
/* FDI relies on the transcoder */
assert_fdi_tx_disabled(dev_priv, pipe);
assert_fdi_rx_disabled(dev_priv, pipe);
/* Ports must be off as well */
assert_pch_ports_disabled(dev_priv, pipe);
reg = PCH_TRANSCONF(pipe);
val = I915_READ(reg);
val &= ~TRANS_ENABLE;
I915_WRITE(reg, val);
/* wait for PCH transcoder off, transcoder state */
if (intel_wait_for_register(&dev_priv->uncore,
reg, TRANS_STATE_ENABLE, 0,
50))
DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
if (HAS_PCH_CPT(dev_priv)) {
/* Workaround: Clear the timing override chicken bit again. */
reg = TRANS_CHICKEN2(pipe);
val = I915_READ(reg);
val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
I915_WRITE(reg, val);
}
}
void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
{
u32 val;
val = I915_READ(LPT_TRANSCONF);
val &= ~TRANS_ENABLE;
I915_WRITE(LPT_TRANSCONF, val);
/* wait for PCH transcoder off, transcoder state */
if (intel_wait_for_register(&dev_priv->uncore,
LPT_TRANSCONF, TRANS_STATE_ENABLE, 0,
50))
DRM_ERROR("Failed to disable PCH transcoder\n");
/* Workaround: clear timing override bit. */
val = I915_READ(TRANS_CHICKEN2(PIPE_A));
val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
}
enum pipe intel_crtc_pch_transcoder(struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
if (HAS_PCH_LPT(dev_priv))
return PIPE_A;
else
return crtc->pipe;
}
static u32 intel_crtc_max_vblank_count(const struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
/*
* On i965gm the hardware frame counter reads
* zero when the TV encoder is enabled :(
*/
if (IS_I965GM(dev_priv) &&
(crtc_state->output_types & BIT(INTEL_OUTPUT_TVOUT)))
return 0;
if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
return 0xffffffff; /* full 32 bit counter */
else if (INTEL_GEN(dev_priv) >= 3)
return 0xffffff; /* only 24 bits of frame count */
else
return 0; /* Gen2 doesn't have a hardware frame counter */
}
static void intel_crtc_vblank_on(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
drm_crtc_set_max_vblank_count(&crtc->base,
intel_crtc_max_vblank_count(crtc_state));
drm_crtc_vblank_on(&crtc->base);
}
static void intel_enable_pipe(const struct intel_crtc_state *new_crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->base.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum transcoder cpu_transcoder = new_crtc_state->cpu_transcoder;
enum pipe pipe = crtc->pipe;
i915_reg_t reg;
u32 val;
DRM_DEBUG_KMS("enabling pipe %c\n", pipe_name(pipe));
assert_planes_disabled(crtc);
/*
* A pipe without a PLL won't actually be able to drive bits from
* a plane. On ILK+ the pipe PLLs are integrated, so we don't
* need the check.
*/
if (HAS_GMCH(dev_priv)) {
if (intel_crtc_has_type(new_crtc_state, INTEL_OUTPUT_DSI))
assert_dsi_pll_enabled(dev_priv);
else
assert_pll_enabled(dev_priv, pipe);
} else {
if (new_crtc_state->has_pch_encoder) {
/* if driving the PCH, we need FDI enabled */
assert_fdi_rx_pll_enabled(dev_priv,
intel_crtc_pch_transcoder(crtc));
assert_fdi_tx_pll_enabled(dev_priv,
(enum pipe) cpu_transcoder);
}
/* FIXME: assert CPU port conditions for SNB+ */
}
trace_intel_pipe_enable(dev_priv, pipe);
reg = PIPECONF(cpu_transcoder);
val = I915_READ(reg);
if (val & PIPECONF_ENABLE) {
/* we keep both pipes enabled on 830 */
WARN_ON(!IS_I830(dev_priv));
return;
}
I915_WRITE(reg, val | PIPECONF_ENABLE);
POSTING_READ(reg);
/*
* Until the pipe starts PIPEDSL reads will return a stale value,
* which causes an apparent vblank timestamp jump when PIPEDSL
* resets to its proper value. That also messes up the frame count
* when it's derived from the timestamps. So let's wait for the
* pipe to start properly before we call drm_crtc_vblank_on()
*/
if (intel_crtc_max_vblank_count(new_crtc_state) == 0)
intel_wait_for_pipe_scanline_moving(crtc);
}
static void intel_disable_pipe(const struct intel_crtc_state *old_crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum transcoder cpu_transcoder = old_crtc_state->cpu_transcoder;
enum pipe pipe = crtc->pipe;
i915_reg_t reg;
u32 val;
DRM_DEBUG_KMS("disabling pipe %c\n", pipe_name(pipe));
/*
* Make sure planes won't keep trying to pump pixels to us,
* or we might hang the display.
*/
assert_planes_disabled(crtc);
trace_intel_pipe_disable(dev_priv, pipe);
reg = PIPECONF(cpu_transcoder);
val = I915_READ(reg);
if ((val & PIPECONF_ENABLE) == 0)
return;
/*
* Double wide has implications for planes
* so best keep it disabled when not needed.
*/
if (old_crtc_state->double_wide)
val &= ~PIPECONF_DOUBLE_WIDE;
/* Don't disable pipe or pipe PLLs if needed */
if (!IS_I830(dev_priv))
val &= ~PIPECONF_ENABLE;
I915_WRITE(reg, val);
if ((val & PIPECONF_ENABLE) == 0)
intel_wait_for_pipe_off(old_crtc_state);
}
static unsigned int intel_tile_size(const struct drm_i915_private *dev_priv)
{
return IS_GEN(dev_priv, 2) ? 2048 : 4096;
}
static unsigned int
intel_tile_width_bytes(const struct drm_framebuffer *fb, int color_plane)
{
struct drm_i915_private *dev_priv = to_i915(fb->dev);
unsigned int cpp = fb->format->cpp[color_plane];
switch (fb->modifier) {
case DRM_FORMAT_MOD_LINEAR:
return cpp;
case I915_FORMAT_MOD_X_TILED:
if (IS_GEN(dev_priv, 2))
return 128;
else
return 512;
case I915_FORMAT_MOD_Y_TILED_CCS:
if (color_plane == 1)
return 128;
/* fall through */
case I915_FORMAT_MOD_Y_TILED:
if (IS_GEN(dev_priv, 2) || HAS_128_BYTE_Y_TILING(dev_priv))
return 128;
else
return 512;
case I915_FORMAT_MOD_Yf_TILED_CCS:
if (color_plane == 1)
return 128;
/* fall through */
case I915_FORMAT_MOD_Yf_TILED:
switch (cpp) {
case 1:
return 64;
case 2:
case 4:
return 128;
case 8:
case 16:
return 256;
default:
MISSING_CASE(cpp);
return cpp;
}
break;
default:
MISSING_CASE(fb->modifier);
return cpp;
}
}
static unsigned int
intel_tile_height(const struct drm_framebuffer *fb, int color_plane)
{
if (fb->modifier == DRM_FORMAT_MOD_LINEAR)
return 1;
else
return intel_tile_size(to_i915(fb->dev)) /
intel_tile_width_bytes(fb, color_plane);
}
/* Return the tile dimensions in pixel units */
static void intel_tile_dims(const struct drm_framebuffer *fb, int color_plane,
unsigned int *tile_width,
unsigned int *tile_height)
{
unsigned int tile_width_bytes = intel_tile_width_bytes(fb, color_plane);
unsigned int cpp = fb->format->cpp[color_plane];
*tile_width = tile_width_bytes / cpp;
*tile_height = intel_tile_size(to_i915(fb->dev)) / tile_width_bytes;
}
unsigned int
intel_fb_align_height(const struct drm_framebuffer *fb,
int color_plane, unsigned int height)
{
unsigned int tile_height = intel_tile_height(fb, color_plane);
return ALIGN(height, tile_height);
}
unsigned int intel_rotation_info_size(const struct intel_rotation_info *rot_info)
{
unsigned int size = 0;
int i;
for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++)
size += rot_info->plane[i].width * rot_info->plane[i].height;
return size;
}
static void
intel_fill_fb_ggtt_view(struct i915_ggtt_view *view,
const struct drm_framebuffer *fb,
unsigned int rotation)
{
view->type = I915_GGTT_VIEW_NORMAL;
if (drm_rotation_90_or_270(rotation)) {
view->type = I915_GGTT_VIEW_ROTATED;
view->rotated = to_intel_framebuffer(fb)->rot_info;
}
}
static unsigned int intel_cursor_alignment(const struct drm_i915_private *dev_priv)
{
if (IS_I830(dev_priv))
return 16 * 1024;
else if (IS_I85X(dev_priv))
return 256;
else if (IS_I845G(dev_priv) || IS_I865G(dev_priv))
return 32;
else
return 4 * 1024;
}
static unsigned int intel_linear_alignment(const struct drm_i915_private *dev_priv)
{
if (INTEL_GEN(dev_priv) >= 9)
return 256 * 1024;
else if (IS_I965G(dev_priv) || IS_I965GM(dev_priv) ||
IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
return 128 * 1024;
else if (INTEL_GEN(dev_priv) >= 4)
return 4 * 1024;
else
return 0;
}
static unsigned int intel_surf_alignment(const struct drm_framebuffer *fb,
int color_plane)
{
struct drm_i915_private *dev_priv = to_i915(fb->dev);
/* AUX_DIST needs only 4K alignment */
if (color_plane == 1)
return 4096;
switch (fb->modifier) {
case DRM_FORMAT_MOD_LINEAR:
return intel_linear_alignment(dev_priv);
case I915_FORMAT_MOD_X_TILED:
if (INTEL_GEN(dev_priv) >= 9)
return 256 * 1024;
return 0;
case I915_FORMAT_MOD_Y_TILED_CCS:
case I915_FORMAT_MOD_Yf_TILED_CCS:
case I915_FORMAT_MOD_Y_TILED:
case I915_FORMAT_MOD_Yf_TILED:
return 1 * 1024 * 1024;
default:
MISSING_CASE(fb->modifier);
return 0;
}
}
static bool intel_plane_uses_fence(const struct intel_plane_state *plane_state)
{
struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
return INTEL_GEN(dev_priv) < 4 || plane->has_fbc;
}
struct i915_vma *
intel_pin_and_fence_fb_obj(struct drm_framebuffer *fb,
const struct i915_ggtt_view *view,
bool uses_fence,
unsigned long *out_flags)
{
struct drm_device *dev = fb->dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct drm_i915_gem_object *obj = intel_fb_obj(fb);
intel_wakeref_t wakeref;
struct i915_vma *vma;
unsigned int pinctl;
u32 alignment;
WARN_ON(!mutex_is_locked(&dev->struct_mutex));
alignment = intel_surf_alignment(fb, 0);
/* Note that the w/a also requires 64 PTE of padding following the
* bo. We currently fill all unused PTE with the shadow page and so
* we should always have valid PTE following the scanout preventing
* the VT-d warning.
*/
if (intel_scanout_needs_vtd_wa(dev_priv) && alignment < 256 * 1024)
alignment = 256 * 1024;
/*
* Global gtt pte registers are special registers which actually forward
* writes to a chunk of system memory. Which means that there is no risk
* that the register values disappear as soon as we call
* intel_runtime_pm_put(), so it is correct to wrap only the
* pin/unpin/fence and not more.
*/
wakeref = intel_runtime_pm_get(dev_priv);
atomic_inc(&dev_priv->gpu_error.pending_fb_pin);
pinctl = 0;
/* Valleyview is definitely limited to scanning out the first
* 512MiB. Lets presume this behaviour was inherited from the
* g4x display engine and that all earlier gen are similarly
* limited. Testing suggests that it is a little more
* complicated than this. For example, Cherryview appears quite
* happy to scanout from anywhere within its global aperture.
*/
if (HAS_GMCH(dev_priv))
pinctl |= PIN_MAPPABLE;
vma = i915_gem_object_pin_to_display_plane(obj,
alignment, view, pinctl);
if (IS_ERR(vma))
goto err;
if (uses_fence && i915_vma_is_map_and_fenceable(vma)) {
int ret;
/* Install a fence for tiled scan-out. Pre-i965 always needs a
* fence, whereas 965+ only requires a fence if using
* framebuffer compression. For simplicity, we always, when
* possible, install a fence as the cost is not that onerous.
*
* If we fail to fence the tiled scanout, then either the
* modeset will reject the change (which is highly unlikely as
* the affected systems, all but one, do not have unmappable
* space) or we will not be able to enable full powersaving
* techniques (also likely not to apply due to various limits
* FBC and the like impose on the size of the buffer, which
* presumably we violated anyway with this unmappable buffer).
* Anyway, it is presumably better to stumble onwards with
* something and try to run the system in a "less than optimal"
* mode that matches the user configuration.
*/
ret = i915_vma_pin_fence(vma);
if (ret != 0 && INTEL_GEN(dev_priv) < 4) {
i915_gem_object_unpin_from_display_plane(vma);
vma = ERR_PTR(ret);
goto err;
}
if (ret == 0 && vma->fence)
*out_flags |= PLANE_HAS_FENCE;
}
i915_vma_get(vma);
err:
atomic_dec(&dev_priv->gpu_error.pending_fb_pin);
intel_runtime_pm_put(dev_priv, wakeref);
return vma;
}
void intel_unpin_fb_vma(struct i915_vma *vma, unsigned long flags)
{
lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
if (flags & PLANE_HAS_FENCE)
i915_vma_unpin_fence(vma);
i915_gem_object_unpin_from_display_plane(vma);
i915_vma_put(vma);
}
static int intel_fb_pitch(const struct drm_framebuffer *fb, int color_plane,
unsigned int rotation)
{
if (drm_rotation_90_or_270(rotation))
return to_intel_framebuffer(fb)->rotated[color_plane].pitch;
else
return fb->pitches[color_plane];
}
/*
* Convert the x/y offsets into a linear offset.
* Only valid with 0/180 degree rotation, which is fine since linear
* offset is only used with linear buffers on pre-hsw and tiled buffers
* with gen2/3, and 90/270 degree rotations isn't supported on any of them.
*/
u32 intel_fb_xy_to_linear(int x, int y,
const struct intel_plane_state *state,
int color_plane)
{
const struct drm_framebuffer *fb = state->base.fb;
unsigned int cpp = fb->format->cpp[color_plane];
unsigned int pitch = state->color_plane[color_plane].stride;
return y * pitch + x * cpp;
}
/*
* Add the x/y offsets derived from fb->offsets[] to the user
* specified plane src x/y offsets. The resulting x/y offsets
* specify the start of scanout from the beginning of the gtt mapping.
*/
void intel_add_fb_offsets(int *x, int *y,
const struct intel_plane_state *state,
int color_plane)
{
const struct intel_framebuffer *intel_fb = to_intel_framebuffer(state->base.fb);
unsigned int rotation = state->base.rotation;
if (drm_rotation_90_or_270(rotation)) {
*x += intel_fb->rotated[color_plane].x;
*y += intel_fb->rotated[color_plane].y;
} else {
*x += intel_fb->normal[color_plane].x;
*y += intel_fb->normal[color_plane].y;
}
}
static u32 intel_adjust_tile_offset(int *x, int *y,
unsigned int tile_width,
unsigned int tile_height,
unsigned int tile_size,
unsigned int pitch_tiles,
u32 old_offset,
u32 new_offset)
{
unsigned int pitch_pixels = pitch_tiles * tile_width;
unsigned int tiles;
WARN_ON(old_offset & (tile_size - 1));
WARN_ON(new_offset & (tile_size - 1));
WARN_ON(new_offset > old_offset);
tiles = (old_offset - new_offset) / tile_size;
*y += tiles / pitch_tiles * tile_height;
*x += tiles % pitch_tiles * tile_width;
/* minimize x in case it got needlessly big */
*y += *x / pitch_pixels * tile_height;
*x %= pitch_pixels;
return new_offset;
}
static bool is_surface_linear(u64 modifier, int color_plane)
{
return modifier == DRM_FORMAT_MOD_LINEAR;
}
static u32 intel_adjust_aligned_offset(int *x, int *y,
const struct drm_framebuffer *fb,
int color_plane,
unsigned int rotation,
unsigned int pitch,
u32 old_offset, u32 new_offset)
{
struct drm_i915_private *dev_priv = to_i915(fb->dev);
unsigned int cpp = fb->format->cpp[color_plane];
WARN_ON(new_offset > old_offset);
if (!is_surface_linear(fb->modifier, color_plane)) {
unsigned int tile_size, tile_width, tile_height;
unsigned int pitch_tiles;
tile_size = intel_tile_size(dev_priv);
intel_tile_dims(fb, color_plane, &tile_width, &tile_height);
if (drm_rotation_90_or_270(rotation)) {
pitch_tiles = pitch / tile_height;
swap(tile_width, tile_height);
} else {
pitch_tiles = pitch / (tile_width * cpp);
}
intel_adjust_tile_offset(x, y, tile_width, tile_height,
tile_size, pitch_tiles,
old_offset, new_offset);
} else {
old_offset += *y * pitch + *x * cpp;
*y = (old_offset - new_offset) / pitch;
*x = ((old_offset - new_offset) - *y * pitch) / cpp;
}
return new_offset;
}
/*
* Adjust the tile offset by moving the difference into
* the x/y offsets.
*/
static u32 intel_plane_adjust_aligned_offset(int *x, int *y,
const struct intel_plane_state *state,
int color_plane,
u32 old_offset, u32 new_offset)
{
return intel_adjust_aligned_offset(x, y, state->base.fb, color_plane,
state->base.rotation,
state->color_plane[color_plane].stride,
old_offset, new_offset);
}
/*
* Computes the aligned offset to the base tile and adjusts
* x, y. bytes per pixel is assumed to be a power-of-two.
*
* In the 90/270 rotated case, x and y are assumed
* to be already rotated to match the rotated GTT view, and
* pitch is the tile_height aligned framebuffer height.
*
* This function is used when computing the derived information
* under intel_framebuffer, so using any of that information
* here is not allowed. Anything under drm_framebuffer can be
* used. This is why the user has to pass in the pitch since it
* is specified in the rotated orientation.
*/
static u32 intel_compute_aligned_offset(struct drm_i915_private *dev_priv,
int *x, int *y,
const struct drm_framebuffer *fb,
int color_plane,
unsigned int pitch,
unsigned int rotation,
u32 alignment)
{
unsigned int cpp = fb->format->cpp[color_plane];
u32 offset, offset_aligned;
if (alignment)
alignment--;
if (!is_surface_linear(fb->modifier, color_plane)) {
unsigned int tile_size, tile_width, tile_height;
unsigned int tile_rows, tiles, pitch_tiles;
tile_size = intel_tile_size(dev_priv);
intel_tile_dims(fb, color_plane, &tile_width, &tile_height);
if (drm_rotation_90_or_270(rotation)) {
pitch_tiles = pitch / tile_height;
swap(tile_width, tile_height);
} else {
pitch_tiles = pitch / (tile_width * cpp);
}
tile_rows = *y / tile_height;
*y %= tile_height;
tiles = *x / tile_width;
*x %= tile_width;
offset = (tile_rows * pitch_tiles + tiles) * tile_size;
offset_aligned = offset & ~alignment;
intel_adjust_tile_offset(x, y, tile_width, tile_height,
tile_size, pitch_tiles,
offset, offset_aligned);
} else {
offset = *y * pitch + *x * cpp;
offset_aligned = offset & ~alignment;
*y = (offset & alignment) / pitch;
*x = ((offset & alignment) - *y * pitch) / cpp;
}
return offset_aligned;
}
static u32 intel_plane_compute_aligned_offset(int *x, int *y,
const struct intel_plane_state *state,
int color_plane)
{
struct intel_plane *intel_plane = to_intel_plane(state->base.plane);
struct drm_i915_private *dev_priv = to_i915(intel_plane->base.dev);
const struct drm_framebuffer *fb = state->base.fb;
unsigned int rotation = state->base.rotation;
int pitch = state->color_plane[color_plane].stride;
u32 alignment;
if (intel_plane->id == PLANE_CURSOR)
alignment = intel_cursor_alignment(dev_priv);
else
alignment = intel_surf_alignment(fb, color_plane);
return intel_compute_aligned_offset(dev_priv, x, y, fb, color_plane,
pitch, rotation, alignment);
}
/* Convert the fb->offset[] into x/y offsets */
static int intel_fb_offset_to_xy(int *x, int *y,
const struct drm_framebuffer *fb,
int color_plane)
{
struct drm_i915_private *dev_priv = to_i915(fb->dev);
unsigned int height;
if (fb->modifier != DRM_FORMAT_MOD_LINEAR &&
fb->offsets[color_plane] % intel_tile_size(dev_priv)) {
DRM_DEBUG_KMS("Misaligned offset 0x%08x for color plane %d\n",
fb->offsets[color_plane], color_plane);
return -EINVAL;
}
height = drm_framebuffer_plane_height(fb->height, fb, color_plane);
height = ALIGN(height, intel_tile_height(fb, color_plane));
/* Catch potential overflows early */
if (add_overflows_t(u32, mul_u32_u32(height, fb->pitches[color_plane]),
fb->offsets[color_plane])) {
DRM_DEBUG_KMS("Bad offset 0x%08x or pitch %d for color plane %d\n",
fb->offsets[color_plane], fb->pitches[color_plane],
color_plane);
return -ERANGE;
}
*x = 0;
*y = 0;
intel_adjust_aligned_offset(x, y,
fb, color_plane, DRM_MODE_ROTATE_0,
fb->pitches[color_plane],
fb->offsets[color_plane], 0);
return 0;
}
static unsigned int intel_fb_modifier_to_tiling(u64 fb_modifier)
{
switch (fb_modifier) {
case I915_FORMAT_MOD_X_TILED:
return I915_TILING_X;
case I915_FORMAT_MOD_Y_TILED:
case I915_FORMAT_MOD_Y_TILED_CCS:
return I915_TILING_Y;
default:
return I915_TILING_NONE;
}
}
/*
* From the Sky Lake PRM:
* "The Color Control Surface (CCS) contains the compression status of
* the cache-line pairs. The compression state of the cache-line pair
* is specified by 2 bits in the CCS. Each CCS cache-line represents
* an area on the main surface of 16 x16 sets of 128 byte Y-tiled
* cache-line-pairs. CCS is always Y tiled."
*
* Since cache line pairs refers to horizontally adjacent cache lines,
* each cache line in the CCS corresponds to an area of 32x16 cache
* lines on the main surface. Since each pixel is 4 bytes, this gives
* us a ratio of one byte in the CCS for each 8x16 pixels in the
* main surface.
*/
static const struct drm_format_info ccs_formats[] = {
{ .format = DRM_FORMAT_XRGB8888, .depth = 24, .num_planes = 2, .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, },
{ .format = DRM_FORMAT_XBGR8888, .depth = 24, .num_planes = 2, .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, },
{ .format = DRM_FORMAT_ARGB8888, .depth = 32, .num_planes = 2, .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, },
{ .format = DRM_FORMAT_ABGR8888, .depth = 32, .num_planes = 2, .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, },
};
static const struct drm_format_info *
lookup_format_info(const struct drm_format_info formats[],
int num_formats, u32 format)
{
int i;
for (i = 0; i < num_formats; i++) {
if (formats[i].format == format)
return &formats[i];
}
return NULL;
}
static const struct drm_format_info *
intel_get_format_info(const struct drm_mode_fb_cmd2 *cmd)
{
switch (cmd->modifier[0]) {
case I915_FORMAT_MOD_Y_TILED_CCS:
case I915_FORMAT_MOD_Yf_TILED_CCS:
return lookup_format_info(ccs_formats,
ARRAY_SIZE(ccs_formats),
cmd->pixel_format);
default:
return NULL;
}
}
bool is_ccs_modifier(u64 modifier)
{
return modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
}
static int
intel_fill_fb_info(struct drm_i915_private *dev_priv,
struct drm_framebuffer *fb)
{
struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
struct intel_rotation_info *rot_info = &intel_fb->rot_info;
struct drm_i915_gem_object *obj = intel_fb_obj(fb);
u32 gtt_offset_rotated = 0;
unsigned int max_size = 0;
int i, num_planes = fb->format->num_planes;
unsigned int tile_size = intel_tile_size(dev_priv);
for (i = 0; i < num_planes; i++) {
unsigned int width, height;
unsigned int cpp, size;
u32 offset;
int x, y;
int ret;
cpp = fb->format->cpp[i];
width = drm_framebuffer_plane_width(fb->width, fb, i);
height = drm_framebuffer_plane_height(fb->height, fb, i);
ret = intel_fb_offset_to_xy(&x, &y, fb, i);
if (ret) {
DRM_DEBUG_KMS("bad fb plane %d offset: 0x%x\n",
i, fb->offsets[i]);
return ret;
}
if (is_ccs_modifier(fb->modifier) && i == 1) {
int hsub = fb->format->hsub;
int vsub = fb->format->vsub;
int tile_width, tile_height;
int main_x, main_y;
int ccs_x, ccs_y;
intel_tile_dims(fb, i, &tile_width, &tile_height);
tile_width *= hsub;
tile_height *= vsub;
ccs_x = (x * hsub) % tile_width;
ccs_y = (y * vsub) % tile_height;
main_x = intel_fb->normal[0].x % tile_width;
main_y = intel_fb->normal[0].y % tile_height;
/*
* CCS doesn't have its own x/y offset register, so the intra CCS tile
* x/y offsets must match between CCS and the main surface.
*/
if (main_x != ccs_x || main_y != ccs_y) {
DRM_DEBUG_KMS("Bad CCS x/y (main %d,%d ccs %d,%d) full (main %d,%d ccs %d,%d)\n",
main_x, main_y,
ccs_x, ccs_y,
intel_fb->normal[0].x,
intel_fb->normal[0].y,
x, y);
return -EINVAL;
}
}
/*
* The fence (if used) is aligned to the start of the object
* so having the framebuffer wrap around across the edge of the
* fenced region doesn't really work. We have no API to configure
* the fence start offset within the object (nor could we probably
* on gen2/3). So it's just easier if we just require that the
* fb layout agrees with the fence layout. We already check that the
* fb stride matches the fence stride elsewhere.
*/
if (i == 0 && i915_gem_object_is_tiled(obj) &&
(x + width) * cpp > fb->pitches[i]) {
DRM_DEBUG_KMS("bad fb plane %d offset: 0x%x\n",
i, fb->offsets[i]);
return -EINVAL;
}
/*
* First pixel of the framebuffer from
* the start of the normal gtt mapping.
*/
intel_fb->normal[i].x = x;
intel_fb->normal[i].y = y;
offset = intel_compute_aligned_offset(dev_priv, &x, &y, fb, i,
fb->pitches[i],
DRM_MODE_ROTATE_0,
tile_size);
offset /= tile_size;
if (!is_surface_linear(fb->modifier, i)) {
unsigned int tile_width, tile_height;
unsigned int pitch_tiles;
struct drm_rect r;
intel_tile_dims(fb, i, &tile_width, &tile_height);
rot_info->plane[i].offset = offset;
rot_info->plane[i].stride = DIV_ROUND_UP(fb->pitches[i], tile_width * cpp);
rot_info->plane[i].width = DIV_ROUND_UP(x + width, tile_width);
rot_info->plane[i].height = DIV_ROUND_UP(y + height, tile_height);
intel_fb->rotated[i].pitch =
rot_info->plane[i].height * tile_height;
/* how many tiles does this plane need */
size = rot_info->plane[i].stride * rot_info->plane[i].height;
/*
* If the plane isn't horizontally tile aligned,
* we need one more tile.
*/
if (x != 0)
size++;
/* rotate the x/y offsets to match the GTT view */
r.x1 = x;
r.y1 = y;
r.x2 = x + width;
r.y2 = y + height;
drm_rect_rotate(&r,
rot_info->plane[i].width * tile_width,
rot_info->plane[i].height * tile_height,
DRM_MODE_ROTATE_270);
x = r.x1;
y = r.y1;
/* rotate the tile dimensions to match the GTT view */
pitch_tiles = intel_fb->rotated[i].pitch / tile_height;
swap(tile_width, tile_height);
/*
* We only keep the x/y offsets, so push all of the
* gtt offset into the x/y offsets.
*/
intel_adjust_tile_offset(&x, &y,
tile_width, tile_height,
tile_size, pitch_tiles,
gtt_offset_rotated * tile_size, 0);
gtt_offset_rotated += rot_info->plane[i].width * rot_info->plane[i].height;
/*
* First pixel of the framebuffer from
* the start of the rotated gtt mapping.
*/
intel_fb->rotated[i].x = x;
intel_fb->rotated[i].y = y;
} else {
size = DIV_ROUND_UP((y + height) * fb->pitches[i] +
x * cpp, tile_size);
}
/* how many tiles in total needed in the bo */
max_size = max(max_size, offset + size);
}
if (mul_u32_u32(max_size, tile_size) > obj->base.size) {
DRM_DEBUG_KMS("fb too big for bo (need %llu bytes, have %zu bytes)\n",
mul_u32_u32(max_size, tile_size), obj->base.size);
return -EINVAL;
}
return 0;
}
static int i9xx_format_to_fourcc(int format)
{
switch (format) {
case DISPPLANE_8BPP:
return DRM_FORMAT_C8;
case DISPPLANE_BGRX555:
return DRM_FORMAT_XRGB1555;
case DISPPLANE_BGRX565:
return DRM_FORMAT_RGB565;
default:
case DISPPLANE_BGRX888:
return DRM_FORMAT_XRGB8888;
case DISPPLANE_RGBX888:
return DRM_FORMAT_XBGR8888;
case DISPPLANE_BGRX101010:
return DRM_FORMAT_XRGB2101010;
case DISPPLANE_RGBX101010:
return DRM_FORMAT_XBGR2101010;
}
}
int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
{
switch (format) {
case PLANE_CTL_FORMAT_RGB_565:
return DRM_FORMAT_RGB565;
case PLANE_CTL_FORMAT_NV12:
return DRM_FORMAT_NV12;
case PLANE_CTL_FORMAT_P010:
return DRM_FORMAT_P010;
case PLANE_CTL_FORMAT_P012:
return DRM_FORMAT_P012;
case PLANE_CTL_FORMAT_P016:
return DRM_FORMAT_P016;
case PLANE_CTL_FORMAT_Y210:
return DRM_FORMAT_Y210;
case PLANE_CTL_FORMAT_Y212:
return DRM_FORMAT_Y212;
case PLANE_CTL_FORMAT_Y216:
return DRM_FORMAT_Y216;
case PLANE_CTL_FORMAT_Y410:
return DRM_FORMAT_XVYU2101010;
case PLANE_CTL_FORMAT_Y412:
return DRM_FORMAT_XVYU12_16161616;
case PLANE_CTL_FORMAT_Y416:
return DRM_FORMAT_XVYU16161616;
default:
case PLANE_CTL_FORMAT_XRGB_8888:
if (rgb_order) {
if (alpha)
return DRM_FORMAT_ABGR8888;
else
return DRM_FORMAT_XBGR8888;
} else {
if (alpha)
return DRM_FORMAT_ARGB8888;
else
return DRM_FORMAT_XRGB8888;
}
case PLANE_CTL_FORMAT_XRGB_2101010:
if (rgb_order)
return DRM_FORMAT_XBGR2101010;
else
return DRM_FORMAT_XRGB2101010;
case PLANE_CTL_FORMAT_XRGB_16161616F:
if (rgb_order) {
if (alpha)
return DRM_FORMAT_ABGR16161616F;
else
return DRM_FORMAT_XBGR16161616F;
} else {
if (alpha)
return DRM_FORMAT_ARGB16161616F;
else
return DRM_FORMAT_XRGB16161616F;
}
}
}
static bool
intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
struct intel_initial_plane_config *plane_config)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct drm_i915_gem_object *obj = NULL;
struct drm_mode_fb_cmd2 mode_cmd = { 0 };
struct drm_framebuffer *fb = &plane_config->fb->base;
u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
u32 size_aligned = round_up(plane_config->base + plane_config->size,
PAGE_SIZE);
size_aligned -= base_aligned;
if (plane_config->size == 0)
return false;
/* If the FB is too big, just don't use it since fbdev is not very
* important and we should probably use that space with FBC or other
* features. */
if (size_aligned * 2 > dev_priv->stolen_usable_size)
return false;
switch (fb->modifier) {
case DRM_FORMAT_MOD_LINEAR:
case I915_FORMAT_MOD_X_TILED:
case I915_FORMAT_MOD_Y_TILED:
break;
default:
DRM_DEBUG_DRIVER("Unsupported modifier for initial FB: 0x%llx\n",
fb->modifier);
return false;
}
mutex_lock(&dev->struct_mutex);
obj = i915_gem_object_create_stolen_for_preallocated(dev_priv,
base_aligned,
base_aligned,
size_aligned);
mutex_unlock(&dev->struct_mutex);
if (!obj)
return false;
switch (plane_config->tiling) {
case I915_TILING_NONE:
break;
case I915_TILING_X:
case I915_TILING_Y:
obj->tiling_and_stride = fb->pitches[0] | plane_config->tiling;
break;
default:
MISSING_CASE(plane_config->tiling);
return false;
}
mode_cmd.pixel_format = fb->format->format;
mode_cmd.width = fb->width;
mode_cmd.height = fb->height;
mode_cmd.pitches[0] = fb->pitches[0];
mode_cmd.modifier[0] = fb->modifier;
mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
if (intel_framebuffer_init(to_intel_framebuffer(fb), obj, &mode_cmd)) {
DRM_DEBUG_KMS("intel fb init failed\n");
goto out_unref_obj;
}
DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
return true;
out_unref_obj:
i915_gem_object_put(obj);
return false;
}
static void
intel_set_plane_visible(struct intel_crtc_state *crtc_state,
struct intel_plane_state *plane_state,
bool visible)
{
struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
plane_state->base.visible = visible;
if (visible)
crtc_state->base.plane_mask |= drm_plane_mask(&plane->base);
else
crtc_state->base.plane_mask &= ~drm_plane_mask(&plane->base);
}
static void fixup_active_planes(struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
struct drm_plane *plane;
/*
* Active_planes aliases if multiple "primary" or cursor planes
* have been used on the same (or wrong) pipe. plane_mask uses
* unique ids, hence we can use that to reconstruct active_planes.
*/
crtc_state->active_planes = 0;
drm_for_each_plane_mask(plane, &dev_priv->drm,
crtc_state->base.plane_mask)
crtc_state->active_planes |= BIT(to_intel_plane(plane)->id);
}
static void intel_plane_disable_noatomic(struct intel_crtc *crtc,
struct intel_plane *plane)
{
struct intel_crtc_state *crtc_state =
to_intel_crtc_state(crtc->base.state);
struct intel_plane_state *plane_state =
to_intel_plane_state(plane->base.state);
DRM_DEBUG_KMS("Disabling [PLANE:%d:%s] on [CRTC:%d:%s]\n",
plane->base.base.id, plane->base.name,
crtc->base.base.id, crtc->base.name);
intel_set_plane_visible(crtc_state, plane_state, false);
fixup_active_planes(crtc_state);
if (plane->id == PLANE_PRIMARY)
intel_pre_disable_primary_noatomic(&crtc->base);
intel_disable_plane(plane, crtc_state);
}
static void
intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
struct intel_initial_plane_config *plane_config)
{
struct drm_device *dev = intel_crtc->base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct drm_crtc *c;
struct drm_i915_gem_object *obj;
struct drm_plane *primary = intel_crtc->base.primary;
struct drm_plane_state *plane_state = primary->state;
struct intel_plane *intel_plane = to_intel_plane(primary);
struct intel_plane_state *intel_state =
to_intel_plane_state(plane_state);
struct drm_framebuffer *fb;
if (!plane_config->fb)
return;
if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
fb = &plane_config->fb->base;
goto valid_fb;
}
kfree(plane_config->fb);
/*
* Failed to alloc the obj, check to see if we should share
* an fb with another CRTC instead
*/
for_each_crtc(dev, c) {
struct intel_plane_state *state;
if (c == &intel_crtc->base)
continue;
if (!to_intel_crtc(c)->active)
continue;
state = to_intel_plane_state(c->primary->state);
if (!state->vma)
continue;
if (intel_plane_ggtt_offset(state) == plane_config->base) {
fb = state->base.fb;
drm_framebuffer_get(fb);
goto valid_fb;
}
}
/*
* We've failed to reconstruct the BIOS FB. Current display state
* indicates that the primary plane is visible, but has a NULL FB,
* which will lead to problems later if we don't fix it up. The
* simplest solution is to just disable the primary plane now and
* pretend the BIOS never had it enabled.
*/
intel_plane_disable_noatomic(intel_crtc, intel_plane);
return;
valid_fb:
intel_state->base.rotation = plane_config->rotation;
intel_fill_fb_ggtt_view(&intel_state->view, fb,
intel_state->base.rotation);
intel_state->color_plane[0].stride =
intel_fb_pitch(fb, 0, intel_state->base.rotation);
mutex_lock(&dev->struct_mutex);
intel_state->vma =
intel_pin_and_fence_fb_obj(fb,
&intel_state->view,
intel_plane_uses_fence(intel_state),
&intel_state->flags);
mutex_unlock(&dev->struct_mutex);
if (IS_ERR(intel_state->vma)) {
DRM_ERROR("failed to pin boot fb on pipe %d: %li\n",
intel_crtc->pipe, PTR_ERR(intel_state->vma));
intel_state->vma = NULL;
drm_framebuffer_put(fb);
return;
}
obj = intel_fb_obj(fb);
intel_fb_obj_flush(obj, ORIGIN_DIRTYFB);
plane_state->src_x = 0;
plane_state->src_y = 0;
plane_state->src_w = fb->width << 16;
plane_state->src_h = fb->height << 16;
plane_state->crtc_x = 0;
plane_state->crtc_y = 0;
plane_state->crtc_w = fb->width;
plane_state->crtc_h = fb->height;
intel_state->base.src = drm_plane_state_src(plane_state);
intel_state->base.dst = drm_plane_state_dest(plane_state);
if (i915_gem_object_is_tiled(obj))
dev_priv->preserve_bios_swizzle = true;
plane_state->fb = fb;
plane_state->crtc = &intel_crtc->base;
atomic_or(to_intel_plane(primary)->frontbuffer_bit,
&obj->frontbuffer_bits);
}
static int skl_max_plane_width(const struct drm_framebuffer *fb,
int color_plane,
unsigned int rotation)
{
int cpp = fb->format->cpp[color_plane];
switch (fb->modifier) {
case DRM_FORMAT_MOD_LINEAR:
case I915_FORMAT_MOD_X_TILED:
return 4096;
case I915_FORMAT_MOD_Y_TILED_CCS:
case I915_FORMAT_MOD_Yf_TILED_CCS:
/* FIXME AUX plane? */
case I915_FORMAT_MOD_Y_TILED:
case I915_FORMAT_MOD_Yf_TILED:
if (cpp == 8)
return 2048;
else
return 4096;
default:
MISSING_CASE(fb->modifier);
return 2048;
}
}
static int glk_max_plane_width(const struct drm_framebuffer *fb,
int color_plane,
unsigned int rotation)
{
int cpp = fb->format->cpp[color_plane];
switch (fb->modifier) {
case DRM_FORMAT_MOD_LINEAR:
case I915_FORMAT_MOD_X_TILED:
if (cpp == 8)
return 4096;
else
return 5120;
case I915_FORMAT_MOD_Y_TILED_CCS:
case I915_FORMAT_MOD_Yf_TILED_CCS:
/* FIXME AUX plane? */
case I915_FORMAT_MOD_Y_TILED:
case I915_FORMAT_MOD_Yf_TILED:
if (cpp == 8)
return 2048;
else
return 5120;
default:
MISSING_CASE(fb->modifier);
return 2048;
}
}
static int icl_max_plane_width(const struct drm_framebuffer *fb,
int color_plane,
unsigned int rotation)
{
return 5120;
}
static bool skl_check_main_ccs_coordinates(struct intel_plane_state *plane_state,
int main_x, int main_y, u32 main_offset)
{
const struct drm_framebuffer *fb = plane_state->base.fb;
int hsub = fb->format->hsub;
int vsub = fb->format->vsub;
int aux_x = plane_state->color_plane[1].x;
int aux_y = plane_state->color_plane[1].y;
u32 aux_offset = plane_state->color_plane[1].offset;
u32 alignment = intel_surf_alignment(fb, 1);
while (aux_offset >= main_offset && aux_y <= main_y) {
int x, y;
if (aux_x == main_x && aux_y == main_y)
break;
if (aux_offset == 0)
break;
x = aux_x / hsub;
y = aux_y / vsub;
aux_offset = intel_plane_adjust_aligned_offset(&x, &y, plane_state, 1,
aux_offset, aux_offset - alignment);
aux_x = x * hsub + aux_x % hsub;
aux_y = y * vsub + aux_y % vsub;
}
if (aux_x != main_x || aux_y != main_y)
return false;
plane_state->color_plane[1].offset = aux_offset;
plane_state->color_plane[1].x = aux_x;
plane_state->color_plane[1].y = aux_y;
return true;
}
static int skl_check_main_surface(struct intel_plane_state *plane_state)
{
struct drm_i915_private *dev_priv = to_i915(plane_state->base.plane->dev);
const struct drm_framebuffer *fb = plane_state->base.fb;
unsigned int rotation = plane_state->base.rotation;
int x = plane_state->base.src.x1 >> 16;
int y = plane_state->base.src.y1 >> 16;
int w = drm_rect_width(&plane_state->base.src) >> 16;
int h = drm_rect_height(&plane_state->base.src) >> 16;
int max_width;
int max_height = 4096;
u32 alignment, offset, aux_offset = plane_state->color_plane[1].offset;
if (INTEL_GEN(dev_priv) >= 11)
max_width = icl_max_plane_width(fb, 0, rotation);
else if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
max_width = glk_max_plane_width(fb, 0, rotation);
else
max_width = skl_max_plane_width(fb, 0, rotation);
if (w > max_width || h > max_height) {
DRM_DEBUG_KMS("requested Y/RGB source size %dx%d too big (limit %dx%d)\n",
w, h, max_width, max_height);
return -EINVAL;
}
intel_add_fb_offsets(&x, &y, plane_state, 0);
offset = intel_plane_compute_aligned_offset(&x, &y, plane_state, 0);
alignment = intel_surf_alignment(fb, 0);
/*
* AUX surface offset is specified as the distance from the
* main surface offset, and it must be non-negative. Make
* sure that is what we will get.
*/
if (offset > aux_offset)
offset = intel_plane_adjust_aligned_offset(&x, &y, plane_state, 0,
offset, aux_offset & ~(alignment - 1));
/*
* When using an X-tiled surface, the plane blows up
* if the x offset + width exceed the stride.
*
* TODO: linear and Y-tiled seem fine, Yf untested,
*/
if (fb->modifier == I915_FORMAT_MOD_X_TILED) {
int cpp = fb->format->cpp[0];
while ((x + w) * cpp > plane_state->color_plane[0].stride) {
if (offset == 0) {
DRM_DEBUG_KMS("Unable to find suitable display surface offset due to X-tiling\n");
return -EINVAL;
}
offset = intel_plane_adjust_aligned_offset(&x, &y, plane_state, 0,
offset, offset - alignment);
}
}
/*
* CCS AUX surface doesn't have its own x/y offsets, we must make sure
* they match with the main surface x/y offsets.
*/
if (is_ccs_modifier(fb->modifier)) {
while (!skl_check_main_ccs_coordinates(plane_state, x, y, offset)) {
if (offset == 0)
break;
offset = intel_plane_adjust_aligned_offset(&x, &y, plane_state, 0,
offset, offset - alignment);
}
if (x != plane_state->color_plane[1].x || y != plane_state->color_plane[1].y) {
DRM_DEBUG_KMS("Unable to find suitable display surface offset due to CCS\n");
return -EINVAL;
}
}
plane_state->color_plane[0].offset = offset;
plane_state->color_plane[0].x = x;
plane_state->color_plane[0].y = y;
return 0;
}
static int skl_check_nv12_aux_surface(struct intel_plane_state *plane_state)
{
const struct drm_framebuffer *fb = plane_state->base.fb;
unsigned int rotation = plane_state->base.rotation;
int max_width = skl_max_plane_width(fb, 1, rotation);
int max_height = 4096;
int x = plane_state->base.src.x1 >> 17;
int y = plane_state->base.src.y1 >> 17;
int w = drm_rect_width(&plane_state->base.src) >> 17;
int h = drm_rect_height(&plane_state->base.src) >> 17;
u32 offset;
intel_add_fb_offsets(&x, &y, plane_state, 1);
offset = intel_plane_compute_aligned_offset(&x, &y, plane_state, 1);
/* FIXME not quite sure how/if these apply to the chroma plane */
if (w > max_width || h > max_height) {
DRM_DEBUG_KMS("CbCr source size %dx%d too big (limit %dx%d)\n",
w, h, max_width, max_height);
return -EINVAL;
}
plane_state->color_plane[1].offset = offset;
plane_state->color_plane[1].x = x;
plane_state->color_plane[1].y = y;
return 0;
}
static int skl_check_ccs_aux_surface(struct intel_plane_state *plane_state)
{
const struct drm_framebuffer *fb = plane_state->base.fb;
int src_x = plane_state->base.src.x1 >> 16;
int src_y = plane_state->base.src.y1 >> 16;
int hsub = fb->format->hsub;
int vsub = fb->format->vsub;
int x = src_x / hsub;
int y = src_y / vsub;
u32 offset;
intel_add_fb_offsets(&x, &y, plane_state, 1);
offset = intel_plane_compute_aligned_offset(&x, &y, plane_state, 1);
plane_state->color_plane[1].offset = offset;
plane_state->color_plane[1].x = x * hsub + src_x % hsub;
plane_state->color_plane[1].y = y * vsub + src_y % vsub;
return 0;
}
int skl_check_plane_surface(struct intel_plane_state *plane_state)
{
const struct drm_framebuffer *fb = plane_state->base.fb;
unsigned int rotation = plane_state->base.rotation;
int ret;
intel_fill_fb_ggtt_view(&plane_state->view, fb, rotation);
plane_state->color_plane[0].stride = intel_fb_pitch(fb, 0, rotation);
plane_state->color_plane[1].stride = intel_fb_pitch(fb, 1, rotation);
ret = intel_plane_check_stride(plane_state);
if (ret)
return ret;
if (!plane_state->base.visible)
return 0;
/* Rotate src coordinates to match rotated GTT view */
if (drm_rotation_90_or_270(rotation))
drm_rect_rotate(&plane_state->base.src,
fb->width << 16, fb->height << 16,
DRM_MODE_ROTATE_270);
/*
* Handle the AUX surface first since
* the main surface setup depends on it.
*/
if (is_planar_yuv_format(fb->format->format)) {
ret = skl_check_nv12_aux_surface(plane_state);
if (ret)
return ret;
} else if (is_ccs_modifier(fb->modifier)) {
ret = skl_check_ccs_aux_surface(plane_state);
if (ret)
return ret;
} else {
plane_state->color_plane[1].offset = ~0xfff;
plane_state->color_plane[1].x = 0;
plane_state->color_plane[1].y = 0;
}
ret = skl_check_main_surface(plane_state);
if (ret)
return ret;
return 0;
}
unsigned int
i9xx_plane_max_stride(struct intel_plane *plane,
u32 pixel_format, u64 modifier,
unsigned int rotation)
{
struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
if (!HAS_GMCH(dev_priv)) {
return 32*1024;
} else if (INTEL_GEN(dev_priv) >= 4) {
if (modifier == I915_FORMAT_MOD_X_TILED)
return 16*1024;
else
return 32*1024;
} else if (INTEL_GEN(dev_priv) >= 3) {
if (modifier == I915_FORMAT_MOD_X_TILED)
return 8*1024;
else
return 16*1024;
} else {
if (plane->i9xx_plane == PLANE_C)
return 4*1024;
else
return 8*1024;
}
}
static u32 i9xx_plane_ctl_crtc(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
u32 dspcntr = 0;
if (crtc_state->gamma_enable)
dspcntr |= DISPPLANE_GAMMA_ENABLE;
if (crtc_state->csc_enable)
dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
if (INTEL_GEN(dev_priv) < 5)
dspcntr |= DISPPLANE_SEL_PIPE(crtc->pipe);
return dspcntr;
}
static u32 i9xx_plane_ctl(const struct intel_crtc_state *crtc_state,
const struct intel_plane_state *plane_state)
{
struct drm_i915_private *dev_priv =
to_i915(plane_state->base.plane->dev);
const struct drm_framebuffer *fb = plane_state->base.fb;
unsigned int rotation = plane_state->base.rotation;
u32 dspcntr;
dspcntr = DISPLAY_PLANE_ENABLE;
if (IS_G4X(dev_priv) || IS_GEN(dev_priv, 5) ||
IS_GEN(dev_priv, 6) || IS_IVYBRIDGE(dev_priv))
dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
switch (fb->format->format) {
case DRM_FORMAT_C8:
dspcntr |= DISPPLANE_8BPP;
break;
case DRM_FORMAT_XRGB1555:
dspcntr |= DISPPLANE_BGRX555;
break;
case DRM_FORMAT_RGB565:
dspcntr |= DISPPLANE_BGRX565;
break;
case DRM_FORMAT_XRGB8888:
dspcntr |= DISPPLANE_BGRX888;
break;
case DRM_FORMAT_XBGR8888:
dspcntr |= DISPPLANE_RGBX888;
break;
case DRM_FORMAT_XRGB2101010:
dspcntr |= DISPPLANE_BGRX101010;
break;
case DRM_FORMAT_XBGR2101010:
dspcntr |= DISPPLANE_RGBX101010;
break;
default:
MISSING_CASE(fb->format->format);
return 0;
}
if (INTEL_GEN(dev_priv) >= 4 &&
fb->modifier == I915_FORMAT_MOD_X_TILED)
dspcntr |= DISPPLANE_TILED;
if (rotation & DRM_MODE_ROTATE_180)
dspcntr |= DISPPLANE_ROTATE_180;
if (rotation & DRM_MODE_REFLECT_X)
dspcntr |= DISPPLANE_MIRROR;
return dspcntr;
}
int i9xx_check_plane_surface(struct intel_plane_state *plane_state)
{
struct drm_i915_private *dev_priv =
to_i915(plane_state->base.plane->dev);
const struct drm_framebuffer *fb = plane_state->base.fb;
unsigned int rotation = plane_state->base.rotation;
int src_x = plane_state->base.src.x1 >> 16;
int src_y = plane_state->base.src.y1 >> 16;
u32 offset;
int ret;
intel_fill_fb_ggtt_view(&plane_state->view, fb, rotation);
plane_state->color_plane[0].stride = intel_fb_pitch(fb, 0, rotation);
ret = intel_plane_check_stride(plane_state);
if (ret)
return ret;
intel_add_fb_offsets(&src_x, &src_y, plane_state, 0);
if (INTEL_GEN(dev_priv) >= 4)
offset = intel_plane_compute_aligned_offset(&src_x, &src_y,
plane_state, 0);
else
offset = 0;
/* HSW/BDW do this automagically in hardware */
if (!IS_HASWELL(dev_priv) && !IS_BROADWELL(dev_priv)) {
int src_w = drm_rect_width(&plane_state->base.src) >> 16;
int src_h = drm_rect_height(&plane_state->base.src) >> 16;
if (rotation & DRM_MODE_ROTATE_180) {
src_x += src_w - 1;
src_y += src_h - 1;
} else if (rotation & DRM_MODE_REFLECT_X) {
src_x += src_w - 1;
}
}
plane_state->color_plane[0].offset = offset;
plane_state->color_plane[0].x = src_x;
plane_state->color_plane[0].y = src_y;
return 0;
}
static int
i9xx_plane_check(struct intel_crtc_state *crtc_state,
struct intel_plane_state *plane_state)
{
int ret;
ret = chv_plane_check_rotation(plane_state);
if (ret)
return ret;
ret = drm_atomic_helper_check_plane_state(&plane_state->base,
&crtc_state->base,
DRM_PLANE_HELPER_NO_SCALING,
DRM_PLANE_HELPER_NO_SCALING,
false, true);
if (ret)
return ret;
if (!plane_state->base.visible)
return 0;
ret = intel_plane_check_src_coordinates(plane_state);
if (ret)
return ret;
ret = i9xx_check_plane_surface(plane_state);
if (ret)
return ret;
plane_state->ctl = i9xx_plane_ctl(crtc_state, plane_state);
return 0;
}
static void i9xx_update_plane(struct intel_plane *plane,
const struct intel_crtc_state *crtc_state,
const struct intel_plane_state *plane_state)
{
struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
enum i9xx_plane_id i9xx_plane = plane->i9xx_plane;
u32 linear_offset;
int x = plane_state->color_plane[0].x;
int y = plane_state->color_plane[0].y;
unsigned long irqflags;
u32 dspaddr_offset;
u32 dspcntr;
dspcntr = plane_state->ctl | i9xx_plane_ctl_crtc(crtc_state);
linear_offset = intel_fb_xy_to_linear(x, y, plane_state, 0);
if (INTEL_GEN(dev_priv) >= 4)
dspaddr_offset = plane_state->color_plane[0].offset;
else
dspaddr_offset = linear_offset;
spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
I915_WRITE_FW(DSPSTRIDE(i9xx_plane), plane_state->color_plane[0].stride);
if (INTEL_GEN(dev_priv) < 4) {
/* pipesrc and dspsize control the size that is scaled from,
* which should always be the user's requested size.
*/
I915_WRITE_FW(DSPPOS(i9xx_plane), 0);
I915_WRITE_FW(DSPSIZE(i9xx_plane),
((crtc_state->pipe_src_h - 1) << 16) |
(crtc_state->pipe_src_w - 1));
} else if (IS_CHERRYVIEW(dev_priv) && i9xx_plane == PLANE_B) {
I915_WRITE_FW(PRIMPOS(i9xx_plane), 0);
I915_WRITE_FW(PRIMSIZE(i9xx_plane),
((crtc_state->pipe_src_h - 1) << 16) |
(crtc_state->pipe_src_w - 1));
I915_WRITE_FW(PRIMCNSTALPHA(i9xx_plane), 0);
}
if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
I915_WRITE_FW(DSPOFFSET(i9xx_plane), (y << 16) | x);
} else if (INTEL_GEN(dev_priv) >= 4) {
I915_WRITE_FW(DSPLINOFF(i9xx_plane), linear_offset);
I915_WRITE_FW(DSPTILEOFF(i9xx_plane), (y << 16) | x);
}
/*
* The control register self-arms if the plane was previously
* disabled. Try to make the plane enable atomic by writing
* the control register just before the surface register.
*/
I915_WRITE_FW(DSPCNTR(i9xx_plane), dspcntr);
if (INTEL_GEN(dev_priv) >= 4)
I915_WRITE_FW(DSPSURF(i9xx_plane),
intel_plane_ggtt_offset(plane_state) +
dspaddr_offset);
else
I915_WRITE_FW(DSPADDR(i9xx_plane),
intel_plane_ggtt_offset(plane_state) +
dspaddr_offset);
spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
}
static void i9xx_disable_plane(struct intel_plane *plane,
const struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
enum i9xx_plane_id i9xx_plane = plane->i9xx_plane;
unsigned long irqflags;
u32 dspcntr;
/*
* DSPCNTR pipe gamma enable on g4x+ and pipe csc
* enable on ilk+ affect the pipe bottom color as
* well, so we must configure them even if the plane
* is disabled.
*
* On pre-g4x there is no way to gamma correct the
* pipe bottom color but we'll keep on doing this
* anyway so that the crtc state readout works correctly.
