linux/drivers/gpu/drm/i915/intel_bios.c
Jani Nikula 3ce2ea6574 drm/i915: extract intel_gmbus.h from i915_drv.h and rename intel_i2c.c
It used to be handy that we only had a couple of headers, but over time
i915_drv.h has become unwieldy. Extract declarations to a separate
header file corresponding to the implementation module, clarifying the
modularity of the driver.

Ensure the new header is self-contained, and do so with minimal further
includes, using forward declarations as needed. Include the new header
only where needed, and sort the modified include directives while at it
and as needed.

While at it, rename intel_i2c.c to intel_gmbus.c and the functions to
intel_gmbus_*.

No functional changes.

Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk>
Signed-off-by: Jani Nikula <jani.nikula@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/5834b8fbbfd4ac2e3d0159e69c87f6926066f537.1556809195.git.jani.nikula@intel.com
2019-05-03 10:06:55 +03:00

2301 lines
61 KiB
C

/*
* Copyright © 2006 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
* Authors:
* Eric Anholt <eric@anholt.net>
*
*/
#include <drm/drm_dp_helper.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
#include "intel_gmbus.h"
#define _INTEL_BIOS_PRIVATE
#include "intel_vbt_defs.h"
/**
* DOC: Video BIOS Table (VBT)
*
* The Video BIOS Table, or VBT, provides platform and board specific
* configuration information to the driver that is not discoverable or available
* through other means. The configuration is mostly related to display
* hardware. The VBT is available via the ACPI OpRegion or, on older systems, in
* the PCI ROM.
*
* The VBT consists of a VBT Header (defined as &struct vbt_header), a BDB
* Header (&struct bdb_header), and a number of BIOS Data Blocks (BDB) that
* contain the actual configuration information. The VBT Header, and thus the
* VBT, begins with "$VBT" signature. The VBT Header contains the offset of the
* BDB Header. The data blocks are concatenated after the BDB Header. The data
* blocks have a 1-byte Block ID, 2-byte Block Size, and Block Size bytes of
* data. (Block 53, the MIPI Sequence Block is an exception.)
*
* The driver parses the VBT during load. The relevant information is stored in
* driver private data for ease of use, and the actual VBT is not read after
* that.
*/
#define SLAVE_ADDR1 0x70
#define SLAVE_ADDR2 0x72
/* Get BDB block size given a pointer to Block ID. */
static u32 _get_blocksize(const u8 *block_base)
{
/* The MIPI Sequence Block v3+ has a separate size field. */
if (*block_base == BDB_MIPI_SEQUENCE && *(block_base + 3) >= 3)
return *((const u32 *)(block_base + 4));
else
return *((const u16 *)(block_base + 1));
}
/* Get BDB block size give a pointer to data after Block ID and Block Size. */
static u32 get_blocksize(const void *block_data)
{
return _get_blocksize(block_data - 3);
}
static const void *
find_section(const void *_bdb, int section_id)
{
const struct bdb_header *bdb = _bdb;
const u8 *base = _bdb;
int index = 0;
u32 total, current_size;
u8 current_id;
/* skip to first section */
index += bdb->header_size;
total = bdb->bdb_size;
/* walk the sections looking for section_id */
while (index + 3 < total) {
current_id = *(base + index);
current_size = _get_blocksize(base + index);
index += 3;
if (index + current_size > total)
return NULL;
if (current_id == section_id)
return base + index;
index += current_size;
}
return NULL;
}
static void
fill_detail_timing_data(struct drm_display_mode *panel_fixed_mode,
const struct lvds_dvo_timing *dvo_timing)
{
panel_fixed_mode->hdisplay = (dvo_timing->hactive_hi << 8) |
dvo_timing->hactive_lo;
panel_fixed_mode->hsync_start = panel_fixed_mode->hdisplay +
((dvo_timing->hsync_off_hi << 8) | dvo_timing->hsync_off_lo);
panel_fixed_mode->hsync_end = panel_fixed_mode->hsync_start +
((dvo_timing->hsync_pulse_width_hi << 8) |
dvo_timing->hsync_pulse_width_lo);
panel_fixed_mode->htotal = panel_fixed_mode->hdisplay +
((dvo_timing->hblank_hi << 8) | dvo_timing->hblank_lo);
panel_fixed_mode->vdisplay = (dvo_timing->vactive_hi << 8) |
dvo_timing->vactive_lo;
panel_fixed_mode->vsync_start = panel_fixed_mode->vdisplay +
((dvo_timing->vsync_off_hi << 4) | dvo_timing->vsync_off_lo);
panel_fixed_mode->vsync_end = panel_fixed_mode->vsync_start +
((dvo_timing->vsync_pulse_width_hi << 4) |
dvo_timing->vsync_pulse_width_lo);
panel_fixed_mode->vtotal = panel_fixed_mode->vdisplay +
((dvo_timing->vblank_hi << 8) | dvo_timing->vblank_lo);
panel_fixed_mode->clock = dvo_timing->clock * 10;
panel_fixed_mode->type = DRM_MODE_TYPE_PREFERRED;
if (dvo_timing->hsync_positive)
panel_fixed_mode->flags |= DRM_MODE_FLAG_PHSYNC;
else
panel_fixed_mode->flags |= DRM_MODE_FLAG_NHSYNC;
if (dvo_timing->vsync_positive)
panel_fixed_mode->flags |= DRM_MODE_FLAG_PVSYNC;
else
panel_fixed_mode->flags |= DRM_MODE_FLAG_NVSYNC;
panel_fixed_mode->width_mm = (dvo_timing->himage_hi << 8) |
dvo_timing->himage_lo;
panel_fixed_mode->height_mm = (dvo_timing->vimage_hi << 8) |
dvo_timing->vimage_lo;
/* Some VBTs have bogus h/vtotal values */
if (panel_fixed_mode->hsync_end > panel_fixed_mode->htotal)
panel_fixed_mode->htotal = panel_fixed_mode->hsync_end + 1;
if (panel_fixed_mode->vsync_end > panel_fixed_mode->vtotal)
panel_fixed_mode->vtotal = panel_fixed_mode->vsync_end + 1;
drm_mode_set_name(panel_fixed_mode);
}
static const struct lvds_dvo_timing *
get_lvds_dvo_timing(const struct bdb_lvds_lfp_data *lvds_lfp_data,
const struct bdb_lvds_lfp_data_ptrs *lvds_lfp_data_ptrs,
int index)
{
/*
* the size of fp_timing varies on the different platform.