*/
dspcntr = i9xx_plane_ctl_crtc(crtc_state);
spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
I915_WRITE_FW(DSPCNTR(i9xx_plane), dspcntr);
if (INTEL_GEN(dev_priv) >= 4)
I915_WRITE_FW(DSPSURF(i9xx_plane), 0);
else
I915_WRITE_FW(DSPADDR(i9xx_plane), 0);
spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
}
static bool i9xx_plane_get_hw_state(struct intel_plane *plane,
enum pipe *pipe)
{
struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
enum intel_display_power_domain power_domain;
enum i9xx_plane_id i9xx_plane = plane->i9xx_plane;
intel_wakeref_t wakeref;
bool ret;
u32 val;
/*
* Not 100% correct for planes that can move between pipes,
* but that's only the case for gen2-4 which don't have any
* display power wells.
*/
power_domain = POWER_DOMAIN_PIPE(plane->pipe);
wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
if (!wakeref)
return false;
val = I915_READ(DSPCNTR(i9xx_plane));
ret = val & DISPLAY_PLANE_ENABLE;
if (INTEL_GEN(dev_priv) >= 5)
*pipe = plane->pipe;
else
*pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
DISPPLANE_SEL_PIPE_SHIFT;
intel_display_power_put(dev_priv, power_domain, wakeref);
return ret;
}
static u32
intel_fb_stride_alignment(const struct drm_framebuffer *fb, int color_plane)
{
if (fb->modifier == DRM_FORMAT_MOD_LINEAR)
return 64;
else
return intel_tile_width_bytes(fb, color_plane);
}
static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id)
{
struct drm_device *dev = intel_crtc->base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, id), 0);
I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, id), 0);
I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0);
}
/*
* This function detaches (aka. unbinds) unused scalers in hardware
*/
static void skl_detach_scalers(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
const struct intel_crtc_scaler_state *scaler_state =
&crtc_state->scaler_state;
int i;
/* loop through and disable scalers that aren't in use */
for (i = 0; i < intel_crtc->num_scalers; i++) {
if (!scaler_state->scalers[i].in_use)
skl_detach_scaler(intel_crtc, i);
}
}
static unsigned int skl_plane_stride_mult(const struct drm_framebuffer *fb,
int color_plane, unsigned int rotation)
{
/*
* The stride is either expressed as a multiple of 64 bytes chunks for
* linear buffers or in number of tiles for tiled buffers.
*/
if (fb->modifier == DRM_FORMAT_MOD_LINEAR)
return 64;
else if (drm_rotation_90_or_270(rotation))
return intel_tile_height(fb, color_plane);
else
return intel_tile_width_bytes(fb, color_plane);
}
u32 skl_plane_stride(const struct intel_plane_state *plane_state,
int color_plane)
{
const struct drm_framebuffer *fb = plane_state->base.fb;
unsigned int rotation = plane_state->base.rotation;
u32 stride = plane_state->color_plane[color_plane].stride;
if (color_plane >= fb->format->num_planes)
return 0;
return stride / skl_plane_stride_mult(fb, color_plane, rotation);
}
static u32 skl_plane_ctl_format(u32 pixel_format)
{
switch (pixel_format) {
case DRM_FORMAT_C8:
return PLANE_CTL_FORMAT_INDEXED;
case DRM_FORMAT_RGB565:
return PLANE_CTL_FORMAT_RGB_565;
case DRM_FORMAT_XBGR8888:
case DRM_FORMAT_ABGR8888:
return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
case DRM_FORMAT_XRGB8888:
case DRM_FORMAT_ARGB8888:
return PLANE_CTL_FORMAT_XRGB_8888;
case DRM_FORMAT_XRGB2101010:
return PLANE_CTL_FORMAT_XRGB_2101010;
case DRM_FORMAT_XBGR2101010:
return PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
case DRM_FORMAT_XBGR16161616F:
case DRM_FORMAT_ABGR16161616F:
return PLANE_CTL_FORMAT_XRGB_16161616F | PLANE_CTL_ORDER_RGBX;
case DRM_FORMAT_XRGB16161616F:
case DRM_FORMAT_ARGB16161616F:
return PLANE_CTL_FORMAT_XRGB_16161616F;
case DRM_FORMAT_YUYV:
return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
case DRM_FORMAT_YVYU:
return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
case DRM_FORMAT_UYVY:
return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
case DRM_FORMAT_VYUY:
return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
case DRM_FORMAT_NV12:
return PLANE_CTL_FORMAT_NV12;
case DRM_FORMAT_P010:
return PLANE_CTL_FORMAT_P010;
case DRM_FORMAT_P012:
return PLANE_CTL_FORMAT_P012;
case DRM_FORMAT_P016:
return PLANE_CTL_FORMAT_P016;
case DRM_FORMAT_Y210:
return PLANE_CTL_FORMAT_Y210;
case DRM_FORMAT_Y212:
return PLANE_CTL_FORMAT_Y212;
case DRM_FORMAT_Y216:
return PLANE_CTL_FORMAT_Y216;
case DRM_FORMAT_XVYU2101010:
return PLANE_CTL_FORMAT_Y410;
case DRM_FORMAT_XVYU12_16161616:
return PLANE_CTL_FORMAT_Y412;
case DRM_FORMAT_XVYU16161616:
return PLANE_CTL_FORMAT_Y416;
default:
MISSING_CASE(pixel_format);
}
return 0;
}
static u32 skl_plane_ctl_alpha(const struct intel_plane_state *plane_state)
{
if (!plane_state->base.fb->format->has_alpha)
return PLANE_CTL_ALPHA_DISABLE;
switch (plane_state->base.pixel_blend_mode) {
case DRM_MODE_BLEND_PIXEL_NONE:
return PLANE_CTL_ALPHA_DISABLE;
case DRM_MODE_BLEND_PREMULTI:
return PLANE_CTL_ALPHA_SW_PREMULTIPLY;
case DRM_MODE_BLEND_COVERAGE:
return PLANE_CTL_ALPHA_HW_PREMULTIPLY;
default:
MISSING_CASE(plane_state->base.pixel_blend_mode);
return PLANE_CTL_ALPHA_DISABLE;
}
}
static u32 glk_plane_color_ctl_alpha(const struct intel_plane_state *plane_state)
{
if (!plane_state->base.fb->format->has_alpha)
return PLANE_COLOR_ALPHA_DISABLE;
switch (plane_state->base.pixel_blend_mode) {
case DRM_MODE_BLEND_PIXEL_NONE:
return PLANE_COLOR_ALPHA_DISABLE;
case DRM_MODE_BLEND_PREMULTI:
return PLANE_COLOR_ALPHA_SW_PREMULTIPLY;
case DRM_MODE_BLEND_COVERAGE:
return PLANE_COLOR_ALPHA_HW_PREMULTIPLY;
default:
MISSING_CASE(plane_state->base.pixel_blend_mode);
return PLANE_COLOR_ALPHA_DISABLE;
}
}
static u32 skl_plane_ctl_tiling(u64 fb_modifier)
{
switch (fb_modifier) {
case DRM_FORMAT_MOD_LINEAR:
break;
case I915_FORMAT_MOD_X_TILED:
return PLANE_CTL_TILED_X;
case I915_FORMAT_MOD_Y_TILED:
return PLANE_CTL_TILED_Y;
case I915_FORMAT_MOD_Y_TILED_CCS:
return PLANE_CTL_TILED_Y | PLANE_CTL_RENDER_DECOMPRESSION_ENABLE;
case I915_FORMAT_MOD_Yf_TILED:
return PLANE_CTL_TILED_YF;
case I915_FORMAT_MOD_Yf_TILED_CCS:
return PLANE_CTL_TILED_YF | PLANE_CTL_RENDER_DECOMPRESSION_ENABLE;
default:
MISSING_CASE(fb_modifier);
}
return 0;
}
static u32 skl_plane_ctl_rotate(unsigned int rotate)
{
switch (rotate) {
case DRM_MODE_ROTATE_0:
break;
/*
* DRM_MODE_ROTATE_ is counter clockwise to stay compatible with Xrandr
* while i915 HW rotation is clockwise, thats why this swapping.
*/
case DRM_MODE_ROTATE_90:
return PLANE_CTL_ROTATE_270;
case DRM_MODE_ROTATE_180:
return PLANE_CTL_ROTATE_180;
case DRM_MODE_ROTATE_270:
return PLANE_CTL_ROTATE_90;
default:
MISSING_CASE(rotate);
}
return 0;
}
static u32 cnl_plane_ctl_flip(unsigned int reflect)
{
switch (reflect) {
case 0:
break;
case DRM_MODE_REFLECT_X:
return PLANE_CTL_FLIP_HORIZONTAL;
case DRM_MODE_REFLECT_Y:
default:
MISSING_CASE(reflect);
}
return 0;
}
u32 skl_plane_ctl_crtc(const struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
u32 plane_ctl = 0;
if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
return plane_ctl;
if (crtc_state->gamma_enable)
plane_ctl |= PLANE_CTL_PIPE_GAMMA_ENABLE;
if (crtc_state->csc_enable)
plane_ctl |= PLANE_CTL_PIPE_CSC_ENABLE;
return plane_ctl;
}
u32 skl_plane_ctl(const struct intel_crtc_state *crtc_state,
const struct intel_plane_state *plane_state)
{
struct drm_i915_private *dev_priv =
to_i915(plane_state->base.plane->dev);
const struct drm_framebuffer *fb = plane_state->base.fb;
unsigned int rotation = plane_state->base.rotation;
const struct drm_intel_sprite_colorkey *key = &plane_state->ckey;
u32 plane_ctl;
plane_ctl = PLANE_CTL_ENABLE;
if (INTEL_GEN(dev_priv) < 10 && !IS_GEMINILAKE(dev_priv)) {
plane_ctl |= skl_plane_ctl_alpha(plane_state);
plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
if (plane_state->base.color_encoding == DRM_COLOR_YCBCR_BT709)
plane_ctl |= PLANE_CTL_YUV_TO_RGB_CSC_FORMAT_BT709;
if (plane_state->base.color_range == DRM_COLOR_YCBCR_FULL_RANGE)
plane_ctl |= PLANE_CTL_YUV_RANGE_CORRECTION_DISABLE;
}
plane_ctl |= skl_plane_ctl_format(fb->format->format);
plane_ctl |= skl_plane_ctl_tiling(fb->modifier);
plane_ctl |= skl_plane_ctl_rotate(rotation & DRM_MODE_ROTATE_MASK);
if (INTEL_GEN(dev_priv) >= 10)
plane_ctl |= cnl_plane_ctl_flip(rotation &
DRM_MODE_REFLECT_MASK);
if (key->flags & I915_SET_COLORKEY_DESTINATION)
plane_ctl |= PLANE_CTL_KEY_ENABLE_DESTINATION;
else if (key->flags & I915_SET_COLORKEY_SOURCE)
plane_ctl |= PLANE_CTL_KEY_ENABLE_SOURCE;
return plane_ctl;
}
u32 glk_plane_color_ctl_crtc(const struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
u32 plane_color_ctl = 0;
if (INTEL_GEN(dev_priv) >= 11)
return plane_color_ctl;
if (crtc_state->gamma_enable)
plane_color_ctl |= PLANE_COLOR_PIPE_GAMMA_ENABLE;
if (crtc_state->csc_enable)
plane_color_ctl |= PLANE_COLOR_PIPE_CSC_ENABLE;
return plane_color_ctl;
}
u32 glk_plane_color_ctl(const struct intel_crtc_state *crtc_state,
const struct intel_plane_state *plane_state)
{
struct drm_i915_private *dev_priv =
to_i915(plane_state->base.plane->dev);
const struct drm_framebuffer *fb = plane_state->base.fb;
struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
u32 plane_color_ctl = 0;
plane_color_ctl |= PLANE_COLOR_PLANE_GAMMA_DISABLE;
plane_color_ctl |= glk_plane_color_ctl_alpha(plane_state);
if (fb->format->is_yuv && !icl_is_hdr_plane(dev_priv, plane->id)) {
if (plane_state->base.color_encoding == DRM_COLOR_YCBCR_BT709)
plane_color_ctl |= PLANE_COLOR_CSC_MODE_YUV709_TO_RGB709;
else
plane_color_ctl |= PLANE_COLOR_CSC_MODE_YUV601_TO_RGB709;
if (plane_state->base.color_range == DRM_COLOR_YCBCR_FULL_RANGE)
plane_color_ctl |= PLANE_COLOR_YUV_RANGE_CORRECTION_DISABLE;
} else if (fb->format->is_yuv) {
plane_color_ctl |= PLANE_COLOR_INPUT_CSC_ENABLE;
}
return plane_color_ctl;
}
static int
__intel_display_resume(struct drm_device *dev,
struct drm_atomic_state *state,
struct drm_modeset_acquire_ctx *ctx)
{
struct drm_crtc_state *crtc_state;
struct drm_crtc *crtc;
int i, ret;
intel_modeset_setup_hw_state(dev, ctx);
i915_redisable_vga(to_i915(dev));
if (!state)
return 0;
/*
* We've duplicated the state, pointers to the old state are invalid.
*
* Don't attempt to use the old state until we commit the duplicated state.
*/
for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
/*
* Force recalculation even if we restore
* current state. With fast modeset this may not result
* in a modeset when the state is compatible.
*/
crtc_state->mode_changed = true;
}
/* ignore any reset values/BIOS leftovers in the WM registers */
if (!HAS_GMCH(to_i915(dev)))
to_intel_atomic_state(state)->skip_intermediate_wm = true;
ret = drm_atomic_helper_commit_duplicated_state(state, ctx);
WARN_ON(ret == -EDEADLK);
return ret;
}
static bool gpu_reset_clobbers_display(struct drm_i915_private *dev_priv)
{
return (INTEL_INFO(dev_priv)->gpu_reset_clobbers_display &&
intel_has_gpu_reset(dev_priv));
}
void intel_prepare_reset(struct drm_i915_private *dev_priv)
{
struct drm_device *dev = &dev_priv->drm;
struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx;
struct drm_atomic_state *state;
int ret;
/* reset doesn't touch the display */
if (!i915_modparams.force_reset_modeset_test &&
!gpu_reset_clobbers_display(dev_priv))
return;
/* We have a modeset vs reset deadlock, defensively unbreak it. */
set_bit(I915_RESET_MODESET, &dev_priv->gpu_error.flags);
wake_up_all(&dev_priv->gpu_error.wait_queue);
if (atomic_read(&dev_priv->gpu_error.pending_fb_pin)) {
DRM_DEBUG_KMS("Modeset potentially stuck, unbreaking through wedging\n");
i915_gem_set_wedged(dev_priv);
}
/*
* Need mode_config.mutex so that we don't
* trample ongoing ->detect() and whatnot.
*/
mutex_lock(&dev->mode_config.mutex);
drm_modeset_acquire_init(ctx, 0);
while (1) {
ret = drm_modeset_lock_all_ctx(dev, ctx);
if (ret != -EDEADLK)
break;
drm_modeset_backoff(ctx);
}
/*
* Disabling the crtcs gracefully seems nicer. Also the
* g33 docs say we should at least disable all the planes.
*/
state = drm_atomic_helper_duplicate_state(dev, ctx);
if (IS_ERR(state)) {
ret = PTR_ERR(state);
DRM_ERROR("Duplicating state failed with %i\n", ret);
return;
}
ret = drm_atomic_helper_disable_all(dev, ctx);
if (ret) {
DRM_ERROR("Suspending crtc's failed with %i\n", ret);
drm_atomic_state_put(state);
return;
}
dev_priv->modeset_restore_state = state;
state->acquire_ctx = ctx;
}
void intel_finish_reset(struct drm_i915_private *dev_priv)
{
struct drm_device *dev = &dev_priv->drm;
struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx;
struct drm_atomic_state *state;
int ret;
/* reset doesn't touch the display */
if (!test_bit(I915_RESET_MODESET, &dev_priv->gpu_error.flags))
return;
state = fetch_and_zero(&dev_priv->modeset_restore_state);
if (!state)
goto unlock;
/* reset doesn't touch the display */
if (!gpu_reset_clobbers_display(dev_priv)) {
/* for testing only restore the display */
ret = __intel_display_resume(dev, state, ctx);
if (ret)
DRM_ERROR("Restoring old state failed with %i\n", ret);
} else {
/*
* The display has been reset as well,
* so need a full re-initialization.
*/
intel_pps_unlock_regs_wa(dev_priv);
intel_modeset_init_hw(dev);
intel_init_clock_gating(dev_priv);
spin_lock_irq(&dev_priv->irq_lock);
if (dev_priv->display.hpd_irq_setup)
dev_priv->display.hpd_irq_setup(dev_priv);
spin_unlock_irq(&dev_priv->irq_lock);
ret = __intel_display_resume(dev, state, ctx);
if (ret)
DRM_ERROR("Restoring old state failed with %i\n", ret);
intel_hpd_init(dev_priv);
}
drm_atomic_state_put(state);
unlock:
drm_modeset_drop_locks(ctx);
drm_modeset_acquire_fini(ctx);
mutex_unlock(&dev->mode_config.mutex);
clear_bit(I915_RESET_MODESET, &dev_priv->gpu_error.flags);
}
static void icl_set_pipe_chicken(struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum pipe pipe = crtc->pipe;
u32 tmp;
tmp = I915_READ(PIPE_CHICKEN(pipe));
/*
* Display WA #1153: icl
* enable hardware to bypass the alpha math
* and rounding for per-pixel values 00 and 0xff
*/
tmp |= PER_PIXEL_ALPHA_BYPASS_EN;
/*
* Display WA # 1605353570: icl
* Set the pixel rounding bit to 1 for allowing
* passthrough of Frame buffer pixels unmodified
* across pipe
*/
tmp |= PIXEL_ROUNDING_TRUNC_FB_PASSTHRU;
I915_WRITE(PIPE_CHICKEN(pipe), tmp);
}
static void intel_update_pipe_config(const struct intel_crtc_state *old_crtc_state,
const struct intel_crtc_state *new_crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->base.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
/* drm_atomic_helper_update_legacy_modeset_state might not be called. */
crtc->base.mode = new_crtc_state->base.mode;
/*
* Update pipe size and adjust fitter if needed: the reason for this is
* that in compute_mode_changes we check the native mode (not the pfit
* mode) to see if we can flip rather than do a full mode set. In the
* fastboot case, we'll flip, but if we don't update the pipesrc and
* pfit state, we'll end up with a big fb scanned out into the wrong
* sized surface.
*/
I915_WRITE(PIPESRC(crtc->pipe),
((new_crtc_state->pipe_src_w - 1) << 16) |
(new_crtc_state->pipe_src_h - 1));
/* on skylake this is done by detaching scalers */
if (INTEL_GEN(dev_priv) >= 9) {
skl_detach_scalers(new_crtc_state);
if (new_crtc_state->pch_pfit.enabled)
skylake_pfit_enable(new_crtc_state);
} else if (HAS_PCH_SPLIT(dev_priv)) {
if (new_crtc_state->pch_pfit.enabled)
ironlake_pfit_enable(new_crtc_state);
else if (old_crtc_state->pch_pfit.enabled)
ironlake_pfit_disable(old_crtc_state);
}
if (INTEL_GEN(dev_priv) >= 11)
icl_set_pipe_chicken(crtc);
}
static void intel_fdi_normal_train(struct intel_crtc *crtc)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
int pipe = crtc->pipe;
i915_reg_t reg;
u32 temp;
/* enable normal train */
reg = FDI_TX_CTL(pipe);
temp = I915_READ(reg);
if (IS_IVYBRIDGE(dev_priv)) {
temp &= ~FDI_LINK_TRAIN_NONE_IVB;
temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
} else {
temp &= ~FDI_LINK_TRAIN_NONE;
temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
}
I915_WRITE(reg, temp);
reg = FDI_RX_CTL(pipe);
temp = I915_READ(reg);
if (HAS_PCH_CPT(dev_priv)) {
temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
temp |= FDI_LINK_TRAIN_NORMAL_CPT;
} else {
temp &= ~FDI_LINK_TRAIN_NONE;
temp |= FDI_LINK_TRAIN_NONE;
}
I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
/* wait one idle pattern time */
POSTING_READ(reg);
udelay(1000);
/* IVB wants error correction enabled */
if (IS_IVYBRIDGE(dev_priv))
I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
FDI_FE_ERRC_ENABLE);
}
/* The FDI link training functions for ILK/Ibexpeak. */
static void ironlake_fdi_link_train(struct intel_crtc *crtc,
const struct intel_crtc_state *crtc_state)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
int pipe = crtc->pipe;
i915_reg_t reg;
u32 temp, tries;
/* FDI needs bits from pipe first */
assert_pipe_enabled(dev_priv, pipe);
/* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
for train result */
reg = FDI_RX_IMR(pipe);
temp = I915_READ(reg);
temp &= ~FDI_RX_SYMBOL_LOCK;
temp &= ~FDI_RX_BIT_LOCK;
I915_WRITE(reg, temp);
I915_READ(reg);
udelay(150);
/* enable CPU FDI TX and PCH FDI RX */
reg = FDI_TX_CTL(pipe);
temp = I915_READ(reg);
temp &= ~FDI_DP_PORT_WIDTH_MASK;
temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes);
temp &= ~FDI_LINK_TRAIN_NONE;
temp |= FDI_LINK_TRAIN_PATTERN_1;
I915_WRITE(reg, temp | FDI_TX_ENABLE);
reg = FDI_RX_CTL(pipe);
temp = I915_READ(reg);
temp &= ~FDI_LINK_TRAIN_NONE;
temp |= FDI_LINK_TRAIN_PATTERN_1;
I915_WRITE(reg, temp | FDI_RX_ENABLE);
POSTING_READ(reg);
udelay(150);
/* Ironlake workaround, enable clock pointer after FDI enable*/
I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
FDI_RX_PHASE_SYNC_POINTER_EN);
reg = FDI_RX_IIR(pipe);
for (tries = 0; tries < 5; tries++) {
temp = I915_READ(reg);
DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
if ((temp & FDI_RX_BIT_LOCK)) {
DRM_DEBUG_KMS("FDI train 1 done.\n");
I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
break;
}
}
if (tries == 5)
DRM_ERROR("FDI train 1 fail!\n");
/* Train 2 */
reg = FDI_TX_CTL(pipe);
temp = I915_READ(reg);
temp &= ~FDI_LINK_TRAIN_NONE;
temp |= FDI_LINK_TRAIN_PATTERN_2;
I915_WRITE(reg, temp);
reg = FDI_RX_CTL(pipe);
temp = I915_READ(reg);
temp &= ~FDI_LINK_TRAIN_NONE;
temp |= FDI_LINK_TRAIN_PATTERN_2;
I915_WRITE(reg, temp);
POSTING_READ(reg);
udelay(150);
reg = FDI_RX_IIR(pipe);
for (tries = 0; tries < 5; tries++) {
temp = I915_READ(reg);
DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
if (temp & FDI_RX_SYMBOL_LOCK) {
I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
DRM_DEBUG_KMS("FDI train 2 done.\n");
break;
}
}
if (tries == 5)
DRM_ERROR("FDI train 2 fail!\n");
DRM_DEBUG_KMS("FDI train done\n");
}
static const int snb_b_fdi_train_param[] = {
FDI_LINK_TRAIN_400MV_0DB_SNB_B,
FDI_LINK_TRAIN_400MV_6DB_SNB_B,
FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
FDI_LINK_TRAIN_800MV_0DB_SNB_B,
};
/* The FDI link training functions for SNB/Cougarpoint. */
static void gen6_fdi_link_train(struct intel_crtc *crtc,
const struct intel_crtc_state *crtc_state)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
int pipe = crtc->pipe;
i915_reg_t reg;
u32 temp, i, retry;
/* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
for train result */
reg = FDI_RX_IMR(pipe);
temp = I915_READ(reg);
temp &= ~FDI_RX_SYMBOL_LOCK;
temp &= ~FDI_RX_BIT_LOCK;
I915_WRITE(reg, temp);
POSTING_READ(reg);
udelay(150);
/* enable CPU FDI TX and PCH FDI RX */
reg = FDI_TX_CTL(pipe);
temp = I915_READ(reg);
temp &= ~FDI_DP_PORT_WIDTH_MASK;
temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes);
temp &= ~FDI_LINK_TRAIN_NONE;
temp |= FDI_LINK_TRAIN_PATTERN_1;
temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
/* SNB-B */
temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
I915_WRITE(reg, temp | FDI_TX_ENABLE);
I915_WRITE(FDI_RX_MISC(pipe),
FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
reg = FDI_RX_CTL(pipe);
temp = I915_READ(reg);
if (HAS_PCH_CPT(dev_priv)) {
temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
} else {
temp &= ~FDI_LINK_TRAIN_NONE;
temp |= FDI_LINK_TRAIN_PATTERN_1;
}
I915_WRITE(reg, temp | FDI_RX_ENABLE);
POSTING_READ(reg);
udelay(150);
for (i = 0; i < 4; i++) {
reg = FDI_TX_CTL(pipe);
temp = I915_READ(reg);
temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
temp |= snb_b_fdi_train_param[i];
I915_WRITE(reg, temp);
POSTING_READ(reg);
udelay(500);
for (retry = 0; retry < 5; retry++) {
reg = FDI_RX_IIR(pipe);
temp = I915_READ(reg);
DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
if (temp & FDI_RX_BIT_LOCK) {
I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
DRM_DEBUG_KMS("FDI train 1 done.\n");
break;
}
udelay(50);
}
if (retry < 5)
break;
}
if (i == 4)
DRM_ERROR("FDI train 1 fail!\n");
/* Train 2 */
reg = FDI_TX_CTL(pipe);
temp = I915_READ(reg);
temp &= ~FDI_LINK_TRAIN_NONE;
temp |= FDI_LINK_TRAIN_PATTERN_2;
if (IS_GEN(dev_priv, 6)) {
temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
/* SNB-B */
temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
}
I915_WRITE(reg, temp);
reg = FDI_RX_CTL(pipe);
temp = I915_READ(reg);
if (HAS_PCH_CPT(dev_priv)) {
temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
} else {
temp &= ~FDI_LINK_TRAIN_NONE;
temp |= FDI_LINK_TRAIN_PATTERN_2;
}
I915_WRITE(reg, temp);
POSTING_READ(reg);
udelay(150);
for (i = 0; i < 4; i++) {
reg = FDI_TX_CTL(pipe);
temp = I915_READ(reg);
temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
temp |= snb_b_fdi_train_param[i];
I915_WRITE(reg, temp);
POSTING_READ(reg);
udelay(500);
for (retry = 0; retry < 5; retry++) {
reg = FDI_RX_IIR(pipe);
temp = I915_READ(reg);
DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
if (temp & FDI_RX_SYMBOL_LOCK) {
I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
DRM_DEBUG_KMS("FDI train 2 done.\n");
break;
}
udelay(50);
}
if (retry < 5)
break;
}
if (i == 4)
DRM_ERROR("FDI train 2 fail!\n");
DRM_DEBUG_KMS("FDI train done.\n");
}
/* Manual link training for Ivy Bridge A0 parts */
static void ivb_manual_fdi_link_train(struct intel_crtc *crtc,
const struct intel_crtc_state *crtc_state)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
int pipe = crtc->pipe;
i915_reg_t reg;
u32 temp, i, j;
/* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
for train result */
reg = FDI_RX_IMR(pipe);
temp = I915_READ(reg);
temp &= ~FDI_RX_SYMBOL_LOCK;
temp &= ~FDI_RX_BIT_LOCK;
I915_WRITE(reg, temp);
POSTING_READ(reg);
udelay(150);
DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
I915_READ(FDI_RX_IIR(pipe)));
/* Try each vswing and preemphasis setting twice before moving on */
for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
/* disable first in case we need to retry */
reg = FDI_TX_CTL(pipe);
temp = I915_READ(reg);
temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
temp &= ~FDI_TX_ENABLE;
I915_WRITE(reg, temp);
reg = FDI_RX_CTL(pipe);
temp = I915_READ(reg);
temp &= ~FDI_LINK_TRAIN_AUTO;
temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
temp &= ~FDI_RX_ENABLE;
I915_WRITE(reg, temp);
/* enable CPU FDI TX and PCH FDI RX */
reg = FDI_TX_CTL(pipe);
temp = I915_READ(reg);
temp &= ~FDI_DP_PORT_WIDTH_MASK;
temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes);
temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
temp |= snb_b_fdi_train_param[j/2];
temp |= FDI_COMPOSITE_SYNC;
I915_WRITE(reg, temp | FDI_TX_ENABLE);
I915_WRITE(FDI_RX_MISC(pipe),
FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
reg = FDI_RX_CTL(pipe);
temp = I915_READ(reg);
temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
temp |= FDI_COMPOSITE_SYNC;
I915_WRITE(reg, temp | FDI_RX_ENABLE);
POSTING_READ(reg);
udelay(1); /* should be 0.5us */
for (i = 0; i < 4; i++) {
reg = FDI_RX_IIR(pipe);
temp = I915_READ(reg);
DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
if (temp & FDI_RX_BIT_LOCK ||
(I915_READ(reg) & FDI_RX_BIT_LOCK)) {
I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
i);
break;
}
udelay(1); /* should be 0.5us */
}
if (i == 4) {
DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
continue;
}
/* Train 2 */
reg = FDI_TX_CTL(pipe);
temp = I915_READ(reg);
temp &= ~FDI_LINK_TRAIN_NONE_IVB;
temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
I915_WRITE(reg, temp);
reg = FDI_RX_CTL(pipe);
temp = I915_READ(reg);
temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
I915_WRITE(reg, temp);
POSTING_READ(reg);
udelay(2); /* should be 1.5us */
for (i = 0; i < 4; i++) {
reg = FDI_RX_IIR(pipe);
temp = I915_READ(reg);
DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
if (temp & FDI_RX_SYMBOL_LOCK ||
(I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
i);
goto train_done;
}
udelay(2); /* should be 1.5us */
}
if (i == 4)
DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
}
train_done:
DRM_DEBUG_KMS("FDI train done.\n");
}
static void ironlake_fdi_pll_enable(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
int pipe = intel_crtc->pipe;
i915_reg_t reg;
u32 temp;
/* enable PCH FDI RX PLL, wait warmup plus DMI latency */
reg = FDI_RX_CTL(pipe);
temp = I915_READ(reg);
temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes);
temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
POSTING_READ(reg);
udelay(200);
/* Switch from Rawclk to PCDclk */
temp = I915_READ(reg);
I915_WRITE(reg, temp | FDI_PCDCLK);
POSTING_READ(reg);
udelay(200);
/* Enable CPU FDI TX PLL, always on for Ironlake */
reg = FDI_TX_CTL(pipe);
temp = I915_READ(reg);
if ((temp & FDI_TX_PLL_ENABLE) == 0) {
I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
POSTING_READ(reg);
udelay(100);
}
}
static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
{
struct drm_device *dev = intel_crtc->base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
int pipe = intel_crtc->pipe;
i915_reg_t reg;
u32 temp;
/* Switch from PCDclk to Rawclk */
reg = FDI_RX_CTL(pipe);
temp = I915_READ(reg);
I915_WRITE(reg, temp & ~FDI_PCDCLK);
/* Disable CPU FDI TX PLL */
reg = FDI_TX_CTL(pipe);
temp = I915_READ(reg);
I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
POSTING_READ(reg);
udelay(100);
reg = FDI_RX_CTL(pipe);
temp = I915_READ(reg);
I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
/* Wait for the clocks to turn off. */
POSTING_READ(reg);
udelay(100);
}
static void ironlake_fdi_disable(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
i915_reg_t reg;
u32 temp;
/* disable CPU FDI tx and PCH FDI rx */
reg = FDI_TX_CTL(pipe);
temp = I915_READ(reg);
I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
POSTING_READ(reg);
reg = FDI_RX_CTL(pipe);
temp = I915_READ(reg);
temp &= ~(0x7 << 16);
temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
POSTING_READ(reg);
udelay(100);
/* Ironlake workaround, disable clock pointer after downing FDI */
if (HAS_PCH_IBX(dev_priv))
I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
/* still set train pattern 1 */
reg = FDI_TX_CTL(pipe);
temp = I915_READ(reg);
temp &= ~FDI_LINK_TRAIN_NONE;
temp |= FDI_LINK_TRAIN_PATTERN_1;
I915_WRITE(reg, temp);
reg = FDI_RX_CTL(pipe);
temp = I915_READ(reg);
if (HAS_PCH_CPT(dev_priv)) {
temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
} else {
temp &= ~FDI_LINK_TRAIN_NONE;
temp |= FDI_LINK_TRAIN_PATTERN_1;
}
/* BPC in FDI rx is consistent with that in PIPECONF */
temp &= ~(0x07 << 16);
temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
I915_WRITE(reg, temp);
POSTING_READ(reg);
udelay(100);
}
bool intel_has_pending_fb_unpin(struct drm_i915_private *dev_priv)
{
struct drm_crtc *crtc;
bool cleanup_done;
drm_for_each_crtc(crtc, &dev_priv->drm) {
struct drm_crtc_commit *commit;
spin_lock(&crtc->commit_lock);
commit = list_first_entry_or_null(&crtc->commit_list,
struct drm_crtc_commit, commit_entry);
cleanup_done = commit ?
try_wait_for_completion(&commit->cleanup_done) : true;
spin_unlock(&crtc->commit_lock);
if (cleanup_done)
continue;
drm_crtc_wait_one_vblank(crtc);
return true;
}
return false;
}
void lpt_disable_iclkip(struct drm_i915_private *dev_priv)
{
u32 temp;
I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
mutex_lock(&dev_priv->sb_lock);
temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
temp |= SBI_SSCCTL_DISABLE;
intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
mutex_unlock(&dev_priv->sb_lock);
}
/* Program iCLKIP clock to the desired frequency */
static void lpt_program_iclkip(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
int clock = crtc_state->base.adjusted_mode.crtc_clock;
u32 divsel, phaseinc, auxdiv, phasedir = 0;
u32 temp;
lpt_disable_iclkip(dev_priv);
/* The iCLK virtual clock root frequency is in MHz,
* but the adjusted_mode->crtc_clock in in KHz. To get the
* divisors, it is necessary to divide one by another, so we
* convert the virtual clock precision to KHz here for higher
* precision.
*/
for (auxdiv = 0; auxdiv < 2; auxdiv++) {
u32 iclk_virtual_root_freq = 172800 * 1000;
u32 iclk_pi_range = 64;
u32 desired_divisor;
desired_divisor = DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
clock << auxdiv);
divsel = (desired_divisor / iclk_pi_range) - 2;
phaseinc = desired_divisor % iclk_pi_range;
/*
* Near 20MHz is a corner case which is
* out of range for the 7-bit divisor
*/
if (divsel <= 0x7f)
break;
}
/* This should not happen with any sane values */
WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
~SBI_SSCDIVINTPHASE_INCVAL_MASK);
DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
clock,
auxdiv,
divsel,
phasedir,
phaseinc);
mutex_lock(&dev_priv->sb_lock);
/* Program SSCDIVINTPHASE6 */
temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
/* Program SSCAUXDIV */
temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
/* Enable modulator and associated divider */
temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
temp &= ~SBI_SSCCTL_DISABLE;
intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
mutex_unlock(&dev_priv->sb_lock);
/* Wait for initialization time */
udelay(24);
I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
}
int lpt_get_iclkip(struct drm_i915_private *dev_priv)
{
u32 divsel, phaseinc, auxdiv;
u32 iclk_virtual_root_freq = 172800 * 1000;
u32 iclk_pi_range = 64;
u32 desired_divisor;
u32 temp;
if ((I915_READ(PIXCLK_GATE) & PIXCLK_GATE_UNGATE) == 0)
return 0;
mutex_lock(&dev_priv->sb_lock);
temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
if (temp & SBI_SSCCTL_DISABLE) {
mutex_unlock(&dev_priv->sb_lock);
return 0;
}
temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
divsel = (temp & SBI_SSCDIVINTPHASE_DIVSEL_MASK) >>
SBI_SSCDIVINTPHASE_DIVSEL_SHIFT;
phaseinc = (temp & SBI_SSCDIVINTPHASE_INCVAL_MASK) >>
SBI_SSCDIVINTPHASE_INCVAL_SHIFT;
temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
auxdiv = (temp & SBI_SSCAUXDIV_FINALDIV2SEL_MASK) >>
SBI_SSCAUXDIV_FINALDIV2SEL_SHIFT;
mutex_unlock(&dev_priv->sb_lock);
desired_divisor = (divsel + 2) * iclk_pi_range + phaseinc;
return DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
desired_divisor << auxdiv);
}
static void ironlake_pch_transcoder_set_timings(const struct intel_crtc_state *crtc_state,
enum pipe pch_transcoder)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
I915_READ(HTOTAL(cpu_transcoder)));
I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
I915_READ(HBLANK(cpu_transcoder)));
I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
I915_READ(HSYNC(cpu_transcoder)));
I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
I915_READ(VTOTAL(cpu_transcoder)));
I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
I915_READ(VBLANK(cpu_transcoder)));
I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
I915_READ(VSYNC(cpu_transcoder)));
I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
I915_READ(VSYNCSHIFT(cpu_transcoder)));
}
static void cpt_set_fdi_bc_bifurcation(struct drm_i915_private *dev_priv, bool enable)
{
u32 temp;
temp = I915_READ(SOUTH_CHICKEN1);
if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
return;
WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
temp &= ~FDI_BC_BIFURCATION_SELECT;
if (enable)
temp |= FDI_BC_BIFURCATION_SELECT;
DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
I915_WRITE(SOUTH_CHICKEN1, temp);
POSTING_READ(SOUTH_CHICKEN1);
}
static void ivybridge_update_fdi_bc_bifurcation(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
switch (crtc->pipe) {
case PIPE_A:
break;
case PIPE_B:
if (crtc_state->fdi_lanes > 2)
cpt_set_fdi_bc_bifurcation(dev_priv, false);
else
cpt_set_fdi_bc_bifurcation(dev_priv, true);
break;
case PIPE_C:
cpt_set_fdi_bc_bifurcation(dev_priv, true);
break;
default:
BUG();
}
}
/*
* Finds the encoder associated with the given CRTC. This can only be
* used when we know that the CRTC isn't feeding multiple encoders!
*/
static struct intel_encoder *
intel_get_crtc_new_encoder(const struct intel_atomic_state *state,
const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
const struct drm_connector_state *connector_state;
const struct drm_connector *connector;
struct intel_encoder *encoder = NULL;
int num_encoders = 0;
int i;
for_each_new_connector_in_state(&state->base, connector, connector_state, i) {
if (connector_state->crtc != &crtc->base)
continue;
encoder = to_intel_encoder(connector_state->best_encoder);
num_encoders++;
}
WARN(num_encoders != 1, "%d encoders for pipe %c\n",
num_encoders, pipe_name(crtc->pipe));
return encoder;
}
/*
* Enable PCH resources required for PCH ports:
* - PCH PLLs
* - FDI training & RX/TX
* - update transcoder timings
* - DP transcoding bits
* - transcoder
*/
static void ironlake_pch_enable(const struct intel_atomic_state *state,
const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
int pipe = crtc->pipe;
u32 temp;
assert_pch_transcoder_disabled(dev_priv, pipe);
if (IS_IVYBRIDGE(dev_priv))
ivybridge_update_fdi_bc_bifurcation(crtc_state);
/* Write the TU size bits before fdi link training, so that error
* detection works. */
I915_WRITE(FDI_RX_TUSIZE1(pipe),
I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
/* For PCH output, training FDI link */
dev_priv->display.fdi_link_train(crtc, crtc_state);
/* We need to program the right clock selection before writing the pixel
* mutliplier into the DPLL. */
if (HAS_PCH_CPT(dev_priv)) {
u32 sel;
temp = I915_READ(PCH_DPLL_SEL);
temp |= TRANS_DPLL_ENABLE(pipe);
sel = TRANS_DPLLB_SEL(pipe);
if (crtc_state->shared_dpll ==
intel_get_shared_dpll_by_id(dev_priv, DPLL_ID_PCH_PLL_B))
temp |= sel;
else
temp &= ~sel;
I915_WRITE(PCH_DPLL_SEL, temp);
}
/* XXX: pch pll's can be enabled any time before we enable the PCH
* transcoder, and we actually should do this to not upset any PCH
* transcoder that already use the clock when we share it.
*
* Note that enable_shared_dpll tries to do the right thing, but
* get_shared_dpll unconditionally resets the pll - we need that to have
* the right LVDS enable sequence. */
intel_enable_shared_dpll(crtc_state);
/* set transcoder timing, panel must allow it */
assert_panel_unlocked(dev_priv, pipe);
ironlake_pch_transcoder_set_timings(crtc_state, pipe);
intel_fdi_normal_train(crtc);
/* For PCH DP, enable TRANS_DP_CTL */
if (HAS_PCH_CPT(dev_priv) &&
intel_crtc_has_dp_encoder(crtc_state)) {
const struct drm_display_mode *adjusted_mode =
&crtc_state->base.adjusted_mode;
u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
i915_reg_t reg = TRANS_DP_CTL(pipe);
enum port port;
temp = I915_READ(reg);
temp &= ~(TRANS_DP_PORT_SEL_MASK |
TRANS_DP_SYNC_MASK |
TRANS_DP_BPC_MASK);
temp |= TRANS_DP_OUTPUT_ENABLE;
temp |= bpc << 9; /* same format but at 11:9 */
if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
port = intel_get_crtc_new_encoder(state, crtc_state)->port;
WARN_ON(port < PORT_B || port > PORT_D);
temp |= TRANS_DP_PORT_SEL(port);
I915_WRITE(reg, temp);
}
ironlake_enable_pch_transcoder(crtc_state);
}
static void lpt_pch_enable(const struct intel_atomic_state *state,
const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
assert_pch_transcoder_disabled(dev_priv, PIPE_A);
lpt_program_iclkip(crtc_state);
/* Set transcoder timing. */
ironlake_pch_transcoder_set_timings(crtc_state, PIPE_A);
lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
}
static void cpt_verify_modeset(struct drm_device *dev, int pipe)
{
struct drm_i915_private *dev_priv = to_i915(dev);
i915_reg_t dslreg = PIPEDSL(pipe);
u32 temp;
temp = I915_READ(dslreg);
udelay(500);
if (wait_for(I915_READ(dslreg) != temp, 5)) {
if (wait_for(I915_READ(dslreg) != temp, 5))
DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
}
}
/*
* The hardware phase 0.0 refers to the center of the pixel.
* We want to start from the top/left edge which is phase
* -0.5. That matches how the hardware calculates the scaling
* factors (from top-left of the first pixel to bottom-right
* of the last pixel, as opposed to the pixel centers).
*
* For 4:2:0 subsampled chroma planes we obviously have to
* adjust that so that the chroma sample position lands in
* the right spot.
*
* Note that for packed YCbCr 4:2:2 formats there is no way to
* control chroma siting. The hardware simply replicates the
* chroma samples for both of the luma samples, and thus we don't
* actually get the expected MPEG2 chroma siting convention :(
* The same behaviour is observed on pre-SKL platforms as well.
*
* Theory behind the formula (note that we ignore sub-pixel
* source coordinates):
* s = source sample position
* d = destination sample position
*
* Downscaling 4:1:
* -0.5
* | 0.0
* | | 1.5 (initial phase)
* | | |
* v v v
* | s | s | s | s |
* | d |
*
* Upscaling 1:4:
* -0.5
* | -0.375 (initial phase)
* | | 0.0
* | | |
* v v v
* | s |
* | d | d | d | d |
*/
u16 skl_scaler_calc_phase(int sub, int scale, bool chroma_cosited)
{
int phase = -0x8000;
u16 trip = 0;
if (chroma_cosited)
phase += (sub - 1) * 0x8000 / sub;
phase += scale / (2 * sub);
/*
* Hardware initial phase limited to [-0.5:1.5].
* Since the max hardware scale factor is 3.0, we
* should never actually excdeed 1.0 here.
*/
WARN_ON(phase < -0x8000 || phase > 0x18000);
if (phase < 0)
phase = 0x10000 + phase;
else
trip = PS_PHASE_TRIP;
return ((phase >> 2) & PS_PHASE_MASK) | trip;
}
#define SKL_MIN_SRC_W 8
#define SKL_MAX_SRC_W 4096
#define SKL_MIN_SRC_H 8
#define SKL_MAX_SRC_H 4096
#define SKL_MIN_DST_W 8
#define SKL_MAX_DST_W 4096
#define SKL_MIN_DST_H 8
#define SKL_MAX_DST_H 4096
#define ICL_MAX_SRC_W 5120
#define ICL_MAX_SRC_H 4096
#define ICL_MAX_DST_W 5120
#define ICL_MAX_DST_H 4096
#define SKL_MIN_YUV_420_SRC_W 16
#define SKL_MIN_YUV_420_SRC_H 16
static int
skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
unsigned int scaler_user, int *scaler_id,
int src_w, int src_h, int dst_w, int dst_h,
const struct drm_format_info *format, bool need_scaler)
{
struct intel_crtc_scaler_state *scaler_state =
&crtc_state->scaler_state;
struct intel_crtc *intel_crtc =
to_intel_crtc(crtc_state->base.crtc);
struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
const struct drm_display_mode *adjusted_mode =
&crtc_state->base.adjusted_mode;
/*
* Src coordinates are already rotated by 270 degrees for
* the 90/270 degree plane rotation cases (to match the
* GTT mapping), hence no need to account for rotation here.
*/
if (src_w != dst_w || src_h != dst_h)
need_scaler = true;
/*
* Scaling/fitting not supported in IF-ID mode in GEN9+
* TODO: Interlace fetch mode doesn't support YUV420 planar formats.
* Once NV12 is enabled, handle it here while allocating scaler
* for NV12.
*/
if (INTEL_GEN(dev_priv) >= 9 && crtc_state->base.enable &&
need_scaler && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
DRM_DEBUG_KMS("Pipe/Plane scaling not supported with IF-ID mode\n");
return -EINVAL;
}
/*
* if plane is being disabled or scaler is no more required or force detach
* - free scaler binded to this plane/crtc
* - in order to do this, update crtc->scaler_usage
*
* Here scaler state in crtc_state is set free so that
* scaler can be assigned to other user. Actual register
* update to free the scaler is done in plane/panel-fit programming.
* For this purpose crtc/plane_state->scaler_id isn't reset here.
*/
if (force_detach || !need_scaler) {
if (*scaler_id >= 0) {
scaler_state->scaler_users &= ~(1 << scaler_user);
scaler_state->scalers[*scaler_id].in_use = 0;
DRM_DEBUG_KMS("scaler_user index %u.%u: "
"Staged freeing scaler id %d scaler_users = 0x%x\n",
intel_crtc->pipe, scaler_user, *scaler_id,
scaler_state->scaler_users);
*scaler_id = -1;
}
return 0;
}
if (format && is_planar_yuv_format(format->format) &&
(src_h < SKL_MIN_YUV_420_SRC_H || src_w < SKL_MIN_YUV_420_SRC_W)) {
DRM_DEBUG_KMS("Planar YUV: src dimensions not met\n");
return -EINVAL;
}
/* range checks */
if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
(INTEL_GEN(dev_priv) >= 11 &&
(src_w > ICL_MAX_SRC_W || src_h > ICL_MAX_SRC_H ||
dst_w > ICL_MAX_DST_W || dst_h > ICL_MAX_DST_H)) ||
(INTEL_GEN(dev_priv) < 11 &&
(src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H))) {
DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u "
"size is out of scaler range\n",
intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h);
return -EINVAL;
}
/* mark this plane as a scaler user in crtc_state */
scaler_state->scaler_users |= (1 << scaler_user);
DRM_DEBUG_KMS("scaler_user index %u.%u: "
"staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
scaler_state->scaler_users);
return 0;
}
/**
* skl_update_scaler_crtc - Stages update to scaler state for a given crtc.
*
* @state: crtc's scaler state
*
* Return
* 0 - scaler_usage updated successfully
* error - requested scaling cannot be supported or other error condition
*/
int skl_update_scaler_crtc(struct intel_crtc_state *state)
{
const struct drm_display_mode *adjusted_mode = &state->base.adjusted_mode;
bool need_scaler = false;
if (state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
need_scaler = true;
return skl_update_scaler(state, !state->base.active, SKL_CRTC_INDEX,
&state->scaler_state.scaler_id,
state->pipe_src_w, state->pipe_src_h,
adjusted_mode->crtc_hdisplay,
adjusted_mode->crtc_vdisplay, NULL, need_scaler);
}
/**
* skl_update_scaler_plane - Stages update to scaler state for a given plane.
* @crtc_state: crtc's scaler state
* @plane_state: atomic plane state to update
*
* Return
* 0 - scaler_usage updated successfully
* error - requested scaling cannot be supported or other error condition
*/
static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
struct intel_plane_state *plane_state)
{
struct intel_plane *intel_plane =
to_intel_plane(plane_state->base.plane);
struct drm_i915_private *dev_priv = to_i915(intel_plane->base.dev);
struct drm_framebuffer *fb = plane_state->base.fb;
int ret;
bool force_detach = !fb || !plane_state->base.visible;
bool need_scaler = false;
/* Pre-gen11 and SDR planes always need a scaler for planar formats. */
if (!icl_is_hdr_plane(dev_priv, intel_plane->id) &&
fb && is_planar_yuv_format(fb->format->format))
need_scaler = true;
ret = skl_update_scaler(crtc_state, force_detach,
drm_plane_index(&intel_plane->base),
&plane_state->scaler_id,
drm_rect_width(&plane_state->base.src) >> 16,
drm_rect_height(&plane_state->base.src) >> 16,
drm_rect_width(&plane_state->base.dst),
drm_rect_height(&plane_state->base.dst),
fb ? fb->format : NULL, need_scaler);
if (ret || plane_state->scaler_id < 0)
return ret;
/* check colorkey */
if (plane_state->ckey.flags) {
DRM_DEBUG_KMS("[PLANE:%d:%s] scaling with color key not allowed",
intel_plane->base.base.id,
intel_plane->base.name);
return -EINVAL;
}
/* Check src format */
switch (fb->format->format) {
case DRM_FORMAT_RGB565:
case DRM_FORMAT_XBGR8888:
case DRM_FORMAT_XRGB8888:
case DRM_FORMAT_ABGR8888:
case DRM_FORMAT_ARGB8888:
case DRM_FORMAT_XRGB2101010:
case DRM_FORMAT_XBGR2101010:
case DRM_FORMAT_XBGR16161616F:
case DRM_FORMAT_ABGR16161616F:
case DRM_FORMAT_XRGB16161616F:
case DRM_FORMAT_ARGB16161616F:
case DRM_FORMAT_YUYV:
case DRM_FORMAT_YVYU:
case DRM_FORMAT_UYVY:
case DRM_FORMAT_VYUY:
case DRM_FORMAT_NV12:
case DRM_FORMAT_P010:
case DRM_FORMAT_P012:
case DRM_FORMAT_P016:
case DRM_FORMAT_Y210:
case DRM_FORMAT_Y212:
case DRM_FORMAT_Y216:
case DRM_FORMAT_XVYU2101010:
case DRM_FORMAT_XVYU12_16161616:
case DRM_FORMAT_XVYU16161616:
break;
default:
DRM_DEBUG_KMS("[PLANE:%d:%s] FB:%d unsupported scaling format 0x%x\n",
intel_plane->base.base.id, intel_plane->base.name,
fb->base.id, fb->format->format);
return -EINVAL;
}
return 0;
}
static void skylake_scaler_disable(struct intel_crtc *crtc)
{
int i;
for (i = 0; i < crtc->num_scalers; i++)
skl_detach_scaler(crtc, i);
}
static void skylake_pfit_enable(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum pipe pipe = crtc->pipe;
const struct intel_crtc_scaler_state *scaler_state =
&crtc_state->scaler_state;
if (crtc_state->pch_pfit.enabled) {
u16 uv_rgb_hphase, uv_rgb_vphase;
int pfit_w, pfit_h, hscale, vscale;
int id;
if (WARN_ON(crtc_state->scaler_state.scaler_id < 0))
return;
pfit_w = (crtc_state->pch_pfit.size >> 16) & 0xFFFF;
pfit_h = crtc_state->pch_pfit.size & 0xFFFF;
hscale = (crtc_state->pipe_src_w << 16) / pfit_w;
vscale = (crtc_state->pipe_src_h << 16) / pfit_h;
uv_rgb_hphase = skl_scaler_calc_phase(1, hscale, false);
uv_rgb_vphase = skl_scaler_calc_phase(1, vscale, false);
id = scaler_state->scaler_id;
I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
I915_WRITE_FW(SKL_PS_VPHASE(pipe, id),
PS_Y_PHASE(0) | PS_UV_RGB_PHASE(uv_rgb_vphase));
I915_WRITE_FW(SKL_PS_HPHASE(pipe, id),
PS_Y_PHASE(0) | PS_UV_RGB_PHASE(uv_rgb_hphase));
I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc_state->pch_pfit.pos);
I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc_state->pch_pfit.size);
}
}
static void ironlake_pfit_enable(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
int pipe = crtc->pipe;
if (crtc_state->pch_pfit.enabled) {
/* Force use of hard-coded filter coefficients
* as some pre-programmed values are broken,
* e.g. x201.
*/
if (IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv))
I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
PF_PIPE_SEL_IVB(pipe));
else
I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
I915_WRITE(PF_WIN_POS(pipe), crtc_state->pch_pfit.pos);
I915_WRITE(PF_WIN_SZ(pipe), crtc_state->pch_pfit.size);
}
}
void hsw_enable_ips(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
if (!crtc_state->ips_enabled)
return;
/*
* We can only enable IPS after we enable a plane and wait for a vblank
* This function is called from post_plane_update, which is run after
* a vblank wait.
*/
WARN_ON(!(crtc_state->active_planes & ~BIT(PLANE_CURSOR)));
if (IS_BROADWELL(dev_priv)) {
WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL,
IPS_ENABLE | IPS_PCODE_CONTROL));
/* Quoting Art Runyan: "its not safe to expect any particular
* value in IPS_CTL bit 31 after enabling IPS through the
* mailbox." Moreover, the mailbox may return a bogus state,
* so we need to just enable it and continue on.
*/
} else {
I915_WRITE(IPS_CTL, IPS_ENABLE);
/* The bit only becomes 1 in the next vblank, so this wait here
* is essentially intel_wait_for_vblank. If we don't have this
* and don't wait for vblanks until the end of crtc_enable, then
* the HW state readout code will complain that the expected
* IPS_CTL value is not the one we read. */
if (intel_wait_for_register(&dev_priv->uncore,
IPS_CTL, IPS_ENABLE, IPS_ENABLE,
50))
DRM_ERROR("Timed out waiting for IPS enable\n");
}
}
void hsw_disable_ips(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
if (!crtc_state->ips_enabled)
return;
if (IS_BROADWELL(dev_priv)) {
WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
/*
* Wait for PCODE to finish disabling IPS. The BSpec specified
* 42ms timeout value leads to occasional timeouts so use 100ms
* instead.
*/
if (intel_wait_for_register(&dev_priv->uncore,
IPS_CTL, IPS_ENABLE, 0,
100))
DRM_ERROR("Timed out waiting for IPS disable\n");
} else {
I915_WRITE(IPS_CTL, 0);
POSTING_READ(IPS_CTL);
}
/* We need to wait for a vblank before we can disable the plane. */
intel_wait_for_vblank(dev_priv, crtc->pipe);
}
static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
{
if (intel_crtc->overlay) {
struct drm_device *dev = intel_crtc->base.dev;
mutex_lock(&dev->struct_mutex);
(void) intel_overlay_switch_off(intel_crtc->overlay);
mutex_unlock(&dev->struct_mutex);
}
/* Let userspace switch the overlay on again. In most cases userspace
* has to recompute where to put it anyway.
*/
}
/**
* intel_post_enable_primary - Perform operations after enabling primary plane
* @crtc: the CRTC whose primary plane was just enabled
* @new_crtc_state: the enabling state
*
* Performs potentially sleeping operations that must be done after the primary
* plane is enabled, such as updating FBC and IPS. Note that this may be
* called due to an explicit primary plane update, or due to an implicit
* re-enable that is caused when a sprite plane is updated to no longer
* completely hide the primary plane.
*/
static void
intel_post_enable_primary(struct drm_crtc *crtc,
const struct intel_crtc_state *new_crtc_state)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
/*
* Gen2 reports pipe underruns whenever all planes are disabled.
* So don't enable underrun reporting before at least some planes
* are enabled.
* FIXME: Need to fix the logic to work when we turn off all planes
* but leave the pipe running.
*/
if (IS_GEN(dev_priv, 2))
intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
/* Underruns don't always raise interrupts, so check manually. */
intel_check_cpu_fifo_underruns(dev_priv);
intel_check_pch_fifo_underruns(dev_priv);
}
/* FIXME get rid of this and use pre_plane_update */
static void
intel_pre_disable_primary_noatomic(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
/*
* Gen2 reports pipe underruns whenever all planes are disabled.
* So disable underrun reporting before all the planes get disabled.
*/
if (IS_GEN(dev_priv, 2))
intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
hsw_disable_ips(to_intel_crtc_state(crtc->state));
/*
* Vblank time updates from the shadow to live plane control register
* are blocked if the memory self-refresh mode is active at that
* moment. So to make sure the plane gets truly disabled, disable
* first the self-refresh mode. The self-refresh enable bit in turn
* will be checked/applied by the HW only at the next frame start
* event which is after the vblank start event, so we need to have a
* wait-for-vblank between disabling the plane and the pipe.
*/
if (HAS_GMCH(dev_priv) &&
intel_set_memory_cxsr(dev_priv, false))
intel_wait_for_vblank(dev_priv, pipe);
}
static bool hsw_pre_update_disable_ips(const struct intel_crtc_state *old_crtc_state,
const struct intel_crtc_state *new_crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->base.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
if (!old_crtc_state->ips_enabled)
return false;
if (needs_modeset(&new_crtc_state->base))
return true;
/*
* Workaround : Do not read or write the pipe palette/gamma data while
* GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
*
* Disable IPS before we program the LUT.
*/
if (IS_HASWELL(dev_priv) &&
(new_crtc_state->base.color_mgmt_changed ||
new_crtc_state->update_pipe) &&
new_crtc_state->gamma_mode == GAMMA_MODE_MODE_SPLIT)
return true;
return !new_crtc_state->ips_enabled;
}
static bool hsw_post_update_enable_ips(const struct intel_crtc_state *old_crtc_state,
const struct intel_crtc_state *new_crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->base.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
if (!new_crtc_state->ips_enabled)
return false;
if (needs_modeset(&new_crtc_state->base))
return true;
/*
* Workaround : Do not read or write the pipe palette/gamma data while
* GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
*
* Re-enable IPS after the LUT has been programmed.
*/
if (IS_HASWELL(dev_priv) &&
(new_crtc_state->base.color_mgmt_changed ||
new_crtc_state->update_pipe) &&
new_crtc_state->gamma_mode == GAMMA_MODE_MODE_SPLIT)
return true;
/*
* We can't read out IPS on broadwell, assume the worst and
* forcibly enable IPS on the first fastset.
*/
if (new_crtc_state->update_pipe &&
old_crtc_state->base.adjusted_mode.private_flags & I915_MODE_FLAG_INHERITED)
return true;
return !old_crtc_state->ips_enabled;
}
static bool needs_nv12_wa(struct drm_i915_private *dev_priv,
const struct intel_crtc_state *crtc_state)
{
if (!crtc_state->nv12_planes)
return false;
/* WA Display #0827: Gen9:all */
if (IS_GEN(dev_priv, 9) && !IS_GEMINILAKE(dev_priv))
return true;
return false;
}
static bool needs_scalerclk_wa(struct drm_i915_private *dev_priv,
const struct intel_crtc_state *crtc_state)
{
/* Wa_2006604312:icl */
if (crtc_state->scaler_state.scaler_users > 0 && IS_ICELAKE(dev_priv))
return true;
return false;
}
static void intel_post_plane_update(struct intel_crtc_state *old_crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct drm_atomic_state *old_state = old_crtc_state->base.state;
struct intel_crtc_state *pipe_config =
intel_atomic_get_new_crtc_state(to_intel_atomic_state(old_state),
crtc);
struct drm_plane *primary = crtc->base.primary;
struct drm_plane_state *old_primary_state =
drm_atomic_get_old_plane_state(old_state, primary);
intel_frontbuffer_flip(to_i915(crtc->base.dev), pipe_config->fb_bits);
if (pipe_config->update_wm_post && pipe_config->base.active)
intel_update_watermarks(crtc);
if (hsw_post_update_enable_ips(old_crtc_state, pipe_config))
hsw_enable_ips(pipe_config);
if (old_primary_state) {
struct drm_plane_state *new_primary_state =
drm_atomic_get_new_plane_state(old_state, primary);
intel_fbc_post_update(crtc);
if (new_primary_state->visible &&
(needs_modeset(&pipe_config->base) ||
!old_primary_state->visible))
intel_post_enable_primary(&crtc->base, pipe_config);
}
if (needs_nv12_wa(dev_priv, old_crtc_state) &&
!needs_nv12_wa(dev_priv, pipe_config))
skl_wa_827(dev_priv, crtc->pipe, false);
if (needs_scalerclk_wa(dev_priv, old_crtc_state) &&
!needs_scalerclk_wa(dev_priv, pipe_config))
icl_wa_scalerclkgating(dev_priv, crtc->pipe, false);
}
static void intel_pre_plane_update(struct intel_crtc_state *old_crtc_state,
struct intel_crtc_state *pipe_config)
{
struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct drm_atomic_state *old_state = old_crtc_state->base.state;
struct drm_plane *primary = crtc->base.primary;
struct drm_plane_state *old_primary_state =
drm_atomic_get_old_plane_state(old_state, primary);
bool modeset = needs_modeset(&pipe_config->base);
struct intel_atomic_state *old_intel_state =
to_intel_atomic_state(old_state);
if (hsw_pre_update_disable_ips(old_crtc_state, pipe_config))
hsw_disable_ips(old_crtc_state);
if (old_primary_state) {
struct intel_plane_state *new_primary_state =
intel_atomic_get_new_plane_state(old_intel_state,
to_intel_plane(primary));
intel_fbc_pre_update(crtc, pipe_config, new_primary_state);
/*
* Gen2 reports pipe underruns whenever all planes are disabled.
* So disable underrun reporting before all the planes get disabled.
*/
if (IS_GEN(dev_priv, 2) && old_primary_state->visible &&
(modeset || !new_primary_state->base.visible))
intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false);
}
/* Display WA 827 */
if (!needs_nv12_wa(dev_priv, old_crtc_state) &&
needs_nv12_wa(dev_priv, pipe_config))
skl_wa_827(dev_priv, crtc->pipe, true);
/* Wa_2006604312:icl */
if (!needs_scalerclk_wa(dev_priv, old_crtc_state) &&
needs_scalerclk_wa(dev_priv, pipe_config))
icl_wa_scalerclkgating(dev_priv, crtc->pipe, true);
/*
* Vblank time updates from the shadow to live plane control register
* are blocked if the memory self-refresh mode is active at that
* moment. So to make sure the plane gets truly disabled, disable
* first the self-refresh mode. The self-refresh enable bit in turn
* will be checked/applied by the HW only at the next frame start
* event which is after the vblank start event, so we need to have a
* wait-for-vblank between disabling the plane and the pipe.
*/
if (HAS_GMCH(dev_priv) && old_crtc_state->base.active &&
pipe_config->disable_cxsr && intel_set_memory_cxsr(dev_priv, false))
intel_wait_for_vblank(dev_priv, crtc->pipe);
/*
* IVB workaround: must disable low power watermarks for at least
* one frame before enabling scaling. LP watermarks can be re-enabled
* when scaling is disabled.
*
* WaCxSRDisabledForSpriteScaling:ivb
*/
if (pipe_config->disable_lp_wm && ilk_disable_lp_wm(dev) &&
old_crtc_state->base.active)
intel_wait_for_vblank(dev_priv, crtc->pipe);
/*
* If we're doing a modeset, we're done. No need to do any pre-vblank
* watermark programming here.
*/
if (needs_modeset(&pipe_config->base))
return;
/*
* For platforms that support atomic watermarks, program the
* 'intermediate' watermarks immediately. On pre-gen9 platforms, these
* will be the intermediate values that are safe for both pre- and
* post- vblank; when vblank happens, the 'active' values will be set
* to the final 'target' values and we'll do this again to get the
* optimal watermarks. For gen9+ platforms, the values we program here
* will be the final target values which will get automatically latched
* at vblank time; no further programming will be necessary.
*
* If a platform hasn't been transitioned to atomic watermarks yet,
* we'll continue to update watermarks the old way, if flags tell
* us to.
*/
if (dev_priv->display.initial_watermarks != NULL)
dev_priv->display.initial_watermarks(old_intel_state,
pipe_config);
else if (pipe_config->update_wm_pre)
intel_update_watermarks(crtc);
}
static void intel_crtc_disable_planes(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
const struct intel_crtc_state *new_crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
unsigned int update_mask = new_crtc_state->update_planes;
const struct intel_plane_state *old_plane_state;
struct intel_plane *plane;
unsigned fb_bits = 0;
int i;
intel_crtc_dpms_overlay_disable(crtc);
for_each_old_intel_plane_in_state(state, plane, old_plane_state, i) {
if (crtc->pipe != plane->pipe ||
!(update_mask & BIT(plane->id)))
continue;
intel_disable_plane(plane, new_crtc_state);
if (old_plane_state->base.visible)
fb_bits |= plane->frontbuffer_bit;
}
intel_frontbuffer_flip(dev_priv, fb_bits);
}
static void intel_encoders_pre_pll_enable(struct drm_crtc *crtc,
struct intel_crtc_state *crtc_state,
struct drm_atomic_state *old_state)
{
struct drm_connector_state *conn_state;
struct drm_connector *conn;
int i;
for_each_new_connector_in_state(old_state, conn, conn_state, i) {
struct intel_encoder *encoder =
to_intel_encoder(conn_state->best_encoder);
if (conn_state->crtc != crtc)
continue;
if (encoder->pre_pll_enable)
encoder->pre_pll_enable(encoder, crtc_state, conn_state);
}
}
static void intel_encoders_pre_enable(struct drm_crtc *crtc,
struct intel_crtc_state *crtc_state,
struct drm_atomic_state *old_state)
{
struct drm_connector_state *conn_state;
struct drm_connector *conn;
int i;
for_each_new_connector_in_state(old_state, conn, conn_state, i) {
struct intel_encoder *encoder =
to_intel_encoder(conn_state->best_encoder);
if (conn_state->crtc != crtc)
continue;
if (encoder->pre_enable)
encoder->pre_enable(encoder, crtc_state, conn_state);
}
}
static void intel_encoders_enable(struct drm_crtc *crtc,
struct intel_crtc_state *crtc_state,
struct drm_atomic_state *old_state)
{
struct drm_connector_state *conn_state;
struct drm_connector *conn;
int i;
for_each_new_connector_in_state(old_state, conn, conn_state, i) {
struct intel_encoder *encoder =
to_intel_encoder(conn_state->best_encoder);
if (conn_state->crtc != crtc)
continue;
if (encoder->enable)
encoder->enable(encoder, crtc_state, conn_state);
intel_opregion_notify_encoder(encoder, true);
}
}
static void intel_encoders_disable(struct drm_crtc *crtc,
struct intel_crtc_state *old_crtc_state,
struct drm_atomic_state *old_state)
{
struct drm_connector_state *old_conn_state;
struct drm_connector *conn;
int i;
for_each_old_connector_in_state(old_state, conn, old_conn_state, i) {
struct intel_encoder *encoder =
to_intel_encoder(old_conn_state->best_encoder);
if (old_conn_state->crtc != crtc)
continue;
intel_opregion_notify_encoder(encoder, false);
if (encoder->disable)
encoder->disable(encoder, old_crtc_state, old_conn_state);
}
}
static void intel_encoders_post_disable(struct drm_crtc *crtc,
struct intel_crtc_state *old_crtc_state,
struct drm_atomic_state *old_state)
{
struct drm_connector_state *old_conn_state;
struct drm_connector *conn;
int i;
for_each_old_connector_in_state(old_state, conn, old_conn_state, i) {
struct intel_encoder *encoder =
to_intel_encoder(old_conn_state->best_encoder);
if (old_conn_state->crtc != crtc)
continue;
if (encoder->post_disable)
encoder->post_disable(encoder, old_crtc_state, old_conn_state);
}
}
static void intel_encoders_post_pll_disable(struct drm_crtc *crtc,
struct intel_crtc_state *old_crtc_state,
struct drm_atomic_state *old_state)
{
struct drm_connector_state *old_conn_state;
struct drm_connector *conn;
int i;
for_each_old_connector_in_state(old_state, conn, old_conn_state, i) {
struct intel_encoder *encoder =
to_intel_encoder(old_conn_state->best_encoder);
if (old_conn_state->crtc != crtc)
continue;
if (encoder->post_pll_disable)
encoder->post_pll_disable(encoder, old_crtc_state, old_conn_state);
}
}
static void intel_encoders_update_pipe(struct drm_crtc *crtc,
struct intel_crtc_state *crtc_state,
struct drm_atomic_state *old_state)
{
struct drm_connector_state *conn_state;
struct drm_connector *conn;
int i;
for_each_new_connector_in_state(old_state, conn, conn_state, i) {
struct intel_encoder *encoder =
to_intel_encoder(conn_state->best_encoder);
if (conn_state->crtc != crtc)
continue;
if (encoder->update_pipe)
encoder->update_pipe(encoder, crtc_state, conn_state);
}
}
static void intel_disable_primary_plane(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
struct intel_plane *plane = to_intel_plane(crtc->base.primary);
plane->disable_plane(plane, crtc_state);
}
static void ironlake_crtc_enable(struct intel_crtc_state *pipe_config,
struct drm_atomic_state *old_state)
{
struct drm_crtc *crtc = pipe_config->base.crtc;
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
struct intel_atomic_state *old_intel_state =
to_intel_atomic_state(old_state);
if (WARN_ON(intel_crtc->active))
return;
/*
* Sometimes spurious CPU pipe underruns happen during FDI
* training, at least with VGA+HDMI cloning. Suppress them.
*
* On ILK we get an occasional spurious CPU pipe underruns
* between eDP port A enable and vdd enable. Also PCH port
* enable seems to result in the occasional CPU pipe underrun.
*
* Spurious PCH underruns also occur during PCH enabling.
*/
intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
if (pipe_config->has_pch_encoder)
intel_prepare_shared_dpll(pipe_config);
if (intel_crtc_has_dp_encoder(pipe_config))
intel_dp_set_m_n(pipe_config, M1_N1);
intel_set_pipe_timings(pipe_config);
intel_set_pipe_src_size(pipe_config);
if (pipe_config->has_pch_encoder) {
intel_cpu_transcoder_set_m_n(pipe_config,
&pipe_config->fdi_m_n, NULL);
}
ironlake_set_pipeconf(pipe_config);
intel_crtc->active = true;
intel_encoders_pre_enable(crtc, pipe_config, old_state);
if (pipe_config->has_pch_encoder) {
/* Note: FDI PLL enabling _must_ be done before we enable the
* cpu pipes, hence this is separate from all the other fdi/pch
* enabling. */
ironlake_fdi_pll_enable(pipe_config);
} else {
assert_fdi_tx_disabled(dev_priv, pipe);
assert_fdi_rx_disabled(dev_priv, pipe);
}
ironlake_pfit_enable(pipe_config);
/*
* On ILK+ LUT must be loaded before the pipe is running but with
* clocks enabled
*/
intel_color_load_luts(pipe_config);
intel_color_commit(pipe_config);
/* update DSPCNTR to configure gamma for pipe bottom color */
intel_disable_primary_plane(pipe_config);
if (dev_priv->display.initial_watermarks != NULL)
dev_priv->display.initial_watermarks(old_intel_state, pipe_config);
intel_enable_pipe(pipe_config);
if (pipe_config->has_pch_encoder)
ironlake_pch_enable(old_intel_state, pipe_config);
assert_vblank_disabled(crtc);
intel_crtc_vblank_on(pipe_config);
intel_encoders_enable(crtc, pipe_config, old_state);
if (HAS_PCH_CPT(dev_priv))
cpt_verify_modeset(dev, intel_crtc->pipe);
/*
* Must wait for vblank to avoid spurious PCH FIFO underruns.
* And a second vblank wait is needed at least on ILK with
* some interlaced HDMI modes. Let's do the double wait always
* in case there are more corner cases we don't know about.
*/
if (pipe_config->has_pch_encoder) {
intel_wait_for_vblank(dev_priv, pipe);
intel_wait_for_vblank(dev_priv, pipe);
}
intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
}
/* IPS only exists on ULT machines and is tied to pipe A. */
static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
{
return HAS_IPS(to_i915(crtc->base.dev)) && crtc->pipe == PIPE_A;
}
static void glk_pipe_scaler_clock_gating_wa(struct drm_i915_private *dev_priv,
enum pipe pipe, bool apply)
{
u32 val = I915_READ(CLKGATE_DIS_PSL(pipe));
u32 mask = DPF_GATING_DIS | DPF_RAM_GATING_DIS | DPFR_GATING_DIS;
if (apply)
val |= mask;
else
val &= ~mask;
I915_WRITE(CLKGATE_DIS_PSL(pipe), val);
}
static void icl_pipe_mbus_enable(struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum pipe pipe = crtc->pipe;
u32 val;
val = MBUS_DBOX_A_CREDIT(2);
val |= MBUS_DBOX_BW_CREDIT(1);
val |= MBUS_DBOX_B_CREDIT(8);
I915_WRITE(PIPE_MBUS_DBOX_CTL(pipe), val);
}
static void haswell_crtc_enable(struct intel_crtc_state *pipe_config,
struct drm_atomic_state *old_state)
{
struct drm_crtc *crtc = pipe_config->base.crtc;
struct drm_i915_private *dev_priv = to_i915(crtc->dev);
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe, hsw_workaround_pipe;
enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
struct intel_atomic_state *old_intel_state =
to_intel_atomic_state(old_state);
bool psl_clkgate_wa;
if (WARN_ON(intel_crtc->active))
return;
intel_encoders_pre_pll_enable(crtc, pipe_config, old_state);
if (pipe_config->shared_dpll)
intel_enable_shared_dpll(pipe_config);
intel_encoders_pre_enable(crtc, pipe_config, old_state);
if (intel_crtc_has_dp_encoder(pipe_config))
intel_dp_set_m_n(pipe_config, M1_N1);
if (!transcoder_is_dsi(cpu_transcoder))
intel_set_pipe_timings(pipe_config);
intel_set_pipe_src_size(pipe_config);
if (cpu_transcoder != TRANSCODER_EDP &&
!transcoder_is_dsi(cpu_transcoder)) {
I915_WRITE(PIPE_MULT(cpu_transcoder),
pipe_config->pixel_multiplier - 1);
}
if (pipe_config->has_pch_encoder) {
intel_cpu_transcoder_set_m_n(pipe_config,
&pipe_config->fdi_m_n, NULL);
}
if (!transcoder_is_dsi(cpu_transcoder))
haswell_set_pipeconf(pipe_config);
if (INTEL_GEN(dev_priv) >= 9 || IS_BROADWELL(dev_priv))
bdw_set_pipemisc(pipe_config);
intel_crtc->active = true;
/* Display WA #1180: WaDisableScalarClockGating: glk, cnl */
psl_clkgate_wa = (IS_GEMINILAKE(dev_priv) || IS_CANNONLAKE(dev_priv)) &&
pipe_config->pch_pfit.enabled;
if (psl_clkgate_wa)
glk_pipe_scaler_clock_gating_wa(dev_priv, pipe, true);
if (INTEL_GEN(dev_priv) >= 9)
skylake_pfit_enable(pipe_config);
else
ironlake_pfit_enable(pipe_config);
/*
* On ILK+ LUT must be loaded before the pipe is running but with
* clocks enabled
*/
intel_color_load_luts(pipe_config);
intel_color_commit(pipe_config);
/* update DSPCNTR to configure gamma/csc for pipe bottom color */
if (INTEL_GEN(dev_priv) < 9)
intel_disable_primary_plane(pipe_config);
if (INTEL_GEN(dev_priv) >= 11)
icl_set_pipe_chicken(intel_crtc);
intel_ddi_set_pipe_settings(pipe_config);
if (!transcoder_is_dsi(cpu_transcoder))
intel_ddi_enable_transcoder_func(pipe_config);
if (dev_priv->display.initial_watermarks != NULL)
dev_priv->display.initial_watermarks(old_intel_state, pipe_config);
if (INTEL_GEN(dev_priv) >= 11)
icl_pipe_mbus_enable(intel_crtc);
/* XXX: Do the pipe assertions at the right place for BXT DSI. */
if (!transcoder_is_dsi(cpu_transcoder))
intel_enable_pipe(pipe_config);
if (pipe_config->has_pch_encoder)
lpt_pch_enable(old_intel_state, pipe_config);
if (intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DP_MST))
intel_ddi_set_vc_payload_alloc(pipe_config, true);
assert_vblank_disabled(crtc);
intel_crtc_vblank_on(pipe_config);
intel_encoders_enable(crtc, pipe_config, old_state);
if (psl_clkgate_wa) {
intel_wait_for_vblank(dev_priv, pipe);
glk_pipe_scaler_clock_gating_wa(dev_priv, pipe, false);
}
/* If we change the relative order between pipe/planes enabling, we need
* to change the workaround. */
hsw_workaround_pipe = pipe_config->hsw_workaround_pipe;
if (IS_HASWELL(dev_priv) && hsw_workaround_pipe != INVALID_PIPE) {
intel_wait_for_vblank(dev_priv, hsw_workaround_pipe);
intel_wait_for_vblank(dev_priv, hsw_workaround_pipe);
}
}
static void ironlake_pfit_disable(const struct intel_crtc_state *old_crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum pipe pipe = crtc->pipe;
/* To avoid upsetting the power well on haswell only disable the pfit if
* it's in use. The hw state code will make sure we get this right. */
if (old_crtc_state->pch_pfit.enabled) {
I915_WRITE(PF_CTL(pipe), 0);
I915_WRITE(PF_WIN_POS(pipe), 0);
I915_WRITE(PF_WIN_SZ(pipe), 0);
}
}
static void ironlake_crtc_disable(struct intel_crtc_state *old_crtc_state,
struct drm_atomic_state *old_state)
{
struct drm_crtc *crtc = old_crtc_state->base.crtc;
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
/*
* Sometimes spurious CPU pipe underruns happen when the
* pipe is already disabled, but FDI RX/TX is still enabled.
* Happens at least with VGA+HDMI cloning. Suppress them.
*/
intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
intel_encoders_disable(crtc, old_crtc_state, old_state);
drm_crtc_vblank_off(crtc);
assert_vblank_disabled(crtc);
intel_disable_pipe(old_crtc_state);
ironlake_pfit_disable(old_crtc_state);
if (old_crtc_state->has_pch_encoder)
ironlake_fdi_disable(crtc);
intel_encoders_post_disable(crtc, old_crtc_state, old_state);
if (old_crtc_state->has_pch_encoder) {
ironlake_disable_pch_transcoder(dev_priv, pipe);
if (HAS_PCH_CPT(dev_priv)) {
i915_reg_t reg;
u32 temp;
/* disable TRANS_DP_CTL */
reg = TRANS_DP_CTL(pipe);
temp = I915_READ(reg);
temp &= ~(TRANS_DP_OUTPUT_ENABLE |
TRANS_DP_PORT_SEL_MASK);
temp |= TRANS_DP_PORT_SEL_NONE;
I915_WRITE(reg, temp);
/* disable DPLL_SEL */
temp = I915_READ(PCH_DPLL_SEL);
temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
I915_WRITE(PCH_DPLL_SEL, temp);
}
ironlake_fdi_pll_disable(intel_crtc);
}
intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
}
static void haswell_crtc_disable(struct intel_crtc_state *old_crtc_state,
struct drm_atomic_state *old_state)
{
struct drm_crtc *crtc = old_crtc_state->base.crtc;
struct drm_i915_private *dev_priv = to_i915(crtc->dev);
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
enum transcoder cpu_transcoder = old_crtc_state->cpu_transcoder;
intel_encoders_disable(crtc, old_crtc_state, old_state);
drm_crtc_vblank_off(crtc);
assert_vblank_disabled(crtc);
/* XXX: Do the pipe assertions at the right place for BXT DSI. */
if (!transcoder_is_dsi(cpu_transcoder))
intel_disable_pipe(old_crtc_state);
if (intel_crtc_has_type(old_crtc_state, INTEL_OUTPUT_DP_MST))
intel_ddi_set_vc_payload_alloc(old_crtc_state, false);
if (!transcoder_is_dsi(cpu_transcoder))
intel_ddi_disable_transcoder_func(old_crtc_state);
intel_dsc_disable(old_crtc_state);
if (INTEL_GEN(dev_priv) >= 9)
skylake_scaler_disable(intel_crtc);
else
ironlake_pfit_disable(old_crtc_state);
intel_encoders_post_disable(crtc, old_crtc_state, old_state);
intel_encoders_post_pll_disable(crtc, old_crtc_state, old_state);
}
static void i9xx_pfit_enable(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
if (!crtc_state->gmch_pfit.control)
return;
/*
* The panel fitter should only be adjusted whilst the pipe is disabled,
* according to register description and PRM.
*/
WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
assert_pipe_disabled(dev_priv, crtc->pipe);
I915_WRITE(PFIT_PGM_RATIOS, crtc_state->gmch_pfit.pgm_ratios);
I915_WRITE(PFIT_CONTROL, crtc_state->gmch_pfit.control);
/* Border color in case we don't scale up to the full screen. Black by
* default, change to something else for debugging. */
I915_WRITE(BCLRPAT(crtc->pipe), 0);
}
bool intel_port_is_combophy(struct drm_i915_private *dev_priv, enum port port)
{
if (port == PORT_NONE)
return false;
if (IS_ELKHARTLAKE(dev_priv))
return port <= PORT_C;
if (INTEL_GEN(dev_priv) >= 11)
return port <= PORT_B;
return false;
}
bool intel_port_is_tc(struct drm_i915_private *dev_priv, enum port port)
{
if (INTEL_GEN(dev_priv) >= 11 && !IS_ELKHARTLAKE(dev_priv))
return port >= PORT_C && port <= PORT_F;
return false;
}
enum tc_port intel_port_to_tc(struct drm_i915_private *dev_priv, enum port port)
{
if (!intel_port_is_tc(dev_priv, port))
return PORT_TC_NONE;
return port - PORT_C;
}
enum intel_display_power_domain intel_port_to_power_domain(enum port port)
{
switch (port) {
case PORT_A:
return POWER_DOMAIN_PORT_DDI_A_LANES;
case PORT_B:
return POWER_DOMAIN_PORT_DDI_B_LANES;
case PORT_C:
return POWER_DOMAIN_PORT_DDI_C_LANES;
case PORT_D:
return POWER_DOMAIN_PORT_DDI_D_LANES;
case PORT_E:
return POWER_DOMAIN_PORT_DDI_E_LANES;
case PORT_F:
return POWER_DOMAIN_PORT_DDI_F_LANES;
default:
MISSING_CASE(port);
return POWER_DOMAIN_PORT_OTHER;
}
}
enum intel_display_power_domain
intel_aux_power_domain(struct intel_digital_port *dig_port)
{
switch (dig_port->aux_ch) {
case AUX_CH_A:
return POWER_DOMAIN_AUX_A;
case AUX_CH_B:
return POWER_DOMAIN_AUX_B;
case AUX_CH_C:
return POWER_DOMAIN_AUX_C;
case AUX_CH_D:
return POWER_DOMAIN_AUX_D;
case AUX_CH_E:
return POWER_DOMAIN_AUX_E;
case AUX_CH_F:
return POWER_DOMAIN_AUX_F;
default:
MISSING_CASE(dig_port->aux_ch);
return POWER_DOMAIN_AUX_A;
}
}
static u64 get_crtc_power_domains(struct drm_crtc *crtc,
struct intel_crtc_state *crtc_state)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct drm_encoder *encoder;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
enum pipe pipe = intel_crtc->pipe;
u64 mask;
enum transcoder transcoder = crtc_state->cpu_transcoder;
if (!crtc_state->base.active)
return 0;
mask = BIT_ULL(POWER_DOMAIN_PIPE(pipe));
mask |= BIT_ULL(POWER_DOMAIN_TRANSCODER(transcoder));
if (crtc_state->pch_pfit.enabled ||
crtc_state->pch_pfit.force_thru)
mask |= BIT_ULL(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
drm_for_each_encoder_mask(encoder, dev, crtc_state->base.encoder_mask) {
struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
mask |= BIT_ULL(intel_encoder->power_domain);
}
if (HAS_DDI(dev_priv) && crtc_state->has_audio)
mask |= BIT_ULL(POWER_DOMAIN_AUDIO);
if (crtc_state->shared_dpll)
mask |= BIT_ULL(POWER_DOMAIN_PLLS);
return mask;
}
static u64
modeset_get_crtc_power_domains(struct drm_crtc *crtc,
struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *dev_priv = to_i915(crtc->dev);
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
enum intel_display_power_domain domain;
u64 domains, new_domains, old_domains;
old_domains = intel_crtc->enabled_power_domains;
intel_crtc->enabled_power_domains = new_domains =
get_crtc_power_domains(crtc, crtc_state);
domains = new_domains & ~old_domains;
for_each_power_domain(domain, domains)
intel_display_power_get(dev_priv, domain);
return old_domains & ~new_domains;
}
static void modeset_put_power_domains(struct drm_i915_private *dev_priv,
u64 domains)
{
enum intel_display_power_domain domain;
for_each_power_domain(domain, domains)
intel_display_power_put_unchecked(dev_priv, domain);
}
static void valleyview_crtc_enable(struct intel_crtc_state *pipe_config,
struct drm_atomic_state *old_state)
{
struct intel_atomic_state *old_intel_state =
to_intel_atomic_state(old_state);
struct drm_crtc *crtc = pipe_config->base.crtc;
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
if (WARN_ON(intel_crtc->active))
return;
if (intel_crtc_has_dp_encoder(pipe_config))
intel_dp_set_m_n(pipe_config, M1_N1);
intel_set_pipe_timings(pipe_config);
intel_set_pipe_src_size(pipe_config);
if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B) {
I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
I915_WRITE(CHV_CANVAS(pipe), 0);
}
i9xx_set_pipeconf(pipe_config);
intel_crtc->active = true;
intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
intel_encoders_pre_pll_enable(crtc, pipe_config, old_state);
if (IS_CHERRYVIEW(dev_priv)) {
chv_prepare_pll(intel_crtc, pipe_config);
chv_enable_pll(intel_crtc, pipe_config);
} else {
vlv_prepare_pll(intel_crtc, pipe_config);
vlv_enable_pll(intel_crtc, pipe_config);
}
intel_encoders_pre_enable(crtc, pipe_config, old_state);
i9xx_pfit_enable(pipe_config);
intel_color_load_luts(pipe_config);
intel_color_commit(pipe_config);
/* update DSPCNTR to configure gamma for pipe bottom color */
intel_disable_primary_plane(pipe_config);
dev_priv->display.initial_watermarks(old_intel_state,
pipe_config);
intel_enable_pipe(pipe_config);
assert_vblank_disabled(crtc);
intel_crtc_vblank_on(pipe_config);
intel_encoders_enable(crtc, pipe_config, old_state);
}
static void i9xx_set_pll_dividers(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
I915_WRITE(FP0(crtc->pipe), crtc_state->dpll_hw_state.fp0);
I915_WRITE(FP1(crtc->pipe), crtc_state->dpll_hw_state.fp1);
}
static void i9xx_crtc_enable(struct intel_crtc_state *pipe_config,
struct drm_atomic_state *old_state)
{
struct intel_atomic_state *old_intel_state =
to_intel_atomic_state(old_state);
struct drm_crtc *crtc = pipe_config->base.crtc;
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
enum pipe pipe = intel_crtc->pipe;
if (WARN_ON(intel_crtc->active))
return;
i9xx_set_pll_dividers(pipe_config);
if (intel_crtc_has_dp_encoder(pipe_config))
intel_dp_set_m_n(pipe_config, M1_N1);
intel_set_pipe_timings(pipe_config);
intel_set_pipe_src_size(pipe_config);
i9xx_set_pipeconf(pipe_config);
intel_crtc->active = true;
if (!IS_GEN(dev_priv, 2))
intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
intel_encoders_pre_enable(crtc, pipe_config, old_state);
i9xx_enable_pll(intel_crtc, pipe_config);
i9xx_pfit_enable(pipe_config);
intel_color_load_luts(pipe_config);
intel_color_commit(pipe_config);
/* update DSPCNTR to configure gamma for pipe bottom color */
intel_disable_primary_plane(pipe_config);
if (dev_priv->display.initial_watermarks != NULL)
dev_priv->display.initial_watermarks(old_intel_state,
pipe_config);
else
intel_update_watermarks(intel_crtc);
intel_enable_pipe(pipe_config);
assert_vblank_disabled(crtc);
intel_crtc_vblank_on(pipe_config);
intel_encoders_enable(crtc, pipe_config, old_state);
}
static void i9xx_pfit_disable(const struct intel_crtc_state *old_crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
if (!old_crtc_state->gmch_pfit.control)
return;
assert_pipe_disabled(dev_priv, crtc->pipe);
DRM_DEBUG_KMS("disabling pfit, current: 0x%08x\n",
I915_READ(PFIT_CONTROL));
I915_WRITE(PFIT_CONTROL, 0);
}
static void i9xx_crtc_disable(struct intel_crtc_state *old_crtc_state,
struct drm_atomic_state *old_state)
{
struct drm_crtc *crtc = old_crtc_state->base.crtc;
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
/*
* On gen2 planes are double buffered but the pipe isn't, so we must
* wait for planes to fully turn off before disabling the pipe.
*/
if (IS_GEN(dev_priv, 2))
intel_wait_for_vblank(dev_priv, pipe);
intel_encoders_disable(crtc, old_crtc_state, old_state);
drm_crtc_vblank_off(crtc);
assert_vblank_disabled(crtc);
intel_disable_pipe(old_crtc_state);
i9xx_pfit_disable(old_crtc_state);
intel_encoders_post_disable(crtc, old_crtc_state, old_state);
if (!intel_crtc_has_type(old_crtc_state, INTEL_OUTPUT_DSI)) {
if (IS_CHERRYVIEW(dev_priv))
chv_disable_pll(dev_priv, pipe);
else if (IS_VALLEYVIEW(dev_priv))
vlv_disable_pll(dev_priv, pipe);
else
i9xx_disable_pll(old_crtc_state);
}
intel_encoders_post_pll_disable(crtc, old_crtc_state, old_state);
if (!IS_GEN(dev_priv, 2))
intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
if (!dev_priv->display.initial_watermarks)
intel_update_watermarks(intel_crtc);
/* clock the pipe down to 640x480@60 to potentially save power */
if (IS_I830(dev_priv))
i830_enable_pipe(dev_priv, pipe);
}
static void intel_crtc_disable_noatomic(struct drm_crtc *crtc,
struct drm_modeset_acquire_ctx *ctx)
{
struct intel_encoder *encoder;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->dev);
enum intel_display_power_domain domain;
struct intel_plane *plane;
u64 domains;
struct drm_atomic_state *state;
struct intel_crtc_state *crtc_state;
int ret;
if (!intel_crtc->active)
return;
for_each_intel_plane_on_crtc(&dev_priv->drm, intel_crtc, plane) {
const struct intel_plane_state *plane_state =
to_intel_plane_state(plane->base.state);
if (plane_state->base.visible)
intel_plane_disable_noatomic(intel_crtc, plane);
}
state = drm_atomic_state_alloc(crtc->dev);
if (!state) {
DRM_DEBUG_KMS("failed to disable [CRTC:%d:%s], out of memory",
crtc->base.id, crtc->name);
return;
}
state->acquire_ctx = ctx;
/* Everything's already locked, -EDEADLK can't happen. */
crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
ret = drm_atomic_add_affected_connectors(state, crtc);
WARN_ON(IS_ERR(crtc_state) || ret);
dev_priv->display.crtc_disable(crtc_state, state);
drm_atomic_state_put(state);
DRM_DEBUG_KMS("[CRTC:%d:%s] hw state adjusted, was enabled, now disabled\n",
crtc->base.id, crtc->name);
WARN_ON(drm_atomic_set_mode_for_crtc(crtc->state, NULL) < 0);
crtc->state->active = false;
intel_crtc->active = false;
crtc->enabled = false;
crtc->state->connector_mask = 0;
crtc->state->encoder_mask = 0;
for_each_encoder_on_crtc(crtc->dev, crtc, encoder)
encoder->base.crtc = NULL;
intel_fbc_disable(intel_crtc);
intel_update_watermarks(intel_crtc);
intel_disable_shared_dpll(to_intel_crtc_state(crtc->state));
domains = intel_crtc->enabled_power_domains;
for_each_power_domain(domain, domains)
intel_display_power_put_unchecked(dev_priv, domain);
intel_crtc->enabled_power_domains = 0;
dev_priv->active_crtcs &= ~(1 << intel_crtc->pipe);
dev_priv->min_cdclk[intel_crtc->pipe] = 0;
dev_priv->min_voltage_level[intel_crtc->pipe] = 0;
}
/*
* turn all crtc's off, but do not adjust state
* This has to be paired with a call to intel_modeset_setup_hw_state.
*/
int intel_display_suspend(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = to_i915(dev);
struct drm_atomic_state *state;
int ret;
state = drm_atomic_helper_suspend(dev);
ret = PTR_ERR_OR_ZERO(state);
if (ret)
DRM_ERROR("Suspending crtc's failed with %i\n", ret);
else
dev_priv->modeset_restore_state = state;
return ret;
}
void intel_encoder_destroy(struct drm_encoder *encoder)
{
struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
drm_encoder_cleanup(encoder);
kfree(intel_encoder);
}
/* Cross check the actual hw state with our own modeset state tracking (and it's
* internal consistency). */
static void intel_connector_verify_state(struct drm_crtc_state *crtc_state,
struct drm_connector_state *conn_state)
{
struct intel_connector *connector = to_intel_connector(conn_state->connector);
DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
connector->base.base.id,
connector->base.name);
if (connector->get_hw_state(connector)) {
struct intel_encoder *encoder = connector->encoder;
I915_STATE_WARN(!crtc_state,
"connector enabled without attached crtc\n");
if (!crtc_state)
return;
I915_STATE_WARN(!crtc_state->active,
"connector is active, but attached crtc isn't\n");
if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST)
return;
I915_STATE_WARN(conn_state->best_encoder != &encoder->base,
"atomic encoder doesn't match attached encoder\n");
I915_STATE_WARN(conn_state->crtc != encoder->base.crtc,
"attached encoder crtc differs from connector crtc\n");
} else {
I915_STATE_WARN(crtc_state && crtc_state->active,
"attached crtc is active, but connector isn't\n");
I915_STATE_WARN(!crtc_state && conn_state->best_encoder,
"best encoder set without crtc!\n");
}
}
static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
{
if (crtc_state->base.enable && crtc_state->has_pch_encoder)
return crtc_state->fdi_lanes;
return 0;
}
static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
struct intel_crtc_state *pipe_config)
{
struct drm_i915_private *dev_priv = to_i915(dev);
struct drm_atomic_state *state = pipe_config->base.state;
struct intel_crtc *other_crtc;
struct intel_crtc_state *other_crtc_state;
DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
pipe_name(pipe), pipe_config->fdi_lanes);
if (pipe_config->fdi_lanes > 4) {
DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
pipe_name(pipe), pipe_config->fdi_lanes);
return -EINVAL;
}
if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
if (pipe_config->fdi_lanes > 2) {
DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
pipe_config->fdi_lanes);
return -EINVAL;
} else {
return 0;
}
}
if (INTEL_INFO(dev_priv)->num_pipes == 2)
return 0;
/* Ivybridge 3 pipe is really complicated */
switch (pipe) {
case PIPE_A:
return 0;
case PIPE_B:
if (pipe_config->fdi_lanes <= 2)
return 0;
other_crtc = intel_get_crtc_for_pipe(dev_priv, PIPE_C);
other_crtc_state =
intel_atomic_get_crtc_state(state, other_crtc);
if (IS_ERR(other_crtc_state))
return PTR_ERR(other_crtc_state);
if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
pipe_name(pipe), pipe_config->fdi_lanes);
return -EINVAL;
}
return 0;
case PIPE_C:
if (pipe_config->fdi_lanes > 2) {
DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
pipe_name(pipe), pipe_config->fdi_lanes);
return -EINVAL;
}
other_crtc = intel_get_crtc_for_pipe(dev_priv, PIPE_B);
other_crtc_state =
intel_atomic_get_crtc_state(state, other_crtc);
if (IS_ERR(other_crtc_state))
return PTR_ERR(other_crtc_state);
if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
return -EINVAL;
}
return 0;
default:
BUG();
}
}
#define RETRY 1
static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
struct intel_crtc_state *pipe_config)
{
struct drm_device *dev = intel_crtc->base.dev;
const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
int lane, link_bw, fdi_dotclock, ret;
bool needs_recompute = false;
retry:
/* FDI is a binary signal running at ~2.7GHz, encoding
* each output octet as 10 bits. The actual frequency
* is stored as a divider into a 100MHz clock, and the
* mode pixel clock is stored in units of 1KHz.
* Hence the bw of each lane in terms of the mode signal
* is:
*/
link_bw = intel_fdi_link_freq(to_i915(dev), pipe_config);
fdi_dotclock = adjusted_mode->crtc_clock;
lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
pipe_config->pipe_bpp);
pipe_config->fdi_lanes = lane;
intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
link_bw, &pipe_config->fdi_m_n, false);
ret = ironlake_check_fdi_lanes(dev, intel_crtc->pipe, pipe_config);
if (ret == -EDEADLK)
return ret;
if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
pipe_config->pipe_bpp -= 2*3;
DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
pipe_config->pipe_bpp);
needs_recompute = true;
pipe_config->bw_constrained = true;
goto retry;
}
if (needs_recompute)
return RETRY;
return ret;
}
bool hsw_crtc_state_ips_capable(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
/* IPS only exists on ULT machines and is tied to pipe A. */
if (!hsw_crtc_supports_ips(crtc))
return false;
if (!i915_modparams.enable_ips)
return false;
if (crtc_state->pipe_bpp > 24)
return false;
/*
* We compare against max which means we must take
* the increased cdclk requirement into account when
* calculating the new cdclk.
*
* Should measure whether using a lower cdclk w/o IPS
*/
if (IS_BROADWELL(dev_priv) &&
crtc_state->pixel_rate > dev_priv->max_cdclk_freq * 95 / 100)
return false;
return true;
}
static bool hsw_compute_ips_config(struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *dev_priv =
to_i915(crtc_state->base.crtc->dev);
struct intel_atomic_state *intel_state =
to_intel_atomic_state(crtc_state->base.state);
if (!hsw_crtc_state_ips_capable(crtc_state))
return false;
/*
* When IPS gets enabled, the pipe CRC changes. Since IPS gets
* enabled and disabled dynamically based on package C states,
* user space can't make reliable use of the CRCs, so let's just
* completely disable it.
*/
if (crtc_state->crc_enabled)
return false;
/* IPS should be fine as long as at least one plane is enabled. */
if (!(crtc_state->active_planes & ~BIT(PLANE_CURSOR)))
return false;
/* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
if (IS_BROADWELL(dev_priv) &&
crtc_state->pixel_rate > intel_state->cdclk.logical.cdclk * 95 / 100)
return false;
return true;
}
static bool intel_crtc_supports_double_wide(const struct intel_crtc *crtc)
{
const struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
/* GDG double wide on either pipe, otherwise pipe A only */
return INTEL_GEN(dev_priv) < 4 &&
(crtc->pipe == PIPE_A || IS_I915G(dev_priv));
}
static u32 ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
{
u32 pixel_rate;
pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
/*
* We only use IF-ID interlacing. If we ever use
* PF-ID we'll need to adjust the pixel_rate here.
*/
if (pipe_config->pch_pfit.enabled) {
u64 pipe_w, pipe_h, pfit_w, pfit_h;
u32 pfit_size = pipe_config->pch_pfit.size;
pipe_w = pipe_config->pipe_src_w;
pipe_h = pipe_config->pipe_src_h;
pfit_w = (pfit_size >> 16) & 0xFFFF;
pfit_h = pfit_size & 0xFFFF;
if (pipe_w < pfit_w)
pipe_w = pfit_w;
if (pipe_h < pfit_h)
pipe_h = pfit_h;
if (WARN_ON(!pfit_w || !pfit_h))
return pixel_rate;
pixel_rate = div_u64(mul_u32_u32(pixel_rate, pipe_w * pipe_h),
pfit_w * pfit_h);
}
return pixel_rate;
}
static void intel_crtc_compute_pixel_rate(struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
if (HAS_GMCH(dev_priv))
/* FIXME calculate proper pipe pixel rate for GMCH pfit */
crtc_state->pixel_rate =
crtc_state->base.adjusted_mode.crtc_clock;
else
crtc_state->pixel_rate =
ilk_pipe_pixel_rate(crtc_state);
}
static int intel_crtc_compute_config(struct intel_crtc *crtc,
struct intel_crtc_state *pipe_config)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
int clock_limit = dev_priv->max_dotclk_freq;
if (INTEL_GEN(dev_priv) < 4) {
clock_limit = dev_priv->max_cdclk_freq * 9 / 10;
/*
* Enable double wide mode when the dot clock
* is > 90% of the (display) core speed.
*/
if (intel_crtc_supports_double_wide(crtc) &&
adjusted_mode->crtc_clock > clock_limit) {
clock_limit = dev_priv->max_dotclk_freq;
pipe_config->double_wide = true;
}
}
if (adjusted_mode->crtc_clock > clock_limit) {
DRM_DEBUG_KMS("requested pixel clock (%d kHz) too high (max: %d kHz, double wide: %s)\n",
adjusted_mode->crtc_clock, clock_limit,
yesno(pipe_config->double_wide));
return -EINVAL;
}
if ((pipe_config->output_format == INTEL_OUTPUT_FORMAT_YCBCR420 ||
pipe_config->output_format == INTEL_OUTPUT_FORMAT_YCBCR444) &&
pipe_config->base.ctm) {
/*
* There is only one pipe CSC unit per pipe, and we need that
* for output conversion from RGB->YCBCR. So if CTM is already
* applied we can't support YCBCR420 output.
*/
DRM_DEBUG_KMS("YCBCR420 and CTM together are not possible\n");
return -EINVAL;
}
/*
* Pipe horizontal size must be even in:
* - DVO ganged mode
* - LVDS dual channel mode
* - Double wide pipe
*/
if (pipe_config->pipe_src_w & 1) {
if (pipe_config->double_wide) {
DRM_DEBUG_KMS("Odd pipe source width not supported with double wide pipe\n");
return -EINVAL;
}
if (intel_crtc_has_type(pipe_config, INTEL_OUTPUT_LVDS) &&
intel_is_dual_link_lvds(dev_priv)) {
DRM_DEBUG_KMS("Odd pipe source width not supported with dual link LVDS\n");
return -EINVAL;
}
}
/* Cantiga+ cannot handle modes with a hsync front porch of 0.
* WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
*/
if ((INTEL_GEN(dev_priv) > 4 || IS_G4X(dev_priv)) &&
adjusted_mode->crtc_hsync_start == adjusted_mode->crtc_hdisplay)
return -EINVAL;
intel_crtc_compute_pixel_rate(pipe_config);
if (pipe_config->has_pch_encoder)
return ironlake_fdi_compute_config(crtc, pipe_config);
return 0;
}
static void
intel_reduce_m_n_ratio(u32 *num, u32 *den)
{
while (*num > DATA_LINK_M_N_MASK ||
*den > DATA_LINK_M_N_MASK) {
*num >>= 1;
*den >>= 1;
}
}
static void compute_m_n(unsigned int m, unsigned int n,
u32 *ret_m, u32 *ret_n,
bool constant_n)
{
/*
* Several DP dongles in particular seem to be fussy about
* too large link M/N values. Give N value as 0x8000 that
* should be acceptable by specific devices. 0x8000 is the
* specified fixed N value for asynchronous clock mode,
* which the devices expect also in synchronous clock mode.
*/
if (constant_n)
*ret_n = 0x8000;
else
*ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
*ret_m = div_u64(mul_u32_u32(m, *ret_n), n);
intel_reduce_m_n_ratio(ret_m, ret_n);
}
void
intel_link_compute_m_n(u16 bits_per_pixel, int nlanes,
int pixel_clock, int link_clock,
struct intel_link_m_n *m_n,
bool constant_n)
{
m_n->tu = 64;
compute_m_n(bits_per_pixel * pixel_clock,
link_clock * nlanes * 8,
&m_n->gmch_m, &m_n->gmch_n,
constant_n);
compute_m_n(pixel_clock, link_clock,
&m_n->link_m, &m_n->link_n,
constant_n);
}
static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
{
if (i915_modparams.panel_use_ssc >= 0)
return i915_modparams.panel_use_ssc != 0;
return dev_priv->vbt.lvds_use_ssc
&& !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
}
static u32 pnv_dpll_compute_fp(struct dpll *dpll)
{
return (1 << dpll->n) << 16 | dpll->m2;
}
static u32 i9xx_dpll_compute_fp(struct dpll *dpll)
{
return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
}
static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
struct intel_crtc_state *crtc_state,
struct dpll *reduced_clock)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
u32 fp, fp2 = 0;
if (IS_PINEVIEW(dev_priv)) {
fp = pnv_dpll_compute_fp(&crtc_state->dpll);
if (reduced_clock)
fp2 = pnv_dpll_compute_fp(reduced_clock);
} else {
fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
if (reduced_clock)
fp2 = i9xx_dpll_compute_fp(reduced_clock);
}
crtc_state->dpll_hw_state.fp0 = fp;
if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
reduced_clock) {
crtc_state->dpll_hw_state.fp1 = fp2;
} else {
crtc_state->dpll_hw_state.fp1 = fp;
}
}
static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
pipe)
{
u32 reg_val;
/*
* PLLB opamp always calibrates to max value of 0x3f, force enable it
* and set it to a reasonable value instead.
*/
reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
reg_val &= 0xffffff00;
reg_val |= 0x00000030;
vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
reg_val &= 0x00ffffff;
reg_val |= 0x8c000000;
vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
reg_val &= 0xffffff00;
vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
reg_val &= 0x00ffffff;
reg_val |= 0xb0000000;
vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
}
static void intel_pch_transcoder_set_m_n(const struct intel_crtc_state *crtc_state,
const struct intel_link_m_n *m_n)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum pipe pipe = crtc->pipe;
I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
}
static bool transcoder_has_m2_n2(struct drm_i915_private *dev_priv,
enum transcoder transcoder)
{
if (IS_HASWELL(dev_priv))
return transcoder == TRANSCODER_EDP;
/*
* Strictly speaking some registers are available before
* gen7, but we only support DRRS on gen7+
*/
return IS_GEN(dev_priv, 7) || IS_CHERRYVIEW(dev_priv);
}
static void intel_cpu_transcoder_set_m_n(const struct intel_crtc_state *crtc_state,
const struct intel_link_m_n *m_n,
const struct intel_link_m_n *m2_n2)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum pipe pipe = crtc->pipe;
enum transcoder transcoder = crtc_state->cpu_transcoder;
if (INTEL_GEN(dev_priv) >= 5) {
I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
/*
* M2_N2 registers are set only if DRRS is supported
* (to make sure the registers are not unnecessarily accessed).
*/
if (m2_n2 && crtc_state->has_drrs &&
transcoder_has_m2_n2(dev_priv, transcoder)) {
I915_WRITE(PIPE_DATA_M2(transcoder),
TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
}
} else {
I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
}
}
void intel_dp_set_m_n(const struct intel_crtc_state *crtc_state, enum link_m_n_set m_n)
{
const struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
if (m_n == M1_N1) {
dp_m_n = &crtc_state->dp_m_n;
dp_m2_n2 = &crtc_state->dp_m2_n2;
} else if (m_n == M2_N2) {
/*
* M2_N2 registers are not supported. Hence m2_n2 divider value
* needs to be programmed into M1_N1.
*/
dp_m_n = &crtc_state->dp_m2_n2;
} else {
DRM_ERROR("Unsupported divider value\n");
return;
}
if (crtc_state->has_pch_encoder)
intel_pch_transcoder_set_m_n(crtc_state, &crtc_state->dp_m_n);
else
intel_cpu_transcoder_set_m_n(crtc_state, dp_m_n, dp_m2_n2);
}
static void vlv_compute_dpll(struct intel_crtc *crtc,
struct intel_crtc_state *pipe_config)
{
pipe_config->dpll_hw_state.dpll = DPLL_INTEGRATED_REF_CLK_VLV |
DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
if (crtc->pipe != PIPE_A)
pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
/* DPLL not used with DSI, but still need the rest set up */
if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI))
pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE |
DPLL_EXT_BUFFER_ENABLE_VLV;
pipe_config->dpll_hw_state.dpll_md =
(pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
}
static void chv_compute_dpll(struct intel_crtc *crtc,
struct intel_crtc_state *pipe_config)
{
pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
if (crtc->pipe != PIPE_A)
pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
/* DPLL not used with DSI, but still need the rest set up */
if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI))
pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE;
pipe_config->dpll_hw_state.dpll_md =
(pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
}
static void vlv_prepare_pll(struct intel_crtc *crtc,
const struct intel_crtc_state *pipe_config)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
enum pipe pipe = crtc->pipe;
u32 mdiv;
u32 bestn, bestm1, bestm2, bestp1, bestp2;
u32 coreclk, reg_val;
/* Enable Refclk */
I915_WRITE(DPLL(pipe),
pipe_config->dpll_hw_state.dpll &
~(DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV));
/* No need to actually set up the DPLL with DSI */
if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
return;
vlv_dpio_get(dev_priv);
bestn = pipe_config->dpll.n;
bestm1 = pipe_config->dpll.m1;
bestm2 = pipe_config->dpll.m2;
bestp1 = pipe_config->dpll.p1;
bestp2 = pipe_config->dpll.p2;
/* See eDP HDMI DPIO driver vbios notes doc */
/* PLL B needs special handling */
if (pipe == PIPE_B)
vlv_pllb_recal_opamp(dev_priv, pipe);
/* Set up Tx target for periodic Rcomp update */
vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
/* Disable target IRef on PLL */
reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
reg_val &= 0x00ffffff;
vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
/* Disable fast lock */
vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
/* Set idtafcrecal before PLL is enabled */
mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
mdiv |= ((bestn << DPIO_N_SHIFT));
mdiv |= (1 << DPIO_K_SHIFT);
/*
* Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
* but we don't support that).
* Note: don't use the DAC post divider as it seems unstable.