* So calculate the DVO timing relative offset in LVDS data
* entry to get the DVO timing entry
*/
int lfp_data_size =
lvds_lfp_data_ptrs->ptr[1].dvo_timing_offset -
lvds_lfp_data_ptrs->ptr[0].dvo_timing_offset;
int dvo_timing_offset =
lvds_lfp_data_ptrs->ptr[0].dvo_timing_offset -
lvds_lfp_data_ptrs->ptr[0].fp_timing_offset;
char *entry = (char *)lvds_lfp_data->data + lfp_data_size * index;
return (struct lvds_dvo_timing *)(entry + dvo_timing_offset);
}
/* get lvds_fp_timing entry
* this function may return NULL if the corresponding entry is invalid
*/
static const struct lvds_fp_timing *
get_lvds_fp_timing(const struct bdb_header *bdb,
const struct bdb_lvds_lfp_data *data,
const struct bdb_lvds_lfp_data_ptrs *ptrs,
int index)
{
size_t data_ofs = (const u8 *)data - (const u8 *)bdb;
u16 data_size = ((const u16 *)data)[-1]; /* stored in header */
size_t ofs;
if (index >= ARRAY_SIZE(ptrs->ptr))
return NULL;
ofs = ptrs->ptr[index].fp_timing_offset;
if (ofs < data_ofs ||
ofs + sizeof(struct lvds_fp_timing) > data_ofs + data_size)
return NULL;
return (const struct lvds_fp_timing *)((const u8 *)bdb + ofs);
}
/* Try to find integrated panel data */
static void
parse_lfp_panel_data(struct drm_i915_private *dev_priv,
const struct bdb_header *bdb)
{
const struct bdb_lvds_options *lvds_options;
const struct bdb_lvds_lfp_data *lvds_lfp_data;
const struct bdb_lvds_lfp_data_ptrs *lvds_lfp_data_ptrs;
const struct lvds_dvo_timing *panel_dvo_timing;
const struct lvds_fp_timing *fp_timing;
struct drm_display_mode *panel_fixed_mode;
int panel_type;
int drrs_mode;
int ret;
lvds_options = find_section(bdb, BDB_LVDS_OPTIONS);
if (!lvds_options)
return;
dev_priv->vbt.lvds_dither = lvds_options->pixel_dither;
ret = intel_opregion_get_panel_type(dev_priv);
if (ret >= 0) {
WARN_ON(ret > 0xf);
panel_type = ret;
DRM_DEBUG_KMS("Panel type: %d (OpRegion)\n", panel_type);
} else {
if (lvds_options->panel_type > 0xf) {
DRM_DEBUG_KMS("Invalid VBT panel type 0x%x\n",
lvds_options->panel_type);
return;
}
panel_type = lvds_options->panel_type;
DRM_DEBUG_KMS("Panel type: %d (VBT)\n", panel_type);
}
dev_priv->vbt.panel_type = panel_type;
drrs_mode = (lvds_options->dps_panel_type_bits
>> (panel_type * 2)) & MODE_MASK;
/*
* VBT has static DRRS = 0 and seamless DRRS = 2.
* The below piece of code is required to adjust vbt.drrs_type
* to match the enum drrs_support_type.
*/
switch (drrs_mode) {
case 0:
dev_priv->vbt.drrs_type = STATIC_DRRS_SUPPORT;
DRM_DEBUG_KMS("DRRS supported mode is static\n");
break;
case 2:
dev_priv->vbt.drrs_type = SEAMLESS_DRRS_SUPPORT;
DRM_DEBUG_KMS("DRRS supported mode is seamless\n");
break;
default:
dev_priv->vbt.drrs_type = DRRS_NOT_SUPPORTED;
DRM_DEBUG_KMS("DRRS not supported (VBT input)\n");
break;
}
lvds_lfp_data = find_section(bdb, BDB_LVDS_LFP_DATA);
if (!lvds_lfp_data)
return;
lvds_lfp_data_ptrs = find_section(bdb, BDB_LVDS_LFP_DATA_PTRS);
if (!lvds_lfp_data_ptrs)
return;
panel_dvo_timing = get_lvds_dvo_timing(lvds_lfp_data,
lvds_lfp_data_ptrs,
panel_type);
panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
if (!panel_fixed_mode)
return;
fill_detail_timing_data(panel_fixed_mode, panel_dvo_timing);
dev_priv->vbt.lfp_lvds_vbt_mode = panel_fixed_mode;
DRM_DEBUG_KMS("Found panel mode in BIOS VBT tables:\n");
drm_mode_debug_printmodeline(panel_fixed_mode);
fp_timing = get_lvds_fp_timing(bdb, lvds_lfp_data,
lvds_lfp_data_ptrs,
panel_type);
if (fp_timing) {
/* check the resolution, just to be sure */
if (fp_timing->x_res == panel_fixed_mode->hdisplay &&
fp_timing->y_res == panel_fixed_mode->vdisplay) {
dev_priv->vbt.bios_lvds_val = fp_timing->lvds_reg_val;
DRM_DEBUG_KMS("VBT initial LVDS value %x\n",
dev_priv->vbt.bios_lvds_val);
}
}
}
static void
parse_lfp_backlight(struct drm_i915_private *dev_priv,
const struct bdb_header *bdb)
{
const struct bdb_lfp_backlight_data *backlight_data;
const struct bdb_lfp_backlight_data_entry *entry;
int panel_type = dev_priv->vbt.panel_type;
backlight_data = find_section(bdb, BDB_LVDS_BACKLIGHT);
if (!backlight_data)
return;
if (backlight_data->entry_size != sizeof(backlight_data->data[0])) {
DRM_DEBUG_KMS("Unsupported backlight data entry size %u\n",
backlight_data->entry_size);
return;
}
entry = &backlight_data->data[panel_type];
dev_priv->vbt.backlight.present = entry->type == BDB_BACKLIGHT_TYPE_PWM;
if (!dev_priv->vbt.backlight.present) {
DRM_DEBUG_KMS("PWM backlight not present in VBT (type %u)\n",
entry->type);
return;
}
dev_priv->vbt.backlight.type = INTEL_BACKLIGHT_DISPLAY_DDI;
if (bdb->version >= 191 &&