*/
mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
mdiv |= DPIO_ENABLE_CALIBRATION;
vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
/* Set HBR and RBR LPF coefficients */
if (pipe_config->port_clock == 162000 ||
intel_crtc_has_type(pipe_config, INTEL_OUTPUT_ANALOG) ||
intel_crtc_has_type(pipe_config, INTEL_OUTPUT_HDMI))
vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
0x009f0003);
else
vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
0x00d0000f);
if (intel_crtc_has_dp_encoder(pipe_config)) {
/* Use SSC source */
if (pipe == PIPE_A)
vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
0x0df40000);
else
vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
0x0df70000);
} else { /* HDMI or VGA */
/* Use bend source */
if (pipe == PIPE_A)
vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
0x0df70000);
else
vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
0x0df40000);
}
coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
if (intel_crtc_has_dp_encoder(pipe_config))
coreclk |= 0x01000000;
vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
vlv_dpio_put(dev_priv);
}
static void chv_prepare_pll(struct intel_crtc *crtc,
const struct intel_crtc_state *pipe_config)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
enum pipe pipe = crtc->pipe;
enum dpio_channel port = vlv_pipe_to_channel(pipe);
u32 loopfilter, tribuf_calcntr;
u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
u32 dpio_val;
int vco;
/* Enable Refclk and SSC */
I915_WRITE(DPLL(pipe),
pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
/* No need to actually set up the DPLL with DSI */
if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
return;
bestn = pipe_config->dpll.n;
bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
bestm1 = pipe_config->dpll.m1;
bestm2 = pipe_config->dpll.m2 >> 22;
bestp1 = pipe_config->dpll.p1;
bestp2 = pipe_config->dpll.p2;
vco = pipe_config->dpll.vco;
dpio_val = 0;
loopfilter = 0;
vlv_dpio_get(dev_priv);
/* p1 and p2 divider */
vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
5 << DPIO_CHV_S1_DIV_SHIFT |
bestp1 << DPIO_CHV_P1_DIV_SHIFT |
bestp2 << DPIO_CHV_P2_DIV_SHIFT |
1 << DPIO_CHV_K_DIV_SHIFT);
/* Feedback post-divider - m2 */
vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
/* Feedback refclk divider - n and m1 */
vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
DPIO_CHV_M1_DIV_BY_2 |
1 << DPIO_CHV_N_DIV_SHIFT);
/* M2 fraction division */
vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
/* M2 fraction division enable */
dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
if (bestm2_frac)
dpio_val |= DPIO_CHV_FRAC_DIV_EN;
vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
/* Program digital lock detect threshold */
dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
if (!bestm2_frac)
dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
/* Loop filter */
if (vco == 5400000) {
loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
tribuf_calcntr = 0x9;
} else if (vco <= 6200000) {
loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
tribuf_calcntr = 0x9;
} else if (vco <= 6480000) {
loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
tribuf_calcntr = 0x8;
} else {
/* Not supported. Apply the same limits as in the max case */
loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
tribuf_calcntr = 0;
}
vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
/* AFC Recal */
vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
DPIO_AFC_RECAL);
vlv_dpio_put(dev_priv);
}
/**
* vlv_force_pll_on - forcibly enable just the PLL
* @dev_priv: i915 private structure
* @pipe: pipe PLL to enable
* @dpll: PLL configuration
*
* Enable the PLL for @pipe using the supplied @dpll config. To be used
* in cases where we need the PLL enabled even when @pipe is not going to
* be enabled.
*/
int vlv_force_pll_on(struct drm_i915_private *dev_priv, enum pipe pipe,
const struct dpll *dpll)
{
struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
struct intel_crtc_state *pipe_config;
pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
if (!pipe_config)
return -ENOMEM;
pipe_config->base.crtc = &crtc->base;
pipe_config->pixel_multiplier = 1;
pipe_config->dpll = *dpll;
if (IS_CHERRYVIEW(dev_priv)) {
chv_compute_dpll(crtc, pipe_config);
chv_prepare_pll(crtc, pipe_config);
chv_enable_pll(crtc, pipe_config);
} else {
vlv_compute_dpll(crtc, pipe_config);
vlv_prepare_pll(crtc, pipe_config);
vlv_enable_pll(crtc, pipe_config);
}
kfree(pipe_config);
return 0;
}
/**
* vlv_force_pll_off - forcibly disable just the PLL
* @dev_priv: i915 private structure
* @pipe: pipe PLL to disable
*
* Disable the PLL for @pipe. To be used in cases where we need
* the PLL enabled even when @pipe is not going to be enabled.
*/
void vlv_force_pll_off(struct drm_i915_private *dev_priv, enum pipe pipe)
{
if (IS_CHERRYVIEW(dev_priv))
chv_disable_pll(dev_priv, pipe);
else
vlv_disable_pll(dev_priv, pipe);
}
static void i9xx_compute_dpll(struct intel_crtc *crtc,
struct intel_crtc_state *crtc_state,
struct dpll *reduced_clock)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
u32 dpll;
struct dpll *clock = &crtc_state->dpll;
i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
dpll = DPLL_VGA_MODE_DIS;
if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
dpll |= DPLLB_MODE_LVDS;
else
dpll |= DPLLB_MODE_DAC_SERIAL;
if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) {
dpll |= (crtc_state->pixel_multiplier - 1)
<< SDVO_MULTIPLIER_SHIFT_HIRES;
}
if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
dpll |= DPLL_SDVO_HIGH_SPEED;
if (intel_crtc_has_dp_encoder(crtc_state))
dpll |= DPLL_SDVO_HIGH_SPEED;
/* compute bitmask from p1 value */
if (IS_PINEVIEW(dev_priv))
dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
else {
dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
if (IS_G4X(dev_priv) && reduced_clock)
dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
}
switch (clock->p2) {
case 5:
dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
break;
case 7:
dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
break;
case 10:
dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
break;
case 14:
dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
break;
}
if (INTEL_GEN(dev_priv) >= 4)
dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
if (crtc_state->sdvo_tv_clock)
dpll |= PLL_REF_INPUT_TVCLKINBC;
else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
intel_panel_use_ssc(dev_priv))
dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
else
dpll |= PLL_REF_INPUT_DREFCLK;
dpll |= DPLL_VCO_ENABLE;
crtc_state->dpll_hw_state.dpll = dpll;
if (INTEL_GEN(dev_priv) >= 4) {
u32 dpll_md = (crtc_state->pixel_multiplier - 1)
<< DPLL_MD_UDI_MULTIPLIER_SHIFT;
crtc_state->dpll_hw_state.dpll_md = dpll_md;
}
}
static void i8xx_compute_dpll(struct intel_crtc *crtc,
struct intel_crtc_state *crtc_state,
struct dpll *reduced_clock)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
u32 dpll;
struct dpll *clock = &crtc_state->dpll;
i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
dpll = DPLL_VGA_MODE_DIS;
if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
} else {
if (clock->p1 == 2)
dpll |= PLL_P1_DIVIDE_BY_TWO;
else
dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
if (clock->p2 == 4)
dpll |= PLL_P2_DIVIDE_BY_4;
}
/*
* Bspec:
* "[Almador Errata}: For the correct operation of the muxed DVO pins
* (GDEVSELB/I2Cdata, GIRDBY/I2CClk) and (GFRAMEB/DVI_Data,
* GTRDYB/DVI_Clk): Bit 31 (DPLL VCO Enable) and Bit 30 (2X Clock
* Enable) must be set to “1” in both the DPLL A Control Register
* (06014h-06017h) and DPLL B Control Register (06018h-0601Bh)."
*
* For simplicity We simply keep both bits always enabled in
* both DPLLS. The spec says we should disable the DVO 2X clock
* when not needed, but this seems to work fine in practice.
*/
if (IS_I830(dev_priv) ||
intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO))
dpll |= DPLL_DVO_2X_MODE;
if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
intel_panel_use_ssc(dev_priv))
dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
else
dpll |= PLL_REF_INPUT_DREFCLK;
dpll |= DPLL_VCO_ENABLE;
crtc_state->dpll_hw_state.dpll = dpll;
}
static void intel_set_pipe_timings(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum pipe pipe = crtc->pipe;
enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
const struct drm_display_mode *adjusted_mode = &crtc_state->base.adjusted_mode;
u32 crtc_vtotal, crtc_vblank_end;
int vsyncshift = 0;
/* We need to be careful not to changed the adjusted mode, for otherwise
* the hw state checker will get angry at the mismatch. */
crtc_vtotal = adjusted_mode->crtc_vtotal;
crtc_vblank_end = adjusted_mode->crtc_vblank_end;
if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
/* the chip adds 2 halflines automatically */
crtc_vtotal -= 1;
crtc_vblank_end -= 1;
if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO))
vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
else
vsyncshift = adjusted_mode->crtc_hsync_start -
adjusted_mode->crtc_htotal / 2;
if (vsyncshift < 0)
vsyncshift += adjusted_mode->crtc_htotal;
}
if (INTEL_GEN(dev_priv) > 3)
I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
I915_WRITE(HTOTAL(cpu_transcoder),
(adjusted_mode->crtc_hdisplay - 1) |
((adjusted_mode->crtc_htotal - 1) << 16));
I915_WRITE(HBLANK(cpu_transcoder),
(adjusted_mode->crtc_hblank_start - 1) |
((adjusted_mode->crtc_hblank_end - 1) << 16));
I915_WRITE(HSYNC(cpu_transcoder),
(adjusted_mode->crtc_hsync_start - 1) |
((adjusted_mode->crtc_hsync_end - 1) << 16));
I915_WRITE(VTOTAL(cpu_transcoder),
(adjusted_mode->crtc_vdisplay - 1) |
((crtc_vtotal - 1) << 16));
I915_WRITE(VBLANK(cpu_transcoder),
(adjusted_mode->crtc_vblank_start - 1) |
((crtc_vblank_end - 1) << 16));
I915_WRITE(VSYNC(cpu_transcoder),
(adjusted_mode->crtc_vsync_start - 1) |
((adjusted_mode->crtc_vsync_end - 1) << 16));
/* Workaround: when the EDP input selection is B, the VTOTAL_B must be
* programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
* documented on the DDI_FUNC_CTL register description, EDP Input Select
* bits. */
if (IS_HASWELL(dev_priv) && cpu_transcoder == TRANSCODER_EDP &&
(pipe == PIPE_B || pipe == PIPE_C))
I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
}
static void intel_set_pipe_src_size(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum pipe pipe = crtc->pipe;
/* pipesrc controls the size that is scaled from, which should
* always be the user's requested size.
*/
I915_WRITE(PIPESRC(pipe),
((crtc_state->pipe_src_w - 1) << 16) |
(crtc_state->pipe_src_h - 1));
}
static void intel_get_pipe_timings(struct intel_crtc *crtc,
struct intel_crtc_state *pipe_config)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
u32 tmp;
tmp = I915_READ(HTOTAL(cpu_transcoder));
pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
tmp = I915_READ(HBLANK(cpu_transcoder));
pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
tmp = I915_READ(HSYNC(cpu_transcoder));
pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
tmp = I915_READ(VTOTAL(cpu_transcoder));
pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
tmp = I915_READ(VBLANK(cpu_transcoder));
pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
tmp = I915_READ(VSYNC(cpu_transcoder));
pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
pipe_config->base.adjusted_mode.crtc_vtotal += 1;
pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
}
}
static void intel_get_pipe_src_size(struct intel_crtc *crtc,
struct intel_crtc_state *pipe_config)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
u32 tmp;
tmp = I915_READ(PIPESRC(crtc->pipe));
pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
}
void intel_mode_from_pipe_config(struct drm_display_mode *mode,
struct intel_crtc_state *pipe_config)
{
mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
mode->flags = pipe_config->base.adjusted_mode.flags;
mode->type = DRM_MODE_TYPE_DRIVER;
mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
mode->hsync = drm_mode_hsync(mode);
mode->vrefresh = drm_mode_vrefresh(mode);
drm_mode_set_name(mode);
}
static void i9xx_set_pipeconf(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
u32 pipeconf;
pipeconf = 0;
/* we keep both pipes enabled on 830 */
if (IS_I830(dev_priv))
pipeconf |= I915_READ(PIPECONF(crtc->pipe)) & PIPECONF_ENABLE;
if (crtc_state->double_wide)
pipeconf |= PIPECONF_DOUBLE_WIDE;
/* only g4x and later have fancy bpc/dither controls */
if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
IS_CHERRYVIEW(dev_priv)) {
/* Bspec claims that we can't use dithering for 30bpp pipes. */
if (crtc_state->dither && crtc_state->pipe_bpp != 30)
pipeconf |= PIPECONF_DITHER_EN |
PIPECONF_DITHER_TYPE_SP;
switch (crtc_state->pipe_bpp) {
case 18:
pipeconf |= PIPECONF_6BPC;
break;
case 24:
pipeconf |= PIPECONF_8BPC;
break;
case 30:
pipeconf |= PIPECONF_10BPC;
break;
default:
/* Case prevented by intel_choose_pipe_bpp_dither. */
BUG();
}
}
if (crtc_state->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
if (INTEL_GEN(dev_priv) < 4 ||
intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO))
pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
else
pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
} else {
pipeconf |= PIPECONF_PROGRESSIVE;
}
if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
crtc_state->limited_color_range)
pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
pipeconf |= PIPECONF_GAMMA_MODE(crtc_state->gamma_mode);
I915_WRITE(PIPECONF(crtc->pipe), pipeconf);
POSTING_READ(PIPECONF(crtc->pipe));
}
static int i8xx_crtc_compute_clock(struct intel_crtc *crtc,
struct intel_crtc_state *crtc_state)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
const struct intel_limit *limit;
int refclk = 48000;
memset(&crtc_state->dpll_hw_state, 0,
sizeof(crtc_state->dpll_hw_state));
if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
if (intel_panel_use_ssc(dev_priv)) {
refclk = dev_priv->vbt.lvds_ssc_freq;
DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
}
limit = &intel_limits_i8xx_lvds;
} else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO)) {
limit = &intel_limits_i8xx_dvo;
} else {
limit = &intel_limits_i8xx_dac;
}
if (!crtc_state->clock_set &&
!i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
refclk, NULL, &crtc_state->dpll)) {
DRM_ERROR("Couldn't find PLL settings for mode!\n");
return -EINVAL;
}
i8xx_compute_dpll(crtc, crtc_state, NULL);
return 0;
}
static int g4x_crtc_compute_clock(struct intel_crtc *crtc,
struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
const struct intel_limit *limit;
int refclk = 96000;
memset(&crtc_state->dpll_hw_state, 0,
sizeof(crtc_state->dpll_hw_state));
if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
if (intel_panel_use_ssc(dev_priv)) {
refclk = dev_priv->vbt.lvds_ssc_freq;
DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
}
if (intel_is_dual_link_lvds(dev_priv))
limit = &intel_limits_g4x_dual_channel_lvds;
else
limit = &intel_limits_g4x_single_channel_lvds;
} else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) ||
intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
limit = &intel_limits_g4x_hdmi;
} else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) {
limit = &intel_limits_g4x_sdvo;
} else {
/* The option is for other outputs */
limit = &intel_limits_i9xx_sdvo;
}
if (!crtc_state->clock_set &&
!g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
refclk, NULL, &crtc_state->dpll)) {
DRM_ERROR("Couldn't find PLL settings for mode!\n");
return -EINVAL;
}
i9xx_compute_dpll(crtc, crtc_state, NULL);
return 0;
}
static int pnv_crtc_compute_clock(struct intel_crtc *crtc,
struct intel_crtc_state *crtc_state)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
const struct intel_limit *limit;
int refclk = 96000;
memset(&crtc_state->dpll_hw_state, 0,
sizeof(crtc_state->dpll_hw_state));
if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
if (intel_panel_use_ssc(dev_priv)) {
refclk = dev_priv->vbt.lvds_ssc_freq;
DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
}
limit = &intel_limits_pineview_lvds;
} else {
limit = &intel_limits_pineview_sdvo;
}
if (!crtc_state->clock_set &&
!pnv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
refclk, NULL, &crtc_state->dpll)) {
DRM_ERROR("Couldn't find PLL settings for mode!\n");
return -EINVAL;
}
i9xx_compute_dpll(crtc, crtc_state, NULL);
return 0;
}
static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
struct intel_crtc_state *crtc_state)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
const struct intel_limit *limit;
int refclk = 96000;
memset(&crtc_state->dpll_hw_state, 0,
sizeof(crtc_state->dpll_hw_state));
if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
if (intel_panel_use_ssc(dev_priv)) {
refclk = dev_priv->vbt.lvds_ssc_freq;
DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
}
limit = &intel_limits_i9xx_lvds;
} else {
limit = &intel_limits_i9xx_sdvo;
}
if (!crtc_state->clock_set &&
!i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
refclk, NULL, &crtc_state->dpll)) {
DRM_ERROR("Couldn't find PLL settings for mode!\n");
return -EINVAL;
}
i9xx_compute_dpll(crtc, crtc_state, NULL);
return 0;
}
static int chv_crtc_compute_clock(struct intel_crtc *crtc,
struct intel_crtc_state *crtc_state)
{
int refclk = 100000;
const struct intel_limit *limit = &intel_limits_chv;
memset(&crtc_state->dpll_hw_state, 0,
sizeof(crtc_state->dpll_hw_state));
if (!crtc_state->clock_set &&
!chv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
refclk, NULL, &crtc_state->dpll)) {
DRM_ERROR("Couldn't find PLL settings for mode!\n");
return -EINVAL;
}
chv_compute_dpll(crtc, crtc_state);
return 0;
}
static int vlv_crtc_compute_clock(struct intel_crtc *crtc,
struct intel_crtc_state *crtc_state)
{
int refclk = 100000;
const struct intel_limit *limit = &intel_limits_vlv;
memset(&crtc_state->dpll_hw_state, 0,
sizeof(crtc_state->dpll_hw_state));
if (!crtc_state->clock_set &&
!vlv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
refclk, NULL, &crtc_state->dpll)) {
DRM_ERROR("Couldn't find PLL settings for mode!\n");
return -EINVAL;
}
vlv_compute_dpll(crtc, crtc_state);
return 0;
}
static bool i9xx_has_pfit(struct drm_i915_private *dev_priv)
{
if (IS_I830(dev_priv))
return false;
return INTEL_GEN(dev_priv) >= 4 ||
IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv);
}
static void i9xx_get_pfit_config(struct intel_crtc *crtc,
struct intel_crtc_state *pipe_config)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
u32 tmp;
if (!i9xx_has_pfit(dev_priv))
return;
tmp = I915_READ(PFIT_CONTROL);
if (!(tmp & PFIT_ENABLE))
return;
/* Check whether the pfit is attached to our pipe. */
if (INTEL_GEN(dev_priv) < 4) {
if (crtc->pipe != PIPE_B)
return;
} else {
if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
return;
}
pipe_config->gmch_pfit.control = tmp;
pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
}
static void vlv_crtc_clock_get(struct intel_crtc *crtc,
struct intel_crtc_state *pipe_config)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
int pipe = pipe_config->cpu_transcoder;
struct dpll clock;
u32 mdiv;
int refclk = 100000;
/* In case of DSI, DPLL will not be used */
if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
return;
vlv_dpio_get(dev_priv);
mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
vlv_dpio_put(dev_priv);
clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
clock.m2 = mdiv & DPIO_M2DIV_MASK;
clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
}
static void
i9xx_get_initial_plane_config(struct intel_crtc *crtc,
struct intel_initial_plane_config *plane_config)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct intel_plane *plane = to_intel_plane(crtc->base.primary);
enum i9xx_plane_id i9xx_plane = plane->i9xx_plane;
enum pipe pipe;
u32 val, base, offset;
int fourcc, pixel_format;
unsigned int aligned_height;
struct drm_framebuffer *fb;
struct intel_framebuffer *intel_fb;
if (!plane->get_hw_state(plane, &pipe))
return;
WARN_ON(pipe != crtc->pipe);
intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
if (!intel_fb) {
DRM_DEBUG_KMS("failed to alloc fb\n");
return;
}
fb = &intel_fb->base;
fb->dev = dev;
val = I915_READ(DSPCNTR(i9xx_plane));
if (INTEL_GEN(dev_priv) >= 4) {
if (val & DISPPLANE_TILED) {
plane_config->tiling = I915_TILING_X;
fb->modifier = I915_FORMAT_MOD_X_TILED;
}
if (val & DISPPLANE_ROTATE_180)
plane_config->rotation = DRM_MODE_ROTATE_180;
}
if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B &&
val & DISPPLANE_MIRROR)
plane_config->rotation |= DRM_MODE_REFLECT_X;
pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
fourcc = i9xx_format_to_fourcc(pixel_format);
fb->format = drm_format_info(fourcc);
if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
offset = I915_READ(DSPOFFSET(i9xx_plane));
base = I915_READ(DSPSURF(i9xx_plane)) & 0xfffff000;
} else if (INTEL_GEN(dev_priv) >= 4) {
if (plane_config->tiling)
offset = I915_READ(DSPTILEOFF(i9xx_plane));
else
offset = I915_READ(DSPLINOFF(i9xx_plane));
base = I915_READ(DSPSURF(i9xx_plane)) & 0xfffff000;
} else {
base = I915_READ(DSPADDR(i9xx_plane));
}
plane_config->base = base;
val = I915_READ(PIPESRC(pipe));
fb->width = ((val >> 16) & 0xfff) + 1;
fb->height = ((val >> 0) & 0xfff) + 1;
val = I915_READ(DSPSTRIDE(i9xx_plane));
fb->pitches[0] = val & 0xffffffc0;
aligned_height = intel_fb_align_height(fb, 0, fb->height);
plane_config->size = fb->pitches[0] * aligned_height;
DRM_DEBUG_KMS("%s/%s with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
crtc->base.name, plane->base.name, fb->width, fb->height,
fb->format->cpp[0] * 8, base, fb->pitches[0],
plane_config->size);
plane_config->fb = intel_fb;
}
static void chv_crtc_clock_get(struct intel_crtc *crtc,
struct intel_crtc_state *pipe_config)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
int pipe = pipe_config->cpu_transcoder;
enum dpio_channel port = vlv_pipe_to_channel(pipe);
struct dpll clock;
u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
int refclk = 100000;
/* In case of DSI, DPLL will not be used */
if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
return;
vlv_dpio_get(dev_priv);
cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
vlv_dpio_put(dev_priv);
clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
clock.m2 = (pll_dw0 & 0xff) << 22;
if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
clock.m2 |= pll_dw2 & 0x3fffff;
clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
}
static void intel_get_crtc_ycbcr_config(struct intel_crtc *crtc,
struct intel_crtc_state *pipe_config)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum intel_output_format output = INTEL_OUTPUT_FORMAT_RGB;
pipe_config->lspcon_downsampling = false;
if (IS_BROADWELL(dev_priv) || INTEL_GEN(dev_priv) >= 9) {
u32 tmp = I915_READ(PIPEMISC(crtc->pipe));
if (tmp & PIPEMISC_OUTPUT_COLORSPACE_YUV) {
bool ycbcr420_enabled = tmp & PIPEMISC_YUV420_ENABLE;
bool blend = tmp & PIPEMISC_YUV420_MODE_FULL_BLEND;
if (ycbcr420_enabled) {
/* We support 4:2:0 in full blend mode only */
if (!blend)
output = INTEL_OUTPUT_FORMAT_INVALID;
else if (!(IS_GEMINILAKE(dev_priv) ||
INTEL_GEN(dev_priv) >= 10))
output = INTEL_OUTPUT_FORMAT_INVALID;
else
output = INTEL_OUTPUT_FORMAT_YCBCR420;
} else {
/*
* Currently there is no interface defined to
* check user preference between RGB/YCBCR444
* or YCBCR420. So the only possible case for
* YCBCR444 usage is driving YCBCR420 output
* with LSPCON, when pipe is configured for
* YCBCR444 output and LSPCON takes care of
* downsampling it.
*/
pipe_config->lspcon_downsampling = true;
output = INTEL_OUTPUT_FORMAT_YCBCR444;
}
}
}
pipe_config->output_format = output;
}
static void i9xx_get_pipe_color_config(struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
struct intel_plane *plane = to_intel_plane(crtc->base.primary);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum i9xx_plane_id i9xx_plane = plane->i9xx_plane;
u32 tmp;
tmp = I915_READ(DSPCNTR(i9xx_plane));
if (tmp & DISPPLANE_GAMMA_ENABLE)
crtc_state->gamma_enable = true;
if (!HAS_GMCH(dev_priv) &&
tmp & DISPPLANE_PIPE_CSC_ENABLE)
crtc_state->csc_enable = true;
}
static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
struct intel_crtc_state *pipe_config)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum intel_display_power_domain power_domain;
intel_wakeref_t wakeref;
u32 tmp;
bool ret;
power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
if (!wakeref)
return false;
pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
pipe_config->shared_dpll = NULL;
ret = false;
tmp = I915_READ(PIPECONF(crtc->pipe));
if (!(tmp & PIPECONF_ENABLE))
goto out;
if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
IS_CHERRYVIEW(dev_priv)) {
switch (tmp & PIPECONF_BPC_MASK) {
case PIPECONF_6BPC:
pipe_config->pipe_bpp = 18;
break;
case PIPECONF_8BPC:
pipe_config->pipe_bpp = 24;
break;
case PIPECONF_10BPC:
pipe_config->pipe_bpp = 30;
break;
default:
break;
}
}
if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
(tmp & PIPECONF_COLOR_RANGE_SELECT))
pipe_config->limited_color_range = true;
pipe_config->gamma_mode = (tmp & PIPECONF_GAMMA_MODE_MASK_I9XX) >>
PIPECONF_GAMMA_MODE_SHIFT;
if (IS_CHERRYVIEW(dev_priv))
pipe_config->cgm_mode = I915_READ(CGM_PIPE_MODE(crtc->pipe));
i9xx_get_pipe_color_config(pipe_config);
if (INTEL_GEN(dev_priv) < 4)
pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
intel_get_pipe_timings(crtc, pipe_config);
intel_get_pipe_src_size(crtc, pipe_config);
i9xx_get_pfit_config(crtc, pipe_config);
if (INTEL_GEN(dev_priv) >= 4) {
/* No way to read it out on pipes B and C */
if (IS_CHERRYVIEW(dev_priv) && crtc->pipe != PIPE_A)
tmp = dev_priv->chv_dpll_md[crtc->pipe];
else
tmp = I915_READ(DPLL_MD(crtc->pipe));
pipe_config->pixel_multiplier =
((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
>> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
pipe_config->dpll_hw_state.dpll_md = tmp;
} else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) {
tmp = I915_READ(DPLL(crtc->pipe));
pipe_config->pixel_multiplier =
((tmp & SDVO_MULTIPLIER_MASK)
>> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
} else {
/* Note that on i915G/GM the pixel multiplier is in the sdvo
* port and will be fixed up in the encoder->get_config
* function. */
pipe_config->pixel_multiplier = 1;
}
pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv)) {
pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
} else {
/* Mask out read-only status bits. */
pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
DPLL_PORTC_READY_MASK |
DPLL_PORTB_READY_MASK);
}
if (IS_CHERRYVIEW(dev_priv))
chv_crtc_clock_get(crtc, pipe_config);
else if (IS_VALLEYVIEW(dev_priv))
vlv_crtc_clock_get(crtc, pipe_config);
else
i9xx_crtc_clock_get(crtc, pipe_config);
/*
* Normally the dotclock is filled in by the encoder .get_config()
* but in case the pipe is enabled w/o any ports we need a sane
* default.
*/
pipe_config->base.adjusted_mode.crtc_clock =
pipe_config->port_clock / pipe_config->pixel_multiplier;
ret = true;
out:
intel_display_power_put(dev_priv, power_domain, wakeref);
return ret;
}
static void ironlake_init_pch_refclk(struct drm_i915_private *dev_priv)
{
struct intel_encoder *encoder;
int i;
u32 val, final;
bool has_lvds = false;
bool has_cpu_edp = false;
bool has_panel = false;
bool has_ck505 = false;
bool can_ssc = false;
bool using_ssc_source = false;
/* We need to take the global config into account */
for_each_intel_encoder(&dev_priv->drm, encoder) {
switch (encoder->type) {
case INTEL_OUTPUT_LVDS:
has_panel = true;
has_lvds = true;
break;
case INTEL_OUTPUT_EDP:
has_panel = true;
if (encoder->port == PORT_A)
has_cpu_edp = true;
break;
default:
break;
}
}
if (HAS_PCH_IBX(dev_priv)) {
has_ck505 = dev_priv->vbt.display_clock_mode;
can_ssc = has_ck505;
} else {
has_ck505 = false;
can_ssc = true;
}
/* Check if any DPLLs are using the SSC source */
for (i = 0; i < dev_priv->num_shared_dpll; i++) {
u32 temp = I915_READ(PCH_DPLL(i));
if (!(temp & DPLL_VCO_ENABLE))
continue;
if ((temp & PLL_REF_INPUT_MASK) ==
PLLB_REF_INPUT_SPREADSPECTRUMIN) {
using_ssc_source = true;
break;
}
}
DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d using_ssc_source %d\n",
has_panel, has_lvds, has_ck505, using_ssc_source);
/* Ironlake: try to setup display ref clock before DPLL
* enabling. This is only under driver's control after
* PCH B stepping, previous chipset stepping should be
* ignoring this setting.
*/
val = I915_READ(PCH_DREF_CONTROL);
/* As we must carefully and slowly disable/enable each source in turn,
* compute the final state we want first and check if we need to
* make any changes at all.
*/
final = val;
final &= ~DREF_NONSPREAD_SOURCE_MASK;
if (has_ck505)
final |= DREF_NONSPREAD_CK505_ENABLE;
else
final |= DREF_NONSPREAD_SOURCE_ENABLE;
final &= ~DREF_SSC_SOURCE_MASK;
final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
final &= ~DREF_SSC1_ENABLE;
if (has_panel) {
final |= DREF_SSC_SOURCE_ENABLE;
if (intel_panel_use_ssc(dev_priv) && can_ssc)
final |= DREF_SSC1_ENABLE;
if (has_cpu_edp) {
if (intel_panel_use_ssc(dev_priv) && can_ssc)
final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
else
final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
} else
final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
} else if (using_ssc_source) {
final |= DREF_SSC_SOURCE_ENABLE;
final |= DREF_SSC1_ENABLE;
}
if (final == val)
return;
/* Always enable nonspread source */
val &= ~DREF_NONSPREAD_SOURCE_MASK;
if (has_ck505)
val |= DREF_NONSPREAD_CK505_ENABLE;
else
val |= DREF_NONSPREAD_SOURCE_ENABLE;
if (has_panel) {
val &= ~DREF_SSC_SOURCE_MASK;
val |= DREF_SSC_SOURCE_ENABLE;
/* SSC must be turned on before enabling the CPU output */
if (intel_panel_use_ssc(dev_priv) && can_ssc) {
DRM_DEBUG_KMS("Using SSC on panel\n");
val |= DREF_SSC1_ENABLE;
} else
val &= ~DREF_SSC1_ENABLE;
/* Get SSC going before enabling the outputs */
I915_WRITE(PCH_DREF_CONTROL, val);
POSTING_READ(PCH_DREF_CONTROL);
udelay(200);
val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
/* Enable CPU source on CPU attached eDP */
if (has_cpu_edp) {
if (intel_panel_use_ssc(dev_priv) && can_ssc) {
DRM_DEBUG_KMS("Using SSC on eDP\n");
val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
} else
val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
} else
val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
I915_WRITE(PCH_DREF_CONTROL, val);
POSTING_READ(PCH_DREF_CONTROL);
udelay(200);
} else {
DRM_DEBUG_KMS("Disabling CPU source output\n");
val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
/* Turn off CPU output */
val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
I915_WRITE(PCH_DREF_CONTROL, val);
POSTING_READ(PCH_DREF_CONTROL);
udelay(200);
if (!using_ssc_source) {
DRM_DEBUG_KMS("Disabling SSC source\n");
/* Turn off the SSC source */
val &= ~DREF_SSC_SOURCE_MASK;
val |= DREF_SSC_SOURCE_DISABLE;
/* Turn off SSC1 */
val &= ~DREF_SSC1_ENABLE;
I915_WRITE(PCH_DREF_CONTROL, val);
POSTING_READ(PCH_DREF_CONTROL);
udelay(200);
}
}
BUG_ON(val != final);
}
static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
{
u32 tmp;
tmp = I915_READ(SOUTH_CHICKEN2);
tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
I915_WRITE(SOUTH_CHICKEN2, tmp);
if (wait_for_us(I915_READ(SOUTH_CHICKEN2) &
FDI_MPHY_IOSFSB_RESET_STATUS, 100))
DRM_ERROR("FDI mPHY reset assert timeout\n");
tmp = I915_READ(SOUTH_CHICKEN2);
tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
I915_WRITE(SOUTH_CHICKEN2, tmp);
if (wait_for_us((I915_READ(SOUTH_CHICKEN2) &
FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
DRM_ERROR("FDI mPHY reset de-assert timeout\n");
}
/* WaMPhyProgramming:hsw */
static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
{
u32 tmp;
tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
tmp &= ~(0xFF << 24);
tmp |= (0x12 << 24);
intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
tmp |= (1 << 11);
intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
tmp |= (1 << 11);
intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
tmp |= (1 << 24) | (1 << 21) | (1 << 18);
intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
tmp |= (1 << 24) | (1 << 21) | (1 << 18);
intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
tmp &= ~(7 << 13);
tmp |= (5 << 13);
intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
tmp &= ~(7 << 13);
tmp |= (5 << 13);
intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
tmp &= ~0xFF;
tmp |= 0x1C;
intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
tmp &= ~0xFF;
tmp |= 0x1C;
intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
tmp &= ~(0xFF << 16);
tmp |= (0x1C << 16);
intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
tmp &= ~(0xFF << 16);
tmp |= (0x1C << 16);
intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
tmp |= (1 << 27);
intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
tmp |= (1 << 27);
intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
tmp &= ~(0xF << 28);
tmp |= (4 << 28);
intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
tmp &= ~(0xF << 28);
tmp |= (4 << 28);
intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
}
/* Implements 3 different sequences from BSpec chapter "Display iCLK
* Programming" based on the parameters passed:
* - Sequence to enable CLKOUT_DP
* - Sequence to enable CLKOUT_DP without spread
* - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
*/
static void lpt_enable_clkout_dp(struct drm_i915_private *dev_priv,
bool with_spread, bool with_fdi)
{
u32 reg, tmp;
if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
with_spread = true;
if (WARN(HAS_PCH_LPT_LP(dev_priv) &&
with_fdi, "LP PCH doesn't have FDI\n"))
with_fdi = false;
mutex_lock(&dev_priv->sb_lock);
tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
tmp &= ~SBI_SSCCTL_DISABLE;
tmp |= SBI_SSCCTL_PATHALT;
intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
udelay(24);
if (with_spread) {
tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
tmp &= ~SBI_SSCCTL_PATHALT;
intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
if (with_fdi) {
lpt_reset_fdi_mphy(dev_priv);
lpt_program_fdi_mphy(dev_priv);
}
}
reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0;
tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
mutex_unlock(&dev_priv->sb_lock);
}
/* Sequence to disable CLKOUT_DP */
static void lpt_disable_clkout_dp(struct drm_i915_private *dev_priv)
{
u32 reg, tmp;
mutex_lock(&dev_priv->sb_lock);
reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0;
tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
if (!(tmp & SBI_SSCCTL_DISABLE)) {
if (!(tmp & SBI_SSCCTL_PATHALT)) {
tmp |= SBI_SSCCTL_PATHALT;
intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
udelay(32);
}
tmp |= SBI_SSCCTL_DISABLE;
intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
}
mutex_unlock(&dev_priv->sb_lock);
}
#define BEND_IDX(steps) ((50 + (steps)) / 5)
static const u16 sscdivintphase[] = {
[BEND_IDX( 50)] = 0x3B23,
[BEND_IDX( 45)] = 0x3B23,
[BEND_IDX( 40)] = 0x3C23,
[BEND_IDX( 35)] = 0x3C23,
[BEND_IDX( 30)] = 0x3D23,
[BEND_IDX( 25)] = 0x3D23,
[BEND_IDX( 20)] = 0x3E23,
[BEND_IDX( 15)] = 0x3E23,
[BEND_IDX( 10)] = 0x3F23,
[BEND_IDX( 5)] = 0x3F23,
[BEND_IDX( 0)] = 0x0025,
[BEND_IDX( -5)] = 0x0025,
[BEND_IDX(-10)] = 0x0125,
[BEND_IDX(-15)] = 0x0125,
[BEND_IDX(-20)] = 0x0225,
[BEND_IDX(-25)] = 0x0225,
[BEND_IDX(-30)] = 0x0325,
[BEND_IDX(-35)] = 0x0325,
[BEND_IDX(-40)] = 0x0425,
[BEND_IDX(-45)] = 0x0425,
[BEND_IDX(-50)] = 0x0525,
};
/*
* Bend CLKOUT_DP
* steps -50 to 50 inclusive, in steps of 5
* < 0 slow down the clock, > 0 speed up the clock, 0 == no bend (135MHz)
* change in clock period = -(steps / 10) * 5.787 ps
*/
static void lpt_bend_clkout_dp(struct drm_i915_private *dev_priv, int steps)
{
u32 tmp;
int idx = BEND_IDX(steps);
if (WARN_ON(steps % 5 != 0))
return;
if (WARN_ON(idx >= ARRAY_SIZE(sscdivintphase)))
return;
mutex_lock(&dev_priv->sb_lock);
if (steps % 10 != 0)
tmp = 0xAAAAAAAB;
else
tmp = 0x00000000;
intel_sbi_write(dev_priv, SBI_SSCDITHPHASE, tmp, SBI_ICLK);
tmp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE, SBI_ICLK);
tmp &= 0xffff0000;
tmp |= sscdivintphase[idx];
intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE, tmp, SBI_ICLK);
mutex_unlock(&dev_priv->sb_lock);
}
#undef BEND_IDX
static void lpt_init_pch_refclk(struct drm_i915_private *dev_priv)
{
struct intel_encoder *encoder;
bool has_vga = false;
for_each_intel_encoder(&dev_priv->drm, encoder) {
switch (encoder->type) {
case INTEL_OUTPUT_ANALOG:
has_vga = true;
break;
default:
break;
}
}
if (has_vga) {
lpt_bend_clkout_dp(dev_priv, 0);
lpt_enable_clkout_dp(dev_priv, true, true);
} else {
lpt_disable_clkout_dp(dev_priv);
}
}
/*
* Initialize reference clocks when the driver loads
*/
void intel_init_pch_refclk(struct drm_i915_private *dev_priv)
{
if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv))
ironlake_init_pch_refclk(dev_priv);
else if (HAS_PCH_LPT(dev_priv))
lpt_init_pch_refclk(dev_priv);
}
static void ironlake_set_pipeconf(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum pipe pipe = crtc->pipe;
u32 val;
val = 0;
switch (crtc_state->pipe_bpp) {
case 18:
val |= PIPECONF_6BPC;
break;
case 24:
val |= PIPECONF_8BPC;
break;
case 30:
val |= PIPECONF_10BPC;
break;
case 36:
val |= PIPECONF_12BPC;
break;
default:
/* Case prevented by intel_choose_pipe_bpp_dither. */
BUG();
}
if (crtc_state->dither)
val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
if (crtc_state->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
val |= PIPECONF_INTERLACED_ILK;
else
val |= PIPECONF_PROGRESSIVE;
if (crtc_state->limited_color_range)
val |= PIPECONF_COLOR_RANGE_SELECT;
val |= PIPECONF_GAMMA_MODE(crtc_state->gamma_mode);
I915_WRITE(PIPECONF(pipe), val);
POSTING_READ(PIPECONF(pipe));
}
static void haswell_set_pipeconf(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
u32 val = 0;
if (IS_HASWELL(dev_priv) && crtc_state->dither)
val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
if (crtc_state->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
val |= PIPECONF_INTERLACED_ILK;
else
val |= PIPECONF_PROGRESSIVE;
I915_WRITE(PIPECONF(cpu_transcoder), val);
POSTING_READ(PIPECONF(cpu_transcoder));
}
static void bdw_set_pipemisc(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
u32 val = 0;
switch (crtc_state->pipe_bpp) {
case 18:
val |= PIPEMISC_DITHER_6_BPC;
break;
case 24:
val |= PIPEMISC_DITHER_8_BPC;
break;
case 30:
val |= PIPEMISC_DITHER_10_BPC;
break;
case 36:
val |= PIPEMISC_DITHER_12_BPC;
break;
default:
MISSING_CASE(crtc_state->pipe_bpp);
break;
}
if (crtc_state->dither)
val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420 ||
crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444)
val |= PIPEMISC_OUTPUT_COLORSPACE_YUV;
if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
val |= PIPEMISC_YUV420_ENABLE |
PIPEMISC_YUV420_MODE_FULL_BLEND;
if (INTEL_GEN(dev_priv) >= 11 &&
(crtc_state->active_planes & ~(icl_hdr_plane_mask() |
BIT(PLANE_CURSOR))) == 0)
val |= PIPEMISC_HDR_MODE_PRECISION;
I915_WRITE(PIPEMISC(crtc->pipe), val);
}
int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
{
/*
* Account for spread spectrum to avoid
* oversubscribing the link. Max center spread
* is 2.5%; use 5% for safety's sake.
*/
u32 bps = target_clock * bpp * 21 / 20;
return DIV_ROUND_UP(bps, link_bw * 8);
}
static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
{
return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
}
static void ironlake_compute_dpll(struct intel_crtc *crtc,
struct intel_crtc_state *crtc_state,
struct dpll *reduced_clock)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
u32 dpll, fp, fp2;
int factor;
/* Enable autotuning of the PLL clock (if permissible) */
factor = 21;
if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
if ((intel_panel_use_ssc(dev_priv) &&
dev_priv->vbt.lvds_ssc_freq == 100000) ||
(HAS_PCH_IBX(dev_priv) &&
intel_is_dual_link_lvds(dev_priv)))
factor = 25;
} else if (crtc_state->sdvo_tv_clock) {
factor = 20;
}
fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
fp |= FP_CB_TUNE;
if (reduced_clock) {
fp2 = i9xx_dpll_compute_fp(reduced_clock);
if (reduced_clock->m < factor * reduced_clock->n)
fp2 |= FP_CB_TUNE;
} else {
fp2 = fp;
}
dpll = 0;
if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
dpll |= DPLLB_MODE_LVDS;
else
dpll |= DPLLB_MODE_DAC_SERIAL;
dpll |= (crtc_state->pixel_multiplier - 1)
<< PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
dpll |= DPLL_SDVO_HIGH_SPEED;
if (intel_crtc_has_dp_encoder(crtc_state))
dpll |= DPLL_SDVO_HIGH_SPEED;
/*
* The high speed IO clock is only really required for
* SDVO/HDMI/DP, but we also enable it for CRT to make it
* possible to share the DPLL between CRT and HDMI. Enabling
* the clock needlessly does no real harm, except use up a
* bit of power potentially.
*
* We'll limit this to IVB with 3 pipes, since it has only two
* DPLLs and so DPLL sharing is the only way to get three pipes
* driving PCH ports at the same time. On SNB we could do this,
* and potentially avoid enabling the second DPLL, but it's not
* clear if it''s a win or loss power wise. No point in doing
* this on ILK at all since it has a fixed DPLL<->pipe mapping.
*/
if (INTEL_INFO(dev_priv)->num_pipes == 3 &&
intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG))
dpll |= DPLL_SDVO_HIGH_SPEED;
/* compute bitmask from p1 value */
dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
/* also FPA1 */
dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
switch (crtc_state->dpll.p2) {
case 5:
dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
break;
case 7:
dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
break;
case 10:
dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
break;
case 14:
dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
break;
}
if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
intel_panel_use_ssc(dev_priv))
dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
else
dpll |= PLL_REF_INPUT_DREFCLK;
dpll |= DPLL_VCO_ENABLE;
crtc_state->dpll_hw_state.dpll = dpll;
crtc_state->dpll_hw_state.fp0 = fp;
crtc_state->dpll_hw_state.fp1 = fp2;
}
static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
const struct intel_limit *limit;
int refclk = 120000;
memset(&crtc_state->dpll_hw_state, 0,
sizeof(crtc_state->dpll_hw_state));
/* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
if (!crtc_state->has_pch_encoder)
return 0;
if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
if (intel_panel_use_ssc(dev_priv)) {
DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
dev_priv->vbt.lvds_ssc_freq);
refclk = dev_priv->vbt.lvds_ssc_freq;
}
if (intel_is_dual_link_lvds(dev_priv)) {
if (refclk == 100000)
limit = &intel_limits_ironlake_dual_lvds_100m;
else
limit = &intel_limits_ironlake_dual_lvds;
} else {
if (refclk == 100000)
limit = &intel_limits_ironlake_single_lvds_100m;
else
limit = &intel_limits_ironlake_single_lvds;
}
} else {
limit = &intel_limits_ironlake_dac;
}
if (!crtc_state->clock_set &&
!g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
refclk, NULL, &crtc_state->dpll)) {
DRM_ERROR("Couldn't find PLL settings for mode!\n");
return -EINVAL;
}
ironlake_compute_dpll(crtc, crtc_state, NULL);
if (!intel_get_shared_dpll(crtc_state, NULL)) {
DRM_DEBUG_KMS("failed to find PLL for pipe %c\n",
pipe_name(crtc->pipe));
return -EINVAL;
}
return 0;
}
static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
struct intel_link_m_n *m_n)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
enum pipe pipe = crtc->pipe;
m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
& ~TU_SIZE_MASK;
m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
& TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
}
static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
enum transcoder transcoder,
struct intel_link_m_n *m_n,
struct intel_link_m_n *m2_n2)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum pipe pipe = crtc->pipe;
if (INTEL_GEN(dev_priv) >= 5) {
m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
& ~TU_SIZE_MASK;
m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
& TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
if (m2_n2 && transcoder_has_m2_n2(dev_priv, transcoder)) {
m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
& ~TU_SIZE_MASK;
m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
& TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
}
} else {
m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
& ~TU_SIZE_MASK;
m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
& TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
}
}
void intel_dp_get_m_n(struct intel_crtc *crtc,
struct intel_crtc_state *pipe_config)
{
if (pipe_config->has_pch_encoder)
intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
else
intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
&pipe_config->dp_m_n,
&pipe_config->dp_m2_n2);
}
static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
struct intel_crtc_state *pipe_config)
{
intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
&pipe_config->fdi_m_n, NULL);
}
static void skylake_get_pfit_config(struct intel_crtc *crtc,
struct intel_crtc_state *pipe_config)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
u32 ps_ctrl = 0;
int id = -1;
int i;
/* find scaler attached to this pipe */
for (i = 0; i < crtc->num_scalers; i++) {
ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
id = i;
pipe_config->pch_pfit.enabled = true;
pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
scaler_state->scalers[i].in_use = true;
break;
}
}
scaler_state->scaler_id = id;
if (id >= 0) {
scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
} else {
scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
}
}
static void
skylake_get_initial_plane_config(struct intel_crtc *crtc,
struct intel_initial_plane_config *plane_config)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct intel_plane *plane = to_intel_plane(crtc->base.primary);
enum plane_id plane_id = plane->id;
enum pipe pipe;
u32 val, base, offset, stride_mult, tiling, alpha;
int fourcc, pixel_format;
unsigned int aligned_height;
struct drm_framebuffer *fb;
struct intel_framebuffer *intel_fb;
if (!plane->get_hw_state(plane, &pipe))
return;
WARN_ON(pipe != crtc->pipe);
intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
if (!intel_fb) {
DRM_DEBUG_KMS("failed to alloc fb\n");
return;
}
fb = &intel_fb->base;
fb->dev = dev;
val = I915_READ(PLANE_CTL(pipe, plane_id));
if (INTEL_GEN(dev_priv) >= 11)
pixel_format = val & ICL_PLANE_CTL_FORMAT_MASK;
else
pixel_format = val & PLANE_CTL_FORMAT_MASK;
if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) {
alpha = I915_READ(PLANE_COLOR_CTL(pipe, plane_id));
alpha &= PLANE_COLOR_ALPHA_MASK;
} else {
alpha = val & PLANE_CTL_ALPHA_MASK;
}
fourcc = skl_format_to_fourcc(pixel_format,
val & PLANE_CTL_ORDER_RGBX, alpha);
fb->format = drm_format_info(fourcc);
tiling = val & PLANE_CTL_TILED_MASK;
switch (tiling) {
case PLANE_CTL_TILED_LINEAR:
fb->modifier = DRM_FORMAT_MOD_LINEAR;
break;
case PLANE_CTL_TILED_X:
plane_config->tiling = I915_TILING_X;
fb->modifier = I915_FORMAT_MOD_X_TILED;
break;
case PLANE_CTL_TILED_Y:
plane_config->tiling = I915_TILING_Y;
if (val & PLANE_CTL_RENDER_DECOMPRESSION_ENABLE)
fb->modifier = I915_FORMAT_MOD_Y_TILED_CCS;
else
fb->modifier = I915_FORMAT_MOD_Y_TILED;
break;
case PLANE_CTL_TILED_YF:
if (val & PLANE_CTL_RENDER_DECOMPRESSION_ENABLE)
fb->modifier = I915_FORMAT_MOD_Yf_TILED_CCS;
else
fb->modifier = I915_FORMAT_MOD_Yf_TILED;
break;
default:
MISSING_CASE(tiling);
goto error;
}
/*
* DRM_MODE_ROTATE_ is counter clockwise to stay compatible with Xrandr
* while i915 HW rotation is clockwise, thats why this swapping.
*/
switch (val & PLANE_CTL_ROTATE_MASK) {
case PLANE_CTL_ROTATE_0:
plane_config->rotation = DRM_MODE_ROTATE_0;
break;
case PLANE_CTL_ROTATE_90:
plane_config->rotation = DRM_MODE_ROTATE_270;
break;
case PLANE_CTL_ROTATE_180:
plane_config->rotation = DRM_MODE_ROTATE_180;
break;
case PLANE_CTL_ROTATE_270:
plane_config->rotation = DRM_MODE_ROTATE_90;
break;
}
if (INTEL_GEN(dev_priv) >= 10 &&
val & PLANE_CTL_FLIP_HORIZONTAL)
plane_config->rotation |= DRM_MODE_REFLECT_X;
base = I915_READ(PLANE_SURF(pipe, plane_id)) & 0xfffff000;
plane_config->base = base;
offset = I915_READ(PLANE_OFFSET(pipe, plane_id));
val = I915_READ(PLANE_SIZE(pipe, plane_id));
fb->height = ((val >> 16) & 0xfff) + 1;
fb->width = ((val >> 0) & 0x1fff) + 1;
val = I915_READ(PLANE_STRIDE(pipe, plane_id));
stride_mult = skl_plane_stride_mult(fb, 0, DRM_MODE_ROTATE_0);
fb->pitches[0] = (val & 0x3ff) * stride_mult;
aligned_height = intel_fb_align_height(fb, 0, fb->height);
plane_config->size = fb->pitches[0] * aligned_height;
DRM_DEBUG_KMS("%s/%s with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
crtc->base.name, plane->base.name, fb->width, fb->height,
fb->format->cpp[0] * 8, base, fb->pitches[0],
plane_config->size);
plane_config->fb = intel_fb;
return;
error:
kfree(intel_fb);
}
static void ironlake_get_pfit_config(struct intel_crtc *crtc,
struct intel_crtc_state *pipe_config)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
u32 tmp;
tmp = I915_READ(PF_CTL(crtc->pipe));
if (tmp & PF_ENABLE) {
pipe_config->pch_pfit.enabled = true;
pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
/* We currently do not free assignements of panel fitters on
* ivb/hsw (since we don't use the higher upscaling modes which
* differentiates them) so just WARN about this case for now. */
if (IS_GEN(dev_priv, 7)) {
WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
PF_PIPE_SEL_IVB(crtc->pipe));
}
}
}
static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
struct intel_crtc_state *pipe_config)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
enum intel_display_power_domain power_domain;
intel_wakeref_t wakeref;
u32 tmp;
bool ret;
power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
if (!wakeref)
return false;
pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
pipe_config->shared_dpll = NULL;
ret = false;
tmp = I915_READ(PIPECONF(crtc->pipe));
if (!(tmp & PIPECONF_ENABLE))
goto out;
switch (tmp & PIPECONF_BPC_MASK) {
case PIPECONF_6BPC:
pipe_config->pipe_bpp = 18;
break;
case PIPECONF_8BPC:
pipe_config->pipe_bpp = 24;
break;
case PIPECONF_10BPC:
pipe_config->pipe_bpp = 30;
break;
case PIPECONF_12BPC:
pipe_config->pipe_bpp = 36;
break;
default:
break;
}
if (tmp & PIPECONF_COLOR_RANGE_SELECT)
pipe_config->limited_color_range = true;
pipe_config->gamma_mode = (tmp & PIPECONF_GAMMA_MODE_MASK_ILK) >>
PIPECONF_GAMMA_MODE_SHIFT;
pipe_config->csc_mode = I915_READ(PIPE_CSC_MODE(crtc->pipe));
i9xx_get_pipe_color_config(pipe_config);
if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
struct intel_shared_dpll *pll;
enum intel_dpll_id pll_id;
pipe_config->has_pch_encoder = true;
tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
FDI_DP_PORT_WIDTH_SHIFT) + 1;
ironlake_get_fdi_m_n_config(crtc, pipe_config);
if (HAS_PCH_IBX(dev_priv)) {
/*
* The pipe->pch transcoder and pch transcoder->pll
* mapping is fixed.
*/
pll_id = (enum intel_dpll_id) crtc->pipe;
} else {
tmp = I915_READ(PCH_DPLL_SEL);
if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
pll_id = DPLL_ID_PCH_PLL_B;
else
pll_id= DPLL_ID_PCH_PLL_A;
}
pipe_config->shared_dpll =
intel_get_shared_dpll_by_id(dev_priv, pll_id);
pll = pipe_config->shared_dpll;
WARN_ON(!pll->info->funcs->get_hw_state(dev_priv, pll,
&pipe_config->dpll_hw_state));
tmp = pipe_config->dpll_hw_state.dpll;
pipe_config->pixel_multiplier =
((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
>> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
ironlake_pch_clock_get(crtc, pipe_config);
} else {
pipe_config->pixel_multiplier = 1;
}
intel_get_pipe_timings(crtc, pipe_config);
intel_get_pipe_src_size(crtc, pipe_config);
ironlake_get_pfit_config(crtc, pipe_config);
ret = true;
out:
intel_display_power_put(dev_priv, power_domain, wakeref);
return ret;
}
static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
{
struct drm_device *dev = &dev_priv->drm;
struct intel_crtc *crtc;
for_each_intel_crtc(dev, crtc)
I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
pipe_name(crtc->pipe));
I915_STATE_WARN(I915_READ(HSW_PWR_WELL_CTL2),
"Display power well on\n");
I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
I915_STATE_WARN(I915_READ(WRPLL_CTL(0)) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
I915_STATE_WARN(I915_READ(WRPLL_CTL(1)) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
I915_STATE_WARN(I915_READ(PP_STATUS(0)) & PP_ON, "Panel power on\n");
I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
"CPU PWM1 enabled\n");
if (IS_HASWELL(dev_priv))
I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
"CPU PWM2 enabled\n");
I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
"PCH PWM1 enabled\n");
I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
"Utility pin enabled\n");
I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
/*
* In theory we can still leave IRQs enabled, as long as only the HPD
* interrupts remain enabled. We used to check for that, but since it's
* gen-specific and since we only disable LCPLL after we fully disable
* the interrupts, the check below should be enough.
*/
I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
}
static u32 hsw_read_dcomp(struct drm_i915_private *dev_priv)
{
if (IS_HASWELL(dev_priv))
return I915_READ(D_COMP_HSW);
else
return I915_READ(D_COMP_BDW);
}
static void hsw_write_dcomp(struct drm_i915_private *dev_priv, u32 val)
{
if (IS_HASWELL(dev_priv)) {
if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
val))
DRM_DEBUG_KMS("Failed to write to D_COMP\n");
} else {
I915_WRITE(D_COMP_BDW, val);
POSTING_READ(D_COMP_BDW);
}
}
/*
* This function implements pieces of two sequences from BSpec:
* - Sequence for display software to disable LCPLL
* - Sequence for display software to allow package C8+
* The steps implemented here are just the steps that actually touch the LCPLL
* register. Callers should take care of disabling all the display engine
* functions, doing the mode unset, fixing interrupts, etc.