get_blocksize(backlight_data) >= sizeof(*backlight_data)) {
const struct bdb_lfp_backlight_control_method *method;
method = &backlight_data->backlight_control[panel_type];
dev_priv->vbt.backlight.type = method->type;
dev_priv->vbt.backlight.controller = method->controller;
}
dev_priv->vbt.backlight.pwm_freq_hz = entry->pwm_freq_hz;
dev_priv->vbt.backlight.active_low_pwm = entry->active_low_pwm;
dev_priv->vbt.backlight.min_brightness = entry->min_brightness;
DRM_DEBUG_KMS("VBT backlight PWM modulation frequency %u Hz, "
"active %s, min brightness %u, level %u, controller %u\n",
dev_priv->vbt.backlight.pwm_freq_hz,
dev_priv->vbt.backlight.active_low_pwm ? "low" : "high",
dev_priv->vbt.backlight.min_brightness,
backlight_data->level[panel_type],
dev_priv->vbt.backlight.controller);
}
/* Try to find sdvo panel data */
static void
parse_sdvo_panel_data(struct drm_i915_private *dev_priv,
const struct bdb_header *bdb)
{
const struct lvds_dvo_timing *dvo_timing;
struct drm_display_mode *panel_fixed_mode;
int index;
index = i915_modparams.vbt_sdvo_panel_type;
if (index == -2) {
DRM_DEBUG_KMS("Ignore SDVO panel mode from BIOS VBT tables.\n");
return;
}
if (index == -1) {
const struct bdb_sdvo_lvds_options *sdvo_lvds_options;
sdvo_lvds_options = find_section(bdb, BDB_SDVO_LVDS_OPTIONS);
if (!sdvo_lvds_options)
return;
index = sdvo_lvds_options->panel_type;
}
dvo_timing = find_section(bdb, BDB_SDVO_PANEL_DTDS);
if (!dvo_timing)
return;
panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
if (!panel_fixed_mode)
return;
fill_detail_timing_data(panel_fixed_mode, dvo_timing + index);
dev_priv->vbt.sdvo_lvds_vbt_mode = panel_fixed_mode;
DRM_DEBUG_KMS("Found SDVO panel mode in BIOS VBT tables:\n");
drm_mode_debug_printmodeline(panel_fixed_mode);
}
static int intel_bios_ssc_frequency(struct drm_i915_private *dev_priv,
bool alternate)
{
switch (INTEL_GEN(dev_priv)) {
case 2:
return alternate ? 66667 : 48000;
case 3:
case 4:
return alternate ? 100000 : 96000;
default:
return alternate ? 100000 : 120000;
}
}
static void
parse_general_features(struct drm_i915_private *dev_priv,
const struct bdb_header *bdb)
{
const struct bdb_general_features *general;
general = find_section(bdb, BDB_GENERAL_FEATURES);
if (!general)
return;
dev_priv->vbt.int_tv_support = general->int_tv_support;
/* int_crt_support can't be trusted on earlier platforms */
if (bdb->version >= 155 &&
(HAS_DDI(dev_priv) || IS_VALLEYVIEW(dev_priv)))
dev_priv->vbt.int_crt_support = general->int_crt_support;
dev_priv->vbt.lvds_use_ssc = general->enable_ssc;
dev_priv->vbt.lvds_ssc_freq =
intel_bios_ssc_frequency(dev_priv, general->ssc_freq);
dev_priv->vbt.display_clock_mode = general->display_clock_mode;
dev_priv->vbt.fdi_rx_polarity_inverted = general->fdi_rx_polarity_inverted;
if (bdb->version >= 181) {
dev_priv->vbt.orientation = general->rotate_180 ?
DRM_MODE_PANEL_ORIENTATION_BOTTOM_UP :
DRM_MODE_PANEL_ORIENTATION_NORMAL;
} else {
dev_priv->vbt.orientation = DRM_MODE_PANEL_ORIENTATION_UNKNOWN;
}
DRM_DEBUG_KMS("BDB_GENERAL_FEATURES int_tv_support %d int_crt_support %d lvds_use_ssc %d lvds_ssc_freq %d display_clock_mode %d fdi_rx_polarity_inverted %d\n",
dev_priv->vbt.int_tv_support,
dev_priv->vbt.int_crt_support,
dev_priv->vbt.lvds_use_ssc,
dev_priv->vbt.lvds_ssc_freq,
dev_priv->vbt.display_clock_mode,
dev_priv->vbt.fdi_rx_polarity_inverted);
}
static const struct child_device_config *
child_device_ptr(const struct bdb_general_definitions *defs, int i)
{
return (const void *) &defs->devices[i * defs->child_dev_size];
}
static void
parse_sdvo_device_mapping(struct drm_i915_private *dev_priv, u8 bdb_version)
{
struct sdvo_device_mapping *mapping;
const struct child_device_config *child;
int i, count = 0;
/*
* Only parse SDVO mappings on gens that could have SDVO. This isn't
* accurate and doesn't have to be, as long as it's not too strict.
*/
if (!IS_GEN_RANGE(dev_priv, 3, 7)) {
DRM_DEBUG_KMS("Skipping SDVO device mapping\n");
return;
}
for (i = 0, count = 0; i < dev_priv->vbt.child_dev_num; i++) {
child = dev_priv->vbt.child_dev + i;
if (child->slave_addr != SLAVE_ADDR1 &&
child->slave_addr != SLAVE_ADDR2) {
/*
* If the slave address is neither 0x70 nor 0x72,
* it is not a SDVO device. Skip it.
*/
continue;
}
if (child->dvo_port != DEVICE_PORT_DVOB &&
child->dvo_port != DEVICE_PORT_DVOC) {
/* skip the incorrect SDVO port */
DRM_DEBUG_KMS("Incorrect SDVO port. Skip it\n");
continue;
}
DRM_DEBUG_KMS("the SDVO device with slave addr %2x is found on"
" %s port\n",
child->slave_addr,
(child->dvo_port == DEVICE_PORT_DVOB) ?