*/
static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
bool switch_to_fclk, bool allow_power_down)
{
u32 val;
assert_can_disable_lcpll(dev_priv);
val = I915_READ(LCPLL_CTL);
if (switch_to_fclk) {
val |= LCPLL_CD_SOURCE_FCLK;
I915_WRITE(LCPLL_CTL, val);
if (wait_for_us(I915_READ(LCPLL_CTL) &
LCPLL_CD_SOURCE_FCLK_DONE, 1))
DRM_ERROR("Switching to FCLK failed\n");
val = I915_READ(LCPLL_CTL);
}
val |= LCPLL_PLL_DISABLE;
I915_WRITE(LCPLL_CTL, val);
POSTING_READ(LCPLL_CTL);
if (intel_wait_for_register(&dev_priv->uncore,
LCPLL_CTL, LCPLL_PLL_LOCK, 0, 1))
DRM_ERROR("LCPLL still locked\n");
val = hsw_read_dcomp(dev_priv);
val |= D_COMP_COMP_DISABLE;
hsw_write_dcomp(dev_priv, val);
ndelay(100);
if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
1))
DRM_ERROR("D_COMP RCOMP still in progress\n");
if (allow_power_down) {
val = I915_READ(LCPLL_CTL);
val |= LCPLL_POWER_DOWN_ALLOW;
I915_WRITE(LCPLL_CTL, val);
POSTING_READ(LCPLL_CTL);
}
}
/*
* Fully restores LCPLL, disallowing power down and switching back to LCPLL
* source.
*/
static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
{
u32 val;
val = I915_READ(LCPLL_CTL);
if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
return;
/*
* Make sure we're not on PC8 state before disabling PC8, otherwise
* we'll hang the machine. To prevent PC8 state, just enable force_wake.
*/
intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
if (val & LCPLL_POWER_DOWN_ALLOW) {
val &= ~LCPLL_POWER_DOWN_ALLOW;
I915_WRITE(LCPLL_CTL, val);
POSTING_READ(LCPLL_CTL);
}
val = hsw_read_dcomp(dev_priv);
val |= D_COMP_COMP_FORCE;
val &= ~D_COMP_COMP_DISABLE;
hsw_write_dcomp(dev_priv, val);
val = I915_READ(LCPLL_CTL);
val &= ~LCPLL_PLL_DISABLE;
I915_WRITE(LCPLL_CTL, val);
if (intel_wait_for_register(&dev_priv->uncore,
LCPLL_CTL, LCPLL_PLL_LOCK, LCPLL_PLL_LOCK,
5))
DRM_ERROR("LCPLL not locked yet\n");
if (val & LCPLL_CD_SOURCE_FCLK) {
val = I915_READ(LCPLL_CTL);
val &= ~LCPLL_CD_SOURCE_FCLK;
I915_WRITE(LCPLL_CTL, val);
if (wait_for_us((I915_READ(LCPLL_CTL) &
LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
DRM_ERROR("Switching back to LCPLL failed\n");
}
intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
intel_update_cdclk(dev_priv);
intel_dump_cdclk_state(&dev_priv->cdclk.hw, "Current CDCLK");
}
/*
* Package states C8 and deeper are really deep PC states that can only be
* reached when all the devices on the system allow it, so even if the graphics
* device allows PC8+, it doesn't mean the system will actually get to these
* states. Our driver only allows PC8+ when going into runtime PM.
*
* The requirements for PC8+ are that all the outputs are disabled, the power
* well is disabled and most interrupts are disabled, and these are also
* requirements for runtime PM. When these conditions are met, we manually do
* the other conditions: disable the interrupts, clocks and switch LCPLL refclk
* to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
* hang the machine.
*
* When we really reach PC8 or deeper states (not just when we allow it) we lose
* the state of some registers, so when we come back from PC8+ we need to
* restore this state. We don't get into PC8+ if we're not in RC6, so we don't
* need to take care of the registers kept by RC6. Notice that this happens even
* if we don't put the device in PCI D3 state (which is what currently happens
* because of the runtime PM support).
*
* For more, read "Display Sequences for Package C8" on the hardware
* documentation.
*/
void hsw_enable_pc8(struct drm_i915_private *dev_priv)
{
u32 val;
DRM_DEBUG_KMS("Enabling package C8+\n");
if (HAS_PCH_LPT_LP(dev_priv)) {
val = I915_READ(SOUTH_DSPCLK_GATE_D);
val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
}
lpt_disable_clkout_dp(dev_priv);
hsw_disable_lcpll(dev_priv, true, true);
}
void hsw_disable_pc8(struct drm_i915_private *dev_priv)
{
u32 val;
DRM_DEBUG_KMS("Disabling package C8+\n");
hsw_restore_lcpll(dev_priv);
lpt_init_pch_refclk(dev_priv);
if (HAS_PCH_LPT_LP(dev_priv)) {
val = I915_READ(SOUTH_DSPCLK_GATE_D);
val |= PCH_LP_PARTITION_LEVEL_DISABLE;
I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
}
}
static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
struct intel_atomic_state *state =
to_intel_atomic_state(crtc_state->base.state);
if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI) ||
INTEL_GEN(dev_priv) >= 11) {
struct intel_encoder *encoder =
intel_get_crtc_new_encoder(state, crtc_state);
if (!intel_get_shared_dpll(crtc_state, encoder)) {
DRM_DEBUG_KMS("failed to find PLL for pipe %c\n",
pipe_name(crtc->pipe));
return -EINVAL;
}
}
return 0;
}
static void cannonlake_get_ddi_pll(struct drm_i915_private *dev_priv,
enum port port,
struct intel_crtc_state *pipe_config)
{
enum intel_dpll_id id;
u32 temp;
temp = I915_READ(DPCLKA_CFGCR0) & DPCLKA_CFGCR0_DDI_CLK_SEL_MASK(port);
id = temp >> DPCLKA_CFGCR0_DDI_CLK_SEL_SHIFT(port);
if (WARN_ON(id < SKL_DPLL0 || id > SKL_DPLL2))
return;
pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
}
static void icelake_get_ddi_pll(struct drm_i915_private *dev_priv,
enum port port,
struct intel_crtc_state *pipe_config)
{
enum intel_dpll_id id;
u32 temp;
/* TODO: TBT pll not implemented. */
if (intel_port_is_combophy(dev_priv, port)) {
temp = I915_READ(DPCLKA_CFGCR0_ICL) &
DPCLKA_CFGCR0_DDI_CLK_SEL_MASK(port);
id = temp >> DPCLKA_CFGCR0_DDI_CLK_SEL_SHIFT(port);
} else if (intel_port_is_tc(dev_priv, port)) {
id = icl_tc_port_to_pll_id(intel_port_to_tc(dev_priv, port));
} else {
WARN(1, "Invalid port %x\n", port);
return;
}
pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
}
static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
enum port port,
struct intel_crtc_state *pipe_config)
{
enum intel_dpll_id id;
switch (port) {
case PORT_A:
id = DPLL_ID_SKL_DPLL0;
break;
case PORT_B:
id = DPLL_ID_SKL_DPLL1;
break;
case PORT_C:
id = DPLL_ID_SKL_DPLL2;
break;
default:
DRM_ERROR("Incorrect port type\n");
return;
}
pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
}
static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
enum port port,
struct intel_crtc_state *pipe_config)
{
enum intel_dpll_id id;
u32 temp;
temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
id = temp >> (port * 3 + 1);
if (WARN_ON(id < SKL_DPLL0 || id > SKL_DPLL3))
return;
pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
}
static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
enum port port,
struct intel_crtc_state *pipe_config)
{
enum intel_dpll_id id;
u32 ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
switch (ddi_pll_sel) {
case PORT_CLK_SEL_WRPLL1:
id = DPLL_ID_WRPLL1;
break;
case PORT_CLK_SEL_WRPLL2:
id = DPLL_ID_WRPLL2;
break;
case PORT_CLK_SEL_SPLL:
id = DPLL_ID_SPLL;
break;
case PORT_CLK_SEL_LCPLL_810:
id = DPLL_ID_LCPLL_810;
break;
case PORT_CLK_SEL_LCPLL_1350:
id = DPLL_ID_LCPLL_1350;
break;
case PORT_CLK_SEL_LCPLL_2700:
id = DPLL_ID_LCPLL_2700;
break;
default:
MISSING_CASE(ddi_pll_sel);
/* fall through */
case PORT_CLK_SEL_NONE:
return;
}
pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
}
static bool hsw_get_transcoder_state(struct intel_crtc *crtc,
struct intel_crtc_state *pipe_config,
u64 *power_domain_mask,
intel_wakeref_t *wakerefs)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
enum intel_display_power_domain power_domain;
unsigned long panel_transcoder_mask = 0;
unsigned long enabled_panel_transcoders = 0;
enum transcoder panel_transcoder;
intel_wakeref_t wf;
u32 tmp;
if (INTEL_GEN(dev_priv) >= 11)
panel_transcoder_mask |=
BIT(TRANSCODER_DSI_0) | BIT(TRANSCODER_DSI_1);
if (HAS_TRANSCODER_EDP(dev_priv))
panel_transcoder_mask |= BIT(TRANSCODER_EDP);
/*
* The pipe->transcoder mapping is fixed with the exception of the eDP
* and DSI transcoders handled below.
*/
pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
/*
* XXX: Do intel_display_power_get_if_enabled before reading this (for
* consistency and less surprising code; it's in always on power).
*/
for_each_set_bit(panel_transcoder,
&panel_transcoder_mask,
ARRAY_SIZE(INTEL_INFO(dev_priv)->trans_offsets)) {
enum pipe trans_pipe;
tmp = I915_READ(TRANS_DDI_FUNC_CTL(panel_transcoder));
if (!(tmp & TRANS_DDI_FUNC_ENABLE))
continue;
/*
* Log all enabled ones, only use the first one.
*
* FIXME: This won't work for two separate DSI displays.
*/
enabled_panel_transcoders |= BIT(panel_transcoder);
if (enabled_panel_transcoders != BIT(panel_transcoder))
continue;
switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
default:
WARN(1, "unknown pipe linked to transcoder %s\n",
transcoder_name(panel_transcoder));
/* fall through */
case TRANS_DDI_EDP_INPUT_A_ONOFF:
case TRANS_DDI_EDP_INPUT_A_ON:
trans_pipe = PIPE_A;
break;
case TRANS_DDI_EDP_INPUT_B_ONOFF:
trans_pipe = PIPE_B;
break;
case TRANS_DDI_EDP_INPUT_C_ONOFF:
trans_pipe = PIPE_C;
break;
}
if (trans_pipe == crtc->pipe)
pipe_config->cpu_transcoder = panel_transcoder;
}
/*
* Valid combos: none, eDP, DSI0, DSI1, DSI0+DSI1
*/
WARN_ON((enabled_panel_transcoders & BIT(TRANSCODER_EDP)) &&
enabled_panel_transcoders != BIT(TRANSCODER_EDP));
power_domain = POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder);
WARN_ON(*power_domain_mask & BIT_ULL(power_domain));
wf = intel_display_power_get_if_enabled(dev_priv, power_domain);
if (!wf)
return false;
wakerefs[power_domain] = wf;
*power_domain_mask |= BIT_ULL(power_domain);
tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
return tmp & PIPECONF_ENABLE;
}
static bool bxt_get_dsi_transcoder_state(struct intel_crtc *crtc,
struct intel_crtc_state *pipe_config,
u64 *power_domain_mask,
intel_wakeref_t *wakerefs)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
enum intel_display_power_domain power_domain;
enum transcoder cpu_transcoder;
intel_wakeref_t wf;
enum port port;
u32 tmp;
for_each_port_masked(port, BIT(PORT_A) | BIT(PORT_C)) {
if (port == PORT_A)
cpu_transcoder = TRANSCODER_DSI_A;
else
cpu_transcoder = TRANSCODER_DSI_C;
power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
WARN_ON(*power_domain_mask & BIT_ULL(power_domain));
wf = intel_display_power_get_if_enabled(dev_priv, power_domain);
if (!wf)
continue;
wakerefs[power_domain] = wf;
*power_domain_mask |= BIT_ULL(power_domain);
/*
* The PLL needs to be enabled with a valid divider
* configuration, otherwise accessing DSI registers will hang
* the machine. See BSpec North Display Engine
* registers/MIPI[BXT]. We can break out here early, since we
* need the same DSI PLL to be enabled for both DSI ports.
*/
if (!bxt_dsi_pll_is_enabled(dev_priv))
break;
/* XXX: this works for video mode only */
tmp = I915_READ(BXT_MIPI_PORT_CTRL(port));
if (!(tmp & DPI_ENABLE))
continue;
tmp = I915_READ(MIPI_CTRL(port));
if ((tmp & BXT_PIPE_SELECT_MASK) != BXT_PIPE_SELECT(crtc->pipe))
continue;
pipe_config->cpu_transcoder = cpu_transcoder;
break;
}
return transcoder_is_dsi(pipe_config->cpu_transcoder);
}
static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
struct intel_crtc_state *pipe_config)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
struct intel_shared_dpll *pll;
enum port port;
u32 tmp;
tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
if (INTEL_GEN(dev_priv) >= 11)
icelake_get_ddi_pll(dev_priv, port, pipe_config);
else if (IS_CANNONLAKE(dev_priv))
cannonlake_get_ddi_pll(dev_priv, port, pipe_config);
else if (IS_GEN9_BC(dev_priv))
skylake_get_ddi_pll(dev_priv, port, pipe_config);
else if (IS_GEN9_LP(dev_priv))
bxt_get_ddi_pll(dev_priv, port, pipe_config);
else
haswell_get_ddi_pll(dev_priv, port, pipe_config);
pll = pipe_config->shared_dpll;
if (pll) {
WARN_ON(!pll->info->funcs->get_hw_state(dev_priv, pll,
&pipe_config->dpll_hw_state));
}
/*
* Haswell has only FDI/PCH transcoder A. It is which is connected to
* DDI E. So just check whether this pipe is wired to DDI E and whether
* the PCH transcoder is on.
*/
if (INTEL_GEN(dev_priv) < 9 &&
(port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
pipe_config->has_pch_encoder = true;
tmp = I915_READ(FDI_RX_CTL(PIPE_A));
pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
FDI_DP_PORT_WIDTH_SHIFT) + 1;
ironlake_get_fdi_m_n_config(crtc, pipe_config);
}
}
static bool haswell_get_pipe_config(struct intel_crtc *crtc,
struct intel_crtc_state *pipe_config)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
intel_wakeref_t wakerefs[POWER_DOMAIN_NUM], wf;
enum intel_display_power_domain power_domain;
u64 power_domain_mask;
bool active;
intel_crtc_init_scalers(crtc, pipe_config);
power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
wf = intel_display_power_get_if_enabled(dev_priv, power_domain);
if (!wf)
return false;
wakerefs[power_domain] = wf;
power_domain_mask = BIT_ULL(power_domain);
pipe_config->shared_dpll = NULL;
active = hsw_get_transcoder_state(crtc, pipe_config,
&power_domain_mask, wakerefs);
if (IS_GEN9_LP(dev_priv) &&
bxt_get_dsi_transcoder_state(crtc, pipe_config,
&power_domain_mask, wakerefs)) {
WARN_ON(active);
active = true;
}
if (!active)
goto out;
if (!transcoder_is_dsi(pipe_config->cpu_transcoder) ||
INTEL_GEN(dev_priv) >= 11) {
haswell_get_ddi_port_state(crtc, pipe_config);
intel_get_pipe_timings(crtc, pipe_config);
}
intel_get_pipe_src_size(crtc, pipe_config);
intel_get_crtc_ycbcr_config(crtc, pipe_config);
pipe_config->gamma_mode = I915_READ(GAMMA_MODE(crtc->pipe));
pipe_config->csc_mode = I915_READ(PIPE_CSC_MODE(crtc->pipe));
if (INTEL_GEN(dev_priv) >= 9) {
u32 tmp = I915_READ(SKL_BOTTOM_COLOR(crtc->pipe));
if (tmp & SKL_BOTTOM_COLOR_GAMMA_ENABLE)
pipe_config->gamma_enable = true;
if (tmp & SKL_BOTTOM_COLOR_CSC_ENABLE)
pipe_config->csc_enable = true;
} else {
i9xx_get_pipe_color_config(pipe_config);
}
power_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
WARN_ON(power_domain_mask & BIT_ULL(power_domain));
wf = intel_display_power_get_if_enabled(dev_priv, power_domain);
if (wf) {
wakerefs[power_domain] = wf;
power_domain_mask |= BIT_ULL(power_domain);
if (INTEL_GEN(dev_priv) >= 9)
skylake_get_pfit_config(crtc, pipe_config);
else
ironlake_get_pfit_config(crtc, pipe_config);
}
if (hsw_crtc_supports_ips(crtc)) {
if (IS_HASWELL(dev_priv))
pipe_config->ips_enabled = I915_READ(IPS_CTL) & IPS_ENABLE;
else {
/*
* We cannot readout IPS state on broadwell, set to
* true so we can set it to a defined state on first
* commit.
*/
pipe_config->ips_enabled = true;
}
}
if (pipe_config->cpu_transcoder != TRANSCODER_EDP &&
!transcoder_is_dsi(pipe_config->cpu_transcoder)) {
pipe_config->pixel_multiplier =
I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
} else {
pipe_config->pixel_multiplier = 1;
}
out:
for_each_power_domain(power_domain, power_domain_mask)
intel_display_power_put(dev_priv,
power_domain, wakerefs[power_domain]);
return active;
}
static u32 intel_cursor_base(const struct intel_plane_state *plane_state)
{
struct drm_i915_private *dev_priv =
to_i915(plane_state->base.plane->dev);
const struct drm_framebuffer *fb = plane_state->base.fb;
const struct drm_i915_gem_object *obj = intel_fb_obj(fb);
u32 base;
if (INTEL_INFO(dev_priv)->display.cursor_needs_physical)
base = obj->phys_handle->busaddr;
else
base = intel_plane_ggtt_offset(plane_state);
base += plane_state->color_plane[0].offset;
/* ILK+ do this automagically */
if (HAS_GMCH(dev_priv) &&
plane_state->base.rotation & DRM_MODE_ROTATE_180)
base += (plane_state->base.crtc_h *
plane_state->base.crtc_w - 1) * fb->format->cpp[0];
return base;
}
static u32 intel_cursor_position(const struct intel_plane_state *plane_state)
{
int x = plane_state->base.crtc_x;
int y = plane_state->base.crtc_y;
u32 pos = 0;
if (x < 0) {
pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
x = -x;
}
pos |= x << CURSOR_X_SHIFT;
if (y < 0) {
pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
y = -y;
}
pos |= y << CURSOR_Y_SHIFT;
return pos;
}
static bool intel_cursor_size_ok(const struct intel_plane_state *plane_state)
{
const struct drm_mode_config *config =
&plane_state->base.plane->dev->mode_config;
int width = plane_state->base.crtc_w;
int height = plane_state->base.crtc_h;
return width > 0 && width <= config->cursor_width &&
height > 0 && height <= config->cursor_height;
}
static int intel_cursor_check_surface(struct intel_plane_state *plane_state)
{
const struct drm_framebuffer *fb = plane_state->base.fb;
unsigned int rotation = plane_state->base.rotation;
int src_x, src_y;
u32 offset;
int ret;
intel_fill_fb_ggtt_view(&plane_state->view, fb, rotation);
plane_state->color_plane[0].stride = intel_fb_pitch(fb, 0, rotation);
ret = intel_plane_check_stride(plane_state);
if (ret)
return ret;
src_x = plane_state->base.src_x >> 16;
src_y = plane_state->base.src_y >> 16;
intel_add_fb_offsets(&src_x, &src_y, plane_state, 0);
offset = intel_plane_compute_aligned_offset(&src_x, &src_y,
plane_state, 0);
if (src_x != 0 || src_y != 0) {
DRM_DEBUG_KMS("Arbitrary cursor panning not supported\n");
return -EINVAL;
}
plane_state->color_plane[0].offset = offset;
return 0;
}
static int intel_check_cursor(struct intel_crtc_state *crtc_state,
struct intel_plane_state *plane_state)
{
const struct drm_framebuffer *fb = plane_state->base.fb;
int ret;
if (fb && fb->modifier != DRM_FORMAT_MOD_LINEAR) {
DRM_DEBUG_KMS("cursor cannot be tiled\n");
return -EINVAL;
}
ret = drm_atomic_helper_check_plane_state(&plane_state->base,
&crtc_state->base,
DRM_PLANE_HELPER_NO_SCALING,
DRM_PLANE_HELPER_NO_SCALING,
true, true);
if (ret)
return ret;
if (!plane_state->base.visible)
return 0;
ret = intel_plane_check_src_coordinates(plane_state);
if (ret)
return ret;
ret = intel_cursor_check_surface(plane_state);
if (ret)
return ret;
return 0;
}
static unsigned int
i845_cursor_max_stride(struct intel_plane *plane,
u32 pixel_format, u64 modifier,
unsigned int rotation)
{
return 2048;
}
static u32 i845_cursor_ctl_crtc(const struct intel_crtc_state *crtc_state)
{
u32 cntl = 0;
if (crtc_state->gamma_enable)
cntl |= CURSOR_GAMMA_ENABLE;
return cntl;
}
static u32 i845_cursor_ctl(const struct intel_crtc_state *crtc_state,
const struct intel_plane_state *plane_state)
{
return CURSOR_ENABLE |
CURSOR_FORMAT_ARGB |
CURSOR_STRIDE(plane_state->color_plane[0].stride);
}
static bool i845_cursor_size_ok(const struct intel_plane_state *plane_state)
{
int width = plane_state->base.crtc_w;
/*
* 845g/865g are only limited by the width of their cursors,
* the height is arbitrary up to the precision of the register.
*/
return intel_cursor_size_ok(plane_state) && IS_ALIGNED(width, 64);
}
static int i845_check_cursor(struct intel_crtc_state *crtc_state,
struct intel_plane_state *plane_state)
{
const struct drm_framebuffer *fb = plane_state->base.fb;
int ret;
ret = intel_check_cursor(crtc_state, plane_state);
if (ret)
return ret;
/* if we want to turn off the cursor ignore width and height */
if (!fb)
return 0;
/* Check for which cursor types we support */
if (!i845_cursor_size_ok(plane_state)) {
DRM_DEBUG("Cursor dimension %dx%d not supported\n",
plane_state->base.crtc_w,
plane_state->base.crtc_h);
return -EINVAL;
}
WARN_ON(plane_state->base.visible &&
plane_state->color_plane[0].stride != fb->pitches[0]);
switch (fb->pitches[0]) {
case 256:
case 512:
case 1024:
case 2048:
break;
default:
DRM_DEBUG_KMS("Invalid cursor stride (%u)\n",
fb->pitches[0]);
return -EINVAL;
}
plane_state->ctl = i845_cursor_ctl(crtc_state, plane_state);
return 0;
}
static void i845_update_cursor(struct intel_plane *plane,
const struct intel_crtc_state *crtc_state,
const struct intel_plane_state *plane_state)
{
struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
u32 cntl = 0, base = 0, pos = 0, size = 0;
unsigned long irqflags;
if (plane_state && plane_state->base.visible) {
unsigned int width = plane_state->base.crtc_w;
unsigned int height = plane_state->base.crtc_h;
cntl = plane_state->ctl |
i845_cursor_ctl_crtc(crtc_state);
size = (height << 12) | width;
base = intel_cursor_base(plane_state);
pos = intel_cursor_position(plane_state);
}
spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
/* On these chipsets we can only modify the base/size/stride
* whilst the cursor is disabled.
*/
if (plane->cursor.base != base ||
plane->cursor.size != size ||
plane->cursor.cntl != cntl) {
I915_WRITE_FW(CURCNTR(PIPE_A), 0);
I915_WRITE_FW(CURBASE(PIPE_A), base);
I915_WRITE_FW(CURSIZE, size);
I915_WRITE_FW(CURPOS(PIPE_A), pos);
I915_WRITE_FW(CURCNTR(PIPE_A), cntl);
plane->cursor.base = base;
plane->cursor.size = size;
plane->cursor.cntl = cntl;
} else {
I915_WRITE_FW(CURPOS(PIPE_A), pos);
}
spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
}
static void i845_disable_cursor(struct intel_plane *plane,
const struct intel_crtc_state *crtc_state)
{
i845_update_cursor(plane, crtc_state, NULL);
}
static bool i845_cursor_get_hw_state(struct intel_plane *plane,
enum pipe *pipe)
{
struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
enum intel_display_power_domain power_domain;
intel_wakeref_t wakeref;
bool ret;
power_domain = POWER_DOMAIN_PIPE(PIPE_A);
wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
if (!wakeref)
return false;
ret = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
*pipe = PIPE_A;
intel_display_power_put(dev_priv, power_domain, wakeref);
return ret;
}
static unsigned int
i9xx_cursor_max_stride(struct intel_plane *plane,
u32 pixel_format, u64 modifier,
unsigned int rotation)
{
return plane->base.dev->mode_config.cursor_width * 4;
}
static u32 i9xx_cursor_ctl_crtc(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
u32 cntl = 0;
if (INTEL_GEN(dev_priv) >= 11)
return cntl;
if (crtc_state->gamma_enable)
cntl = MCURSOR_GAMMA_ENABLE;
if (crtc_state->csc_enable)
cntl |= MCURSOR_PIPE_CSC_ENABLE;
if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv))
cntl |= MCURSOR_PIPE_SELECT(crtc->pipe);
return cntl;
}
static u32 i9xx_cursor_ctl(const struct intel_crtc_state *crtc_state,
const struct intel_plane_state *plane_state)
{
struct drm_i915_private *dev_priv =
to_i915(plane_state->base.plane->dev);
u32 cntl = 0;
if (IS_GEN(dev_priv, 6) || IS_IVYBRIDGE(dev_priv))
cntl |= MCURSOR_TRICKLE_FEED_DISABLE;
switch (plane_state->base.crtc_w) {
case 64:
cntl |= MCURSOR_MODE_64_ARGB_AX;
break;
case 128:
cntl |= MCURSOR_MODE_128_ARGB_AX;
break;
case 256:
cntl |= MCURSOR_MODE_256_ARGB_AX;
break;
default:
MISSING_CASE(plane_state->base.crtc_w);
return 0;
}
if (plane_state->base.rotation & DRM_MODE_ROTATE_180)
cntl |= MCURSOR_ROTATE_180;
return cntl;
}
static bool i9xx_cursor_size_ok(const struct intel_plane_state *plane_state)
{
struct drm_i915_private *dev_priv =
to_i915(plane_state->base.plane->dev);
int width = plane_state->base.crtc_w;
int height = plane_state->base.crtc_h;
if (!intel_cursor_size_ok(plane_state))
return false;
/* Cursor width is limited to a few power-of-two sizes */
switch (width) {
case 256:
case 128:
case 64:
break;
default:
return false;
}
/*
* IVB+ have CUR_FBC_CTL which allows an arbitrary cursor
* height from 8 lines up to the cursor width, when the
* cursor is not rotated. Everything else requires square
* cursors.
*/
if (HAS_CUR_FBC(dev_priv) &&
plane_state->base.rotation & DRM_MODE_ROTATE_0) {
if (height < 8 || height > width)
return false;
} else {
if (height != width)
return false;
}
return true;
}
static int i9xx_check_cursor(struct intel_crtc_state *crtc_state,
struct intel_plane_state *plane_state)
{
struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
const struct drm_framebuffer *fb = plane_state->base.fb;
enum pipe pipe = plane->pipe;
int ret;
ret = intel_check_cursor(crtc_state, plane_state);
if (ret)
return ret;
/* if we want to turn off the cursor ignore width and height */
if (!fb)
return 0;
/* Check for which cursor types we support */
if (!i9xx_cursor_size_ok(plane_state)) {
DRM_DEBUG("Cursor dimension %dx%d not supported\n",
plane_state->base.crtc_w,
plane_state->base.crtc_h);
return -EINVAL;
}
WARN_ON(plane_state->base.visible &&
plane_state->color_plane[0].stride != fb->pitches[0]);
if (fb->pitches[0] != plane_state->base.crtc_w * fb->format->cpp[0]) {
DRM_DEBUG_KMS("Invalid cursor stride (%u) (cursor width %d)\n",
fb->pitches[0], plane_state->base.crtc_w);
return -EINVAL;
}
/*
* There's something wrong with the cursor on CHV pipe C.
* If it straddles the left edge of the screen then
* moving it away from the edge or disabling it often
* results in a pipe underrun, and often that can lead to
* dead pipe (constant underrun reported, and it scans
* out just a solid color). To recover from that, the
* display power well must be turned off and on again.
* Refuse the put the cursor into that compromised position.
*/
if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_C &&
plane_state->base.visible && plane_state->base.crtc_x < 0) {
DRM_DEBUG_KMS("CHV cursor C not allowed to straddle the left screen edge\n");
return -EINVAL;
}
plane_state->ctl = i9xx_cursor_ctl(crtc_state, plane_state);
return 0;
}
static void i9xx_update_cursor(struct intel_plane *plane,
const struct intel_crtc_state *crtc_state,
const struct intel_plane_state *plane_state)
{
struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
enum pipe pipe = plane->pipe;
u32 cntl = 0, base = 0, pos = 0, fbc_ctl = 0;
unsigned long irqflags;
if (plane_state && plane_state->base.visible) {
cntl = plane_state->ctl |
i9xx_cursor_ctl_crtc(crtc_state);
if (plane_state->base.crtc_h != plane_state->base.crtc_w)
fbc_ctl = CUR_FBC_CTL_EN | (plane_state->base.crtc_h - 1);
base = intel_cursor_base(plane_state);
pos = intel_cursor_position(plane_state);
}
spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
/*
* On some platforms writing CURCNTR first will also
* cause CURPOS to be armed by the CURBASE write.
* Without the CURCNTR write the CURPOS write would
* arm itself. Thus we always update CURCNTR before
* CURPOS.
*
* On other platforms CURPOS always requires the
* CURBASE write to arm the update. Additonally
* a write to any of the cursor register will cancel
* an already armed cursor update. Thus leaving out
* the CURBASE write after CURPOS could lead to a
* cursor that doesn't appear to move, or even change
* shape. Thus we always write CURBASE.
*
* The other registers are armed by by the CURBASE write
* except when the plane is getting enabled at which time
* the CURCNTR write arms the update.
*/
if (INTEL_GEN(dev_priv) >= 9)
skl_write_cursor_wm(plane, crtc_state);
if (plane->cursor.base != base ||
plane->cursor.size != fbc_ctl ||
plane->cursor.cntl != cntl) {
if (HAS_CUR_FBC(dev_priv))
I915_WRITE_FW(CUR_FBC_CTL(pipe), fbc_ctl);
I915_WRITE_FW(CURCNTR(pipe), cntl);
I915_WRITE_FW(CURPOS(pipe), pos);
I915_WRITE_FW(CURBASE(pipe), base);
plane->cursor.base = base;
plane->cursor.size = fbc_ctl;
plane->cursor.cntl = cntl;
} else {
I915_WRITE_FW(CURPOS(pipe), pos);
I915_WRITE_FW(CURBASE(pipe), base);
}
spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
}
static void i9xx_disable_cursor(struct intel_plane *plane,
const struct intel_crtc_state *crtc_state)
{
i9xx_update_cursor(plane, crtc_state, NULL);
}
static bool i9xx_cursor_get_hw_state(struct intel_plane *plane,
enum pipe *pipe)
{
struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
enum intel_display_power_domain power_domain;
intel_wakeref_t wakeref;
bool ret;
u32 val;
/*
* Not 100% correct for planes that can move between pipes,
* but that's only the case for gen2-3 which don't have any
* display power wells.
*/
power_domain = POWER_DOMAIN_PIPE(plane->pipe);
wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
if (!wakeref)
return false;
val = I915_READ(CURCNTR(plane->pipe));
ret = val & MCURSOR_MODE;
if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
*pipe = plane->pipe;
else
*pipe = (val & MCURSOR_PIPE_SELECT_MASK) >>
MCURSOR_PIPE_SELECT_SHIFT;
intel_display_power_put(dev_priv, power_domain, wakeref);
return ret;
}
/* VESA 640x480x72Hz mode to set on the pipe */
static const struct drm_display_mode load_detect_mode = {
DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
};
struct drm_framebuffer *
intel_framebuffer_create(struct drm_i915_gem_object *obj,
struct drm_mode_fb_cmd2 *mode_cmd)
{
struct intel_framebuffer *intel_fb;
int ret;
intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
if (!intel_fb)
return ERR_PTR(-ENOMEM);
ret = intel_framebuffer_init(intel_fb, obj, mode_cmd);
if (ret)
goto err;
return &intel_fb->base;
err:
kfree(intel_fb);
return ERR_PTR(ret);
}
static int intel_modeset_disable_planes(struct drm_atomic_state *state,
struct drm_crtc *crtc)
{
struct drm_plane *plane;
struct drm_plane_state *plane_state;
int ret, i;
ret = drm_atomic_add_affected_planes(state, crtc);
if (ret)
return ret;
for_each_new_plane_in_state(state, plane, plane_state, i) {
if (plane_state->crtc != crtc)
continue;
ret = drm_atomic_set_crtc_for_plane(plane_state, NULL);
if (ret)
return ret;
drm_atomic_set_fb_for_plane(plane_state, NULL);
}
return 0;
}
int intel_get_load_detect_pipe(struct drm_connector *connector,
const struct drm_display_mode *mode,
struct intel_load_detect_pipe *old,
struct drm_modeset_acquire_ctx *ctx)
{
struct intel_crtc *intel_crtc;
struct intel_encoder *intel_encoder =
intel_attached_encoder(connector);
struct drm_crtc *possible_crtc;
struct drm_encoder *encoder = &intel_encoder->base;
struct drm_crtc *crtc = NULL;
struct drm_device *dev = encoder->dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct drm_mode_config *config = &dev->mode_config;
struct drm_atomic_state *state = NULL, *restore_state = NULL;
struct drm_connector_state *connector_state;
struct intel_crtc_state *crtc_state;
int ret, i = -1;
DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
connector->base.id, connector->name,
encoder->base.id, encoder->name);
old->restore_state = NULL;
WARN_ON(!drm_modeset_is_locked(&config->connection_mutex));
/*
* Algorithm gets a little messy:
*
* - if the connector already has an assigned crtc, use it (but make
* sure it's on first)
*
* - try to find the first unused crtc that can drive this connector,
* and use that if we find one
*/
/* See if we already have a CRTC for this connector */
if (connector->state->crtc) {
crtc = connector->state->crtc;
ret = drm_modeset_lock(&crtc->mutex, ctx);
if (ret)
goto fail;
/* Make sure the crtc and connector are running */
goto found;
}
/* Find an unused one (if possible) */
for_each_crtc(dev, possible_crtc) {
i++;
if (!(encoder->possible_crtcs & (1 << i)))
continue;
ret = drm_modeset_lock(&possible_crtc->mutex, ctx);
if (ret)
goto fail;
if (possible_crtc->state->enable) {
drm_modeset_unlock(&possible_crtc->mutex);
continue;
}
crtc = possible_crtc;
break;
}
/*
* If we didn't find an unused CRTC, don't use any.
*/
if (!crtc) {
DRM_DEBUG_KMS("no pipe available for load-detect\n");
ret = -ENODEV;
goto fail;
}
found:
intel_crtc = to_intel_crtc(crtc);
state = drm_atomic_state_alloc(dev);
restore_state = drm_atomic_state_alloc(dev);
if (!state || !restore_state) {
ret = -ENOMEM;
goto fail;
}
state->acquire_ctx = ctx;
restore_state->acquire_ctx = ctx;
connector_state = drm_atomic_get_connector_state(state, connector);
if (IS_ERR(connector_state)) {
ret = PTR_ERR(connector_state);
goto fail;
}
ret = drm_atomic_set_crtc_for_connector(connector_state, crtc);
if (ret)
goto fail;
crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
if (IS_ERR(crtc_state)) {
ret = PTR_ERR(crtc_state);
goto fail;
}
crtc_state->base.active = crtc_state->base.enable = true;
if (!mode)
mode = &load_detect_mode;
ret = drm_atomic_set_mode_for_crtc(&crtc_state->base, mode);
if (ret)
goto fail;
ret = intel_modeset_disable_planes(state, crtc);
if (ret)
goto fail;
ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(restore_state, connector));
if (!ret)
ret = PTR_ERR_OR_ZERO(drm_atomic_get_crtc_state(restore_state, crtc));
if (!ret)
ret = drm_atomic_add_affected_planes(restore_state, crtc);
if (ret) {
DRM_DEBUG_KMS("Failed to create a copy of old state to restore: %i\n", ret);
goto fail;
}
ret = drm_atomic_commit(state);
if (ret) {
DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
goto fail;
}
old->restore_state = restore_state;
drm_atomic_state_put(state);
/* let the connector get through one full cycle before testing */
intel_wait_for_vblank(dev_priv, intel_crtc->pipe);
return true;
fail:
if (state) {
drm_atomic_state_put(state);
state = NULL;
}
if (restore_state) {
drm_atomic_state_put(restore_state);
restore_state = NULL;
}
if (ret == -EDEADLK)
return ret;
return false;
}
void intel_release_load_detect_pipe(struct drm_connector *connector,
struct intel_load_detect_pipe *old,
struct drm_modeset_acquire_ctx *ctx)
{
struct intel_encoder *intel_encoder =
intel_attached_encoder(connector);
struct drm_encoder *encoder = &intel_encoder->base;
struct drm_atomic_state *state = old->restore_state;
int ret;
DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
connector->base.id, connector->name,
encoder->base.id, encoder->name);
if (!state)
return;
ret = drm_atomic_helper_commit_duplicated_state(state, ctx);
if (ret)
DRM_DEBUG_KMS("Couldn't release load detect pipe: %i\n", ret);
drm_atomic_state_put(state);
}
static int i9xx_pll_refclk(struct drm_device *dev,
const struct intel_crtc_state *pipe_config)
{
struct drm_i915_private *dev_priv = to_i915(dev);
u32 dpll = pipe_config->dpll_hw_state.dpll;
if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
return dev_priv->vbt.lvds_ssc_freq;
else if (HAS_PCH_SPLIT(dev_priv))
return 120000;
else if (!IS_GEN(dev_priv, 2))
return 96000;
else
return 48000;
}
/* Returns the clock of the currently programmed mode of the given pipe. */
static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
struct intel_crtc_state *pipe_config)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
int pipe = pipe_config->cpu_transcoder;
u32 dpll = pipe_config->dpll_hw_state.dpll;
u32 fp;
struct dpll clock;
int port_clock;
int refclk = i9xx_pll_refclk(dev, pipe_config);
if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
fp = pipe_config->dpll_hw_state.fp0;
else
fp = pipe_config->dpll_hw_state.fp1;
clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
if (IS_PINEVIEW(dev_priv)) {
clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
} else {
clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
}
if (!IS_GEN(dev_priv, 2)) {
if (IS_PINEVIEW(dev_priv))
clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
else
clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
DPLL_FPA01_P1_POST_DIV_SHIFT);
switch (dpll & DPLL_MODE_MASK) {
case DPLLB_MODE_DAC_SERIAL:
clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
5 : 10;
break;
case DPLLB_MODE_LVDS:
clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
7 : 14;
break;
default:
DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
"mode\n", (int)(dpll & DPLL_MODE_MASK));
return;
}
if (IS_PINEVIEW(dev_priv))
port_clock = pnv_calc_dpll_params(refclk, &clock);
else
port_clock = i9xx_calc_dpll_params(refclk, &clock);
} else {
u32 lvds = IS_I830(dev_priv) ? 0 : I915_READ(LVDS);
bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
if (is_lvds) {
clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
DPLL_FPA01_P1_POST_DIV_SHIFT);
if (lvds & LVDS_CLKB_POWER_UP)
clock.p2 = 7;
else
clock.p2 = 14;
} else {
if (dpll & PLL_P1_DIVIDE_BY_TWO)
clock.p1 = 2;
else {
clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
}
if (dpll & PLL_P2_DIVIDE_BY_4)
clock.p2 = 4;
else
clock.p2 = 2;
}
port_clock = i9xx_calc_dpll_params(refclk, &clock);
}
/*
* This value includes pixel_multiplier. We will use
* port_clock to compute adjusted_mode.crtc_clock in the
* encoder's get_config() function.
*/
pipe_config->port_clock = port_clock;
}
int intel_dotclock_calculate(int link_freq,
const struct intel_link_m_n *m_n)
{
/*
* The calculation for the data clock is:
* pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
* But we want to avoid losing precison if possible, so:
* pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
*
* and the link clock is simpler:
* link_clock = (m * link_clock) / n
*/
if (!m_n->link_n)
return 0;
return div_u64(mul_u32_u32(m_n->link_m, link_freq), m_n->link_n);
}
static void ironlake_pch_clock_get(struct intel_crtc *crtc,
struct intel_crtc_state *pipe_config)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
/* read out port_clock from the DPLL */
i9xx_crtc_clock_get(crtc, pipe_config);
/*
* In case there is an active pipe without active ports,
* we may need some idea for the dotclock anyway.
* Calculate one based on the FDI configuration.
*/
pipe_config->base.adjusted_mode.crtc_clock =
intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
&pipe_config->fdi_m_n);
}
/* Returns the currently programmed mode of the given encoder. */
struct drm_display_mode *
intel_encoder_current_mode(struct intel_encoder *encoder)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_crtc_state *crtc_state;
struct drm_display_mode *mode;
struct intel_crtc *crtc;
enum pipe pipe;
if (!encoder->get_hw_state(encoder, &pipe))
return NULL;
crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
mode = kzalloc(sizeof(*mode), GFP_KERNEL);
if (!mode)
return NULL;
crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
if (!crtc_state) {
kfree(mode);
return NULL;
}
crtc_state->base.crtc = &crtc->base;
if (!dev_priv->display.get_pipe_config(crtc, crtc_state)) {
kfree(crtc_state);
kfree(mode);
return NULL;
}
encoder->get_config(encoder, crtc_state);
intel_mode_from_pipe_config(mode, crtc_state);
kfree(crtc_state);
return mode;
}
static void intel_crtc_destroy(struct drm_crtc *crtc)
{
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
drm_crtc_cleanup(crtc);
kfree(intel_crtc);
}
/**
* intel_wm_need_update - Check whether watermarks need updating
* @cur: current plane state
* @new: new plane state
*
* Check current plane state versus the new one to determine whether
* watermarks need to be recalculated.
*
* Returns true or false.
*/
static bool intel_wm_need_update(struct intel_plane_state *cur,
struct intel_plane_state *new)
{
/* Update watermarks on tiling or size changes. */
if (new->base.visible != cur->base.visible)
return true;
if (!cur->base.fb || !new->base.fb)
return false;
if (cur->base.fb->modifier != new->base.fb->modifier ||
cur->base.rotation != new->base.rotation ||
drm_rect_width(&new->base.src) != drm_rect_width(&cur->base.src) ||
drm_rect_height(&new->base.src) != drm_rect_height(&cur->base.src) ||
drm_rect_width(&new->base.dst) != drm_rect_width(&cur->base.dst) ||
drm_rect_height(&new->base.dst) != drm_rect_height(&cur->base.dst))
return true;
return false;
}
static bool needs_scaling(const struct intel_plane_state *state)
{
int src_w = drm_rect_width(&state->base.src) >> 16;
int src_h = drm_rect_height(&state->base.src) >> 16;
int dst_w = drm_rect_width(&state->base.dst);
int dst_h = drm_rect_height(&state->base.dst);
return (src_w != dst_w || src_h != dst_h);
}
int intel_plane_atomic_calc_changes(const struct intel_crtc_state *old_crtc_state,
struct drm_crtc_state *crtc_state,
const struct intel_plane_state *old_plane_state,
struct drm_plane_state *plane_state)
{
struct intel_crtc_state *pipe_config = to_intel_crtc_state(crtc_state);
struct drm_crtc *crtc = crtc_state->crtc;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct intel_plane *plane = to_intel_plane(plane_state->plane);
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = to_i915(dev);
bool mode_changed = needs_modeset(crtc_state);
bool was_crtc_enabled = old_crtc_state->base.active;
bool is_crtc_enabled = crtc_state->active;
bool turn_off, turn_on, visible, was_visible;
struct drm_framebuffer *fb = plane_state->fb;
int ret;
if (INTEL_GEN(dev_priv) >= 9 && plane->id != PLANE_CURSOR) {
ret = skl_update_scaler_plane(
to_intel_crtc_state(crtc_state),
to_intel_plane_state(plane_state));
if (ret)
return ret;
}
was_visible = old_plane_state->base.visible;
visible = plane_state->visible;
if (!was_crtc_enabled && WARN_ON(was_visible))
was_visible = false;
/*
* Visibility is calculated as if the crtc was on, but
* after scaler setup everything depends on it being off
* when the crtc isn't active.
*
* FIXME this is wrong for watermarks. Watermarks should also
* be computed as if the pipe would be active. Perhaps move
* per-plane wm computation to the .check_plane() hook, and
* only combine the results from all planes in the current place?
*/
if (!is_crtc_enabled) {
plane_state->visible = visible = false;
to_intel_crtc_state(crtc_state)->active_planes &= ~BIT(plane->id);
}
if (!was_visible && !visible)
return 0;
if (fb != old_plane_state->base.fb)
pipe_config->fb_changed = true;
turn_off = was_visible && (!visible || mode_changed);
turn_on = visible && (!was_visible || mode_changed);
DRM_DEBUG_ATOMIC("[CRTC:%d:%s] has [PLANE:%d:%s] with fb %i\n",
intel_crtc->base.base.id, intel_crtc->base.name,
plane->base.base.id, plane->base.name,
fb ? fb->base.id : -1);
DRM_DEBUG_ATOMIC("[PLANE:%d:%s] visible %i -> %i, off %i, on %i, ms %i\n",
plane->base.base.id, plane->base.name,
was_visible, visible,
turn_off, turn_on, mode_changed);
if (turn_on) {
if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv))
pipe_config->update_wm_pre = true;
/* must disable cxsr around plane enable/disable */
if (plane->id != PLANE_CURSOR)
pipe_config->disable_cxsr = true;
} else if (turn_off) {
if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv))
pipe_config->update_wm_post = true;
/* must disable cxsr around plane enable/disable */
if (plane->id != PLANE_CURSOR)
pipe_config->disable_cxsr = true;
} else if (intel_wm_need_update(to_intel_plane_state(plane->base.state),
to_intel_plane_state(plane_state))) {
if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv)) {
/* FIXME bollocks */
pipe_config->update_wm_pre = true;
pipe_config->update_wm_post = true;
}
}
if (visible || was_visible)
pipe_config->fb_bits |= plane->frontbuffer_bit;
/*
* ILK/SNB DVSACNTR/Sprite Enable
* IVB SPR_CTL/Sprite Enable
* "When in Self Refresh Big FIFO mode, a write to enable the
* plane will be internally buffered and delayed while Big FIFO
* mode is exiting."
*
* Which means that enabling the sprite can take an extra frame
* when we start in big FIFO mode (LP1+). Thus we need to drop
* down to LP0 and wait for vblank in order to make sure the
* sprite gets enabled on the next vblank after the register write.
* Doing otherwise would risk enabling the sprite one frame after
* we've already signalled flip completion. We can resume LP1+
* once the sprite has been enabled.
*
*
* WaCxSRDisabledForSpriteScaling:ivb
* IVB SPR_SCALE/Scaling Enable
* "Low Power watermarks must be disabled for at least one
* frame before enabling sprite scaling, and kept disabled
* until sprite scaling is disabled."
*
* ILK/SNB DVSASCALE/Scaling Enable
* "When in Self Refresh Big FIFO mode, scaling enable will be
* masked off while Big FIFO mode is exiting."
*
* Despite the w/a only being listed for IVB we assume that
* the ILK/SNB note has similar ramifications, hence we apply
* the w/a on all three platforms.
*
* With experimental results seems this is needed also for primary
* plane, not only sprite plane.
*/
if (plane->id != PLANE_CURSOR &&
(IS_GEN_RANGE(dev_priv, 5, 6) ||
IS_IVYBRIDGE(dev_priv)) &&
(turn_on || (!needs_scaling(old_plane_state) &&
needs_scaling(to_intel_plane_state(plane_state)))))
pipe_config->disable_lp_wm = true;
return 0;
}
static bool encoders_cloneable(const struct intel_encoder *a,
const struct intel_encoder *b)
{
/* masks could be asymmetric, so check both ways */
return a == b || (a->cloneable & (1 << b->type) &&
b->cloneable & (1 << a->type));
}
static bool check_single_encoder_cloning(struct drm_atomic_state *state,
struct intel_crtc *crtc,
struct intel_encoder *encoder)
{
struct intel_encoder *source_encoder;
struct drm_connector *connector;
struct drm_connector_state *connector_state;
int i;
for_each_new_connector_in_state(state, connector, connector_state, i) {
if (connector_state->crtc != &crtc->base)
continue;
source_encoder =
to_intel_encoder(connector_state->best_encoder);
if (!encoders_cloneable(encoder, source_encoder))
return false;
}
return true;
}
static int icl_add_linked_planes(struct intel_atomic_state *state)
{
struct intel_plane *plane, *linked;
struct intel_plane_state *plane_state, *linked_plane_state;
int i;
for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
linked = plane_state->linked_plane;
if (!linked)
continue;
linked_plane_state = intel_atomic_get_plane_state(state, linked);
if (IS_ERR(linked_plane_state))
return PTR_ERR(linked_plane_state);
WARN_ON(linked_plane_state->linked_plane != plane);
WARN_ON(linked_plane_state->slave == plane_state->slave);
}
return 0;
}
static int icl_check_nv12_planes(struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
struct intel_atomic_state *state = to_intel_atomic_state(crtc_state->base.state);
struct intel_plane *plane, *linked;
struct intel_plane_state *plane_state;
int i;
if (INTEL_GEN(dev_priv) < 11)
return 0;
/*
* Destroy all old plane links and make the slave plane invisible
* in the crtc_state->active_planes mask.
*/
for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
if (plane->pipe != crtc->pipe || !plane_state->linked_plane)
continue;
plane_state->linked_plane = NULL;
if (plane_state->slave && !plane_state->base.visible) {
crtc_state->active_planes &= ~BIT(plane->id);
crtc_state->update_planes |= BIT(plane->id);
}
plane_state->slave = false;
}
if (!crtc_state->nv12_planes)
return 0;
for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
struct intel_plane_state *linked_state = NULL;
if (plane->pipe != crtc->pipe ||
!(crtc_state->nv12_planes & BIT(plane->id)))
continue;
for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, linked) {
if (!icl_is_nv12_y_plane(linked->id))
continue;
if (crtc_state->active_planes & BIT(linked->id))
continue;
linked_state = intel_atomic_get_plane_state(state, linked);
if (IS_ERR(linked_state))
return PTR_ERR(linked_state);
break;
}
if (!linked_state) {
DRM_DEBUG_KMS("Need %d free Y planes for planar YUV\n",
hweight8(crtc_state->nv12_planes));
return -EINVAL;
}
plane_state->linked_plane = linked;
linked_state->slave = true;
linked_state->linked_plane = plane;
crtc_state->active_planes |= BIT(linked->id);
crtc_state->update_planes |= BIT(linked->id);
DRM_DEBUG_KMS("Using %s as Y plane for %s\n", linked->base.name, plane->base.name);
}
return 0;
}
static int intel_crtc_atomic_check(struct drm_crtc *crtc,
struct drm_crtc_state *crtc_state)
{
struct drm_i915_private *dev_priv = to_i915(crtc->dev);
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct intel_crtc_state *pipe_config =
to_intel_crtc_state(crtc_state);
int ret;
bool mode_changed = needs_modeset(crtc_state);
if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv) &&
mode_changed && !crtc_state->active)
pipe_config->update_wm_post = true;
if (mode_changed && crtc_state->enable &&
dev_priv->display.crtc_compute_clock &&
!WARN_ON(pipe_config->shared_dpll)) {
ret = dev_priv->display.crtc_compute_clock(intel_crtc,
pipe_config);
if (ret)
return ret;
}
if (mode_changed || pipe_config->update_pipe ||
crtc_state->color_mgmt_changed) {
ret = intel_color_check(pipe_config);
if (ret)
return ret;
}
ret = 0;
if (dev_priv->display.compute_pipe_wm) {
ret = dev_priv->display.compute_pipe_wm(pipe_config);
if (ret) {
DRM_DEBUG_KMS("Target pipe watermarks are invalid\n");
return ret;
}
}
if (dev_priv->display.compute_intermediate_wm) {
if (WARN_ON(!dev_priv->display.compute_pipe_wm))
return 0;
/*
* Calculate 'intermediate' watermarks that satisfy both the
* old state and the new state. We can program these
* immediately.
*/
ret = dev_priv->display.compute_intermediate_wm(pipe_config);
if (ret) {
DRM_DEBUG_KMS("No valid intermediate pipe watermarks are possible\n");
return ret;
}
}
if (INTEL_GEN(dev_priv) >= 9) {
if (mode_changed || pipe_config->update_pipe)
ret = skl_update_scaler_crtc(pipe_config);
if (!ret)
ret = icl_check_nv12_planes(pipe_config);
if (!ret)
ret = skl_check_pipe_max_pixel_rate(intel_crtc,
pipe_config);
if (!ret)
ret = intel_atomic_setup_scalers(dev_priv, intel_crtc,
pipe_config);
}
if (HAS_IPS(dev_priv))
pipe_config->ips_enabled = hsw_compute_ips_config(pipe_config);
return ret;
}
static const struct drm_crtc_helper_funcs intel_helper_funcs = {
.atomic_check = intel_crtc_atomic_check,
};
static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
{
struct intel_connector *connector;
struct drm_connector_list_iter conn_iter;
drm_connector_list_iter_begin(dev, &conn_iter);
for_each_intel_connector_iter(connector, &conn_iter) {
if (connector->base.state->crtc)
drm_connector_put(&connector->base);
if (connector->base.encoder) {
connector->base.state->best_encoder =
connector->base.encoder;
connector->base.state->crtc =
connector->base.encoder->crtc;
drm_connector_get(&connector->base);
} else {
connector->base.state->best_encoder = NULL;
connector->base.state->crtc = NULL;
}
}
drm_connector_list_iter_end(&conn_iter);
}
static int
compute_sink_pipe_bpp(const struct drm_connector_state *conn_state,
struct intel_crtc_state *pipe_config)
{
struct drm_connector *connector = conn_state->connector;
const struct drm_display_info *info = &connector->display_info;
int bpp;
switch (conn_state->max_bpc) {
case 6 ... 7:
bpp = 6 * 3;
break;
case 8 ... 9:
bpp = 8 * 3;
break;
case 10 ... 11:
bpp = 10 * 3;
break;
case 12:
bpp = 12 * 3;
break;
default:
return -EINVAL;
}
if (bpp < pipe_config->pipe_bpp) {
DRM_DEBUG_KMS("[CONNECTOR:%d:%s] Limiting display bpp to %d instead of "
"EDID bpp %d, requested bpp %d, max platform bpp %d\n",
connector->base.id, connector->name,
bpp, 3 * info->bpc, 3 * conn_state->max_requested_bpc,
pipe_config->pipe_bpp);
pipe_config->pipe_bpp = bpp;
}
return 0;
}
static int
compute_baseline_pipe_bpp(struct intel_crtc *crtc,
struct intel_crtc_state *pipe_config)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
struct drm_atomic_state *state = pipe_config->base.state;
struct drm_connector *connector;
struct drm_connector_state *connector_state;
int bpp, i;
if ((IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
IS_CHERRYVIEW(dev_priv)))
bpp = 10*3;
else if (INTEL_GEN(dev_priv) >= 5)
bpp = 12*3;
else
bpp = 8*3;
pipe_config->pipe_bpp = bpp;
/* Clamp display bpp to connector max bpp */
for_each_new_connector_in_state(state, connector, connector_state, i) {
int ret;
if (connector_state->crtc != &crtc->base)
continue;
ret = compute_sink_pipe_bpp(connector_state, pipe_config);
if (ret)
return ret;
}
return 0;
}
static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
{
DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
"type: 0x%x flags: 0x%x\n",
mode->crtc_clock,
mode->crtc_hdisplay, mode->crtc_hsync_start,
mode->crtc_hsync_end, mode->crtc_htotal,
mode->crtc_vdisplay, mode->crtc_vsync_start,
mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
}
static inline void
intel_dump_m_n_config(struct intel_crtc_state *pipe_config, char *id,
unsigned int lane_count, struct intel_link_m_n *m_n)
{
DRM_DEBUG_KMS("%s: lanes: %i; gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
id, lane_count,
m_n->gmch_m, m_n->gmch_n,
m_n->link_m, m_n->link_n, m_n->tu);
}
static void
intel_dump_infoframe(struct drm_i915_private *dev_priv,
const union hdmi_infoframe *frame)
{
if ((drm_debug & DRM_UT_KMS) == 0)
return;
hdmi_infoframe_log(KERN_DEBUG, dev_priv->drm.dev, frame);
}
#define OUTPUT_TYPE(x) [INTEL_OUTPUT_ ## x] = #x
static const char * const output_type_str[] = {
OUTPUT_TYPE(UNUSED),
OUTPUT_TYPE(ANALOG),
OUTPUT_TYPE(DVO),
OUTPUT_TYPE(SDVO),
OUTPUT_TYPE(LVDS),
OUTPUT_TYPE(TVOUT),
OUTPUT_TYPE(HDMI),
OUTPUT_TYPE(DP),
OUTPUT_TYPE(EDP),
OUTPUT_TYPE(DSI),
OUTPUT_TYPE(DDI),
OUTPUT_TYPE(DP_MST),
};
#undef OUTPUT_TYPE
static void snprintf_output_types(char *buf, size_t len,
unsigned int output_types)
{
char *str = buf;
int i;
str[0] = '\0';
for (i = 0; i < ARRAY_SIZE(output_type_str); i++) {
int r;
if ((output_types & BIT(i)) == 0)
continue;
r = snprintf(str, len, "%s%s",
str != buf ? "," : "", output_type_str[i]);
if (r >= len)
break;
str += r;
len -= r;
output_types &= ~BIT(i);
}
WARN_ON_ONCE(output_types != 0);
}
static const char * const output_format_str[] = {
[INTEL_OUTPUT_FORMAT_INVALID] = "Invalid",
[INTEL_OUTPUT_FORMAT_RGB] = "RGB",
[INTEL_OUTPUT_FORMAT_YCBCR420] = "YCBCR4:2:0",
[INTEL_OUTPUT_FORMAT_YCBCR444] = "YCBCR4:4:4",
};
static const char *output_formats(enum intel_output_format format)
{
if (format >= ARRAY_SIZE(output_format_str))
format = INTEL_OUTPUT_FORMAT_INVALID;
return output_format_str[format];
}
static void intel_dump_pipe_config(struct intel_crtc *crtc,
struct intel_crtc_state *pipe_config,
const char *context)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct drm_plane *plane;
struct intel_plane *intel_plane;
struct intel_plane_state *state;
struct drm_framebuffer *fb;
char buf[64];
DRM_DEBUG_KMS("[CRTC:%d:%s]%s\n",
crtc->base.base.id, crtc->base.name, context);
snprintf_output_types(buf, sizeof(buf), pipe_config->output_types);
DRM_DEBUG_KMS("output_types: %s (0x%x)\n",
buf, pipe_config->output_types);
DRM_DEBUG_KMS("output format: %s\n",
output_formats(pipe_config->output_format));
DRM_DEBUG_KMS("cpu_transcoder: %s, pipe bpp: %i, dithering: %i\n",
transcoder_name(pipe_config->cpu_transcoder),
pipe_config->pipe_bpp, pipe_config->dither);
if (pipe_config->has_pch_encoder)
intel_dump_m_n_config(pipe_config, "fdi",
pipe_config->fdi_lanes,
&pipe_config->fdi_m_n);
if (intel_crtc_has_dp_encoder(pipe_config)) {
intel_dump_m_n_config(pipe_config, "dp m_n",
pipe_config->lane_count, &pipe_config->dp_m_n);
if (pipe_config->has_drrs)
intel_dump_m_n_config(pipe_config, "dp m2_n2",
pipe_config->lane_count,
&pipe_config->dp_m2_n2);
}
DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
pipe_config->has_audio, pipe_config->has_infoframe);
DRM_DEBUG_KMS("infoframes enabled: 0x%x\n",
pipe_config->infoframes.enable);
if (pipe_config->infoframes.enable &
intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL))
DRM_DEBUG_KMS("GCP: 0x%x\n", pipe_config->infoframes.gcp);
if (pipe_config->infoframes.enable &
intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_AVI))
intel_dump_infoframe(dev_priv, &pipe_config->infoframes.avi);
if (pipe_config->infoframes.enable &
intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_SPD))
intel_dump_infoframe(dev_priv, &pipe_config->infoframes.spd);
if (pipe_config->infoframes.enable &
intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_VENDOR))
intel_dump_infoframe(dev_priv, &pipe_config->infoframes.hdmi);
DRM_DEBUG_KMS("requested mode:\n");
drm_mode_debug_printmodeline(&pipe_config->base.mode);
DRM_DEBUG_KMS("adjusted mode:\n");
drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
DRM_DEBUG_KMS("port clock: %d, pipe src size: %dx%d, pixel rate %d\n",
pipe_config->port_clock,
pipe_config->pipe_src_w, pipe_config->pipe_src_h,
pipe_config->pixel_rate);
if (INTEL_GEN(dev_priv) >= 9)
DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
crtc->num_scalers,
pipe_config->scaler_state.scaler_users,
pipe_config->scaler_state.scaler_id);
if (HAS_GMCH(dev_priv))
DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
pipe_config->gmch_pfit.control,
pipe_config->gmch_pfit.pgm_ratios,
pipe_config->gmch_pfit.lvds_border_bits);
else
DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
pipe_config->pch_pfit.pos,
pipe_config->pch_pfit.size,
enableddisabled(pipe_config->pch_pfit.enabled));
DRM_DEBUG_KMS("ips: %i, double wide: %i\n",
pipe_config->ips_enabled, pipe_config->double_wide);
intel_dpll_dump_hw_state(dev_priv, &pipe_config->dpll_hw_state);
DRM_DEBUG_KMS("planes on this crtc\n");
list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
struct drm_format_name_buf format_name;
intel_plane = to_intel_plane(plane);
if (intel_plane->pipe != crtc->pipe)
continue;
state = to_intel_plane_state(plane->state);
fb = state->base.fb;
if (!fb) {
DRM_DEBUG_KMS("[PLANE:%d:%s] disabled, scaler_id = %d\n",
plane->base.id, plane->name, state->scaler_id);
continue;
}
DRM_DEBUG_KMS("[PLANE:%d:%s] FB:%d, fb = %ux%u format = %s\n",
plane->base.id, plane->name,
fb->base.id, fb->width, fb->height,
drm_get_format_name(fb->format->format, &format_name));
if (INTEL_GEN(dev_priv) >= 9)
DRM_DEBUG_KMS("\tscaler:%d src %dx%d+%d+%d dst %dx%d+%d+%d\n",
state->scaler_id,
state->base.src.x1 >> 16,
state->base.src.y1 >> 16,
drm_rect_width(&state->base.src) >> 16,
drm_rect_height(&state->base.src) >> 16,
state->base.dst.x1, state->base.dst.y1,
drm_rect_width(&state->base.dst),
drm_rect_height(&state->base.dst));
}
}
static bool check_digital_port_conflicts(struct drm_atomic_state *state)
{
struct drm_device *dev = state->dev;
struct drm_connector *connector;
struct drm_connector_list_iter conn_iter;
unsigned int used_ports = 0;
unsigned int used_mst_ports = 0;
bool ret = true;
/*
* Walk the connector list instead of the encoder
* list to detect the problem on ddi platforms
* where there's just one encoder per digital port.
*/
drm_connector_list_iter_begin(dev, &conn_iter);
drm_for_each_connector_iter(connector, &conn_iter) {
struct drm_connector_state *connector_state;
struct intel_encoder *encoder;
connector_state = drm_atomic_get_new_connector_state(state, connector);
if (!connector_state)
connector_state = connector->state;
if (!connector_state->best_encoder)
continue;
encoder = to_intel_encoder(connector_state->best_encoder);
WARN_ON(!connector_state->crtc);
switch (encoder->type) {
unsigned int port_mask;
case INTEL_OUTPUT_DDI:
if (WARN_ON(!HAS_DDI(to_i915(dev))))
break;
/* else: fall through */
case INTEL_OUTPUT_DP:
case INTEL_OUTPUT_HDMI:
case INTEL_OUTPUT_EDP:
port_mask = 1 << encoder->port;
/* the same port mustn't appear more than once */
if (used_ports & port_mask)
ret = false;
used_ports |= port_mask;
break;
case INTEL_OUTPUT_DP_MST:
used_mst_ports |=
1 << encoder->port;
break;
default:
break;
}
}
drm_connector_list_iter_end(&conn_iter);
/* can't mix MST and SST/HDMI on the same port */
if (used_ports & used_mst_ports)
return false;
return ret;
}
static int
clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *dev_priv =
to_i915(crtc_state->base.crtc->dev);
struct intel_crtc_state *saved_state;
saved_state = kzalloc(sizeof(*saved_state), GFP_KERNEL);
if (!saved_state)
return -ENOMEM;
/* FIXME: before the switch to atomic started, a new pipe_config was
* kzalloc'd. Code that depends on any field being zero should be
* fixed, so that the crtc_state can be safely duplicated. For now,
* only fields that are know to not cause problems are preserved. */
saved_state->scaler_state = crtc_state->scaler_state;
saved_state->shared_dpll = crtc_state->shared_dpll;
saved_state->dpll_hw_state = crtc_state->dpll_hw_state;
saved_state->pch_pfit.force_thru = crtc_state->pch_pfit.force_thru;
saved_state->crc_enabled = crtc_state->crc_enabled;
if (IS_G4X(dev_priv) ||
IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
saved_state->wm = crtc_state->wm;
/* Keep base drm_crtc_state intact, only clear our extended struct */
BUILD_BUG_ON(offsetof(struct intel_crtc_state, base));
memcpy(&crtc_state->base + 1, &saved_state->base + 1,
sizeof(*crtc_state) - sizeof(crtc_state->base));
kfree(saved_state);
return 0;
}
static int
intel_modeset_pipe_config(struct drm_crtc *crtc,
struct intel_crtc_state *pipe_config)
{
struct drm_atomic_state *state = pipe_config->base.state;
struct intel_encoder *encoder;
struct drm_connector *connector;
struct drm_connector_state *connector_state;
int base_bpp, ret;
int i;
bool retry = true;
ret = clear_intel_crtc_state(pipe_config);
if (ret)
return ret;
pipe_config->cpu_transcoder =
(enum transcoder) to_intel_crtc(crtc)->pipe;
/*
* Sanitize sync polarity flags based on requested ones. If neither
* positive or negative polarity is requested, treat this as meaning
* negative polarity.
*/
if (!(pipe_config->base.adjusted_mode.flags &
(DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
if (!(pipe_config->base.adjusted_mode.flags &
(DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
ret = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
pipe_config);
if (ret)
return ret;
base_bpp = pipe_config->pipe_bpp;
/*
* Determine the real pipe dimensions. Note that stereo modes can
* increase the actual pipe size due to the frame doubling and
* insertion of additional space for blanks between the frame. This
* is stored in the crtc timings. We use the requested mode to do this
* computation to clearly distinguish it from the adjusted mode, which
* can be changed by the connectors in the below retry loop.
*/
drm_mode_get_hv_timing(&pipe_config->base.mode,
&pipe_config->pipe_src_w,
&pipe_config->pipe_src_h);
for_each_new_connector_in_state(state, connector, connector_state, i) {
if (connector_state->crtc != crtc)
continue;
encoder = to_intel_encoder(connector_state->best_encoder);
if (!check_single_encoder_cloning(state, to_intel_crtc(crtc), encoder)) {
DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
return -EINVAL;
}
/*
* Determine output_types before calling the .compute_config()
* hooks so that the hooks can use this information safely.
*/
if (encoder->compute_output_type)
pipe_config->output_types |=
BIT(encoder->compute_output_type(encoder, pipe_config,
connector_state));
else
pipe_config->output_types |= BIT(encoder->type);
}
encoder_retry:
/* Ensure the port clock defaults are reset when retrying. */
pipe_config->port_clock = 0;
pipe_config->pixel_multiplier = 1;
/* Fill in default crtc timings, allow encoders to overwrite them. */
drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
CRTC_STEREO_DOUBLE);
/* Pass our mode to the connectors and the CRTC to give them a chance to
* adjust it according to limitations or connector properties, and also
* a chance to reject the mode entirely.
*/
for_each_new_connector_in_state(state, connector, connector_state, i) {
if (connector_state->crtc != crtc)
continue;
encoder = to_intel_encoder(connector_state->best_encoder);
ret = encoder->compute_config(encoder, pipe_config,
connector_state);
if (ret < 0) {
if (ret != -EDEADLK)
DRM_DEBUG_KMS("Encoder config failure: %d\n",
ret);
return ret;
}
}
/* Set default port clock if not overwritten by the encoder. Needs to be
* done afterwards in case the encoder adjusts the mode. */
if (!pipe_config->port_clock)
pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
* pipe_config->pixel_multiplier;
ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
if (ret == -EDEADLK)
return ret;
if (ret < 0) {
DRM_DEBUG_KMS("CRTC fixup failed\n");
return ret;
}
if (ret == RETRY) {
if (WARN(!retry, "loop in pipe configuration computation\n"))
return -EINVAL;
DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
retry = false;
goto encoder_retry;
}
/* Dithering seems to not pass-through bits correctly when it should, so
* only enable it on 6bpc panels and when its not a compliance
* test requesting 6bpc video pattern.
*/
pipe_config->dither = (pipe_config->pipe_bpp == 6*3) &&
!pipe_config->dither_force_disable;
DRM_DEBUG_KMS("hw max bpp: %i, pipe bpp: %i, dithering: %i\n",
base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
return 0;
}
static bool intel_fuzzy_clock_check(int clock1, int clock2)
{
int diff;
if (clock1 == clock2)
return true;
if (!clock1 || !clock2)
return false;
diff = abs(clock1 - clock2);
if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
return true;
return false;
}
static bool
intel_compare_m_n(unsigned int m, unsigned int n,
unsigned int m2, unsigned int n2,
bool exact)
{
if (m == m2 && n == n2)
return true;
if (exact || !m || !n || !m2 || !n2)
return false;
BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX);
if (n > n2) {
while (n > n2) {
m2 <<= 1;
n2 <<= 1;
}
} else if (n < n2) {
while (n < n2) {
m <<= 1;
n <<= 1;
}
}
if (n != n2)
return false;
return intel_fuzzy_clock_check(m, m2);
}
static bool
intel_compare_link_m_n(const struct intel_link_m_n *m_n,
struct intel_link_m_n *m2_n2,
bool adjust)
{
if (m_n->tu == m2_n2->tu &&
intel_compare_m_n(m_n->gmch_m, m_n->gmch_n,
m2_n2->gmch_m, m2_n2->gmch_n, !adjust) &&
intel_compare_m_n(m_n->link_m, m_n->link_n,
m2_n2->link_m, m2_n2->link_n, !adjust)) {
if (adjust)
*m2_n2 = *m_n;
return true;
}
return false;
}
static bool
intel_compare_infoframe(const union hdmi_infoframe *a,
const union hdmi_infoframe *b)
{
return memcmp(a, b, sizeof(*a)) == 0;
}
static void
pipe_config_infoframe_err(struct drm_i915_private *dev_priv,
bool adjust, const char *name,
const union hdmi_infoframe *a,
const union hdmi_infoframe *b)
{
if (adjust) {
if ((drm_debug & DRM_UT_KMS) == 0)
return;
drm_dbg(DRM_UT_KMS, "mismatch in %s infoframe", name);
drm_dbg(DRM_UT_KMS, "expected:");
hdmi_infoframe_log(KERN_DEBUG, dev_priv->drm.dev, a);
drm_dbg(DRM_UT_KMS, "found");
hdmi_infoframe_log(KERN_DEBUG, dev_priv->drm.dev, b);
} else {
drm_err("mismatch in %s infoframe", name);
drm_err("expected:");
hdmi_infoframe_log(KERN_ERR, dev_priv->drm.dev, a);
drm_err("found");
hdmi_infoframe_log(KERN_ERR, dev_priv->drm.dev, b);
}
}
static void __printf(3, 4)
pipe_config_err(bool adjust, const char *name, const char *format, ...)
{
struct va_format vaf;
va_list args;
va_start(args, format);
vaf.fmt = format;
vaf.va = &args;
if (adjust)
drm_dbg(DRM_UT_KMS, "mismatch in %s %pV", name, &vaf);
else
drm_err("mismatch in %s %pV", name, &vaf);
va_end(args);
}
static bool fastboot_enabled(struct drm_i915_private *dev_priv)
{
if (i915_modparams.fastboot != -1)
return i915_modparams.fastboot;
/* Enable fastboot by default on Skylake and newer */
if (INTEL_GEN(dev_priv) >= 9)
return true;
/* Enable fastboot by default on VLV and CHV */
if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
return true;
/* Disabled by default on all others */
return false;
}
static bool
intel_pipe_config_compare(struct drm_i915_private *dev_priv,
struct intel_crtc_state *current_config,
struct intel_crtc_state *pipe_config,
bool adjust)
{
bool ret = true;
bool fixup_inherited = adjust &&
(current_config->base.mode.private_flags & I915_MODE_FLAG_INHERITED) &&
!(pipe_config->base.mode.private_flags & I915_MODE_FLAG_INHERITED);
if (fixup_inherited && !fastboot_enabled(dev_priv)) {
DRM_DEBUG_KMS("initial modeset and fastboot not set\n");
ret = false;
}
#define PIPE_CONF_CHECK_X(name) do { \
if (current_config->name != pipe_config->name) { \
pipe_config_err(adjust, __stringify(name), \
"(expected 0x%08x, found 0x%08x)\n", \
current_config->name, \
pipe_config->name); \
ret = false; \
} \
} while (0)
#define PIPE_CONF_CHECK_I(name) do { \
if (current_config->name != pipe_config->name) { \
pipe_config_err(adjust, __stringify(name), \
"(expected %i, found %i)\n", \
current_config->name, \
pipe_config->name); \
ret = false; \
} \
} while (0)
#define PIPE_CONF_CHECK_BOOL(name) do { \
if (current_config->name != pipe_config->name) { \
pipe_config_err(adjust, __stringify(name), \
"(expected %s, found %s)\n", \
yesno(current_config->name), \
yesno(pipe_config->name)); \
ret = false; \
} \
} while (0)
/*
* Checks state where we only read out the enabling, but not the entire
* state itself (like full infoframes or ELD for audio). These states
* require a full modeset on bootup to fix up.
*/
#define PIPE_CONF_CHECK_BOOL_INCOMPLETE(name) do { \
if (!fixup_inherited || (!current_config->name && !pipe_config->name)) { \
PIPE_CONF_CHECK_BOOL(name); \
} else { \
pipe_config_err(adjust, __stringify(name), \
"unable to verify whether state matches exactly, forcing modeset (expected %s, found %s)\n", \
yesno(current_config->name), \
yesno(pipe_config->name)); \
ret = false; \
} \
} while (0)
#define PIPE_CONF_CHECK_P(name) do { \
if (current_config->name != pipe_config->name) { \
pipe_config_err(adjust, __stringify(name), \
"(expected %p, found %p)\n", \
current_config->name, \
pipe_config->name); \
ret = false; \
} \
} while (0)
#define PIPE_CONF_CHECK_M_N(name) do { \
if (!intel_compare_link_m_n(&current_config->name, \
&pipe_config->name,\
adjust)) { \
pipe_config_err(adjust, __stringify(name), \
"(expected tu %i gmch %i/%i link %i/%i, " \
"found tu %i, gmch %i/%i link %i/%i)\n", \
current_config->name.tu, \
current_config->name.gmch_m, \
current_config->name.gmch_n, \
current_config->name.link_m, \
current_config->name.link_n, \
pipe_config->name.tu, \
pipe_config->name.gmch_m, \
pipe_config->name.gmch_n, \
pipe_config->name.link_m, \
pipe_config->name.link_n); \
ret = false; \
} \
} while (0)
/* This is required for BDW+ where there is only one set of registers for
* switching between high and low RR.
* This macro can be used whenever a comparison has to be made between one
* hw state and multiple sw state variables.
*/
#define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) do { \
if (!intel_compare_link_m_n(&current_config->name, \
&pipe_config->name, adjust) && \
!intel_compare_link_m_n(&current_config->alt_name, \
&pipe_config->name, adjust)) { \
pipe_config_err(adjust, __stringify(name), \
"(expected tu %i gmch %i/%i link %i/%i, " \
"or tu %i gmch %i/%i link %i/%i, " \
"found tu %i, gmch %i/%i link %i/%i)\n", \
current_config->name.tu, \
current_config->name.gmch_m, \
current_config->name.gmch_n, \
current_config->name.link_m, \
current_config->name.link_n, \
current_config->alt_name.tu, \
current_config->alt_name.gmch_m, \
current_config->alt_name.gmch_n, \
current_config->alt_name.link_m, \
current_config->alt_name.link_n, \
pipe_config->name.tu, \
pipe_config->name.gmch_m, \
pipe_config->name.gmch_n, \
pipe_config->name.link_m, \
pipe_config->name.link_n); \
ret = false; \
} \
} while (0)
#define PIPE_CONF_CHECK_FLAGS(name, mask) do { \
if ((current_config->name ^ pipe_config->name) & (mask)) { \
pipe_config_err(adjust, __stringify(name), \
"(%x) (expected %i, found %i)\n", \
(mask), \
current_config->name & (mask), \
pipe_config->name & (mask)); \
ret = false; \
} \
} while (0)
#define PIPE_CONF_CHECK_CLOCK_FUZZY(name) do { \
if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
pipe_config_err(adjust, __stringify(name), \
"(expected %i, found %i)\n", \
current_config->name, \
pipe_config->name); \
ret = false; \
} \
} while (0)
#define PIPE_CONF_CHECK_INFOFRAME(name) do { \
if (!intel_compare_infoframe(&current_config->infoframes.name, \
&pipe_config->infoframes.name)) { \
pipe_config_infoframe_err(dev_priv, adjust, __stringify(name), \
&current_config->infoframes.name, \
&pipe_config->infoframes.name); \
ret = false; \
} \
} while (0)
#define PIPE_CONF_QUIRK(quirk) \
((current_config->quirks | pipe_config->quirks) & (quirk))
PIPE_CONF_CHECK_I(cpu_transcoder);
PIPE_CONF_CHECK_BOOL(has_pch_encoder);
PIPE_CONF_CHECK_I(fdi_lanes);
PIPE_CONF_CHECK_M_N(fdi_m_n);
PIPE_CONF_CHECK_I(lane_count);
PIPE_CONF_CHECK_X(lane_lat_optim_mask);
if (INTEL_GEN(dev_priv) < 8) {
PIPE_CONF_CHECK_M_N(dp_m_n);
if (current_config->has_drrs)
PIPE_CONF_CHECK_M_N(dp_m2_n2);
} else
PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2);
PIPE_CONF_CHECK_X(output_types);
PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
PIPE_CONF_CHECK_I(pixel_multiplier);
PIPE_CONF_CHECK_I(output_format);
PIPE_CONF_CHECK_BOOL(has_hdmi_sink);
if ((INTEL_GEN(dev_priv) < 8 && !IS_HASWELL(dev_priv)) ||
IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
PIPE_CONF_CHECK_BOOL(limited_color_range);
PIPE_CONF_CHECK_BOOL(hdmi_scrambling);
PIPE_CONF_CHECK_BOOL(hdmi_high_tmds_clock_ratio);
PIPE_CONF_CHECK_BOOL_INCOMPLETE(has_infoframe);
PIPE_CONF_CHECK_BOOL_INCOMPLETE(has_audio);
PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
DRM_MODE_FLAG_INTERLACE);
if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
DRM_MODE_FLAG_PHSYNC);
PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
DRM_MODE_FLAG_NHSYNC);
PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
DRM_MODE_FLAG_PVSYNC);
PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
DRM_MODE_FLAG_NVSYNC);
}
PIPE_CONF_CHECK_X(gmch_pfit.control);
/* pfit ratios are autocomputed by the hw on gen4+ */
if (INTEL_GEN(dev_priv) < 4)
PIPE_CONF_CHECK_X(gmch_pfit.pgm_ratios);
PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits);
if (!adjust) {
PIPE_CONF_CHECK_I(pipe_src_w);
PIPE_CONF_CHECK_I(pipe_src_h);
PIPE_CONF_CHECK_BOOL(pch_pfit.enabled);
if (current_config->pch_pfit.enabled) {
PIPE_CONF_CHECK_X(pch_pfit.pos);
PIPE_CONF_CHECK_X(pch_pfit.size);
}
PIPE_CONF_CHECK_I(scaler_state.scaler_id);
PIPE_CONF_CHECK_CLOCK_FUZZY(pixel_rate);
PIPE_CONF_CHECK_X(gamma_mode);
if (IS_CHERRYVIEW(dev_priv))
PIPE_CONF_CHECK_X(cgm_mode);
else
PIPE_CONF_CHECK_X(csc_mode);
PIPE_CONF_CHECK_BOOL(gamma_enable);
PIPE_CONF_CHECK_BOOL(csc_enable);
}
PIPE_CONF_CHECK_BOOL(double_wide);
PIPE_CONF_CHECK_P(shared_dpll);
PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
PIPE_CONF_CHECK_X(dpll_hw_state.spll);
PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr0);
PIPE_CONF_CHECK_X(dpll_hw_state.ebb0);
PIPE_CONF_CHECK_X(dpll_hw_state.ebb4);
PIPE_CONF_CHECK_X(dpll_hw_state.pll0);
PIPE_CONF_CHECK_X(dpll_hw_state.pll1);
PIPE_CONF_CHECK_X(dpll_hw_state.pll2);
PIPE_CONF_CHECK_X(dpll_hw_state.pll3);
PIPE_CONF_CHECK_X(dpll_hw_state.pll6);
PIPE_CONF_CHECK_X(dpll_hw_state.pll8);
PIPE_CONF_CHECK_X(dpll_hw_state.pll9);
PIPE_CONF_CHECK_X(dpll_hw_state.pll10);
PIPE_CONF_CHECK_X(dpll_hw_state.pcsdw12);
PIPE_CONF_CHECK_X(dpll_hw_state.mg_refclkin_ctl);
PIPE_CONF_CHECK_X(dpll_hw_state.mg_clktop2_coreclkctl1);
PIPE_CONF_CHECK_X(dpll_hw_state.mg_clktop2_hsclkctl);
PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_div0);
PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_div1);
PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_lf);
PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_frac_lock);
PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_ssc);
PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_bias);
PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_tdc_coldst_bias);
PIPE_CONF_CHECK_X(dsi_pll.ctrl);
PIPE_CONF_CHECK_X(dsi_pll.div);
if (IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5)
PIPE_CONF_CHECK_I(pipe_bpp);
PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
PIPE_CONF_CHECK_I(min_voltage_level);
PIPE_CONF_CHECK_X(infoframes.enable);
PIPE_CONF_CHECK_X(infoframes.gcp);
PIPE_CONF_CHECK_INFOFRAME(avi);
PIPE_CONF_CHECK_INFOFRAME(spd);
PIPE_CONF_CHECK_INFOFRAME(hdmi);
#undef PIPE_CONF_CHECK_X
#undef PIPE_CONF_CHECK_I
#undef PIPE_CONF_CHECK_BOOL
#undef PIPE_CONF_CHECK_BOOL_INCOMPLETE
#undef PIPE_CONF_CHECK_P
#undef PIPE_CONF_CHECK_FLAGS
#undef PIPE_CONF_CHECK_CLOCK_FUZZY
#undef PIPE_CONF_QUIRK
return ret;
}
static void intel_pipe_config_sanity_check(struct drm_i915_private *dev_priv,
const struct intel_crtc_state *pipe_config)
{
if (pipe_config->has_pch_encoder) {
int fdi_dotclock = intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
&pipe_config->fdi_m_n);
int dotclock = pipe_config->base.adjusted_mode.crtc_clock;
/*
* FDI already provided one idea for the dotclock.
* Yell if the encoder disagrees.
*/
WARN(!intel_fuzzy_clock_check(fdi_dotclock, dotclock),
"FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
fdi_dotclock, dotclock);
}
}
static void verify_wm_state(struct drm_crtc *crtc,
struct drm_crtc_state *new_state)
{
struct drm_i915_private *dev_priv = to_i915(crtc->dev);
struct skl_hw_state {
struct skl_ddb_entry ddb_y[I915_MAX_PLANES];
struct skl_ddb_entry ddb_uv[I915_MAX_PLANES];
struct skl_ddb_allocation ddb;
struct skl_pipe_wm wm;
} *hw;
struct skl_ddb_allocation *sw_ddb;
struct skl_pipe_wm *sw_wm;
struct skl_ddb_entry *hw_ddb_entry, *sw_ddb_entry;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
const enum pipe pipe = intel_crtc->pipe;
int plane, level, max_level = ilk_wm_max_level(dev_priv);
if (INTEL_GEN(dev_priv) < 9 || !new_state->active)
return;
hw = kzalloc(sizeof(*hw), GFP_KERNEL);
if (!hw)
return;
skl_pipe_wm_get_hw_state(intel_crtc, &hw->wm);
sw_wm = &to_intel_crtc_state(new_state)->wm.skl.optimal;
skl_pipe_ddb_get_hw_state(intel_crtc, hw->ddb_y, hw->ddb_uv);
skl_ddb_get_hw_state(dev_priv, &hw->ddb);
sw_ddb = &dev_priv->wm.skl_hw.ddb;
if (INTEL_GEN(dev_priv) >= 11 &&
hw->ddb.enabled_slices != sw_ddb->enabled_slices)
DRM_ERROR("mismatch in DBUF Slices (expected %u, got %u)\n",
sw_ddb->enabled_slices,
hw->ddb.enabled_slices);
/* planes */
for_each_universal_plane(dev_priv, pipe, plane) {
struct skl_plane_wm *hw_plane_wm, *sw_plane_wm;
hw_plane_wm = &hw->wm.planes[plane];
sw_plane_wm = &sw_wm->planes[plane];
/* Watermarks */
for (level = 0; level <= max_level; level++) {
if (skl_wm_level_equals(&hw_plane_wm->wm[level],
&sw_plane_wm->wm[level]))
continue;
DRM_ERROR("mismatch in WM pipe %c plane %d level %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
pipe_name(pipe), plane + 1, level,
sw_plane_wm->wm[level].plane_en,
sw_plane_wm->wm[level].plane_res_b,
sw_plane_wm->wm[level].plane_res_l,
hw_plane_wm->wm[level].plane_en,
hw_plane_wm->wm[level].plane_res_b,
hw_plane_wm->wm[level].plane_res_l);
}
if (!skl_wm_level_equals(&hw_plane_wm->trans_wm,
&sw_plane_wm->trans_wm)) {
DRM_ERROR("mismatch in trans WM pipe %c plane %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
pipe_name(pipe), plane + 1,
sw_plane_wm->trans_wm.plane_en,
sw_plane_wm->trans_wm.plane_res_b,
sw_plane_wm->trans_wm.plane_res_l,
hw_plane_wm->trans_wm.plane_en,
hw_plane_wm->trans_wm.plane_res_b,
hw_plane_wm->trans_wm.plane_res_l);
}
/* DDB */
hw_ddb_entry = &hw->ddb_y[plane];
sw_ddb_entry = &to_intel_crtc_state(new_state)->wm.skl.plane_ddb_y[plane];
if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) {
DRM_ERROR("mismatch in DDB state pipe %c plane %d (expected (%u,%u), found (%u,%u))\n",
pipe_name(pipe), plane + 1,
sw_ddb_entry->start, sw_ddb_entry->end,
hw_ddb_entry->start, hw_ddb_entry->end);
}
}
/*
* cursor
* If the cursor plane isn't active, we may not have updated it's ddb
* allocation. In that case since the ddb allocation will be updated
* once the plane becomes visible, we can skip this check
*/
if (1) {
struct skl_plane_wm *hw_plane_wm, *sw_plane_wm;
hw_plane_wm = &hw->wm.planes[PLANE_CURSOR];
sw_plane_wm = &sw_wm->planes[PLANE_CURSOR];
/* Watermarks */
for (level = 0; level <= max_level; level++) {
if (skl_wm_level_equals(&hw_plane_wm->wm[level],
&sw_plane_wm->wm[level]))
continue;
DRM_ERROR("mismatch in WM pipe %c cursor level %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
pipe_name(pipe), level,
sw_plane_wm->wm[level].plane_en,
sw_plane_wm->wm[level].plane_res_b,
sw_plane_wm->wm[level].plane_res_l,
hw_plane_wm->wm[level].plane_en,
hw_plane_wm->wm[level].plane_res_b,
hw_plane_wm->wm[level].plane_res_l);
}
if (!skl_wm_level_equals(&hw_plane_wm->trans_wm,
&sw_plane_wm->trans_wm)) {
DRM_ERROR("mismatch in trans WM pipe %c cursor (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
pipe_name(pipe),
sw_plane_wm->trans_wm.plane_en,
sw_plane_wm->trans_wm.plane_res_b,
sw_plane_wm->trans_wm.plane_res_l,
hw_plane_wm->trans_wm.plane_en,
hw_plane_wm->trans_wm.plane_res_b,
hw_plane_wm->trans_wm.plane_res_l);
}
/* DDB */
hw_ddb_entry = &hw->ddb_y[PLANE_CURSOR];
sw_ddb_entry = &to_intel_crtc_state(new_state)->wm.skl.plane_ddb_y[PLANE_CURSOR];
if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) {
DRM_ERROR("mismatch in DDB state pipe %c cursor (expected (%u,%u), found (%u,%u))\n",
pipe_name(pipe),
sw_ddb_entry->start, sw_ddb_entry->end,
hw_ddb_entry->start, hw_ddb_entry->end);
}
}
kfree(hw);
}
static void
verify_connector_state(struct drm_device *dev,
struct drm_atomic_state *state,
struct drm_crtc *crtc)
{
struct drm_connector *connector;
struct drm_connector_state *new_conn_state;
int i;
for_each_new_connector_in_state(state, connector, new_conn_state, i) {
struct drm_encoder *encoder = connector->encoder;
struct drm_crtc_state *crtc_state = NULL;
if (new_conn_state->crtc != crtc)
continue;
if (crtc)
crtc_state = drm_atomic_get_new_crtc_state(state, new_conn_state->crtc);
intel_connector_verify_state(crtc_state, new_conn_state);
I915_STATE_WARN(new_conn_state->best_encoder != encoder,
"connector's atomic encoder doesn't match legacy encoder\n");
}
}
static void
verify_encoder_state(struct drm_device *dev, struct drm_atomic_state *state)
{
struct intel_encoder *encoder;
struct drm_connector *connector;
struct drm_connector_state *old_conn_state, *new_conn_state;
int i;
for_each_intel_encoder(dev, encoder) {
bool enabled = false, found = false;
enum pipe pipe;
DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
encoder->base.base.id,
encoder->base.name);
for_each_oldnew_connector_in_state(state, connector, old_conn_state,
new_conn_state, i) {
if (old_conn_state->best_encoder == &encoder->base)
found = true;
if (new_conn_state->best_encoder != &encoder->base)
continue;
found = enabled = true;
I915_STATE_WARN(new_conn_state->crtc !=
encoder->base.crtc,
"connector's crtc doesn't match encoder crtc\n");
}
if (!found)
continue;
I915_STATE_WARN(!!encoder->base.crtc != enabled,
"encoder's enabled state mismatch "
"(expected %i, found %i)\n",
!!encoder->base.crtc, enabled);
if (!encoder->base.crtc) {
bool active;
active = encoder->get_hw_state(encoder, &pipe);
I915_STATE_WARN(active,
"encoder detached but still enabled on pipe %c.\n",
pipe_name(pipe));
}
}
}
static void
verify_crtc_state(struct drm_crtc *crtc,
struct drm_crtc_state *old_crtc_state,
struct drm_crtc_state *new_crtc_state)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct intel_encoder *encoder;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct intel_crtc_state *pipe_config, *sw_config;
struct drm_atomic_state *old_state;
bool active;
old_state = old_crtc_state->state;
__drm_atomic_helper_crtc_destroy_state(old_crtc_state);
pipe_config = to_intel_crtc_state(old_crtc_state);
memset(pipe_config, 0, sizeof(*pipe_config));
pipe_config->base.crtc = crtc;
pipe_config->base.state = old_state;
DRM_DEBUG_KMS("[CRTC:%d:%s]\n", crtc->base.id, crtc->name);
active = dev_priv->display.get_pipe_config(intel_crtc, pipe_config);
/* we keep both pipes enabled on 830 */
if (IS_I830(dev_priv))
active = new_crtc_state->active;
I915_STATE_WARN(new_crtc_state->active != active,
"crtc active state doesn't match with hw state "
"(expected %i, found %i)\n", new_crtc_state->active, active);
I915_STATE_WARN(intel_crtc->active != new_crtc_state->active,
"transitional active state does not match atomic hw state "
"(expected %i, found %i)\n", new_crtc_state->active, intel_crtc->active);
for_each_encoder_on_crtc(dev, crtc, encoder) {
enum pipe pipe;
active = encoder->get_hw_state(encoder, &pipe);
I915_STATE_WARN(active != new_crtc_state->active,
"[ENCODER:%i] active %i with crtc active %i\n",
encoder->base.base.id, active, new_crtc_state->active);
I915_STATE_WARN(active && intel_crtc->pipe != pipe,
"Encoder connected to wrong pipe %c\n",
pipe_name(pipe));
if (active)
encoder->get_config(encoder, pipe_config);
}
intel_crtc_compute_pixel_rate(pipe_config);
if (!new_crtc_state->active)
return;
intel_pipe_config_sanity_check(dev_priv, pipe_config);
sw_config = to_intel_crtc_state(new_crtc_state);
if (!intel_pipe_config_compare(dev_priv, sw_config,
pipe_config, false)) {
I915_STATE_WARN(1, "pipe state doesn't match!\n");
intel_dump_pipe_config(intel_crtc, pipe_config,
"[hw state]");
intel_dump_pipe_config(intel_crtc, sw_config,
"[sw state]");
}
}
static void
intel_verify_planes(struct intel_atomic_state *state)
{
struct intel_plane *plane;
const struct intel_plane_state *plane_state;
int i;
for_each_new_intel_plane_in_state(state, plane,
plane_state, i)
assert_plane(plane, plane_state->slave ||
plane_state->base.visible);
}
static void
verify_single_dpll_state(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll,
struct drm_crtc *crtc,
struct drm_crtc_state *new_state)
{
struct intel_dpll_hw_state dpll_hw_state;
unsigned int crtc_mask;
bool active;
memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
DRM_DEBUG_KMS("%s\n", pll->info->name);
active = pll->info->funcs->get_hw_state(dev_priv, pll, &dpll_hw_state);
if (!(pll->info->flags & INTEL_DPLL_ALWAYS_ON)) {
I915_STATE_WARN(!pll->on && pll->active_mask,
"pll in active use but not on in sw tracking\n");
I915_STATE_WARN(pll->on && !pll->active_mask,
"pll is on but not used by any active crtc\n");
I915_STATE_WARN(pll->on != active,
"pll on state mismatch (expected %i, found %i)\n",
pll->on, active);
}
if (!crtc) {
I915_STATE_WARN(pll->active_mask & ~pll->state.crtc_mask,
"more active pll users than references: %x vs %x\n",
pll->active_mask, pll->state.crtc_mask);
return;
}
crtc_mask = drm_crtc_mask(crtc);
if (new_state->active)
I915_STATE_WARN(!(pll->active_mask & crtc_mask),
"pll active mismatch (expected pipe %c in active mask 0x%02x)\n",
pipe_name(drm_crtc_index(crtc)), pll->active_mask);
else
I915_STATE_WARN(pll->active_mask & crtc_mask,
"pll active mismatch (didn't expect pipe %c in active mask 0x%02x)\n",
pipe_name(drm_crtc_index(crtc)), pll->active_mask);
I915_STATE_WARN(!(pll->state.crtc_mask & crtc_mask),
"pll enabled crtcs mismatch (expected 0x%x in 0x%02x)\n",
crtc_mask, pll->state.crtc_mask);
I915_STATE_WARN(pll->on && memcmp(&pll->state.hw_state,
&dpll_hw_state,
sizeof(dpll_hw_state)),
"pll hw state mismatch\n");
}
static void
verify_shared_dpll_state(struct drm_device *dev, struct drm_crtc *crtc,
struct drm_crtc_state *old_crtc_state,
struct drm_crtc_state *new_crtc_state)
{
struct drm_i915_private *dev_priv = to_i915(dev);
struct intel_crtc_state *old_state = to_intel_crtc_state(old_crtc_state);
struct intel_crtc_state *new_state = to_intel_crtc_state(new_crtc_state);
if (new_state->shared_dpll)
verify_single_dpll_state(dev_priv, new_state->shared_dpll, crtc, new_crtc_state);
if (old_state->shared_dpll &&
old_state->shared_dpll != new_state->shared_dpll) {
unsigned int crtc_mask = drm_crtc_mask(crtc);
struct intel_shared_dpll *pll = old_state->shared_dpll;
I915_STATE_WARN(pll->active_mask & crtc_mask,
"pll active mismatch (didn't expect pipe %c in active mask)\n",
pipe_name(drm_crtc_index(crtc)));
I915_STATE_WARN(pll->state.crtc_mask & crtc_mask,
"pll enabled crtcs mismatch (found %x in enabled mask)\n",
pipe_name(drm_crtc_index(crtc)));
}
}
static void
intel_modeset_verify_crtc(struct drm_crtc *crtc,
struct drm_atomic_state *state,
struct drm_crtc_state *old_state,
struct drm_crtc_state *new_state)
{
if (!needs_modeset(new_state) &&
!to_intel_crtc_state(new_state)->update_pipe)
return;
verify_wm_state(crtc, new_state);
verify_connector_state(crtc->dev, state, crtc);
verify_crtc_state(crtc, old_state, new_state);
verify_shared_dpll_state(crtc->dev, crtc, old_state, new_state);
}
static void
verify_disabled_dpll_state(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = to_i915(dev);
int i;
for (i = 0; i < dev_priv->num_shared_dpll; i++)
verify_single_dpll_state(dev_priv, &dev_priv->shared_dplls[i], NULL, NULL);
}
static void
intel_modeset_verify_disabled(struct drm_device *dev,
struct drm_atomic_state *state)
{
verify_encoder_state(dev, state);
verify_connector_state(dev, state, NULL);
verify_disabled_dpll_state(dev);
}
static void update_scanline_offset(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
/*
* The scanline counter increments at the leading edge of hsync.
*
* On most platforms it starts counting from vtotal-1 on the
* first active line. That means the scanline counter value is
* always one less than what we would expect. Ie. just after
* start of vblank, which also occurs at start of hsync (on the
* last active line), the scanline counter will read vblank_start-1.
*
* On gen2 the scanline counter starts counting from 1 instead
* of vtotal-1, so we have to subtract one (or rather add vtotal-1
* to keep the value positive), instead of adding one.
*
* On HSW+ the behaviour of the scanline counter depends on the output
* type. For DP ports it behaves like most other platforms, but on HDMI
* there's an extra 1 line difference. So we need to add two instead of
* one to the value.
*
* On VLV/CHV DSI the scanline counter would appear to increment
* approx. 1/3 of a scanline before start of vblank. Unfortunately
* that means we can't tell whether we're in vblank or not while
* we're on that particular line. We must still set scanline_offset
* to 1 so that the vblank timestamps come out correct when we query
* the scanline counter from within the vblank interrupt handler.
* However if queried just before the start of vblank we'll get an
* answer that's slightly in the future.
*/
if (IS_GEN(dev_priv, 2)) {
const struct drm_display_mode *adjusted_mode = &crtc_state->base.adjusted_mode;
int vtotal;
vtotal = adjusted_mode->crtc_vtotal;
if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
vtotal /= 2;
crtc->scanline_offset = vtotal - 1;
} else if (HAS_DDI(dev_priv) &&
intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) {
crtc->scanline_offset = 2;
} else
crtc->scanline_offset = 1;
}
static void intel_modeset_clear_plls(struct drm_atomic_state *state)
{
struct drm_device *dev = state->dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct drm_crtc *crtc;
struct drm_crtc_state *old_crtc_state, *new_crtc_state;
int i;
if (!dev_priv->display.crtc_compute_clock)
return;
for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct intel_shared_dpll *old_dpll =
to_intel_crtc_state(old_crtc_state)->shared_dpll;
if (!needs_modeset(new_crtc_state))
continue;
to_intel_crtc_state(new_crtc_state)->shared_dpll = NULL;
if (!old_dpll)
continue;
intel_release_shared_dpll(old_dpll, intel_crtc, state);
}
}
/*
* This implements the workaround described in the "notes" section of the mode
* set sequence documentation. When going from no pipes or single pipe to
* multiple pipes, and planes are enabled after the pipe, we need to wait at
* least 2 vblanks on the first pipe before enabling planes on the second pipe.
*/
static int haswell_mode_set_planes_workaround(struct drm_atomic_state *state)
{
struct drm_crtc_state *crtc_state;
struct intel_crtc *intel_crtc;
struct drm_crtc *crtc;
struct intel_crtc_state *first_crtc_state = NULL;
struct intel_crtc_state *other_crtc_state = NULL;
enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
int i;
/* look at all crtc's that are going to be enabled in during modeset */
for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
intel_crtc = to_intel_crtc(crtc);
if (!crtc_state->active || !needs_modeset(crtc_state))
continue;
if (first_crtc_state) {
other_crtc_state = to_intel_crtc_state(crtc_state);
break;
} else {
first_crtc_state = to_intel_crtc_state(crtc_state);
first_pipe = intel_crtc->pipe;
}
}
/* No workaround needed? */
if (!first_crtc_state)
return 0;
/* w/a possibly needed, check how many crtc's are already enabled. */
for_each_intel_crtc(state->dev, intel_crtc) {
struct intel_crtc_state *pipe_config;
pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
if (IS_ERR(pipe_config))
return PTR_ERR(pipe_config);
pipe_config->hsw_workaround_pipe = INVALID_PIPE;
if (!pipe_config->base.active ||
needs_modeset(&pipe_config->base))
continue;
/* 2 or more enabled crtcs means no need for w/a */
if (enabled_pipe != INVALID_PIPE)
return 0;
enabled_pipe = intel_crtc->pipe;
}
if (enabled_pipe != INVALID_PIPE)
first_crtc_state->hsw_workaround_pipe = enabled_pipe;
else if (other_crtc_state)
other_crtc_state->hsw_workaround_pipe = first_pipe;
return 0;
}
static int intel_lock_all_pipes(struct drm_atomic_state *state)
{
struct drm_crtc *crtc;
/* Add all pipes to the state */
for_each_crtc(state->dev, crtc) {
struct drm_crtc_state *crtc_state;
crtc_state = drm_atomic_get_crtc_state(state, crtc);
if (IS_ERR(crtc_state))
return PTR_ERR(crtc_state);
}
return 0;
}
static int intel_modeset_all_pipes(struct drm_atomic_state *state)
{
struct drm_crtc *crtc;
/*
* Add all pipes to the state, and force
* a modeset on all the active ones.
*/
for_each_crtc(state->dev, crtc) {
struct drm_crtc_state *crtc_state;
int ret;
crtc_state = drm_atomic_get_crtc_state(state, crtc);
if (IS_ERR(crtc_state))
return PTR_ERR(crtc_state);
if (!crtc_state->active || needs_modeset(crtc_state))
continue;
crtc_state->mode_changed = true;
ret = drm_atomic_add_affected_connectors(state, crtc);
if (ret)
return ret;
ret = drm_atomic_add_affected_planes(state, crtc);
if (ret)
return ret;
}
return 0;
}
static int intel_modeset_checks(struct drm_atomic_state *state)
{
struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
struct drm_i915_private *dev_priv = to_i915(state->dev);
struct drm_crtc *crtc;
struct drm_crtc_state *old_crtc_state, *new_crtc_state;
int ret = 0, i;
if (!check_digital_port_conflicts(state)) {
DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
return -EINVAL;
}
/* keep the current setting */
if (!intel_state->cdclk.force_min_cdclk_changed)
intel_state->cdclk.force_min_cdclk =
dev_priv->cdclk.force_min_cdclk;
intel_state->modeset = true;
intel_state->active_crtcs = dev_priv->active_crtcs;
intel_state->cdclk.logical = dev_priv->cdclk.logical;
intel_state->cdclk.actual = dev_priv->cdclk.actual;
intel_state->cdclk.pipe = INVALID_PIPE;
for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
if (new_crtc_state->active)
intel_state->active_crtcs |= 1 << i;
else
intel_state->active_crtcs &= ~(1 << i);
if (old_crtc_state->active != new_crtc_state->active)
intel_state->active_pipe_changes |= drm_crtc_mask(crtc);
}
/*
* See if the config requires any additional preparation, e.g.
* to adjust global state with pipes off. We need to do this
* here so we can get the modeset_pipe updated config for the new
* mode set on this crtc. For other crtcs we need to use the
* adjusted_mode bits in the crtc directly.
*/
if (dev_priv->display.modeset_calc_cdclk) {
enum pipe pipe;
ret = dev_priv->display.modeset_calc_cdclk(state);
if (ret < 0)
return ret;
/*
* Writes to dev_priv->cdclk.logical must protected by
* holding all the crtc locks, even if we don't end up
* touching the hardware
*/
if (intel_cdclk_changed(&dev_priv->cdclk.logical,
&intel_state->cdclk.logical)) {
ret = intel_lock_all_pipes(state);
if (ret < 0)
return ret;
}
if (is_power_of_2(intel_state->active_crtcs)) {
struct drm_crtc *crtc;
struct drm_crtc_state *crtc_state;
pipe = ilog2(intel_state->active_crtcs);
crtc = &intel_get_crtc_for_pipe(dev_priv, pipe)->base;
crtc_state = drm_atomic_get_new_crtc_state(state, crtc);
if (crtc_state && needs_modeset(crtc_state))
pipe = INVALID_PIPE;
} else {
pipe = INVALID_PIPE;
}
/* All pipes must be switched off while we change the cdclk. */
if (pipe != INVALID_PIPE &&
intel_cdclk_needs_cd2x_update(dev_priv,
&dev_priv->cdclk.actual,
&intel_state->cdclk.actual)) {
ret = intel_lock_all_pipes(state);
if (ret < 0)
return ret;
intel_state->cdclk.pipe = pipe;
} else if (intel_cdclk_needs_modeset(&dev_priv->cdclk.actual,
&intel_state->cdclk.actual)) {
ret = intel_modeset_all_pipes(state);
if (ret < 0)
return ret;
intel_state->cdclk.pipe = INVALID_PIPE;
}
DRM_DEBUG_KMS("New cdclk calculated to be logical %u kHz, actual %u kHz\n",
intel_state->cdclk.logical.cdclk,
intel_state->cdclk.actual.cdclk);
DRM_DEBUG_KMS("New voltage level calculated to be logical %u, actual %u\n",
intel_state->cdclk.logical.voltage_level,
intel_state->cdclk.actual.voltage_level);
}
intel_modeset_clear_plls(state);
if (IS_HASWELL(dev_priv))
return haswell_mode_set_planes_workaround(state);
return 0;
}
/*
* Handle calculation of various watermark data at the end of the atomic check
* phase. The code here should be run after the per-crtc and per-plane 'check'
* handlers to ensure that all derived state has been updated.
*/
static int calc_watermark_data(struct intel_atomic_state *state)
{
struct drm_device *dev = state->base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
/* Is there platform-specific watermark information to calculate? */
if (dev_priv->display.compute_global_watermarks)
return dev_priv->display.compute_global_watermarks(state);
return 0;
}
/**
* intel_atomic_check - validate state object
* @dev: drm device
* @state: state to validate
*/
static int intel_atomic_check(struct drm_device *dev,
struct drm_atomic_state *state)
{
struct drm_i915_private *dev_priv = to_i915(dev);
struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
struct drm_crtc *crtc;
struct drm_crtc_state *old_crtc_state, *crtc_state;
int ret, i;
bool any_ms = intel_state->cdclk.force_min_cdclk_changed;
/* Catch I915_MODE_FLAG_INHERITED */
for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state,
crtc_state, i) {
if (crtc_state->mode.private_flags !=
old_crtc_state->mode.private_flags)
crtc_state->mode_changed = true;
}
ret = drm_atomic_helper_check_modeset(dev, state);
if (ret)
return ret;
for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, crtc_state, i) {
struct intel_crtc_state *pipe_config =
to_intel_crtc_state(crtc_state);
if (!needs_modeset(crtc_state))
continue;
if (!crtc_state->enable) {
any_ms = true;
continue;
}
ret = intel_modeset_pipe_config(crtc, pipe_config);
if (ret == -EDEADLK)
return ret;
if (ret) {
intel_dump_pipe_config(to_intel_crtc(crtc),
pipe_config, "[failed]");
return ret;
}
if (intel_pipe_config_compare(dev_priv,
to_intel_crtc_state(old_crtc_state),
pipe_config, true)) {
crtc_state->mode_changed = false;
pipe_config->update_pipe = true;
}
if (needs_modeset(crtc_state))
any_ms = true;
intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
needs_modeset(crtc_state) ?