"SDVOB" : "SDVOC");
mapping = &dev_priv->vbt.sdvo_mappings[child->dvo_port - 1];
if (!mapping->initialized) {
mapping->dvo_port = child->dvo_port;
mapping->slave_addr = child->slave_addr;
mapping->dvo_wiring = child->dvo_wiring;
mapping->ddc_pin = child->ddc_pin;
mapping->i2c_pin = child->i2c_pin;
mapping->initialized = 1;
DRM_DEBUG_KMS("SDVO device: dvo=%x, addr=%x, wiring=%d, ddc_pin=%d, i2c_pin=%d\n",
mapping->dvo_port,
mapping->slave_addr,
mapping->dvo_wiring,
mapping->ddc_pin,
mapping->i2c_pin);
} else {
DRM_DEBUG_KMS("Maybe one SDVO port is shared by "
"two SDVO device.\n");
}
if (child->slave2_addr) {
/* Maybe this is a SDVO device with multiple inputs */
/* And the mapping info is not added */
DRM_DEBUG_KMS("there exists the slave2_addr. Maybe this"
" is a SDVO device with multiple inputs.\n");
}
count++;
}
if (!count) {
/* No SDVO device info is found */
DRM_DEBUG_KMS("No SDVO device info is found in VBT\n");
}
}
static void
parse_driver_features(struct drm_i915_private *dev_priv,
const struct bdb_header *bdb)
{
const struct bdb_driver_features *driver;
driver = find_section(bdb, BDB_DRIVER_FEATURES);
if (!driver)
return;
if (INTEL_GEN(dev_priv) >= 5) {
/*
* Note that we consider BDB_DRIVER_FEATURE_INT_SDVO_LVDS
* to mean "eDP". The VBT spec doesn't agree with that
* interpretation, but real world VBTs seem to.
*/
if (driver->lvds_config != BDB_DRIVER_FEATURE_INT_LVDS)
dev_priv->vbt.int_lvds_support = 0;
} else {
/*
* FIXME it's not clear which BDB version has the LVDS config
* bits defined. Revision history in the VBT spec says:
* "0.92 | Add two definitions for VBT value of LVDS Active
* Config (00b and 11b values defined) | 06/13/2005"
* but does not the specify the BDB version.
*
* So far version 134 (on i945gm) is the oldest VBT observed
* in the wild with the bits correctly populated. Version
* 108 (on i85x) does not have the bits correctly populated.
*/
if (bdb->version >= 134 &&
driver->lvds_config != BDB_DRIVER_FEATURE_INT_LVDS &&
driver->lvds_config != BDB_DRIVER_FEATURE_INT_SDVO_LVDS)
dev_priv->vbt.int_lvds_support = 0;
}
DRM_DEBUG_KMS("DRRS State Enabled:%d\n", driver->drrs_enabled);
/*
* If DRRS is not supported, drrs_type has to be set to 0.
* This is because, VBT is configured in such a way that
* static DRRS is 0 and DRRS not supported is represented by
* driver->drrs_enabled=false
*/
if (!driver->drrs_enabled)
dev_priv->vbt.drrs_type = DRRS_NOT_SUPPORTED;
dev_priv->vbt.psr.enable = driver->psr_enabled;
}
static void
parse_edp(struct drm_i915_private *dev_priv, const struct bdb_header *bdb)
{
const struct bdb_edp *edp;
const struct edp_power_seq *edp_pps;
const struct edp_fast_link_params *edp_link_params;
int panel_type = dev_priv->vbt.panel_type;
edp = find_section(bdb, BDB_EDP);
if (!edp)
return;
switch ((edp->color_depth >> (panel_type * 2)) & 3) {
case EDP_18BPP:
dev_priv->vbt.edp.bpp = 18;
break;
case EDP_24BPP:
dev_priv->vbt.edp.bpp = 24;
break;
case EDP_30BPP:
dev_priv->vbt.edp.bpp = 30;
break;
}
/* Get the eDP sequencing and link info */
edp_pps = &edp->power_seqs[panel_type];
edp_link_params = &edp->fast_link_params[panel_type];
dev_priv->vbt.edp.pps = *edp_pps;
switch (edp_link_params->rate) {
case EDP_RATE_1_62:
dev_priv->vbt.edp.rate = DP_LINK_BW_1_62;
break;
case EDP_RATE_2_7:
dev_priv->vbt.edp.rate = DP_LINK_BW_2_7;
break;
default:
DRM_DEBUG_KMS("VBT has unknown eDP link rate value %u\n",
edp_link_params->rate);
break;
}
switch (edp_link_params->lanes) {
case EDP_LANE_1:
dev_priv->vbt.edp.lanes = 1;
break;
case EDP_LANE_2:
dev_priv->vbt.edp.lanes = 2;
break;
case EDP_LANE_4:
dev_priv->vbt.edp.lanes = 4;
break;
default:
DRM_DEBUG_KMS("VBT has unknown eDP lane count value %u\n",
edp_link_params->lanes);
break;
}
switch (edp_link_params->preemphasis) {
case EDP_PREEMPHASIS_NONE:
dev_priv->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_0;
break;
case EDP_PREEMPHASIS_3_5dB:
dev_priv->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_1;
break;
case EDP_PREEMPHASIS_6dB:
dev_priv->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_2;
break;
case EDP_PREEMPHASIS_9_5dB:
dev_priv->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_3;
break;
default:
DRM_DEBUG_KMS("VBT has unknown eDP pre-emphasis value %u\n",
edp_link_params->preemphasis);
break;
}
switch (edp_link_params->vswing) {
case EDP_VSWING_0_4V:
dev_priv->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_0;
break;
case EDP_VSWING_0_6V:
dev_priv->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_1;
break;
case EDP_VSWING_0_8V:
dev_priv->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
break;
case EDP_VSWING_1_2V:
dev_priv->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
break;
default:
DRM_DEBUG_KMS("VBT has unknown eDP voltage swing value %u\n",
edp_link_params->vswing);
break;
}
if (bdb->version >= 173) {
u8 vswing;
/* Don't read from VBT if module parameter has valid value*/
if (i915_modparams.edp_vswing) {
dev_priv->vbt.edp.low_vswing =
i915_modparams.edp_vswing == 1;
} else {
vswing = (edp->edp_vswing_preemph >> (panel_type * 4)) & 0xF;
dev_priv->vbt.edp.low_vswing = vswing == 0;
}
}
}
static void
parse_psr(struct drm_i915_private *dev_priv, const struct bdb_header *bdb)
{
const struct bdb_psr *psr;
const struct psr_table *psr_table;
int panel_type = dev_priv->vbt.panel_type;
psr = find_section(bdb, BDB_PSR);
if (!psr) {
DRM_DEBUG_KMS("No PSR BDB found.\n");
return;
}
psr_table = &psr->psr_table[panel_type];
dev_priv->vbt.psr.full_link = psr_table->full_link;
dev_priv->vbt.psr.require_aux_wakeup = psr_table->require_aux_to_wakeup;
/* Allowed VBT values goes from 0 to 15 */
dev_priv->vbt.psr.idle_frames = psr_table->idle_frames < 0 ? 0 :
psr_table->idle_frames > 15 ? 15 : psr_table->idle_frames;
switch (psr_table->lines_to_wait) {
case 0:
dev_priv->vbt.psr.lines_to_wait = PSR_0_LINES_TO_WAIT;
break;
case 1:
dev_priv->vbt.psr.lines_to_wait = PSR_1_LINE_TO_WAIT;
break;
case 2:
dev_priv->vbt.psr.lines_to_wait = PSR_4_LINES_TO_WAIT;
break;
case 3:
dev_priv->vbt.psr.lines_to_wait = PSR_8_LINES_TO_WAIT;
break;
default:
DRM_DEBUG_KMS("VBT has unknown PSR lines to wait %u\n",
psr_table->lines_to_wait);
break;
}
/*
* New psr options 0=500us, 1=100us, 2=2500us, 3=0us
* Old decimal value is wake up time in multiples of 100 us.
*/
if (bdb->version >= 205 &&
(IS_GEN9_BC(dev_priv) || IS_GEMINILAKE(dev_priv) ||
INTEL_GEN(dev_priv) >= 10)) {
switch (psr_table->tp1_wakeup_time) {
case 0:
dev_priv->vbt.psr.tp1_wakeup_time_us = 500;
break;
case 1:
dev_priv->vbt.psr.tp1_wakeup_time_us = 100;
break;
case 3:
dev_priv->vbt.psr.tp1_wakeup_time_us = 0;
break;
default:
DRM_DEBUG_KMS("VBT tp1 wakeup time value %d is outside range[0-3], defaulting to max value 2500us\n",
psr_table->tp1_wakeup_time);
/* fallthrough */
case 2:
dev_priv->vbt.psr.tp1_wakeup_time_us = 2500;
break;
}
switch (psr_table->tp2_tp3_wakeup_time) {
case 0:
dev_priv->vbt.psr.tp2_tp3_wakeup_time_us = 500;
break;
case 1:
dev_priv->vbt.psr.tp2_tp3_wakeup_time_us = 100;
break;
case 3:
dev_priv->vbt.psr.tp2_tp3_wakeup_time_us = 0;
break;
default:
DRM_DEBUG_KMS("VBT tp2_tp3 wakeup time value %d is outside range[0-3], defaulting to max value 2500us\n",
psr_table->tp2_tp3_wakeup_time);
/* fallthrough */
case 2:
dev_priv->vbt.psr.tp2_tp3_wakeup_time_us = 2500;
break;
}
} else {
dev_priv->vbt.psr.tp1_wakeup_time_us = psr_table->tp1_wakeup_time * 100;
dev_priv->vbt.psr.tp2_tp3_wakeup_time_us = psr_table->tp2_tp3_wakeup_time * 100;
}
if (bdb->version >= 226) {
u32 wakeup_time = psr_table->psr2_tp2_tp3_wakeup_time;
wakeup_time = (wakeup_time >> (2 * panel_type)) & 0x3;
switch (wakeup_time) {
case 0:
wakeup_time = 500;
break;
case 1:
wakeup_time = 100;
break;
case 3:
wakeup_time = 50;
break;
default:
case 2:
wakeup_time = 2500;
break;
}
dev_priv->vbt.psr.psr2_tp2_tp3_wakeup_time_us = wakeup_time;
} else {
/* Reusing PSR1 wakeup time for PSR2 in older VBTs */
dev_priv->vbt.psr.psr2_tp2_tp3_wakeup_time_us = dev_priv->vbt.psr.tp2_tp3_wakeup_time_us;
}
}
static void parse_dsi_backlight_ports(struct drm_i915_private *dev_priv,
u16 version, enum port port)
{
if (!dev_priv->vbt.dsi.config->dual_link || version < 197) {
dev_priv->vbt.dsi.bl_ports = BIT(port);
if (dev_priv->vbt.dsi.config->cabc_supported)
dev_priv->vbt.dsi.cabc_ports = BIT(port);
return;
}
switch (dev_priv->vbt.dsi.config->dl_dcs_backlight_ports) {
case DL_DCS_PORT_A:
dev_priv->vbt.dsi.bl_ports = BIT(PORT_A);
break;
case DL_DCS_PORT_C:
dev_priv->vbt.dsi.bl_ports = BIT(PORT_C);
break;
default:
case DL_DCS_PORT_A_AND_C:
dev_priv->vbt.dsi.bl_ports = BIT(PORT_A) | BIT(PORT_C);
break;
}
if (!dev_priv->vbt.dsi.config->cabc_supported)
return;
switch (dev_priv->vbt.dsi.config->dl_dcs_cabc_ports) {
case DL_DCS_PORT_A:
dev_priv->vbt.dsi.cabc_ports = BIT(PORT_A);
break;
case DL_DCS_PORT_C:
dev_priv->vbt.dsi.cabc_ports = BIT(PORT_C);
break;
default:
case DL_DCS_PORT_A_AND_C:
dev_priv->vbt.dsi.cabc_ports =
BIT(PORT_A) | BIT(PORT_C);
break;
}
}
static void
parse_mipi_config(struct drm_i915_private *dev_priv,
const struct bdb_header *bdb)
{
const struct bdb_mipi_config *start;
const struct mipi_config *config;
const struct mipi_pps_data *pps;
int panel_type = dev_priv->vbt.panel_type;
enum port port;
/* parse MIPI blocks only if LFP type is MIPI */
if (!intel_bios_is_dsi_present(dev_priv, &port))
return;
/* Initialize this to undefined indicating no generic MIPI support */
dev_priv->vbt.dsi.panel_id = MIPI_DSI_UNDEFINED_PANEL_ID;
/* Block #40 is already parsed and panel_fixed_mode is
* stored in dev_priv->lfp_lvds_vbt_mode
* resuse this when needed
*/
/* Parse #52 for panel index used from panel_type already
* parsed
*/
start = find_section(bdb, BDB_MIPI_CONFIG);
if (!start) {
DRM_DEBUG_KMS("No MIPI config BDB found");
return;
}
DRM_DEBUG_DRIVER("Found MIPI Config block, panel index = %d\n",
panel_type);
/*
* get hold of the correct configuration block and pps data as per
* the panel_type as index
*/
config = &start->config[panel_type];
pps = &start->pps[panel_type];
/* store as of now full data. Trim when we realise all is not needed */
dev_priv->vbt.dsi.config = kmemdup(config, sizeof(struct mipi_config), GFP_KERNEL);
if (!dev_priv->vbt.dsi.config)
return;
dev_priv->vbt.dsi.pps = kmemdup(pps, sizeof(struct mipi_pps_data), GFP_KERNEL);
if (!dev_priv->vbt.dsi.pps) {
kfree(dev_priv->vbt.dsi.config);
return;
}
parse_dsi_backlight_ports(dev_priv, bdb->version, port);
/* FIXME is the 90 vs. 270 correct? */
switch (config->rotation) {
case ENABLE_ROTATION_0:
/*
* Most (all?) VBTs claim 0 degrees despite having
* an upside down panel, thus we do not trust this.