"[modeset]" : "[fastset]");
}
ret = drm_dp_mst_atomic_check(state);
if (ret)
return ret;
if (any_ms) {
ret = intel_modeset_checks(state);
if (ret)
return ret;
} else {
intel_state->cdclk.logical = dev_priv->cdclk.logical;
}
ret = icl_add_linked_planes(intel_state);
if (ret)
return ret;
ret = drm_atomic_helper_check_planes(dev, state);
if (ret)
return ret;
intel_fbc_choose_crtc(dev_priv, intel_state);
return calc_watermark_data(intel_state);
}
static int intel_atomic_prepare_commit(struct drm_device *dev,
struct drm_atomic_state *state)
{
return drm_atomic_helper_prepare_planes(dev, state);
}
u32 intel_crtc_get_vblank_counter(struct intel_crtc *crtc)
{
struct drm_device *dev = crtc->base.dev;
struct drm_vblank_crtc *vblank = &dev->vblank[drm_crtc_index(&crtc->base)];
if (!vblank->max_vblank_count)
return (u32)drm_crtc_accurate_vblank_count(&crtc->base);
return dev->driver->get_vblank_counter(dev, crtc->pipe);
}
static void intel_update_crtc(struct drm_crtc *crtc,
struct drm_atomic_state *state,
struct drm_crtc_state *old_crtc_state,
struct drm_crtc_state *new_crtc_state)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct intel_crtc_state *pipe_config = to_intel_crtc_state(new_crtc_state);
bool modeset = needs_modeset(new_crtc_state);
struct intel_plane_state *new_plane_state =
intel_atomic_get_new_plane_state(to_intel_atomic_state(state),
to_intel_plane(crtc->primary));
if (modeset) {
update_scanline_offset(pipe_config);
dev_priv->display.crtc_enable(pipe_config, state);
/* vblanks work again, re-enable pipe CRC. */
intel_crtc_enable_pipe_crc(intel_crtc);
} else {
intel_pre_plane_update(to_intel_crtc_state(old_crtc_state),
pipe_config);
if (pipe_config->update_pipe)
intel_encoders_update_pipe(crtc, pipe_config, state);
}
if (pipe_config->update_pipe && !pipe_config->enable_fbc)
intel_fbc_disable(intel_crtc);
else if (new_plane_state)
intel_fbc_enable(intel_crtc, pipe_config, new_plane_state);
intel_begin_crtc_commit(to_intel_atomic_state(state), intel_crtc);
if (INTEL_GEN(dev_priv) >= 9)
skl_update_planes_on_crtc(to_intel_atomic_state(state), intel_crtc);
else
i9xx_update_planes_on_crtc(to_intel_atomic_state(state), intel_crtc);
intel_finish_crtc_commit(to_intel_atomic_state(state), intel_crtc);
}
static void intel_update_crtcs(struct drm_atomic_state *state)
{
struct drm_crtc *crtc;
struct drm_crtc_state *old_crtc_state, *new_crtc_state;
int i;
for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
if (!new_crtc_state->active)
continue;
intel_update_crtc(crtc, state, old_crtc_state,
new_crtc_state);
}
}
static void skl_update_crtcs(struct drm_atomic_state *state)
{
struct drm_i915_private *dev_priv = to_i915(state->dev);
struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
struct drm_crtc *crtc;
struct intel_crtc *intel_crtc;
struct drm_crtc_state *old_crtc_state, *new_crtc_state;
struct intel_crtc_state *cstate;
unsigned int updated = 0;
bool progress;
enum pipe pipe;
int i;
u8 hw_enabled_slices = dev_priv->wm.skl_hw.ddb.enabled_slices;
u8 required_slices = intel_state->wm_results.ddb.enabled_slices;
struct skl_ddb_entry entries[I915_MAX_PIPES] = {};
for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i)
/* ignore allocations for crtc's that have been turned off. */
if (new_crtc_state->active)
entries[i] = to_intel_crtc_state(old_crtc_state)->wm.skl.ddb;
/* If 2nd DBuf slice required, enable it here */
if (INTEL_GEN(dev_priv) >= 11 && required_slices > hw_enabled_slices)
icl_dbuf_slices_update(dev_priv, required_slices);
/*
* Whenever the number of active pipes changes, we need to make sure we
* update the pipes in the right order so that their ddb allocations
* never overlap with eachother inbetween CRTC updates. Otherwise we'll
* cause pipe underruns and other bad stuff.
*/
do {
progress = false;
for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
bool vbl_wait = false;
unsigned int cmask = drm_crtc_mask(crtc);
intel_crtc = to_intel_crtc(crtc);
cstate = to_intel_crtc_state(new_crtc_state);
pipe = intel_crtc->pipe;
if (updated & cmask || !cstate->base.active)
continue;
if (skl_ddb_allocation_overlaps(&cstate->wm.skl.ddb,
entries,
INTEL_INFO(dev_priv)->num_pipes, i))
continue;
updated |= cmask;
entries[i] = cstate->wm.skl.ddb;
/*
* If this is an already active pipe, it's DDB changed,
* and this isn't the last pipe that needs updating
* then we need to wait for a vblank to pass for the
* new ddb allocation to take effect.
*/
if (!skl_ddb_entry_equal(&cstate->wm.skl.ddb,
&to_intel_crtc_state(old_crtc_state)->wm.skl.ddb) &&
!new_crtc_state->active_changed &&
intel_state->wm_results.dirty_pipes != updated)
vbl_wait = true;
intel_update_crtc(crtc, state, old_crtc_state,
new_crtc_state);
if (vbl_wait)
intel_wait_for_vblank(dev_priv, pipe);
progress = true;
}
} while (progress);
/* If 2nd DBuf slice is no more required disable it */
if (INTEL_GEN(dev_priv) >= 11 && required_slices < hw_enabled_slices)
icl_dbuf_slices_update(dev_priv, required_slices);
}
static void intel_atomic_helper_free_state(struct drm_i915_private *dev_priv)
{
struct intel_atomic_state *state, *next;
struct llist_node *freed;
freed = llist_del_all(&dev_priv->atomic_helper.free_list);
llist_for_each_entry_safe(state, next, freed, freed)
drm_atomic_state_put(&state->base);
}
static void intel_atomic_helper_free_state_worker(struct work_struct *work)
{
struct drm_i915_private *dev_priv =
container_of(work, typeof(*dev_priv), atomic_helper.free_work);
intel_atomic_helper_free_state(dev_priv);
}
static void intel_atomic_commit_fence_wait(struct intel_atomic_state *intel_state)
{
struct wait_queue_entry wait_fence, wait_reset;
struct drm_i915_private *dev_priv = to_i915(intel_state->base.dev);
init_wait_entry(&wait_fence, 0);
init_wait_entry(&wait_reset, 0);
for (;;) {
prepare_to_wait(&intel_state->commit_ready.wait,
&wait_fence, TASK_UNINTERRUPTIBLE);
prepare_to_wait(&dev_priv->gpu_error.wait_queue,
&wait_reset, TASK_UNINTERRUPTIBLE);
if (i915_sw_fence_done(&intel_state->commit_ready)
|| test_bit(I915_RESET_MODESET, &dev_priv->gpu_error.flags))
break;
schedule();
}
finish_wait(&intel_state->commit_ready.wait, &wait_fence);
finish_wait(&dev_priv->gpu_error.wait_queue, &wait_reset);
}
static void intel_atomic_cleanup_work(struct work_struct *work)
{
struct drm_atomic_state *state =
container_of(work, struct drm_atomic_state, commit_work);
struct drm_i915_private *i915 = to_i915(state->dev);
drm_atomic_helper_cleanup_planes(&i915->drm, state);
drm_atomic_helper_commit_cleanup_done(state);
drm_atomic_state_put(state);
intel_atomic_helper_free_state(i915);
}
static void intel_atomic_commit_tail(struct drm_atomic_state *state)
{
struct drm_device *dev = state->dev;
struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
struct drm_i915_private *dev_priv = to_i915(dev);
struct drm_crtc_state *old_crtc_state, *new_crtc_state;
struct intel_crtc_state *new_intel_crtc_state, *old_intel_crtc_state;
struct drm_crtc *crtc;
struct intel_crtc *intel_crtc;
u64 put_domains[I915_MAX_PIPES] = {};
intel_wakeref_t wakeref = 0;
int i;
intel_atomic_commit_fence_wait(intel_state);
drm_atomic_helper_wait_for_dependencies(state);
if (intel_state->modeset)
wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_MODESET);
for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
old_intel_crtc_state = to_intel_crtc_state(old_crtc_state);
new_intel_crtc_state = to_intel_crtc_state(new_crtc_state);
intel_crtc = to_intel_crtc(crtc);
if (needs_modeset(new_crtc_state) ||
to_intel_crtc_state(new_crtc_state)->update_pipe) {
put_domains[intel_crtc->pipe] =
modeset_get_crtc_power_domains(crtc,
new_intel_crtc_state);
}
if (!needs_modeset(new_crtc_state))
continue;
intel_pre_plane_update(old_intel_crtc_state, new_intel_crtc_state);
if (old_crtc_state->active) {
intel_crtc_disable_planes(intel_state, intel_crtc);
/*
* We need to disable pipe CRC before disabling the pipe,
* or we race against vblank off.
*/
intel_crtc_disable_pipe_crc(intel_crtc);
dev_priv->display.crtc_disable(old_intel_crtc_state, state);
intel_crtc->active = false;
intel_fbc_disable(intel_crtc);
intel_disable_shared_dpll(old_intel_crtc_state);
/*
* Underruns don't always raise
* interrupts, so check manually.
*/
intel_check_cpu_fifo_underruns(dev_priv);
intel_check_pch_fifo_underruns(dev_priv);
/* FIXME unify this for all platforms */
if (!new_crtc_state->active &&
!HAS_GMCH(dev_priv) &&
dev_priv->display.initial_watermarks)
dev_priv->display.initial_watermarks(intel_state,
new_intel_crtc_state);
}
}
/* FIXME: Eventually get rid of our intel_crtc->config pointer */
for_each_new_crtc_in_state(state, crtc, new_crtc_state, i)
to_intel_crtc(crtc)->config = to_intel_crtc_state(new_crtc_state);
if (intel_state->modeset) {
drm_atomic_helper_update_legacy_modeset_state(state->dev, state);
intel_set_cdclk_pre_plane_update(dev_priv,
&intel_state->cdclk.actual,
&dev_priv->cdclk.actual,
intel_state->cdclk.pipe);
/*
* SKL workaround: bspec recommends we disable the SAGV when we
* have more then one pipe enabled
*/
if (!intel_can_enable_sagv(state))
intel_disable_sagv(dev_priv);
intel_modeset_verify_disabled(dev, state);
}
/* Complete the events for pipes that have now been disabled */
for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
bool modeset = needs_modeset(new_crtc_state);
/* Complete events for now disable pipes here. */
if (modeset && !new_crtc_state->active && new_crtc_state->event) {
spin_lock_irq(&dev->event_lock);
drm_crtc_send_vblank_event(crtc, new_crtc_state->event);
spin_unlock_irq(&dev->event_lock);
new_crtc_state->event = NULL;
}
}
/* Now enable the clocks, plane, pipe, and connectors that we set up. */
dev_priv->display.update_crtcs(state);
if (intel_state->modeset)
intel_set_cdclk_post_plane_update(dev_priv,
&intel_state->cdclk.actual,
&dev_priv->cdclk.actual,
intel_state->cdclk.pipe);
/* FIXME: We should call drm_atomic_helper_commit_hw_done() here
* already, but still need the state for the delayed optimization. To
* fix this:
* - wrap the optimization/post_plane_update stuff into a per-crtc work.
* - schedule that vblank worker _before_ calling hw_done
* - at the start of commit_tail, cancel it _synchrously
* - switch over to the vblank wait helper in the core after that since
* we don't need out special handling any more.
*/
drm_atomic_helper_wait_for_flip_done(dev, state);
for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
new_intel_crtc_state = to_intel_crtc_state(new_crtc_state);
if (new_crtc_state->active &&
!needs_modeset(new_crtc_state) &&
(new_intel_crtc_state->base.color_mgmt_changed ||
new_intel_crtc_state->update_pipe))
intel_color_load_luts(new_intel_crtc_state);
}
/*
* Now that the vblank has passed, we can go ahead and program the
* optimal watermarks on platforms that need two-step watermark
* programming.
*
* TODO: Move this (and other cleanup) to an async worker eventually.
*/
for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
new_intel_crtc_state = to_intel_crtc_state(new_crtc_state);
if (dev_priv->display.optimize_watermarks)
dev_priv->display.optimize_watermarks(intel_state,
new_intel_crtc_state);
}
for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
intel_post_plane_update(to_intel_crtc_state(old_crtc_state));
if (put_domains[i])
modeset_put_power_domains(dev_priv, put_domains[i]);
intel_modeset_verify_crtc(crtc, state, old_crtc_state, new_crtc_state);
}
if (intel_state->modeset)
intel_verify_planes(intel_state);
if (intel_state->modeset && intel_can_enable_sagv(state))
intel_enable_sagv(dev_priv);
drm_atomic_helper_commit_hw_done(state);
if (intel_state->modeset) {
/* As one of the primary mmio accessors, KMS has a high
* likelihood of triggering bugs in unclaimed access. After we
* finish modesetting, see if an error has been flagged, and if
* so enable debugging for the next modeset - and hope we catch
* the culprit.
*/
intel_uncore_arm_unclaimed_mmio_detection(&dev_priv->uncore);
intel_display_power_put(dev_priv, POWER_DOMAIN_MODESET, wakeref);
}
/*
* Defer the cleanup of the old state to a separate worker to not
* impede the current task (userspace for blocking modesets) that
* are executed inline. For out-of-line asynchronous modesets/flips,
* deferring to a new worker seems overkill, but we would place a
* schedule point (cond_resched()) here anyway to keep latencies
* down.
*/
INIT_WORK(&state->commit_work, intel_atomic_cleanup_work);
queue_work(system_highpri_wq, &state->commit_work);
}
static void intel_atomic_commit_work(struct work_struct *work)
{
struct drm_atomic_state *state =
container_of(work, struct drm_atomic_state, commit_work);
intel_atomic_commit_tail(state);
}
static int __i915_sw_fence_call
intel_atomic_commit_ready(struct i915_sw_fence *fence,
enum i915_sw_fence_notify notify)
{
struct intel_atomic_state *state =
container_of(fence, struct intel_atomic_state, commit_ready);
switch (notify) {
case FENCE_COMPLETE:
/* we do blocking waits in the worker, nothing to do here */
break;
case FENCE_FREE:
{
struct intel_atomic_helper *helper =
&to_i915(state->base.dev)->atomic_helper;
if (llist_add(&state->freed, &helper->free_list))
schedule_work(&helper->free_work);
break;
}
}
return NOTIFY_DONE;
}
static void intel_atomic_track_fbs(struct drm_atomic_state *state)
{
struct drm_plane_state *old_plane_state, *new_plane_state;
struct drm_plane *plane;
int i;
for_each_oldnew_plane_in_state(state, plane, old_plane_state, new_plane_state, i)
i915_gem_track_fb(intel_fb_obj(old_plane_state->fb),
intel_fb_obj(new_plane_state->fb),
to_intel_plane(plane)->frontbuffer_bit);
}
/**
* intel_atomic_commit - commit validated state object
* @dev: DRM device
* @state: the top-level driver state object
* @nonblock: nonblocking commit
*
* This function commits a top-level state object that has been validated
* with drm_atomic_helper_check().
*
* RETURNS
* Zero for success or -errno.
*/
static int intel_atomic_commit(struct drm_device *dev,
struct drm_atomic_state *state,
bool nonblock)
{
struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
struct drm_i915_private *dev_priv = to_i915(dev);
int ret = 0;
drm_atomic_state_get(state);
i915_sw_fence_init(&intel_state->commit_ready,
intel_atomic_commit_ready);
/*
* The intel_legacy_cursor_update() fast path takes care
* of avoiding the vblank waits for simple cursor
* movement and flips. For cursor on/off and size changes,
* we want to perform the vblank waits so that watermark
* updates happen during the correct frames. Gen9+ have
* double buffered watermarks and so shouldn't need this.
*
* Unset state->legacy_cursor_update before the call to
* drm_atomic_helper_setup_commit() because otherwise
* drm_atomic_helper_wait_for_flip_done() is a noop and
* we get FIFO underruns because we didn't wait
* for vblank.
*
* FIXME doing watermarks and fb cleanup from a vblank worker
* (assuming we had any) would solve these problems.
*/
if (INTEL_GEN(dev_priv) < 9 && state->legacy_cursor_update) {
struct intel_crtc_state *new_crtc_state;
struct intel_crtc *crtc;
int i;
for_each_new_intel_crtc_in_state(intel_state, crtc, new_crtc_state, i)
if (new_crtc_state->wm.need_postvbl_update ||
new_crtc_state->update_wm_post)
state->legacy_cursor_update = false;
}
ret = intel_atomic_prepare_commit(dev, state);
if (ret) {
DRM_DEBUG_ATOMIC("Preparing state failed with %i\n", ret);
i915_sw_fence_commit(&intel_state->commit_ready);
return ret;
}
ret = drm_atomic_helper_setup_commit(state, nonblock);
if (!ret)
ret = drm_atomic_helper_swap_state(state, true);
if (ret) {
i915_sw_fence_commit(&intel_state->commit_ready);
drm_atomic_helper_cleanup_planes(dev, state);
return ret;
}
dev_priv->wm.distrust_bios_wm = false;
intel_shared_dpll_swap_state(state);
intel_atomic_track_fbs(state);
if (intel_state->modeset) {
memcpy(dev_priv->min_cdclk, intel_state->min_cdclk,
sizeof(intel_state->min_cdclk));
memcpy(dev_priv->min_voltage_level,
intel_state->min_voltage_level,
sizeof(intel_state->min_voltage_level));
dev_priv->active_crtcs = intel_state->active_crtcs;
dev_priv->cdclk.force_min_cdclk =
intel_state->cdclk.force_min_cdclk;
intel_cdclk_swap_state(intel_state);
}
drm_atomic_state_get(state);
INIT_WORK(&state->commit_work, intel_atomic_commit_work);
i915_sw_fence_commit(&intel_state->commit_ready);
if (nonblock && intel_state->modeset) {
queue_work(dev_priv->modeset_wq, &state->commit_work);
} else if (nonblock) {
queue_work(system_unbound_wq, &state->commit_work);
} else {
if (intel_state->modeset)
flush_workqueue(dev_priv->modeset_wq);
intel_atomic_commit_tail(state);
}
return 0;
}
static const struct drm_crtc_funcs intel_crtc_funcs = {
.gamma_set = drm_atomic_helper_legacy_gamma_set,
.set_config = drm_atomic_helper_set_config,
.destroy = intel_crtc_destroy,
.page_flip = drm_atomic_helper_page_flip,
.atomic_duplicate_state = intel_crtc_duplicate_state,
.atomic_destroy_state = intel_crtc_destroy_state,
.set_crc_source = intel_crtc_set_crc_source,
.verify_crc_source = intel_crtc_verify_crc_source,
.get_crc_sources = intel_crtc_get_crc_sources,
};
struct wait_rps_boost {
struct wait_queue_entry wait;
struct drm_crtc *crtc;
struct i915_request *request;
};
static int do_rps_boost(struct wait_queue_entry *_wait,
unsigned mode, int sync, void *key)
{
struct wait_rps_boost *wait = container_of(_wait, typeof(*wait), wait);
struct i915_request *rq = wait->request;
/*
* If we missed the vblank, but the request is already running it
* is reasonable to assume that it will complete before the next
* vblank without our intervention, so leave RPS alone.
*/
if (!i915_request_started(rq))
gen6_rps_boost(rq);
i915_request_put(rq);
drm_crtc_vblank_put(wait->crtc);
list_del(&wait->wait.entry);
kfree(wait);
return 1;
}
static void add_rps_boost_after_vblank(struct drm_crtc *crtc,
struct dma_fence *fence)
{
struct wait_rps_boost *wait;
if (!dma_fence_is_i915(fence))
return;
if (INTEL_GEN(to_i915(crtc->dev)) < 6)
return;
if (drm_crtc_vblank_get(crtc))
return;
wait = kmalloc(sizeof(*wait), GFP_KERNEL);
if (!wait) {
drm_crtc_vblank_put(crtc);
return;
}
wait->request = to_request(dma_fence_get(fence));
wait->crtc = crtc;
wait->wait.func = do_rps_boost;
wait->wait.flags = 0;
add_wait_queue(drm_crtc_vblank_waitqueue(crtc), &wait->wait);
}
static int intel_plane_pin_fb(struct intel_plane_state *plane_state)
{
struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
struct drm_framebuffer *fb = plane_state->base.fb;
struct i915_vma *vma;
if (plane->id == PLANE_CURSOR &&
INTEL_INFO(dev_priv)->display.cursor_needs_physical) {
struct drm_i915_gem_object *obj = intel_fb_obj(fb);
const int align = intel_cursor_alignment(dev_priv);
int err;
err = i915_gem_object_attach_phys(obj, align);
if (err)
return err;
}
vma = intel_pin_and_fence_fb_obj(fb,
&plane_state->view,
intel_plane_uses_fence(plane_state),
&plane_state->flags);
if (IS_ERR(vma))
return PTR_ERR(vma);
plane_state->vma = vma;
return 0;
}
static void intel_plane_unpin_fb(struct intel_plane_state *old_plane_state)
{
struct i915_vma *vma;
vma = fetch_and_zero(&old_plane_state->vma);
if (vma)
intel_unpin_fb_vma(vma, old_plane_state->flags);
}
static void fb_obj_bump_render_priority(struct drm_i915_gem_object *obj)
{
struct i915_sched_attr attr = {
.priority = I915_PRIORITY_DISPLAY,
};
i915_gem_object_wait_priority(obj, 0, &attr);
}
/**
* intel_prepare_plane_fb - Prepare fb for usage on plane
* @plane: drm plane to prepare for
* @new_state: the plane state being prepared
*
* Prepares a framebuffer for usage on a display plane. Generally this
* involves pinning the underlying object and updating the frontbuffer tracking
* bits. Some older platforms need special physical address handling for
* cursor planes.
*
* Must be called with struct_mutex held.
*
* Returns 0 on success, negative error code on failure.
*/
int
intel_prepare_plane_fb(struct drm_plane *plane,
struct drm_plane_state *new_state)
{
struct intel_atomic_state *intel_state =
to_intel_atomic_state(new_state->state);
struct drm_i915_private *dev_priv = to_i915(plane->dev);
struct drm_framebuffer *fb = new_state->fb;
struct drm_i915_gem_object *obj = intel_fb_obj(fb);
struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->state->fb);
int ret;
if (old_obj) {
struct drm_crtc_state *crtc_state =
drm_atomic_get_new_crtc_state(new_state->state,
plane->state->crtc);
/* Big Hammer, we also need to ensure that any pending
* MI_WAIT_FOR_EVENT inside a user batch buffer on the
* current scanout is retired before unpinning the old
* framebuffer. Note that we rely on userspace rendering
* into the buffer attached to the pipe they are waiting
* on. If not, userspace generates a GPU hang with IPEHR
* point to the MI_WAIT_FOR_EVENT.
*
* This should only fail upon a hung GPU, in which case we
* can safely continue.
*/
if (needs_modeset(crtc_state)) {
ret = i915_sw_fence_await_reservation(&intel_state->commit_ready,
old_obj->resv, NULL,
false, 0,
GFP_KERNEL);
if (ret < 0)
return ret;
}
}
if (new_state->fence) { /* explicit fencing */
ret = i915_sw_fence_await_dma_fence(&intel_state->commit_ready,
new_state->fence,
I915_FENCE_TIMEOUT,
GFP_KERNEL);
if (ret < 0)
return ret;
}
if (!obj)
return 0;
ret = i915_gem_object_pin_pages(obj);
if (ret)
return ret;
ret = mutex_lock_interruptible(&dev_priv->drm.struct_mutex);
if (ret) {
i915_gem_object_unpin_pages(obj);
return ret;
}
ret = intel_plane_pin_fb(to_intel_plane_state(new_state));
mutex_unlock(&dev_priv->drm.struct_mutex);
i915_gem_object_unpin_pages(obj);
if (ret)
return ret;
fb_obj_bump_render_priority(obj);
intel_fb_obj_flush(obj, ORIGIN_DIRTYFB);
if (!new_state->fence) { /* implicit fencing */
struct dma_fence *fence;
ret = i915_sw_fence_await_reservation(&intel_state->commit_ready,
obj->resv, NULL,
false, I915_FENCE_TIMEOUT,
GFP_KERNEL);
if (ret < 0)
return ret;
fence = reservation_object_get_excl_rcu(obj->resv);
if (fence) {
add_rps_boost_after_vblank(new_state->crtc, fence);
dma_fence_put(fence);
}
} else {
add_rps_boost_after_vblank(new_state->crtc, new_state->fence);
}
/*
* We declare pageflips to be interactive and so merit a small bias
* towards upclocking to deliver the frame on time. By only changing
* the RPS thresholds to sample more regularly and aim for higher
* clocks we can hopefully deliver low power workloads (like kodi)
* that are not quite steady state without resorting to forcing
* maximum clocks following a vblank miss (see do_rps_boost()).
*/
if (!intel_state->rps_interactive) {
intel_rps_mark_interactive(dev_priv, true);
intel_state->rps_interactive = true;
}
return 0;
}
/**
* intel_cleanup_plane_fb - Cleans up an fb after plane use
* @plane: drm plane to clean up for
* @old_state: the state from the previous modeset
*
* Cleans up a framebuffer that has just been removed from a plane.
*
* Must be called with struct_mutex held.
*/
void
intel_cleanup_plane_fb(struct drm_plane *plane,
struct drm_plane_state *old_state)
{
struct intel_atomic_state *intel_state =
to_intel_atomic_state(old_state->state);
struct drm_i915_private *dev_priv = to_i915(plane->dev);
if (intel_state->rps_interactive) {
intel_rps_mark_interactive(dev_priv, false);
intel_state->rps_interactive = false;
}
/* Should only be called after a successful intel_prepare_plane_fb()! */
mutex_lock(&dev_priv->drm.struct_mutex);
intel_plane_unpin_fb(to_intel_plane_state(old_state));
mutex_unlock(&dev_priv->drm.struct_mutex);
}
int
skl_max_scale(const struct intel_crtc_state *crtc_state,
u32 pixel_format)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
int max_scale, mult;
int crtc_clock, max_dotclk, tmpclk1, tmpclk2;
if (!crtc_state->base.enable)
return DRM_PLANE_HELPER_NO_SCALING;
crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
max_dotclk = to_intel_atomic_state(crtc_state->base.state)->cdclk.logical.cdclk;
if (IS_GEMINILAKE(dev_priv) || INTEL_GEN(dev_priv) >= 10)
max_dotclk *= 2;
if (WARN_ON_ONCE(!crtc_clock || max_dotclk < crtc_clock))
return DRM_PLANE_HELPER_NO_SCALING;
/*
* skl max scale is lower of:
* close to 3 but not 3, -1 is for that purpose
* or
* cdclk/crtc_clock
*/
mult = is_planar_yuv_format(pixel_format) ? 2 : 3;
tmpclk1 = (1 << 16) * mult - 1;
tmpclk2 = (1 << 8) * ((max_dotclk << 8) / crtc_clock);
max_scale = min(tmpclk1, tmpclk2);
return max_scale;
}
static void intel_begin_crtc_commit(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
struct intel_crtc_state *old_crtc_state =
intel_atomic_get_old_crtc_state(state, crtc);
struct intel_crtc_state *new_crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
bool modeset = needs_modeset(&new_crtc_state->base);
/* Perform vblank evasion around commit operation */
intel_pipe_update_start(new_crtc_state);
if (modeset)
goto out;
if (new_crtc_state->base.color_mgmt_changed ||
new_crtc_state->update_pipe)
intel_color_commit(new_crtc_state);
if (new_crtc_state->update_pipe)
intel_update_pipe_config(old_crtc_state, new_crtc_state);
else if (INTEL_GEN(dev_priv) >= 9)
skl_detach_scalers(new_crtc_state);
if (INTEL_GEN(dev_priv) >= 9 || IS_BROADWELL(dev_priv))
bdw_set_pipemisc(new_crtc_state);
out:
if (dev_priv->display.atomic_update_watermarks)
dev_priv->display.atomic_update_watermarks(state,
new_crtc_state);
}
void intel_crtc_arm_fifo_underrun(struct intel_crtc *crtc,
struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
if (!IS_GEN(dev_priv, 2))
intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true);
if (crtc_state->has_pch_encoder) {
enum pipe pch_transcoder =
intel_crtc_pch_transcoder(crtc);
intel_set_pch_fifo_underrun_reporting(dev_priv, pch_transcoder, true);
}
}
static void intel_finish_crtc_commit(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct intel_crtc_state *old_crtc_state =
intel_atomic_get_old_crtc_state(state, crtc);
struct intel_crtc_state *new_crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
intel_pipe_update_end(new_crtc_state);
if (new_crtc_state->update_pipe &&
!needs_modeset(&new_crtc_state->base) &&
old_crtc_state->base.mode.private_flags & I915_MODE_FLAG_INHERITED)
intel_crtc_arm_fifo_underrun(crtc, new_crtc_state);
}
/**
* intel_plane_destroy - destroy a plane
* @plane: plane to destroy
*
* Common destruction function for all types of planes (primary, cursor,
* sprite).
*/
void intel_plane_destroy(struct drm_plane *plane)
{
drm_plane_cleanup(plane);
kfree(to_intel_plane(plane));
}
static bool i8xx_plane_format_mod_supported(struct drm_plane *_plane,
u32 format, u64 modifier)
{
switch (modifier) {
case DRM_FORMAT_MOD_LINEAR:
case I915_FORMAT_MOD_X_TILED:
break;
default:
return false;
}
switch (format) {
case DRM_FORMAT_C8:
case DRM_FORMAT_RGB565:
case DRM_FORMAT_XRGB1555:
case DRM_FORMAT_XRGB8888:
return modifier == DRM_FORMAT_MOD_LINEAR ||
modifier == I915_FORMAT_MOD_X_TILED;
default:
return false;
}
}
static bool i965_plane_format_mod_supported(struct drm_plane *_plane,
u32 format, u64 modifier)
{
switch (modifier) {
case DRM_FORMAT_MOD_LINEAR:
case I915_FORMAT_MOD_X_TILED:
break;
default:
return false;
}
switch (format) {
case DRM_FORMAT_C8:
case DRM_FORMAT_RGB565:
case DRM_FORMAT_XRGB8888:
case DRM_FORMAT_XBGR8888:
case DRM_FORMAT_XRGB2101010:
case DRM_FORMAT_XBGR2101010:
return modifier == DRM_FORMAT_MOD_LINEAR ||
modifier == I915_FORMAT_MOD_X_TILED;
default:
return false;
}
}
static bool intel_cursor_format_mod_supported(struct drm_plane *_plane,
u32 format, u64 modifier)
{
return modifier == DRM_FORMAT_MOD_LINEAR &&
format == DRM_FORMAT_ARGB8888;
}
static const struct drm_plane_funcs i965_plane_funcs = {
.update_plane = drm_atomic_helper_update_plane,
.disable_plane = drm_atomic_helper_disable_plane,
.destroy = intel_plane_destroy,
.atomic_get_property = intel_plane_atomic_get_property,
.atomic_set_property = intel_plane_atomic_set_property,
.atomic_duplicate_state = intel_plane_duplicate_state,
.atomic_destroy_state = intel_plane_destroy_state,
.format_mod_supported = i965_plane_format_mod_supported,
};
static const struct drm_plane_funcs i8xx_plane_funcs = {
.update_plane = drm_atomic_helper_update_plane,
.disable_plane = drm_atomic_helper_disable_plane,
.destroy = intel_plane_destroy,
.atomic_get_property = intel_plane_atomic_get_property,
.atomic_set_property = intel_plane_atomic_set_property,
.atomic_duplicate_state = intel_plane_duplicate_state,
.atomic_destroy_state = intel_plane_destroy_state,
.format_mod_supported = i8xx_plane_format_mod_supported,
};
static int
intel_legacy_cursor_update(struct drm_plane *plane,
struct drm_crtc *crtc,
struct drm_framebuffer *fb,
int crtc_x, int crtc_y,
unsigned int crtc_w, unsigned int crtc_h,
u32 src_x, u32 src_y,
u32 src_w, u32 src_h,
struct drm_modeset_acquire_ctx *ctx)
{
struct drm_i915_private *dev_priv = to_i915(crtc->dev);
int ret;
struct drm_plane_state *old_plane_state, *new_plane_state;
struct intel_plane *intel_plane = to_intel_plane(plane);
struct drm_framebuffer *old_fb;
struct intel_crtc_state *crtc_state =
to_intel_crtc_state(crtc->state);
struct intel_crtc_state *new_crtc_state;
/*
* When crtc is inactive or there is a modeset pending,
* wait for it to complete in the slowpath
*/
if (!crtc_state->base.active || needs_modeset(&crtc_state->base) ||
crtc_state->update_pipe)
goto slow;
old_plane_state = plane->state;
/*
* Don't do an async update if there is an outstanding commit modifying
* the plane. This prevents our async update's changes from getting
* overridden by a previous synchronous update's state.
*/
if (old_plane_state->commit &&
!try_wait_for_completion(&old_plane_state->commit->hw_done))
goto slow;
/*
* If any parameters change that may affect watermarks,
* take the slowpath. Only changing fb or position should be
* in the fastpath.
*/
if (old_plane_state->crtc != crtc ||
old_plane_state->src_w != src_w ||
old_plane_state->src_h != src_h ||
old_plane_state->crtc_w != crtc_w ||
old_plane_state->crtc_h != crtc_h ||
!old_plane_state->fb != !fb)
goto slow;
new_plane_state = intel_plane_duplicate_state(plane);
if (!new_plane_state)
return -ENOMEM;
new_crtc_state = to_intel_crtc_state(intel_crtc_duplicate_state(crtc));
if (!new_crtc_state) {
ret = -ENOMEM;
goto out_free;
}
drm_atomic_set_fb_for_plane(new_plane_state, fb);
new_plane_state->src_x = src_x;
new_plane_state->src_y = src_y;
new_plane_state->src_w = src_w;
new_plane_state->src_h = src_h;
new_plane_state->crtc_x = crtc_x;
new_plane_state->crtc_y = crtc_y;
new_plane_state->crtc_w = crtc_w;
new_plane_state->crtc_h = crtc_h;
ret = intel_plane_atomic_check_with_state(crtc_state, new_crtc_state,
to_intel_plane_state(old_plane_state),
to_intel_plane_state(new_plane_state));
if (ret)
goto out_free;
ret = mutex_lock_interruptible(&dev_priv->drm.struct_mutex);
if (ret)
goto out_free;
ret = intel_plane_pin_fb(to_intel_plane_state(new_plane_state));
if (ret)
goto out_unlock;
intel_fb_obj_flush(intel_fb_obj(fb), ORIGIN_FLIP);
old_fb = old_plane_state->fb;
i915_gem_track_fb(intel_fb_obj(old_fb), intel_fb_obj(fb),
intel_plane->frontbuffer_bit);
/* Swap plane state */
plane->state = new_plane_state;
/*
* We cannot swap crtc_state as it may be in use by an atomic commit or
* page flip that's running simultaneously. If we swap crtc_state and
* destroy the old state, we will cause a use-after-free there.
*
* Only update active_planes, which is needed for our internal
* bookkeeping. Either value will do the right thing when updating
* planes atomically. If the cursor was part of the atomic update then
* we would have taken the slowpath.
*/
crtc_state->active_planes = new_crtc_state->active_planes;
if (plane->state->visible)
intel_update_plane(intel_plane, crtc_state,
to_intel_plane_state(plane->state));
else
intel_disable_plane(intel_plane, crtc_state);
intel_plane_unpin_fb(to_intel_plane_state(old_plane_state));
out_unlock:
mutex_unlock(&dev_priv->drm.struct_mutex);
out_free:
if (new_crtc_state)
intel_crtc_destroy_state(crtc, &new_crtc_state->base);
if (ret)
intel_plane_destroy_state(plane, new_plane_state);
else
intel_plane_destroy_state(plane, old_plane_state);
return ret;
slow:
return drm_atomic_helper_update_plane(plane, crtc, fb,
crtc_x, crtc_y, crtc_w, crtc_h,
src_x, src_y, src_w, src_h, ctx);
}
static const struct drm_plane_funcs intel_cursor_plane_funcs = {
.update_plane = intel_legacy_cursor_update,
.disable_plane = drm_atomic_helper_disable_plane,
.destroy = intel_plane_destroy,
.atomic_get_property = intel_plane_atomic_get_property,
.atomic_set_property = intel_plane_atomic_set_property,
.atomic_duplicate_state = intel_plane_duplicate_state,
.atomic_destroy_state = intel_plane_destroy_state,
.format_mod_supported = intel_cursor_format_mod_supported,
};
static bool i9xx_plane_has_fbc(struct drm_i915_private *dev_priv,
enum i9xx_plane_id i9xx_plane)
{
if (!HAS_FBC(dev_priv))
return false;
if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
return i9xx_plane == PLANE_A; /* tied to pipe A */
else if (IS_IVYBRIDGE(dev_priv))
return i9xx_plane == PLANE_A || i9xx_plane == PLANE_B ||
i9xx_plane == PLANE_C;
else if (INTEL_GEN(dev_priv) >= 4)
return i9xx_plane == PLANE_A || i9xx_plane == PLANE_B;
else
return i9xx_plane == PLANE_A;
}
static struct intel_plane *
intel_primary_plane_create(struct drm_i915_private *dev_priv, enum pipe pipe)
{
struct intel_plane *plane;
const struct drm_plane_funcs *plane_funcs;
unsigned int supported_rotations;
unsigned int possible_crtcs;
const u64 *modifiers;
const u32 *formats;
int num_formats;
int ret;
if (INTEL_GEN(dev_priv) >= 9)
return skl_universal_plane_create(dev_priv, pipe,
PLANE_PRIMARY);
plane = intel_plane_alloc();
if (IS_ERR(plane))
return plane;
plane->pipe = pipe;
/*
* On gen2/3 only plane A can do FBC, but the panel fitter and LVDS
* port is hooked to pipe B. Hence we want plane A feeding pipe B.
*/
if (HAS_FBC(dev_priv) && INTEL_GEN(dev_priv) < 4)
plane->i9xx_plane = (enum i9xx_plane_id) !pipe;
else
plane->i9xx_plane = (enum i9xx_plane_id) pipe;
plane->id = PLANE_PRIMARY;
plane->frontbuffer_bit = INTEL_FRONTBUFFER(pipe, plane->id);
plane->has_fbc = i9xx_plane_has_fbc(dev_priv, plane->i9xx_plane);
if (plane->has_fbc) {
struct intel_fbc *fbc = &dev_priv->fbc;
fbc->possible_framebuffer_bits |= plane->frontbuffer_bit;
}
if (INTEL_GEN(dev_priv) >= 4) {
formats = i965_primary_formats;
num_formats = ARRAY_SIZE(i965_primary_formats);
modifiers = i9xx_format_modifiers;
plane->max_stride = i9xx_plane_max_stride;
plane->update_plane = i9xx_update_plane;
plane->disable_plane = i9xx_disable_plane;
plane->get_hw_state = i9xx_plane_get_hw_state;
plane->check_plane = i9xx_plane_check;
plane_funcs = &i965_plane_funcs;
} else {
formats = i8xx_primary_formats;
num_formats = ARRAY_SIZE(i8xx_primary_formats);
modifiers = i9xx_format_modifiers;
plane->max_stride = i9xx_plane_max_stride;
plane->update_plane = i9xx_update_plane;
plane->disable_plane = i9xx_disable_plane;
plane->get_hw_state = i9xx_plane_get_hw_state;
plane->check_plane = i9xx_plane_check;
plane_funcs = &i8xx_plane_funcs;
}
possible_crtcs = BIT(pipe);
if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
ret = drm_universal_plane_init(&dev_priv->drm, &plane->base,
possible_crtcs, plane_funcs,
formats, num_formats, modifiers,
DRM_PLANE_TYPE_PRIMARY,
"primary %c", pipe_name(pipe));
else
ret = drm_universal_plane_init(&dev_priv->drm, &plane->base,
possible_crtcs, plane_funcs,
formats, num_formats, modifiers,
DRM_PLANE_TYPE_PRIMARY,
"plane %c",
plane_name(plane->i9xx_plane));
if (ret)
goto fail;
if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B) {
supported_rotations =
DRM_MODE_ROTATE_0 | DRM_MODE_ROTATE_180 |
DRM_MODE_REFLECT_X;
} else if (INTEL_GEN(dev_priv) >= 4) {
supported_rotations =
DRM_MODE_ROTATE_0 | DRM_MODE_ROTATE_180;
} else {
supported_rotations = DRM_MODE_ROTATE_0;
}
if (INTEL_GEN(dev_priv) >= 4)
drm_plane_create_rotation_property(&plane->base,
DRM_MODE_ROTATE_0,
supported_rotations);
drm_plane_helper_add(&plane->base, &intel_plane_helper_funcs);
return plane;
fail:
intel_plane_free(plane);
return ERR_PTR(ret);
}
static struct intel_plane *
intel_cursor_plane_create(struct drm_i915_private *dev_priv,
enum pipe pipe)
{
unsigned int possible_crtcs;
struct intel_plane *cursor;
int ret;
cursor = intel_plane_alloc();
if (IS_ERR(cursor))
return cursor;
cursor->pipe = pipe;
cursor->i9xx_plane = (enum i9xx_plane_id) pipe;
cursor->id = PLANE_CURSOR;
cursor->frontbuffer_bit = INTEL_FRONTBUFFER(pipe, cursor->id);
if (IS_I845G(dev_priv) || IS_I865G(dev_priv)) {
cursor->max_stride = i845_cursor_max_stride;
cursor->update_plane = i845_update_cursor;
cursor->disable_plane = i845_disable_cursor;
cursor->get_hw_state = i845_cursor_get_hw_state;
cursor->check_plane = i845_check_cursor;
} else {
cursor->max_stride = i9xx_cursor_max_stride;
cursor->update_plane = i9xx_update_cursor;
cursor->disable_plane = i9xx_disable_cursor;
cursor->get_hw_state = i9xx_cursor_get_hw_state;
cursor->check_plane = i9xx_check_cursor;
}
cursor->cursor.base = ~0;
cursor->cursor.cntl = ~0;
if (IS_I845G(dev_priv) || IS_I865G(dev_priv) || HAS_CUR_FBC(dev_priv))
cursor->cursor.size = ~0;
possible_crtcs = BIT(pipe);
ret = drm_universal_plane_init(&dev_priv->drm, &cursor->base,
possible_crtcs, &intel_cursor_plane_funcs,
intel_cursor_formats,
ARRAY_SIZE(intel_cursor_formats),
cursor_format_modifiers,
DRM_PLANE_TYPE_CURSOR,
"cursor %c", pipe_name(pipe));
if (ret)
goto fail;
if (INTEL_GEN(dev_priv) >= 4)
drm_plane_create_rotation_property(&cursor->base,
DRM_MODE_ROTATE_0,
DRM_MODE_ROTATE_0 |
DRM_MODE_ROTATE_180);
drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
return cursor;
fail:
intel_plane_free(cursor);
return ERR_PTR(ret);
}
static void intel_crtc_init_scalers(struct intel_crtc *crtc,
struct intel_crtc_state *crtc_state)
{
struct intel_crtc_scaler_state *scaler_state =
&crtc_state->scaler_state;
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
int i;
crtc->num_scalers = RUNTIME_INFO(dev_priv)->num_scalers[crtc->pipe];
if (!crtc->num_scalers)
return;
for (i = 0; i < crtc->num_scalers; i++) {
struct intel_scaler *scaler = &scaler_state->scalers[i];
scaler->in_use = 0;
scaler->mode = 0;
}
scaler_state->scaler_id = -1;
}
static int intel_crtc_init(struct drm_i915_private *dev_priv, enum pipe pipe)
{
struct intel_crtc *intel_crtc;
struct intel_crtc_state *crtc_state = NULL;
struct intel_plane *primary = NULL;
struct intel_plane *cursor = NULL;
int sprite, ret;
intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
if (!intel_crtc)
return -ENOMEM;
crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
if (!crtc_state) {
ret = -ENOMEM;
goto fail;
}
intel_crtc->config = crtc_state;
intel_crtc->base.state = &crtc_state->base;
crtc_state->base.crtc = &intel_crtc->base;
primary = intel_primary_plane_create(dev_priv, pipe);
if (IS_ERR(primary)) {
ret = PTR_ERR(primary);
goto fail;
}
intel_crtc->plane_ids_mask |= BIT(primary->id);
for_each_sprite(dev_priv, pipe, sprite) {
struct intel_plane *plane;
plane = intel_sprite_plane_create(dev_priv, pipe, sprite);
if (IS_ERR(plane)) {
ret = PTR_ERR(plane);
goto fail;
}
intel_crtc->plane_ids_mask |= BIT(plane->id);
}
cursor = intel_cursor_plane_create(dev_priv, pipe);
if (IS_ERR(cursor)) {
ret = PTR_ERR(cursor);
goto fail;
}
intel_crtc->plane_ids_mask |= BIT(cursor->id);
ret = drm_crtc_init_with_planes(&dev_priv->drm, &intel_crtc->base,
&primary->base, &cursor->base,
&intel_crtc_funcs,
"pipe %c", pipe_name(pipe));
if (ret)
goto fail;
intel_crtc->pipe = pipe;
/* initialize shared scalers */
intel_crtc_init_scalers(intel_crtc, crtc_state);
BUG_ON(pipe >= ARRAY_SIZE(dev_priv->pipe_to_crtc_mapping) ||
dev_priv->pipe_to_crtc_mapping[pipe] != NULL);
dev_priv->pipe_to_crtc_mapping[pipe] = intel_crtc;
if (INTEL_GEN(dev_priv) < 9) {
enum i9xx_plane_id i9xx_plane = primary->i9xx_plane;
BUG_ON(i9xx_plane >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
dev_priv->plane_to_crtc_mapping[i9xx_plane] != NULL);
dev_priv->plane_to_crtc_mapping[i9xx_plane] = intel_crtc;
}
drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
intel_color_init(intel_crtc);
WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
return 0;
fail:
/*
* drm_mode_config_cleanup() will free up any
* crtcs/planes already initialized.
*/
kfree(crtc_state);
kfree(intel_crtc);
return ret;
}
int intel_get_pipe_from_crtc_id_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
struct drm_crtc *drmmode_crtc;
struct intel_crtc *crtc;
drmmode_crtc = drm_crtc_find(dev, file, pipe_from_crtc_id->crtc_id);
if (!drmmode_crtc)
return -ENOENT;
crtc = to_intel_crtc(drmmode_crtc);
pipe_from_crtc_id->pipe = crtc->pipe;
return 0;
}
static int intel_encoder_clones(struct intel_encoder *encoder)
{
struct drm_device *dev = encoder->base.dev;
struct intel_encoder *source_encoder;
int index_mask = 0;
int entry = 0;
for_each_intel_encoder(dev, source_encoder) {
if (encoders_cloneable(encoder, source_encoder))
index_mask |= (1 << entry);
entry++;
}
return index_mask;
}
static bool ilk_has_edp_a(struct drm_i915_private *dev_priv)
{
if (!IS_MOBILE(dev_priv))
return false;
if ((I915_READ(DP_A) & DP_DETECTED) == 0)
return false;
if (IS_GEN(dev_priv, 5) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
return false;
return true;
}
static bool intel_ddi_crt_present(struct drm_i915_private *dev_priv)
{
if (INTEL_GEN(dev_priv) >= 9)
return false;
if (IS_HSW_ULT(dev_priv) || IS_BDW_ULT(dev_priv))
return false;
if (HAS_PCH_LPT_H(dev_priv) &&
I915_READ(SFUSE_STRAP) & SFUSE_STRAP_CRT_DISABLED)
return false;
/* DDI E can't be used if DDI A requires 4 lanes */
if (I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)
return false;
if (!dev_priv->vbt.int_crt_support)
return false;
return true;
}
void intel_pps_unlock_regs_wa(struct drm_i915_private *dev_priv)
{
int pps_num;
int pps_idx;
if (HAS_DDI(dev_priv))
return;
/*
* This w/a is needed at least on CPT/PPT, but to be sure apply it
* everywhere where registers can be write protected.
*/
if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
pps_num = 2;
else
pps_num = 1;
for (pps_idx = 0; pps_idx < pps_num; pps_idx++) {
u32 val = I915_READ(PP_CONTROL(pps_idx));
val = (val & ~PANEL_UNLOCK_MASK) | PANEL_UNLOCK_REGS;
I915_WRITE(PP_CONTROL(pps_idx), val);
}
}
static void intel_pps_init(struct drm_i915_private *dev_priv)
{
if (HAS_PCH_SPLIT(dev_priv) || IS_GEN9_LP(dev_priv))
dev_priv->pps_mmio_base = PCH_PPS_BASE;
else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
dev_priv->pps_mmio_base = VLV_PPS_BASE;
else
dev_priv->pps_mmio_base = PPS_BASE;
intel_pps_unlock_regs_wa(dev_priv);
}
static void intel_setup_outputs(struct drm_i915_private *dev_priv)
{
struct intel_encoder *encoder;
bool dpd_is_edp = false;
intel_pps_init(dev_priv);
if (!HAS_DISPLAY(dev_priv))
return;
if (IS_ELKHARTLAKE(dev_priv)) {
intel_ddi_init(dev_priv, PORT_A);
intel_ddi_init(dev_priv, PORT_B);
intel_ddi_init(dev_priv, PORT_C);
icl_dsi_init(dev_priv);
} else if (INTEL_GEN(dev_priv) >= 11) {
intel_ddi_init(dev_priv, PORT_A);
intel_ddi_init(dev_priv, PORT_B);
intel_ddi_init(dev_priv, PORT_C);
intel_ddi_init(dev_priv, PORT_D);
intel_ddi_init(dev_priv, PORT_E);
/*
* On some ICL SKUs port F is not present. No strap bits for
* this, so rely on VBT.
* Work around broken VBTs on SKUs known to have no port F.
*/
if (IS_ICL_WITH_PORT_F(dev_priv) &&
intel_bios_is_port_present(dev_priv, PORT_F))
intel_ddi_init(dev_priv, PORT_F);
icl_dsi_init(dev_priv);
} else if (IS_GEN9_LP(dev_priv)) {
/*
* FIXME: Broxton doesn't support port detection via the
* DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
* detect the ports.
*/
intel_ddi_init(dev_priv, PORT_A);
intel_ddi_init(dev_priv, PORT_B);
intel_ddi_init(dev_priv, PORT_C);
vlv_dsi_init(dev_priv);
} else if (HAS_DDI(dev_priv)) {
int found;
if (intel_ddi_crt_present(dev_priv))
intel_crt_init(dev_priv);
/*
* Haswell uses DDI functions to detect digital outputs.
* On SKL pre-D0 the strap isn't connected, so we assume
* it's there.
*/
found = I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED;
/* WaIgnoreDDIAStrap: skl */
if (found || IS_GEN9_BC(dev_priv))
intel_ddi_init(dev_priv, PORT_A);
/* DDI B, C, D, and F detection is indicated by the SFUSE_STRAP
* register */
found = I915_READ(SFUSE_STRAP);
if (found & SFUSE_STRAP_DDIB_DETECTED)
intel_ddi_init(dev_priv, PORT_B);
if (found & SFUSE_STRAP_DDIC_DETECTED)
intel_ddi_init(dev_priv, PORT_C);
if (found & SFUSE_STRAP_DDID_DETECTED)
intel_ddi_init(dev_priv, PORT_D);
if (found & SFUSE_STRAP_DDIF_DETECTED)
intel_ddi_init(dev_priv, PORT_F);
/*
* On SKL we don't have a way to detect DDI-E so we rely on VBT.
*/
if (IS_GEN9_BC(dev_priv) &&
intel_bios_is_port_present(dev_priv, PORT_E))
intel_ddi_init(dev_priv, PORT_E);
} else if (HAS_PCH_SPLIT(dev_priv)) {
int found;
/*
* intel_edp_init_connector() depends on this completing first,
* to prevent the registration of both eDP and LVDS and the
* incorrect sharing of the PPS.
*/
intel_lvds_init(dev_priv);
intel_crt_init(dev_priv);
dpd_is_edp = intel_dp_is_port_edp(dev_priv, PORT_D);
if (ilk_has_edp_a(dev_priv))
intel_dp_init(dev_priv, DP_A, PORT_A);
if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
/* PCH SDVOB multiplex with HDMIB */
found = intel_sdvo_init(dev_priv, PCH_SDVOB, PORT_B);
if (!found)
intel_hdmi_init(dev_priv, PCH_HDMIB, PORT_B);
if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
intel_dp_init(dev_priv, PCH_DP_B, PORT_B);
}
if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
intel_hdmi_init(dev_priv, PCH_HDMIC, PORT_C);
if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
intel_hdmi_init(dev_priv, PCH_HDMID, PORT_D);
if (I915_READ(PCH_DP_C) & DP_DETECTED)
intel_dp_init(dev_priv, PCH_DP_C, PORT_C);
if (I915_READ(PCH_DP_D) & DP_DETECTED)
intel_dp_init(dev_priv, PCH_DP_D, PORT_D);
} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
bool has_edp, has_port;
if (IS_VALLEYVIEW(dev_priv) && dev_priv->vbt.int_crt_support)
intel_crt_init(dev_priv);
/*
* The DP_DETECTED bit is the latched state of the DDC
* SDA pin at boot. However since eDP doesn't require DDC
* (no way to plug in a DP->HDMI dongle) the DDC pins for
* eDP ports may have been muxed to an alternate function.
* Thus we can't rely on the DP_DETECTED bit alone to detect
* eDP ports. Consult the VBT as well as DP_DETECTED to
* detect eDP ports.
*
* Sadly the straps seem to be missing sometimes even for HDMI
* ports (eg. on Voyo V3 - CHT x7-Z8700), so check both strap
* and VBT for the presence of the port. Additionally we can't
* trust the port type the VBT declares as we've seen at least
* HDMI ports that the VBT claim are DP or eDP.
*/
has_edp = intel_dp_is_port_edp(dev_priv, PORT_B);
has_port = intel_bios_is_port_present(dev_priv, PORT_B);
if (I915_READ(VLV_DP_B) & DP_DETECTED || has_port)
has_edp &= intel_dp_init(dev_priv, VLV_DP_B, PORT_B);
if ((I915_READ(VLV_HDMIB) & SDVO_DETECTED || has_port) && !has_edp)
intel_hdmi_init(dev_priv, VLV_HDMIB, PORT_B);
has_edp = intel_dp_is_port_edp(dev_priv, PORT_C);
has_port = intel_bios_is_port_present(dev_priv, PORT_C);
if (I915_READ(VLV_DP_C) & DP_DETECTED || has_port)
has_edp &= intel_dp_init(dev_priv, VLV_DP_C, PORT_C);
if ((I915_READ(VLV_HDMIC) & SDVO_DETECTED || has_port) && !has_edp)
intel_hdmi_init(dev_priv, VLV_HDMIC, PORT_C);
if (IS_CHERRYVIEW(dev_priv)) {
/*
* eDP not supported on port D,
* so no need to worry about it
*/
has_port = intel_bios_is_port_present(dev_priv, PORT_D);
if (I915_READ(CHV_DP_D) & DP_DETECTED || has_port)
intel_dp_init(dev_priv, CHV_DP_D, PORT_D);
if (I915_READ(CHV_HDMID) & SDVO_DETECTED || has_port)
intel_hdmi_init(dev_priv, CHV_HDMID, PORT_D);
}
vlv_dsi_init(dev_priv);
} else if (IS_PINEVIEW(dev_priv)) {
intel_lvds_init(dev_priv);
intel_crt_init(dev_priv);
} else if (IS_GEN_RANGE(dev_priv, 3, 4)) {
bool found = false;
if (IS_MOBILE(dev_priv))
intel_lvds_init(dev_priv);
intel_crt_init(dev_priv);
if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
DRM_DEBUG_KMS("probing SDVOB\n");
found = intel_sdvo_init(dev_priv, GEN3_SDVOB, PORT_B);
if (!found && IS_G4X(dev_priv)) {
DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
intel_hdmi_init(dev_priv, GEN4_HDMIB, PORT_B);
}
if (!found && IS_G4X(dev_priv))
intel_dp_init(dev_priv, DP_B, PORT_B);
}
/* Before G4X SDVOC doesn't have its own detect register */
if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
DRM_DEBUG_KMS("probing SDVOC\n");
found = intel_sdvo_init(dev_priv, GEN3_SDVOC, PORT_C);
}
if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
if (IS_G4X(dev_priv)) {
DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
intel_hdmi_init(dev_priv, GEN4_HDMIC, PORT_C);
}
if (IS_G4X(dev_priv))
intel_dp_init(dev_priv, DP_C, PORT_C);
}
if (IS_G4X(dev_priv) && (I915_READ(DP_D) & DP_DETECTED))
intel_dp_init(dev_priv, DP_D, PORT_D);
if (SUPPORTS_TV(dev_priv))
intel_tv_init(dev_priv);
} else if (IS_GEN(dev_priv, 2)) {
if (IS_I85X(dev_priv))
intel_lvds_init(dev_priv);
intel_crt_init(dev_priv);
intel_dvo_init(dev_priv);
}
intel_psr_init(dev_priv);
for_each_intel_encoder(&dev_priv->drm, encoder) {
encoder->base.possible_crtcs = encoder->crtc_mask;
encoder->base.possible_clones =
intel_encoder_clones(encoder);
}
intel_init_pch_refclk(dev_priv);
drm_helper_move_panel_connectors_to_head(&dev_priv->drm);
}
static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
{
struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
struct drm_i915_gem_object *obj = intel_fb_obj(fb);
drm_framebuffer_cleanup(fb);
i915_gem_object_lock(obj);
WARN_ON(!obj->framebuffer_references--);
i915_gem_object_unlock(obj);
i915_gem_object_put(obj);
kfree(intel_fb);
}
static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
struct drm_file *file,
unsigned int *handle)
{
struct drm_i915_gem_object *obj = intel_fb_obj(fb);
if (obj->userptr.mm) {
DRM_DEBUG("attempting to use a userptr for a framebuffer, denied\n");
return -EINVAL;
}
return drm_gem_handle_create(file, &obj->base, handle);
}
static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb,
struct drm_file *file,
unsigned flags, unsigned color,
struct drm_clip_rect *clips,
unsigned num_clips)
{
struct drm_i915_gem_object *obj = intel_fb_obj(fb);
i915_gem_object_flush_if_display(obj);
intel_fb_obj_flush(obj, ORIGIN_DIRTYFB);
return 0;
}
static const struct drm_framebuffer_funcs intel_fb_funcs = {
.destroy = intel_user_framebuffer_destroy,
.create_handle = intel_user_framebuffer_create_handle,
.dirty = intel_user_framebuffer_dirty,
};
static
u32 intel_fb_pitch_limit(struct drm_i915_private *dev_priv,
u32 pixel_format, u64 fb_modifier)
{
struct intel_crtc *crtc;
struct intel_plane *plane;
/*
* We assume the primary plane for pipe A has
* the highest stride limits of them all.