*/
dev_priv->vbt.dsi.orientation =
DRM_MODE_PANEL_ORIENTATION_UNKNOWN;
break;
case ENABLE_ROTATION_90:
dev_priv->vbt.dsi.orientation =
DRM_MODE_PANEL_ORIENTATION_RIGHT_UP;
break;
case ENABLE_ROTATION_180:
dev_priv->vbt.dsi.orientation =
DRM_MODE_PANEL_ORIENTATION_BOTTOM_UP;
break;
case ENABLE_ROTATION_270:
dev_priv->vbt.dsi.orientation =
DRM_MODE_PANEL_ORIENTATION_LEFT_UP;
break;
}
/* We have mandatory mipi config blocks. Initialize as generic panel */
dev_priv->vbt.dsi.panel_id = MIPI_DSI_GENERIC_PANEL_ID;
}
/* Find the sequence block and size for the given panel. */
static const u8 *
find_panel_sequence_block(const struct bdb_mipi_sequence *sequence,
u16 panel_id, u32 *seq_size)
{
u32 total = get_blocksize(sequence);
const u8 *data = &sequence->data[0];
u8 current_id;
u32 current_size;
int header_size = sequence->version >= 3 ? 5 : 3;
int index = 0;
int i;
/* skip new block size */
if (sequence->version >= 3)
data += 4;
for (i = 0; i < MAX_MIPI_CONFIGURATIONS && index < total; i++) {
if (index + header_size > total) {
DRM_ERROR("Invalid sequence block (header)\n");
return NULL;
}
current_id = *(data + index);
if (sequence->version >= 3)
current_size = *((const u32 *)(data + index + 1));
else
current_size = *((const u16 *)(data + index + 1));
index += header_size;
if (index + current_size > total) {
DRM_ERROR("Invalid sequence block\n");
return NULL;
}
if (current_id == panel_id) {
*seq_size = current_size;
return data + index;
}
index += current_size;
}
DRM_ERROR("Sequence block detected but no valid configuration\n");
return NULL;
}
static int goto_next_sequence(const u8 *data, int index, int total)
{
u16 len;
/* Skip Sequence Byte. */
for (index = index + 1; index < total; index += len) {
u8 operation_byte = *(data + index);
index++;
switch (operation_byte) {
case MIPI_SEQ_ELEM_END:
return index;
case MIPI_SEQ_ELEM_SEND_PKT:
if (index + 4 > total)
return 0;
len = *((const u16 *)(data + index + 2)) + 4;
break;
case MIPI_SEQ_ELEM_DELAY:
len = 4;
break;
case MIPI_SEQ_ELEM_GPIO:
len = 2;
break;
case MIPI_SEQ_ELEM_I2C:
if (index + 7 > total)
return 0;
len = *(data + index + 6) + 7;
break;
default:
DRM_ERROR("Unknown operation byte\n");
return 0;
}
}
return 0;
}
static int goto_next_sequence_v3(const u8 *data, int index, int total)
{
int seq_end;
u16 len;
u32 size_of_sequence;
/*
* Could skip sequence based on Size of Sequence alone, but also do some
* checking on the structure.
*/
if (total < 5) {
DRM_ERROR("Too small sequence size\n");
return 0;
}
/* Skip Sequence Byte. */
index++;
/*
* Size of Sequence. Excludes the Sequence Byte and the size itself,
* includes MIPI_SEQ_ELEM_END byte, excludes the final MIPI_SEQ_END
* byte.
*/
size_of_sequence = *((const u32 *)(data + index));
index += 4;
seq_end = index + size_of_sequence;
if (seq_end > total) {
DRM_ERROR("Invalid sequence size\n");
return 0;
}
for (; index < total; index += len) {
u8 operation_byte = *(data + index);
index++;
if (operation_byte == MIPI_SEQ_ELEM_END) {
if (index != seq_end) {
DRM_ERROR("Invalid element structure\n");
return 0;
}
return index;
}
len = *(data + index);
index++;
/*
* FIXME: Would be nice to check elements like for v1/v2 in
* goto_next_sequence() above.
*/
switch (operation_byte) {
case MIPI_SEQ_ELEM_SEND_PKT:
case MIPI_SEQ_ELEM_DELAY:
case MIPI_SEQ_ELEM_GPIO:
case MIPI_SEQ_ELEM_I2C:
case MIPI_SEQ_ELEM_SPI:
case MIPI_SEQ_ELEM_PMIC:
break;
default:
DRM_ERROR("Unknown operation byte %u\n",
operation_byte);
break;
}
}
return 0;
}
/*
* Get len of pre-fixed deassert fragment from a v1 init OTP sequence,
* skip all delay + gpio operands and stop at the first DSI packet op.
*/
static int get_init_otp_deassert_fragment_len(struct drm_i915_private *dev_priv)
{
const u8 *data = dev_priv->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP];
int index, len;
if (WARN_ON(!data || dev_priv->vbt.dsi.seq_version != 1))
return 0;
/* index = 1 to skip sequence byte */
for (index = 1; data[index] != MIPI_SEQ_ELEM_END; index += len) {
switch (data[index]) {
case MIPI_SEQ_ELEM_SEND_PKT:
return index == 1 ? 0 : index;
case MIPI_SEQ_ELEM_DELAY:
len = 5; /* 1 byte for operand + uint32 */
break;
case MIPI_SEQ_ELEM_GPIO:
len = 3; /* 1 byte for op, 1 for gpio_nr, 1 for value */
break;
default:
return 0;
}
}
return 0;
}
/*
* Some v1 VBT MIPI sequences do the deassert in the init OTP sequence.
* The deassert must be done before calling intel_dsi_device_ready, so for
* these devices we split the init OTP sequence into a deassert sequence and
* the actual init OTP part.
*/
static void fixup_mipi_sequences(struct drm_i915_private *dev_priv)
{
u8 *init_otp;
int len;
/* Limit this to VLV for now. */
if (!IS_VALLEYVIEW(dev_priv))
return;
/* Limit this to v1 vid-mode sequences */
if (dev_priv->vbt.dsi.config->is_cmd_mode ||
dev_priv->vbt.dsi.seq_version != 1)
return;
/* Only do this if there are otp and assert seqs and no deassert seq */
if (!dev_priv->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] ||
!dev_priv->vbt.dsi.sequence[MIPI_SEQ_ASSERT_RESET] ||
dev_priv->vbt.dsi.sequence[MIPI_SEQ_DEASSERT_RESET])
return;
/* The deassert-sequence ends at the first DSI packet */
len = get_init_otp_deassert_fragment_len(dev_priv);
if (!len)
return;
DRM_DEBUG_KMS("Using init OTP fragment to deassert reset\n");
/* Copy the fragment, update seq byte and terminate it */
init_otp = (u8 *)dev_priv->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP];
dev_priv->vbt.dsi.deassert_seq = kmemdup(init_otp, len + 1, GFP_KERNEL);
if (!dev_priv->vbt.dsi.deassert_seq)
return;
dev_priv->vbt.dsi.deassert_seq[0] = MIPI_SEQ_DEASSERT_RESET;
dev_priv->vbt.dsi.deassert_seq[len] = MIPI_SEQ_ELEM_END;
/* Use the copy for deassert */
dev_priv->vbt.dsi.sequence[MIPI_SEQ_DEASSERT_RESET] =
dev_priv->vbt.dsi.deassert_seq;
/* Replace the last byte of the fragment with init OTP seq byte */
init_otp[len - 1] = MIPI_SEQ_INIT_OTP;
/* And make MIPI_MIPI_SEQ_INIT_OTP point to it */
dev_priv->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] = init_otp + len - 1;
}
static void
parse_mipi_sequence(struct drm_i915_private *dev_priv,
const struct bdb_header *bdb)
{
int panel_type = dev_priv->vbt.panel_type;
const struct bdb_mipi_sequence *sequence;
const u8 *seq_data;
u32 seq_size;
u8 *data;
int index = 0;
/* Only our generic panel driver uses the sequence block. */
if (dev_priv->vbt.dsi.panel_id != MIPI_DSI_GENERIC_PANEL_ID)
return;
sequence = find_section(bdb, BDB_MIPI_SEQUENCE);
if (!sequence) {
DRM_DEBUG_KMS("No MIPI Sequence found, parsing complete\n");
return;
}
/* Fail gracefully for forward incompatible sequence block. */
if (sequence->version >= 4) {
DRM_ERROR("Unable to parse MIPI Sequence Block v%u\n",
sequence->version);
return;
}
DRM_DEBUG_DRIVER("Found MIPI sequence block v%u\n", sequence->version);
seq_data = find_panel_sequence_block(sequence, panel_type, &seq_size);
if (!seq_data)
return;
data = kmemdup(seq_data, seq_size, GFP_KERNEL);
if (!data)
return;
/* Parse the sequences, store pointers to each sequence. */
for (;;) {
u8 seq_id = *(data + index);
if (seq_id == MIPI_SEQ_END)
break;
if (seq_id >= MIPI_SEQ_MAX) {
DRM_ERROR("Unknown sequence %u\n", seq_id);
goto err;
}
/* Log about presence of sequences we won't run. */
if (seq_id == MIPI_SEQ_TEAR_ON || seq_id == MIPI_SEQ_TEAR_OFF)
DRM_DEBUG_KMS("Unsupported sequence %u\n", seq_id);
dev_priv->vbt.dsi.sequence[seq_id] = data + index;
if (sequence->version >= 3)
index = goto_next_sequence_v3(data, index, seq_size);
else
index = goto_next_sequence(data, index, seq_size);
if (!index) {
DRM_ERROR("Invalid sequence %u\n", seq_id);
goto err;
}
}
dev_priv->vbt.dsi.data = data;
dev_priv->vbt.dsi.size = seq_size;
dev_priv->vbt.dsi.seq_version = sequence->version;
fixup_mipi_sequences(dev_priv);
DRM_DEBUG_DRIVER("MIPI related VBT parsing complete\n");
return;
err:
kfree(data);
memset(dev_priv->vbt.dsi.sequence, 0, sizeof(dev_priv->vbt.dsi.sequence));
}
static u8 translate_iboost(u8 val)
{
static const u8 mapping[] = { 1, 3, 7 }; /* See VBT spec */
if (val >= ARRAY_SIZE(mapping)) {
DRM_DEBUG_KMS("Unsupported I_boost value found in VBT (%d), display may not work properly\n", val);
return 0;
}
return mapping[val];
}
static void sanitize_ddc_pin(struct drm_i915_private *dev_priv,
enum port port)
{
const struct ddi_vbt_port_info *info =
&dev_priv->vbt.ddi_port_info[port];
enum port p;
if (!info->alternate_ddc_pin)
return;
for (p = PORT_A; p < I915_MAX_PORTS; p++) {
struct ddi_vbt_port_info *i = &dev_priv->vbt.ddi_port_info[p];
if (p == port || !i->present ||
info->alternate_ddc_pin != i->alternate_ddc_pin)
continue;
DRM_DEBUG_KMS("port %c trying to use the same DDC pin (0x%x) as port %c, "
"disabling port %c DVI/HDMI support\n",
port_name(p), i->alternate_ddc_pin,
port_name(port), port_name(p));
/*
* If we have multiple ports supposedly sharing the
* pin, then dvi/hdmi couldn't exist on the shared
* port. Otherwise they share the same ddc bin and
* system couldn't communicate with them separately.