*/
crtc = intel_get_crtc_for_pipe(dev_priv, PIPE_A);
plane = to_intel_plane(crtc->base.primary);
return plane->max_stride(plane, pixel_format, fb_modifier,
DRM_MODE_ROTATE_0);
}
static int intel_framebuffer_init(struct intel_framebuffer *intel_fb,
struct drm_i915_gem_object *obj,
struct drm_mode_fb_cmd2 *mode_cmd)
{
struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
struct drm_framebuffer *fb = &intel_fb->base;
u32 pitch_limit;
unsigned int tiling, stride;
int ret = -EINVAL;
int i;
i915_gem_object_lock(obj);
obj->framebuffer_references++;
tiling = i915_gem_object_get_tiling(obj);
stride = i915_gem_object_get_stride(obj);
i915_gem_object_unlock(obj);
if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
/*
* If there's a fence, enforce that
* the fb modifier and tiling mode match.
*/
if (tiling != I915_TILING_NONE &&
tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) {
DRM_DEBUG_KMS("tiling_mode doesn't match fb modifier\n");
goto err;
}
} else {
if (tiling == I915_TILING_X) {
mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
} else if (tiling == I915_TILING_Y) {
DRM_DEBUG_KMS("No Y tiling for legacy addfb\n");
goto err;
}
}
if (!drm_any_plane_has_format(&dev_priv->drm,
mode_cmd->pixel_format,
mode_cmd->modifier[0])) {
struct drm_format_name_buf format_name;
DRM_DEBUG_KMS("unsupported pixel format %s / modifier 0x%llx\n",
drm_get_format_name(mode_cmd->pixel_format,
&format_name),
mode_cmd->modifier[0]);
goto err;
}
/*
* gen2/3 display engine uses the fence if present,
* so the tiling mode must match the fb modifier exactly.
*/
if (INTEL_GEN(dev_priv) < 4 &&
tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) {
DRM_DEBUG_KMS("tiling_mode must match fb modifier exactly on gen2/3\n");
goto err;
}
pitch_limit = intel_fb_pitch_limit(dev_priv, mode_cmd->pixel_format,
mode_cmd->modifier[0]);
if (mode_cmd->pitches[0] > pitch_limit) {
DRM_DEBUG_KMS("%s pitch (%u) must be at most %d\n",
mode_cmd->modifier[0] != DRM_FORMAT_MOD_LINEAR ?
"tiled" : "linear",
mode_cmd->pitches[0], pitch_limit);
goto err;
}
/*
* If there's a fence, enforce that
* the fb pitch and fence stride match.
*/
if (tiling != I915_TILING_NONE && mode_cmd->pitches[0] != stride) {
DRM_DEBUG_KMS("pitch (%d) must match tiling stride (%d)\n",
mode_cmd->pitches[0], stride);
goto err;
}
/* FIXME need to adjust LINOFF/TILEOFF accordingly. */
if (mode_cmd->offsets[0] != 0)
goto err;
drm_helper_mode_fill_fb_struct(&dev_priv->drm, fb, mode_cmd);
for (i = 0; i < fb->format->num_planes; i++) {
u32 stride_alignment;
if (mode_cmd->handles[i] != mode_cmd->handles[0]) {
DRM_DEBUG_KMS("bad plane %d handle\n", i);
goto err;
}
stride_alignment = intel_fb_stride_alignment(fb, i);
/*
* Display WA #0531: skl,bxt,kbl,glk
*
* Render decompression and plane width > 3840
* combined with horizontal panning requires the
* plane stride to be a multiple of 4. We'll just
* require the entire fb to accommodate that to avoid
* potential runtime errors at plane configuration time.
*/
if (IS_GEN(dev_priv, 9) && i == 0 && fb->width > 3840 &&
is_ccs_modifier(fb->modifier))
stride_alignment *= 4;
if (fb->pitches[i] & (stride_alignment - 1)) {
DRM_DEBUG_KMS("plane %d pitch (%d) must be at least %u byte aligned\n",
i, fb->pitches[i], stride_alignment);
goto err;
}
fb->obj[i] = &obj->base;
}
ret = intel_fill_fb_info(dev_priv, fb);
if (ret)
goto err;
ret = drm_framebuffer_init(&dev_priv->drm, fb, &intel_fb_funcs);
if (ret) {
DRM_ERROR("framebuffer init failed %d\n", ret);
goto err;
}
return 0;
err:
i915_gem_object_lock(obj);
obj->framebuffer_references--;
i915_gem_object_unlock(obj);
return ret;
}
static struct drm_framebuffer *
intel_user_framebuffer_create(struct drm_device *dev,
struct drm_file *filp,
const struct drm_mode_fb_cmd2 *user_mode_cmd)
{
struct drm_framebuffer *fb;
struct drm_i915_gem_object *obj;
struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd;
obj = i915_gem_object_lookup(filp, mode_cmd.handles[0]);
if (!obj)
return ERR_PTR(-ENOENT);
fb = intel_framebuffer_create(obj, &mode_cmd);
if (IS_ERR(fb))
i915_gem_object_put(obj);
return fb;
}
static void intel_atomic_state_free(struct drm_atomic_state *state)
{
struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
drm_atomic_state_default_release(state);
i915_sw_fence_fini(&intel_state->commit_ready);
kfree(state);
}
static enum drm_mode_status
intel_mode_valid(struct drm_device *dev,
const struct drm_display_mode *mode)
{
struct drm_i915_private *dev_priv = to_i915(dev);
int hdisplay_max, htotal_max;
int vdisplay_max, vtotal_max;
/*
* Can't reject DBLSCAN here because Xorg ddxen can add piles
* of DBLSCAN modes to the output's mode list when they detect
* the scaling mode property on the connector. And they don't
* ask the kernel to validate those modes in any way until
* modeset time at which point the client gets a protocol error.
* So in order to not upset those clients we silently ignore the
* DBLSCAN flag on such connectors. For other connectors we will
* reject modes with the DBLSCAN flag in encoder->compute_config().
* And we always reject DBLSCAN modes in connector->mode_valid()
* as we never want such modes on the connector's mode list.
*/
if (mode->vscan > 1)
return MODE_NO_VSCAN;
if (mode->flags & DRM_MODE_FLAG_HSKEW)
return MODE_H_ILLEGAL;
if (mode->flags & (DRM_MODE_FLAG_CSYNC |
DRM_MODE_FLAG_NCSYNC |
DRM_MODE_FLAG_PCSYNC))
return MODE_HSYNC;
if (mode->flags & (DRM_MODE_FLAG_BCAST |
DRM_MODE_FLAG_PIXMUX |
DRM_MODE_FLAG_CLKDIV2))
return MODE_BAD;
if (INTEL_GEN(dev_priv) >= 9 ||
IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) {
hdisplay_max = 8192; /* FDI max 4096 handled elsewhere */
vdisplay_max = 4096;
htotal_max = 8192;
vtotal_max = 8192;
} else if (INTEL_GEN(dev_priv) >= 3) {
hdisplay_max = 4096;
vdisplay_max = 4096;
htotal_max = 8192;
vtotal_max = 8192;
} else {
hdisplay_max = 2048;
vdisplay_max = 2048;
htotal_max = 4096;
vtotal_max = 4096;
}
if (mode->hdisplay > hdisplay_max ||
mode->hsync_start > htotal_max ||
mode->hsync_end > htotal_max ||
mode->htotal > htotal_max)
return MODE_H_ILLEGAL;
if (mode->vdisplay > vdisplay_max ||
mode->vsync_start > vtotal_max ||
mode->vsync_end > vtotal_max ||
mode->vtotal > vtotal_max)
return MODE_V_ILLEGAL;
return MODE_OK;
}
static const struct drm_mode_config_funcs intel_mode_funcs = {
.fb_create = intel_user_framebuffer_create,
.get_format_info = intel_get_format_info,
.output_poll_changed = intel_fbdev_output_poll_changed,
.mode_valid = intel_mode_valid,
.atomic_check = intel_atomic_check,
.atomic_commit = intel_atomic_commit,
.atomic_state_alloc = intel_atomic_state_alloc,
.atomic_state_clear = intel_atomic_state_clear,
.atomic_state_free = intel_atomic_state_free,
};
/**
* intel_init_display_hooks - initialize the display modesetting hooks
* @dev_priv: device private
*/
void intel_init_display_hooks(struct drm_i915_private *dev_priv)
{
intel_init_cdclk_hooks(dev_priv);
if (INTEL_GEN(dev_priv) >= 9) {
dev_priv->display.get_pipe_config = haswell_get_pipe_config;
dev_priv->display.get_initial_plane_config =
skylake_get_initial_plane_config;
dev_priv->display.crtc_compute_clock =
haswell_crtc_compute_clock;
dev_priv->display.crtc_enable = haswell_crtc_enable;
dev_priv->display.crtc_disable = haswell_crtc_disable;
} else if (HAS_DDI(dev_priv)) {
dev_priv->display.get_pipe_config = haswell_get_pipe_config;
dev_priv->display.get_initial_plane_config =
i9xx_get_initial_plane_config;
dev_priv->display.crtc_compute_clock =
haswell_crtc_compute_clock;
dev_priv->display.crtc_enable = haswell_crtc_enable;
dev_priv->display.crtc_disable = haswell_crtc_disable;
} else if (HAS_PCH_SPLIT(dev_priv)) {
dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
dev_priv->display.get_initial_plane_config =
i9xx_get_initial_plane_config;
dev_priv->display.crtc_compute_clock =
ironlake_crtc_compute_clock;
dev_priv->display.crtc_enable = ironlake_crtc_enable;
dev_priv->display.crtc_disable = ironlake_crtc_disable;
} else if (IS_CHERRYVIEW(dev_priv)) {
dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
dev_priv->display.get_initial_plane_config =
i9xx_get_initial_plane_config;
dev_priv->display.crtc_compute_clock = chv_crtc_compute_clock;
dev_priv->display.crtc_enable = valleyview_crtc_enable;
dev_priv->display.crtc_disable = i9xx_crtc_disable;
} else if (IS_VALLEYVIEW(dev_priv)) {
dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
dev_priv->display.get_initial_plane_config =
i9xx_get_initial_plane_config;
dev_priv->display.crtc_compute_clock = vlv_crtc_compute_clock;
dev_priv->display.crtc_enable = valleyview_crtc_enable;
dev_priv->display.crtc_disable = i9xx_crtc_disable;
} else if (IS_G4X(dev_priv)) {
dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
dev_priv->display.get_initial_plane_config =
i9xx_get_initial_plane_config;
dev_priv->display.crtc_compute_clock = g4x_crtc_compute_clock;
dev_priv->display.crtc_enable = i9xx_crtc_enable;
dev_priv->display.crtc_disable = i9xx_crtc_disable;
} else if (IS_PINEVIEW(dev_priv)) {
dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
dev_priv->display.get_initial_plane_config =
i9xx_get_initial_plane_config;
dev_priv->display.crtc_compute_clock = pnv_crtc_compute_clock;
dev_priv->display.crtc_enable = i9xx_crtc_enable;
dev_priv->display.crtc_disable = i9xx_crtc_disable;
} else if (!IS_GEN(dev_priv, 2)) {
dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
dev_priv->display.get_initial_plane_config =
i9xx_get_initial_plane_config;
dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
dev_priv->display.crtc_enable = i9xx_crtc_enable;
dev_priv->display.crtc_disable = i9xx_crtc_disable;
} else {
dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
dev_priv->display.get_initial_plane_config =
i9xx_get_initial_plane_config;
dev_priv->display.crtc_compute_clock = i8xx_crtc_compute_clock;
dev_priv->display.crtc_enable = i9xx_crtc_enable;
dev_priv->display.crtc_disable = i9xx_crtc_disable;
}
if (IS_GEN(dev_priv, 5)) {
dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
} else if (IS_GEN(dev_priv, 6)) {
dev_priv->display.fdi_link_train = gen6_fdi_link_train;
} else if (IS_IVYBRIDGE(dev_priv)) {
/* FIXME: detect B0+ stepping and use auto training */
dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
} else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
dev_priv->display.fdi_link_train = hsw_fdi_link_train;
}
if (INTEL_GEN(dev_priv) >= 9)
dev_priv->display.update_crtcs = skl_update_crtcs;
else
dev_priv->display.update_crtcs = intel_update_crtcs;
}
static i915_reg_t i915_vgacntrl_reg(struct drm_i915_private *dev_priv)
{
if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
return VLV_VGACNTRL;
else if (INTEL_GEN(dev_priv) >= 5)
return CPU_VGACNTRL;
else
return VGACNTRL;
}
/* Disable the VGA plane that we never use */
static void i915_disable_vga(struct drm_i915_private *dev_priv)
{
struct pci_dev *pdev = dev_priv->drm.pdev;
u8 sr1;
i915_reg_t vga_reg = i915_vgacntrl_reg(dev_priv);
/* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
vga_get_uninterruptible(pdev, VGA_RSRC_LEGACY_IO);
outb(SR01, VGA_SR_INDEX);
sr1 = inb(VGA_SR_DATA);
outb(sr1 | 1<<5, VGA_SR_DATA);
vga_put(pdev, VGA_RSRC_LEGACY_IO);
udelay(300);
I915_WRITE(vga_reg, VGA_DISP_DISABLE);
POSTING_READ(vga_reg);
}
void intel_modeset_init_hw(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = to_i915(dev);
intel_update_cdclk(dev_priv);
intel_dump_cdclk_state(&dev_priv->cdclk.hw, "Current CDCLK");
dev_priv->cdclk.logical = dev_priv->cdclk.actual = dev_priv->cdclk.hw;
}
/*
* Calculate what we think the watermarks should be for the state we've read
* out of the hardware and then immediately program those watermarks so that
* we ensure the hardware settings match our internal state.
*
* We can calculate what we think WM's should be by creating a duplicate of the
* current state (which was constructed during hardware readout) and running it
* through the atomic check code to calculate new watermark values in the
* state object.
*/
static void sanitize_watermarks(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = to_i915(dev);
struct drm_atomic_state *state;
struct intel_atomic_state *intel_state;
struct drm_crtc *crtc;
struct drm_crtc_state *cstate;
struct drm_modeset_acquire_ctx ctx;
int ret;
int i;
/* Only supported on platforms that use atomic watermark design */
if (!dev_priv->display.optimize_watermarks)
return;
/*
* We need to hold connection_mutex before calling duplicate_state so
* that the connector loop is protected.
*/
drm_modeset_acquire_init(&ctx, 0);
retry:
ret = drm_modeset_lock_all_ctx(dev, &ctx);
if (ret == -EDEADLK) {
drm_modeset_backoff(&ctx);
goto retry;
} else if (WARN_ON(ret)) {
goto fail;
}
state = drm_atomic_helper_duplicate_state(dev, &ctx);
if (WARN_ON(IS_ERR(state)))
goto fail;
intel_state = to_intel_atomic_state(state);
/*
* Hardware readout is the only time we don't want to calculate
* intermediate watermarks (since we don't trust the current
* watermarks).
*/
if (!HAS_GMCH(dev_priv))
intel_state->skip_intermediate_wm = true;
ret = intel_atomic_check(dev, state);
if (ret) {
/*
* If we fail here, it means that the hardware appears to be
* programmed in a way that shouldn't be possible, given our
* understanding of watermark requirements. This might mean a
* mistake in the hardware readout code or a mistake in the
* watermark calculations for a given platform. Raise a WARN
* so that this is noticeable.
*
* If this actually happens, we'll have to just leave the
* BIOS-programmed watermarks untouched and hope for the best.
*/
WARN(true, "Could not determine valid watermarks for inherited state\n");
goto put_state;
}
/* Write calculated watermark values back */
for_each_new_crtc_in_state(state, crtc, cstate, i) {
struct intel_crtc_state *cs = to_intel_crtc_state(cstate);
cs->wm.need_postvbl_update = true;
dev_priv->display.optimize_watermarks(intel_state, cs);
to_intel_crtc_state(crtc->state)->wm = cs->wm;
}
put_state:
drm_atomic_state_put(state);
fail:
drm_modeset_drop_locks(&ctx);
drm_modeset_acquire_fini(&ctx);
}
static void intel_update_fdi_pll_freq(struct drm_i915_private *dev_priv)
{
if (IS_GEN(dev_priv, 5)) {
u32 fdi_pll_clk =
I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK;
dev_priv->fdi_pll_freq = (fdi_pll_clk + 2) * 10000;
} else if (IS_GEN(dev_priv, 6) || IS_IVYBRIDGE(dev_priv)) {
dev_priv->fdi_pll_freq = 270000;
} else {
return;
}
DRM_DEBUG_DRIVER("FDI PLL freq=%d\n", dev_priv->fdi_pll_freq);
}
static int intel_initial_commit(struct drm_device *dev)
{
struct drm_atomic_state *state = NULL;
struct drm_modeset_acquire_ctx ctx;
struct drm_crtc *crtc;
struct drm_crtc_state *crtc_state;
int ret = 0;
state = drm_atomic_state_alloc(dev);
if (!state)
return -ENOMEM;
drm_modeset_acquire_init(&ctx, 0);
retry:
state->acquire_ctx = &ctx;
drm_for_each_crtc(crtc, dev) {
crtc_state = drm_atomic_get_crtc_state(state, crtc);
if (IS_ERR(crtc_state)) {
ret = PTR_ERR(crtc_state);
goto out;
}
if (crtc_state->active) {
ret = drm_atomic_add_affected_planes(state, crtc);
if (ret)
goto out;
/*
* FIXME hack to force a LUT update to avoid the
* plane update forcing the pipe gamma on without
* having a proper LUT loaded. Remove once we
* have readout for pipe gamma enable.
*/
crtc_state->color_mgmt_changed = true;
}
}
ret = drm_atomic_commit(state);
out:
if (ret == -EDEADLK) {
drm_atomic_state_clear(state);
drm_modeset_backoff(&ctx);
goto retry;
}
drm_atomic_state_put(state);
drm_modeset_drop_locks(&ctx);
drm_modeset_acquire_fini(&ctx);
return ret;
}
int intel_modeset_init(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = to_i915(dev);
struct i915_ggtt *ggtt = &dev_priv->ggtt;
enum pipe pipe;
struct intel_crtc *crtc;
int ret;
dev_priv->modeset_wq = alloc_ordered_workqueue("i915_modeset", 0);
drm_mode_config_init(dev);
dev->mode_config.min_width = 0;
dev->mode_config.min_height = 0;
dev->mode_config.preferred_depth = 24;
dev->mode_config.prefer_shadow = 1;
dev->mode_config.allow_fb_modifiers = true;
dev->mode_config.funcs = &intel_mode_funcs;
init_llist_head(&dev_priv->atomic_helper.free_list);
INIT_WORK(&dev_priv->atomic_helper.free_work,
intel_atomic_helper_free_state_worker);
intel_init_quirks(dev_priv);
intel_fbc_init(dev_priv);
intel_init_pm(dev_priv);
/*
* There may be no VBT; and if the BIOS enabled SSC we can
* just keep using it to avoid unnecessary flicker. Whereas if the
* BIOS isn't using it, don't assume it will work even if the VBT
* indicates as much.
*/
if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
bool bios_lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
DREF_SSC1_ENABLE);
if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) {
DRM_DEBUG_KMS("SSC %sabled by BIOS, overriding VBT which says %sabled\n",
bios_lvds_use_ssc ? "en" : "dis",
dev_priv->vbt.lvds_use_ssc ? "en" : "dis");
dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc;
}
}
/* maximum framebuffer dimensions */
if (IS_GEN(dev_priv, 2)) {
dev->mode_config.max_width = 2048;
dev->mode_config.max_height = 2048;
} else if (IS_GEN(dev_priv, 3)) {
dev->mode_config.max_width = 4096;
dev->mode_config.max_height = 4096;
} else {
dev->mode_config.max_width = 8192;
dev->mode_config.max_height = 8192;
}
if (IS_I845G(dev_priv) || IS_I865G(dev_priv)) {
dev->mode_config.cursor_width = IS_I845G(dev_priv) ? 64 : 512;
dev->mode_config.cursor_height = 1023;
} else if (IS_GEN(dev_priv, 2)) {
dev->mode_config.cursor_width = 64;
dev->mode_config.cursor_height = 64;
} else {
dev->mode_config.cursor_width = 256;
dev->mode_config.cursor_height = 256;
}
dev->mode_config.fb_base = ggtt->gmadr.start;
DRM_DEBUG_KMS("%d display pipe%s available.\n",
INTEL_INFO(dev_priv)->num_pipes,
INTEL_INFO(dev_priv)->num_pipes > 1 ? "s" : "");
for_each_pipe(dev_priv, pipe) {
ret = intel_crtc_init(dev_priv, pipe);
if (ret) {
drm_mode_config_cleanup(dev);
return ret;
}
}
intel_shared_dpll_init(dev);
intel_update_fdi_pll_freq(dev_priv);
intel_update_czclk(dev_priv);
intel_modeset_init_hw(dev);
intel_hdcp_component_init(dev_priv);
if (dev_priv->max_cdclk_freq == 0)
intel_update_max_cdclk(dev_priv);
/* Just disable it once at startup */
i915_disable_vga(dev_priv);
intel_setup_outputs(dev_priv);
drm_modeset_lock_all(dev);
intel_modeset_setup_hw_state(dev, dev->mode_config.acquire_ctx);
drm_modeset_unlock_all(dev);
for_each_intel_crtc(dev, crtc) {
struct intel_initial_plane_config plane_config = {};
if (!crtc->active)
continue;
/*
* Note that reserving the BIOS fb up front prevents us
* from stuffing other stolen allocations like the ring
* on top. This prevents some ugliness at boot time, and
* can even allow for smooth boot transitions if the BIOS
* fb is large enough for the active pipe configuration.
*/
dev_priv->display.get_initial_plane_config(crtc,
&plane_config);
/*
* If the fb is shared between multiple heads, we'll
* just get the first one.
*/
intel_find_initial_plane_obj(crtc, &plane_config);
}
/*
* Make sure hardware watermarks really match the state we read out.
* Note that we need to do this after reconstructing the BIOS fb's
* since the watermark calculation done here will use pstate->fb.
*/
if (!HAS_GMCH(dev_priv))
sanitize_watermarks(dev);
/*
* Force all active planes to recompute their states. So that on
* mode_setcrtc after probe, all the intel_plane_state variables
* are already calculated and there is no assert_plane warnings
* during bootup.
*/
ret = intel_initial_commit(dev);
if (ret)
DRM_DEBUG_KMS("Initial commit in probe failed.\n");
return 0;
}
void i830_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe)
{
struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
/* 640x480@60Hz, ~25175 kHz */
struct dpll clock = {
.m1 = 18,
.m2 = 7,
.p1 = 13,
.p2 = 4,
.n = 2,
};
u32 dpll, fp;
int i;
WARN_ON(i9xx_calc_dpll_params(48000, &clock) != 25154);
DRM_DEBUG_KMS("enabling pipe %c due to force quirk (vco=%d dot=%d)\n",
pipe_name(pipe), clock.vco, clock.dot);
fp = i9xx_dpll_compute_fp(&clock);
dpll = DPLL_DVO_2X_MODE |
DPLL_VGA_MODE_DIS |
((clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT) |
PLL_P2_DIVIDE_BY_4 |
PLL_REF_INPUT_DREFCLK |
DPLL_VCO_ENABLE;
I915_WRITE(FP0(pipe), fp);
I915_WRITE(FP1(pipe), fp);
I915_WRITE(HTOTAL(pipe), (640 - 1) | ((800 - 1) << 16));
I915_WRITE(HBLANK(pipe), (640 - 1) | ((800 - 1) << 16));
I915_WRITE(HSYNC(pipe), (656 - 1) | ((752 - 1) << 16));
I915_WRITE(VTOTAL(pipe), (480 - 1) | ((525 - 1) << 16));
I915_WRITE(VBLANK(pipe), (480 - 1) | ((525 - 1) << 16));
I915_WRITE(VSYNC(pipe), (490 - 1) | ((492 - 1) << 16));
I915_WRITE(PIPESRC(pipe), ((640 - 1) << 16) | (480 - 1));
/*
* Apparently we need to have VGA mode enabled prior to changing
* the P1/P2 dividers. Otherwise the DPLL will keep using the old
* dividers, even though the register value does change.
*/
I915_WRITE(DPLL(pipe), dpll & ~DPLL_VGA_MODE_DIS);
I915_WRITE(DPLL(pipe), dpll);
/* Wait for the clocks to stabilize. */
POSTING_READ(DPLL(pipe));
udelay(150);
/* The pixel multiplier can only be updated once the
* DPLL is enabled and the clocks are stable.
*
* So write it again.
*/
I915_WRITE(DPLL(pipe), dpll);
/* We do this three times for luck */
for (i = 0; i < 3 ; i++) {
I915_WRITE(DPLL(pipe), dpll);
POSTING_READ(DPLL(pipe));
udelay(150); /* wait for warmup */
}
I915_WRITE(PIPECONF(pipe), PIPECONF_ENABLE | PIPECONF_PROGRESSIVE);
POSTING_READ(PIPECONF(pipe));
intel_wait_for_pipe_scanline_moving(crtc);
}
void i830_disable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe)
{
struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
DRM_DEBUG_KMS("disabling pipe %c due to force quirk\n",
pipe_name(pipe));
WARN_ON(I915_READ(DSPCNTR(PLANE_A)) & DISPLAY_PLANE_ENABLE);
WARN_ON(I915_READ(DSPCNTR(PLANE_B)) & DISPLAY_PLANE_ENABLE);
WARN_ON(I915_READ(DSPCNTR(PLANE_C)) & DISPLAY_PLANE_ENABLE);
WARN_ON(I915_READ(CURCNTR(PIPE_A)) & MCURSOR_MODE);
WARN_ON(I915_READ(CURCNTR(PIPE_B)) & MCURSOR_MODE);
I915_WRITE(PIPECONF(pipe), 0);
POSTING_READ(PIPECONF(pipe));
intel_wait_for_pipe_scanline_stopped(crtc);
I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
POSTING_READ(DPLL(pipe));
}
static void
intel_sanitize_plane_mapping(struct drm_i915_private *dev_priv)
{
struct intel_crtc *crtc;
if (INTEL_GEN(dev_priv) >= 4)
return;
for_each_intel_crtc(&dev_priv->drm, crtc) {
struct intel_plane *plane =
to_intel_plane(crtc->base.primary);
struct intel_crtc *plane_crtc;
enum pipe pipe;
if (!plane->get_hw_state(plane, &pipe))
continue;
if (pipe == crtc->pipe)
continue;
DRM_DEBUG_KMS("[PLANE:%d:%s] attached to the wrong pipe, disabling plane\n",
plane->base.base.id, plane->base.name);
plane_crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
intel_plane_disable_noatomic(plane_crtc, plane);
}
}
static bool intel_crtc_has_encoders(struct intel_crtc *crtc)
{
struct drm_device *dev = crtc->base.dev;
struct intel_encoder *encoder;
for_each_encoder_on_crtc(dev, &crtc->base, encoder)
return true;
return false;
}
static struct intel_connector *intel_encoder_find_connector(struct intel_encoder *encoder)
{
struct drm_device *dev = encoder->base.dev;
struct intel_connector *connector;
for_each_connector_on_encoder(dev, &encoder->base, connector)
return connector;
return NULL;
}
static bool has_pch_trancoder(struct drm_i915_private *dev_priv,
enum pipe pch_transcoder)
{
return HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
(HAS_PCH_LPT_H(dev_priv) && pch_transcoder == PIPE_A);
}
static void intel_sanitize_crtc(struct intel_crtc *crtc,
struct drm_modeset_acquire_ctx *ctx)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state);
enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
/* Clear any frame start delays used for debugging left by the BIOS */
if (crtc->active && !transcoder_is_dsi(cpu_transcoder)) {
i915_reg_t reg = PIPECONF(cpu_transcoder);
I915_WRITE(reg,
I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
}
if (crtc_state->base.active) {
struct intel_plane *plane;
/* Disable everything but the primary plane */
for_each_intel_plane_on_crtc(dev, crtc, plane) {
const struct intel_plane_state *plane_state =
to_intel_plane_state(plane->base.state);
if (plane_state->base.visible &&
plane->base.type != DRM_PLANE_TYPE_PRIMARY)
intel_plane_disable_noatomic(crtc, plane);
}
/*
* Disable any background color set by the BIOS, but enable the
* gamma and CSC to match how we program our planes.
*/
if (INTEL_GEN(dev_priv) >= 9)
I915_WRITE(SKL_BOTTOM_COLOR(crtc->pipe),
SKL_BOTTOM_COLOR_GAMMA_ENABLE |
SKL_BOTTOM_COLOR_CSC_ENABLE);
}
/* Adjust the state of the output pipe according to whether we
* have active connectors/encoders. */
if (crtc_state->base.active && !intel_crtc_has_encoders(crtc))
intel_crtc_disable_noatomic(&crtc->base, ctx);
if (crtc_state->base.active || HAS_GMCH(dev_priv)) {
/*
* We start out with underrun reporting disabled to avoid races.
* For correct bookkeeping mark this on active crtcs.
*
* Also on gmch platforms we dont have any hardware bits to
* disable the underrun reporting. Which means we need to start
* out with underrun reporting disabled also on inactive pipes,
* since otherwise we'll complain about the garbage we read when
* e.g. coming up after runtime pm.
*
* No protection against concurrent access is required - at
* worst a fifo underrun happens which also sets this to false.
*/
crtc->cpu_fifo_underrun_disabled = true;
/*
* We track the PCH trancoder underrun reporting state
* within the crtc. With crtc for pipe A housing the underrun
* reporting state for PCH transcoder A, crtc for pipe B housing
* it for PCH transcoder B, etc. LPT-H has only PCH transcoder A,
* and marking underrun reporting as disabled for the non-existing
* PCH transcoders B and C would prevent enabling the south
* error interrupt (see cpt_can_enable_serr_int()).
*/
if (has_pch_trancoder(dev_priv, crtc->pipe))
crtc->pch_fifo_underrun_disabled = true;
}
}
static bool has_bogus_dpll_config(const struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
/*
* Some SNB BIOSen (eg. ASUS K53SV) are known to misprogram
* the hardware when a high res displays plugged in. DPLL P
* divider is zero, and the pipe timings are bonkers. We'll
* try to disable everything in that case.
*
* FIXME would be nice to be able to sanitize this state
* without several WARNs, but for now let's take the easy
* road.
*/
return IS_GEN(dev_priv, 6) &&
crtc_state->base.active &&
crtc_state->shared_dpll &&
crtc_state->port_clock == 0;
}
static void intel_sanitize_encoder(struct intel_encoder *encoder)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_connector *connector;
struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
struct intel_crtc_state *crtc_state = crtc ?
to_intel_crtc_state(crtc->base.state) : NULL;
/* We need to check both for a crtc link (meaning that the
* encoder is active and trying to read from a pipe) and the
* pipe itself being active. */
bool has_active_crtc = crtc_state &&
crtc_state->base.active;
if (crtc_state && has_bogus_dpll_config(crtc_state)) {
DRM_DEBUG_KMS("BIOS has misprogrammed the hardware. Disabling pipe %c\n",
pipe_name(crtc->pipe));
has_active_crtc = false;
}
connector = intel_encoder_find_connector(encoder);
if (connector && !has_active_crtc) {
DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
encoder->base.base.id,
encoder->base.name);
/* Connector is active, but has no active pipe. This is
* fallout from our resume register restoring. Disable
* the encoder manually again. */
if (crtc_state) {
struct drm_encoder *best_encoder;
DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
encoder->base.base.id,
encoder->base.name);
/* avoid oopsing in case the hooks consult best_encoder */
best_encoder = connector->base.state->best_encoder;
connector->base.state->best_encoder = &encoder->base;
if (encoder->disable)
encoder->disable(encoder, crtc_state,
connector->base.state);
if (encoder->post_disable)
encoder->post_disable(encoder, crtc_state,
connector->base.state);
connector->base.state->best_encoder = best_encoder;
}
encoder->base.crtc = NULL;
/* Inconsistent output/port/pipe state happens presumably due to
* a bug in one of the get_hw_state functions. Or someplace else
* in our code, like the register restore mess on resume. Clamp
* things to off as a safer default. */
connector->base.dpms = DRM_MODE_DPMS_OFF;
connector->base.encoder = NULL;
}
/* notify opregion of the sanitized encoder state */
intel_opregion_notify_encoder(encoder, connector && has_active_crtc);
if (INTEL_GEN(dev_priv) >= 11)
icl_sanitize_encoder_pll_mapping(encoder);
}
void i915_redisable_vga_power_on(struct drm_i915_private *dev_priv)
{
i915_reg_t vga_reg = i915_vgacntrl_reg(dev_priv);
if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
i915_disable_vga(dev_priv);
}
}
void i915_redisable_vga(struct drm_i915_private *dev_priv)
{
intel_wakeref_t wakeref;
/*
* This function can be called both from intel_modeset_setup_hw_state or
* at a very early point in our resume sequence, where the power well
* structures are not yet restored. Since this function is at a very
* paranoid "someone might have enabled VGA while we were not looking"
* level, just check if the power well is enabled instead of trying to
* follow the "don't touch the power well if we don't need it" policy
* the rest of the driver uses.
*/
wakeref = intel_display_power_get_if_enabled(dev_priv,
POWER_DOMAIN_VGA);
if (!wakeref)
return;
i915_redisable_vga_power_on(dev_priv);
intel_display_power_put(dev_priv, POWER_DOMAIN_VGA, wakeref);
}
/* FIXME read out full plane state for all planes */
static void readout_plane_state(struct drm_i915_private *dev_priv)
{
struct intel_plane *plane;
struct intel_crtc *crtc;
for_each_intel_plane(&dev_priv->drm, plane) {
struct intel_plane_state *plane_state =
to_intel_plane_state(plane->base.state);
struct intel_crtc_state *crtc_state;
enum pipe pipe = PIPE_A;
bool visible;
visible = plane->get_hw_state(plane, &pipe);
crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
crtc_state = to_intel_crtc_state(crtc->base.state);
intel_set_plane_visible(crtc_state, plane_state, visible);
DRM_DEBUG_KMS("[PLANE:%d:%s] hw state readout: %s, pipe %c\n",
plane->base.base.id, plane->base.name,
enableddisabled(visible), pipe_name(pipe));
}
for_each_intel_crtc(&dev_priv->drm, crtc) {
struct intel_crtc_state *crtc_state =
to_intel_crtc_state(crtc->base.state);
fixup_active_planes(crtc_state);
}
}
static void intel_modeset_readout_hw_state(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = to_i915(dev);
enum pipe pipe;
struct intel_crtc *crtc;
struct intel_encoder *encoder;
struct intel_connector *connector;
struct drm_connector_list_iter conn_iter;
int i;
dev_priv->active_crtcs = 0;
for_each_intel_crtc(dev, crtc) {
struct intel_crtc_state *crtc_state =
to_intel_crtc_state(crtc->base.state);
__drm_atomic_helper_crtc_destroy_state(&crtc_state->base);
memset(crtc_state, 0, sizeof(*crtc_state));
crtc_state->base.crtc = &crtc->base;
crtc_state->base.active = crtc_state->base.enable =
dev_priv->display.get_pipe_config(crtc, crtc_state);
crtc->base.enabled = crtc_state->base.enable;
crtc->active = crtc_state->base.active;
if (crtc_state->base.active)
dev_priv->active_crtcs |= 1 << crtc->pipe;
DRM_DEBUG_KMS("[CRTC:%d:%s] hw state readout: %s\n",
crtc->base.base.id, crtc->base.name,
enableddisabled(crtc_state->base.active));
}
readout_plane_state(dev_priv);
for (i = 0; i < dev_priv->num_shared_dpll; i++) {
struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
pll->on = pll->info->funcs->get_hw_state(dev_priv, pll,
&pll->state.hw_state);
pll->state.crtc_mask = 0;
for_each_intel_crtc(dev, crtc) {
struct intel_crtc_state *crtc_state =
to_intel_crtc_state(crtc->base.state);
if (crtc_state->base.active &&
crtc_state->shared_dpll == pll)
pll->state.crtc_mask |= 1 << crtc->pipe;
}
pll->active_mask = pll->state.crtc_mask;
DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
pll->info->name, pll->state.crtc_mask, pll->on);
}
for_each_intel_encoder(dev, encoder) {
pipe = 0;
if (encoder->get_hw_state(encoder, &pipe)) {
struct intel_crtc_state *crtc_state;
crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
crtc_state = to_intel_crtc_state(crtc->base.state);
encoder->base.crtc = &crtc->base;
encoder->get_config(encoder, crtc_state);
} else {
encoder->base.crtc = NULL;
}
DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
encoder->base.base.id, encoder->base.name,
enableddisabled(encoder->base.crtc),
pipe_name(pipe));
}
drm_connector_list_iter_begin(dev, &conn_iter);
for_each_intel_connector_iter(connector, &conn_iter) {
if (connector->get_hw_state(connector)) {
connector->base.dpms = DRM_MODE_DPMS_ON;
encoder = connector->encoder;
connector->base.encoder = &encoder->base;
if (encoder->base.crtc &&
encoder->base.crtc->state->active) {
/*
* This has to be done during hardware readout
* because anything calling .crtc_disable may
* rely on the connector_mask being accurate.
*/
encoder->base.crtc->state->connector_mask |=
drm_connector_mask(&connector->base);
encoder->base.crtc->state->encoder_mask |=
drm_encoder_mask(&encoder->base);
}
} else {
connector->base.dpms = DRM_MODE_DPMS_OFF;
connector->base.encoder = NULL;
}
DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
connector->base.base.id, connector->base.name,
enableddisabled(connector->base.encoder));
}
drm_connector_list_iter_end(&conn_iter);
for_each_intel_crtc(dev, crtc) {
struct intel_crtc_state *crtc_state =
to_intel_crtc_state(crtc->base.state);
int min_cdclk = 0;
memset(&crtc->base.mode, 0, sizeof(crtc->base.mode));
if (crtc_state->base.active) {
intel_mode_from_pipe_config(&crtc->base.mode, crtc_state);
crtc->base.mode.hdisplay = crtc_state->pipe_src_w;
crtc->base.mode.vdisplay = crtc_state->pipe_src_h;
intel_mode_from_pipe_config(&crtc_state->base.adjusted_mode, crtc_state);
WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, &crtc->base.mode));
/*
* The initial mode needs to be set in order to keep
* the atomic core happy. It wants a valid mode if the
* crtc's enabled, so we do the above call.
*
* But we don't set all the derived state fully, hence
* set a flag to indicate that a full recalculation is
* needed on the next commit.
*/
crtc_state->base.mode.private_flags = I915_MODE_FLAG_INHERITED;
intel_crtc_compute_pixel_rate(crtc_state);
if (dev_priv->display.modeset_calc_cdclk) {
min_cdclk = intel_crtc_compute_min_cdclk(crtc_state);
if (WARN_ON(min_cdclk < 0))
min_cdclk = 0;
}
drm_calc_timestamping_constants(&crtc->base,
&crtc_state->base.adjusted_mode);
update_scanline_offset(crtc_state);
}
dev_priv->min_cdclk[crtc->pipe] = min_cdclk;
dev_priv->min_voltage_level[crtc->pipe] =
crtc_state->min_voltage_level;
intel_pipe_config_sanity_check(dev_priv, crtc_state);
}
}
static void
get_encoder_power_domains(struct drm_i915_private *dev_priv)
{
struct intel_encoder *encoder;
for_each_intel_encoder(&dev_priv->drm, encoder) {
struct intel_crtc_state *crtc_state;
if (!encoder->get_power_domains)
continue;
/*
* MST-primary and inactive encoders don't have a crtc state
* and neither of these require any power domain references.
*/
if (!encoder->base.crtc)
continue;
crtc_state = to_intel_crtc_state(encoder->base.crtc->state);
encoder->get_power_domains(encoder, crtc_state);
}
}
static void intel_early_display_was(struct drm_i915_private *dev_priv)
{
/* Display WA #1185 WaDisableDARBFClkGating:cnl,glk */
if (IS_CANNONLAKE(dev_priv) || IS_GEMINILAKE(dev_priv))
I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
DARBF_GATING_DIS);
if (IS_HASWELL(dev_priv)) {
/*
* WaRsPkgCStateDisplayPMReq:hsw
* System hang if this isn't done before disabling all planes!
*/
I915_WRITE(CHICKEN_PAR1_1,
I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
}
}
static void ibx_sanitize_pch_hdmi_port(struct drm_i915_private *dev_priv,
enum port port, i915_reg_t hdmi_reg)
{
u32 val = I915_READ(hdmi_reg);
if (val & SDVO_ENABLE ||
(val & SDVO_PIPE_SEL_MASK) == SDVO_PIPE_SEL(PIPE_A))
return;
DRM_DEBUG_KMS("Sanitizing transcoder select for HDMI %c\n",
port_name(port));
val &= ~SDVO_PIPE_SEL_MASK;
val |= SDVO_PIPE_SEL(PIPE_A);
I915_WRITE(hdmi_reg, val);
}
static void ibx_sanitize_pch_dp_port(struct drm_i915_private *dev_priv,
enum port port, i915_reg_t dp_reg)
{
u32 val = I915_READ(dp_reg);
if (val & DP_PORT_EN ||
(val & DP_PIPE_SEL_MASK) == DP_PIPE_SEL(PIPE_A))
return;
DRM_DEBUG_KMS("Sanitizing transcoder select for DP %c\n",
port_name(port));
val &= ~DP_PIPE_SEL_MASK;
val |= DP_PIPE_SEL(PIPE_A);
I915_WRITE(dp_reg, val);
}
static void ibx_sanitize_pch_ports(struct drm_i915_private *dev_priv)
{
/*
* The BIOS may select transcoder B on some of the PCH
* ports even it doesn't enable the port. This would trip
* assert_pch_dp_disabled() and assert_pch_hdmi_disabled().
* Sanitize the transcoder select bits to prevent that. We
* assume that the BIOS never actually enabled the port,
* because if it did we'd actually have to toggle the port
* on and back off to make the transcoder A select stick
* (see. intel_dp_link_down(), intel_disable_hdmi(),
* intel_disable_sdvo()).
*/
ibx_sanitize_pch_dp_port(dev_priv, PORT_B, PCH_DP_B);
ibx_sanitize_pch_dp_port(dev_priv, PORT_C, PCH_DP_C);
ibx_sanitize_pch_dp_port(dev_priv, PORT_D, PCH_DP_D);
/* PCH SDVOB multiplex with HDMIB */
ibx_sanitize_pch_hdmi_port(dev_priv, PORT_B, PCH_HDMIB);
ibx_sanitize_pch_hdmi_port(dev_priv, PORT_C, PCH_HDMIC);
ibx_sanitize_pch_hdmi_port(dev_priv, PORT_D, PCH_HDMID);
}
/* Scan out the current hw modeset state,
* and sanitizes it to the current state
*/
static void
intel_modeset_setup_hw_state(struct drm_device *dev,
struct drm_modeset_acquire_ctx *ctx)
{
struct drm_i915_private *dev_priv = to_i915(dev);
struct intel_crtc_state *crtc_state;
struct intel_encoder *encoder;
struct intel_crtc *crtc;
intel_wakeref_t wakeref;
int i;
wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
intel_early_display_was(dev_priv);
intel_modeset_readout_hw_state(dev);
/* HW state is read out, now we need to sanitize this mess. */
get_encoder_power_domains(dev_priv);
if (HAS_PCH_IBX(dev_priv))
ibx_sanitize_pch_ports(dev_priv);
/*
* intel_sanitize_plane_mapping() may need to do vblank
* waits, so we need vblank interrupts restored beforehand.
*/
for_each_intel_crtc(&dev_priv->drm, crtc) {
crtc_state = to_intel_crtc_state(crtc->base.state);
drm_crtc_vblank_reset(&crtc->base);
if (crtc_state->base.active)
intel_crtc_vblank_on(crtc_state);
}
intel_sanitize_plane_mapping(dev_priv);
for_each_intel_encoder(dev, encoder)
intel_sanitize_encoder(encoder);
for_each_intel_crtc(&dev_priv->drm, crtc) {
crtc_state = to_intel_crtc_state(crtc->base.state);
intel_sanitize_crtc(crtc, ctx);
intel_dump_pipe_config(crtc, crtc_state,
"[setup_hw_state]");
}
intel_modeset_update_connector_atomic_state(dev);
for (i = 0; i < dev_priv->num_shared_dpll; i++) {
struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
if (!pll->on || pll->active_mask)
continue;
DRM_DEBUG_KMS("%s enabled but not in use, disabling\n",
pll->info->name);
pll->info->funcs->disable(dev_priv, pll);
pll->on = false;
}
if (IS_G4X(dev_priv)) {
g4x_wm_get_hw_state(dev_priv);
g4x_wm_sanitize(dev_priv);
} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
vlv_wm_get_hw_state(dev_priv);
vlv_wm_sanitize(dev_priv);
} else if (INTEL_GEN(dev_priv) >= 9) {
skl_wm_get_hw_state(dev_priv);
} else if (HAS_PCH_SPLIT(dev_priv)) {
ilk_wm_get_hw_state(dev_priv);
}
for_each_intel_crtc(dev, crtc) {
u64 put_domains;
crtc_state = to_intel_crtc_state(crtc->base.state);
put_domains = modeset_get_crtc_power_domains(&crtc->base, crtc_state);
if (WARN_ON(put_domains))
modeset_put_power_domains(dev_priv, put_domains);
}
intel_display_power_put(dev_priv, POWER_DOMAIN_INIT, wakeref);
intel_fbc_init_pipe_state(dev_priv);
}
void intel_display_resume(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = to_i915(dev);
struct drm_atomic_state *state = dev_priv->modeset_restore_state;
struct drm_modeset_acquire_ctx ctx;
int ret;
dev_priv->modeset_restore_state = NULL;
if (state)
state->acquire_ctx = &ctx;
drm_modeset_acquire_init(&ctx, 0);
while (1) {
ret = drm_modeset_lock_all_ctx(dev, &ctx);
if (ret != -EDEADLK)
break;
drm_modeset_backoff(&ctx);
}
if (!ret)
ret = __intel_display_resume(dev, state, &ctx);
intel_enable_ipc(dev_priv);
drm_modeset_drop_locks(&ctx);
drm_modeset_acquire_fini(&ctx);
if (ret)
DRM_ERROR("Restoring old state failed with %i\n", ret);
if (state)
drm_atomic_state_put(state);
}
static void intel_hpd_poll_fini(struct drm_device *dev)
{
struct intel_connector *connector;
struct drm_connector_list_iter conn_iter;
/* Kill all the work that may have been queued by hpd. */
drm_connector_list_iter_begin(dev, &conn_iter);
for_each_intel_connector_iter(connector, &conn_iter) {
if (connector->modeset_retry_work.func)
cancel_work_sync(&connector->modeset_retry_work);
if (connector->hdcp.shim) {
cancel_delayed_work_sync(&connector->hdcp.check_work);
cancel_work_sync(&connector->hdcp.prop_work);
}
}
drm_connector_list_iter_end(&conn_iter);
}
void intel_modeset_cleanup(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = to_i915(dev);
flush_workqueue(dev_priv->modeset_wq);
flush_work(&dev_priv->atomic_helper.free_work);
WARN_ON(!llist_empty(&dev_priv->atomic_helper.free_list));
/*
* Interrupts and polling as the first thing to avoid creating havoc.
* Too much stuff here (turning of connectors, ...) would
* experience fancy races otherwise.
*/
intel_irq_uninstall(dev_priv);
/*
* Due to the hpd irq storm handling the hotplug work can re-arm the
* poll handlers. Hence disable polling after hpd handling is shut down.
*/
intel_hpd_poll_fini(dev);
/* poll work can call into fbdev, hence clean that up afterwards */
intel_fbdev_fini(dev_priv);
intel_unregister_dsm_handler();
intel_fbc_global_disable(dev_priv);
/* flush any delayed tasks or pending work */
flush_scheduled_work();
intel_hdcp_component_fini(dev_priv);
drm_mode_config_cleanup(dev);
intel_overlay_cleanup(dev_priv);
intel_gmbus_teardown(dev_priv);
destroy_workqueue(dev_priv->modeset_wq);
intel_fbc_cleanup_cfb(dev_priv);
}
/*
* set vga decode state - true == enable VGA decode
*/
int intel_modeset_vga_set_state(struct drm_i915_private *dev_priv, bool state)
{
unsigned reg = INTEL_GEN(dev_priv) >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
u16 gmch_ctrl;
if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
DRM_ERROR("failed to read control word\n");
return -EIO;
}
if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
return 0;
if (state)
gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
else
gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
DRM_ERROR("failed to write control word\n");
return -EIO;
}
return 0;
}
#if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
struct intel_display_error_state {
u32 power_well_driver;
struct intel_cursor_error_state {
u32 control;
u32 position;
u32 base;
u32 size;
} cursor[I915_MAX_PIPES];
struct intel_pipe_error_state {
bool power_domain_on;
u32 source;
u32 stat;
} pipe[I915_MAX_PIPES];
struct intel_plane_error_state {
u32 control;
u32 stride;
u32 size;
u32 pos;
u32 addr;
u32 surface;
u32 tile_offset;
} plane[I915_MAX_PIPES];
struct intel_transcoder_error_state {
bool available;
bool power_domain_on;
enum transcoder cpu_transcoder;
u32 conf;
u32 htotal;
u32 hblank;
u32 hsync;
u32 vtotal;
u32 vblank;
u32 vsync;
} transcoder[4];
};
struct intel_display_error_state *
intel_display_capture_error_state(struct drm_i915_private *dev_priv)
{
struct intel_display_error_state *error;
int transcoders[] = {
TRANSCODER_A,
TRANSCODER_B,
TRANSCODER_C,
TRANSCODER_EDP,
};
int i;
BUILD_BUG_ON(ARRAY_SIZE(transcoders) != ARRAY_SIZE(error->transcoder));
if (!HAS_DISPLAY(dev_priv))
return NULL;
error = kzalloc(sizeof(*error), GFP_ATOMIC);
if (error == NULL)
return NULL;
if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
error->power_well_driver = I915_READ(HSW_PWR_WELL_CTL2);
for_each_pipe(dev_priv, i) {
error->pipe[i].power_domain_on =
__intel_display_power_is_enabled(dev_priv,
POWER_DOMAIN_PIPE(i));
if (!error->pipe[i].power_domain_on)
continue;
error->cursor[i].control = I915_READ(CURCNTR(i));
error->cursor[i].position = I915_READ(CURPOS(i));
error->cursor[i].base = I915_READ(CURBASE(i));
error->plane[i].control = I915_READ(DSPCNTR(i));
error->plane[i].stride = I915_READ(DSPSTRIDE(i));
if (INTEL_GEN(dev_priv) <= 3) {
error->plane[i].size = I915_READ(DSPSIZE(i));
error->plane[i].pos = I915_READ(DSPPOS(i));
}
if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv))
error->plane[i].addr = I915_READ(DSPADDR(i));
if (INTEL_GEN(dev_priv) >= 4) {
error->plane[i].surface = I915_READ(DSPSURF(i));
error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
}
error->pipe[i].source = I915_READ(PIPESRC(i));
if (HAS_GMCH(dev_priv))
error->pipe[i].stat = I915_READ(PIPESTAT(i));
}
for (i = 0; i < ARRAY_SIZE(error->transcoder); i++) {
enum transcoder cpu_transcoder = transcoders[i];
if (!INTEL_INFO(dev_priv)->trans_offsets[cpu_transcoder])
continue;
error->transcoder[i].available = true;
error->transcoder[i].power_domain_on =
__intel_display_power_is_enabled(dev_priv,
POWER_DOMAIN_TRANSCODER(cpu_transcoder));
if (!error->transcoder[i].power_domain_on)
continue;
error->transcoder[i].cpu_transcoder = cpu_transcoder;
error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
}
return error;
}
#define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
void
intel_display_print_error_state(struct drm_i915_error_state_buf *m,
struct intel_display_error_state *error)
{
struct drm_i915_private *dev_priv = m->i915;
int i;
if (!error)
return;
err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev_priv)->num_pipes);
if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
err_printf(m, "PWR_WELL_CTL2: %08x\n",
error->power_well_driver);
for_each_pipe(dev_priv, i) {
err_printf(m, "Pipe [%d]:\n", i);
err_printf(m, " Power: %s\n",
onoff(error->pipe[i].power_domain_on));
err_printf(m, " SRC: %08x\n", error->pipe[i].source);
err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
err_printf(m, "Plane [%d]:\n", i);
err_printf(m, " CNTR: %08x\n", error->plane[i].control);
err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
if (INTEL_GEN(dev_priv) <= 3) {
err_printf(m, " SIZE: %08x\n", error->plane[i].size);
err_printf(m, " POS: %08x\n", error->plane[i].pos);
}
if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv))
err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
if (INTEL_GEN(dev_priv) >= 4) {
err_printf(m, " SURF: %08x\n", error->plane[i].surface);
err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
}
err_printf(m, "Cursor [%d]:\n", i);
err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
err_printf(m, " POS: %08x\n", error->cursor[i].position);
err_printf(m, " BASE: %08x\n", error->cursor[i].base);
}
for (i = 0; i < ARRAY_SIZE(error->transcoder); i++) {
if (!error->transcoder[i].available)
continue;
err_printf(m, "CPU transcoder: %s\n",
transcoder_name(error->transcoder[i].cpu_transcoder));
err_printf(m, " Power: %s\n",
onoff(error->transcoder[i].power_domain_on));
err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
}
}
#endif