*
* Due to parsing the ports in child device order,
* a later device will always clobber an earlier one.
*/
i->supports_dvi = false;
i->supports_hdmi = false;
i->alternate_ddc_pin = 0;
}
}
static void sanitize_aux_ch(struct drm_i915_private *dev_priv,
enum port port)
{
const struct ddi_vbt_port_info *info =
&dev_priv->vbt.ddi_port_info[port];
enum port p;
if (!info->alternate_aux_channel)
return;
for (p = PORT_A; p < I915_MAX_PORTS; p++) {
struct ddi_vbt_port_info *i = &dev_priv->vbt.ddi_port_info[p];
if (p == port || !i->present ||
info->alternate_aux_channel != i->alternate_aux_channel)
continue;
DRM_DEBUG_KMS("port %c trying to use the same AUX CH (0x%x) as port %c, "
"disabling port %c DP support\n",
port_name(p), i->alternate_aux_channel,
port_name(port), port_name(p));
/*
* If we have multiple ports supposedlt sharing the
* aux channel, then DP couldn't exist on the shared
* port. Otherwise they share the same aux channel
* and system couldn't communicate with them separately.
*
* Due to parsing the ports in child device order,
* a later device will always clobber an earlier one.
*/
i->supports_dp = false;
i->alternate_aux_channel = 0;
}
}
static const u8 cnp_ddc_pin_map[] = {
[0] = 0, /* N/A */
[DDC_BUS_DDI_B] = GMBUS_PIN_1_BXT,
[DDC_BUS_DDI_C] = GMBUS_PIN_2_BXT,
[DDC_BUS_DDI_D] = GMBUS_PIN_4_CNP, /* sic */
[DDC_BUS_DDI_F] = GMBUS_PIN_3_BXT, /* sic */
};
static const u8 icp_ddc_pin_map[] = {
[ICL_DDC_BUS_DDI_A] = GMBUS_PIN_1_BXT,
[ICL_DDC_BUS_DDI_B] = GMBUS_PIN_2_BXT,
[ICL_DDC_BUS_PORT_1] = GMBUS_PIN_9_TC1_ICP,
[ICL_DDC_BUS_PORT_2] = GMBUS_PIN_10_TC2_ICP,
[ICL_DDC_BUS_PORT_3] = GMBUS_PIN_11_TC3_ICP,
[ICL_DDC_BUS_PORT_4] = GMBUS_PIN_12_TC4_ICP,
};
static u8 map_ddc_pin(struct drm_i915_private *dev_priv, u8 vbt_pin)
{
const u8 *ddc_pin_map;
int n_entries;
if (HAS_PCH_ICP(dev_priv)) {
ddc_pin_map = icp_ddc_pin_map;
n_entries = ARRAY_SIZE(icp_ddc_pin_map);
} else if (HAS_PCH_CNP(dev_priv)) {
ddc_pin_map = cnp_ddc_pin_map;
n_entries = ARRAY_SIZE(cnp_ddc_pin_map);
} else {
/* Assuming direct map */
return vbt_pin;
}
if (vbt_pin < n_entries && ddc_pin_map[vbt_pin] != 0)
return ddc_pin_map[vbt_pin];
DRM_DEBUG_KMS("Ignoring alternate pin: VBT claims DDC pin %d, which is not valid for this platform\n",
vbt_pin);
return 0;
}
static enum port dvo_port_to_port(u8 dvo_port)
{
/*
* Each DDI port can have more than one value on the "DVO Port" field,
* so look for all the possible values for each port.
*/
static const int dvo_ports[][3] = {
[PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1},
[PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1},
[PORT_C] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1},
[PORT_D] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1},
[PORT_E] = { DVO_PORT_CRT, DVO_PORT_HDMIE, DVO_PORT_DPE},
[PORT_F] = { DVO_PORT_HDMIF, DVO_PORT_DPF, -1},
};
enum port port;
int i;
for (port = PORT_A; port < ARRAY_SIZE(dvo_ports); port++) {
for (i = 0; i < ARRAY_SIZE(dvo_ports[port]); i++) {
if (dvo_ports[port][i] == -1)
break;
if (dvo_port == dvo_ports[port][i])
return port;
}
}
return PORT_NONE;
}
static void parse_ddi_port(struct drm_i915_private *dev_priv,
const struct child_device_config *child,
u8 bdb_version)
{
struct ddi_vbt_port_info *info;
bool is_dvi, is_hdmi, is_dp, is_edp, is_crt;
enum port port;
port = dvo_port_to_port(child->dvo_port);
if (port == PORT_NONE)
return;
info = &dev_priv->vbt.ddi_port_info[port];
if (info->present) {
DRM_DEBUG_KMS("More than one child device for port %c in VBT, using the first.\n",
port_name(port));
return;
}
info->present = true;
is_dvi = child->device_type & DEVICE_TYPE_TMDS_DVI_SIGNALING;
is_dp = child->device_type & DEVICE_TYPE_DISPLAYPORT_OUTPUT;
is_crt = child->device_type & DEVICE_TYPE_ANALOG_OUTPUT;
is_hdmi = is_dvi && (child->device_type & DEVICE_TYPE_NOT_HDMI_OUTPUT) == 0;
is_edp = is_dp && (child->device_type & DEVICE_TYPE_INTERNAL_CONNECTOR);
if (port == PORT_A && is_dvi) {
DRM_DEBUG_KMS("VBT claims port A supports DVI%s, ignoring\n",
is_hdmi ? "/HDMI" : "");
is_dvi = false;
is_hdmi = false;
}
info->supports_dvi = is_dvi;
info->supports_hdmi = is_hdmi;
info->supports_dp = is_dp;
info->supports_edp = is_edp;
if (bdb_version >= 195)
info->supports_typec_usb = child->dp_usb_type_c;
if (bdb_version >= 209)
info->supports_tbt = child->tbt;
DRM_DEBUG_KMS("Port %c VBT info: DP:%d HDMI:%d DVI:%d EDP:%d CRT:%d TCUSB:%d TBT:%d\n",
port_name(port), is_dp, is_hdmi, is_dvi, is_edp, is_crt,
info->supports_typec_usb, info->supports_tbt);
if (is_edp && is_dvi)
DRM_DEBUG_KMS("Internal DP port %c is TMDS compatible\n",
port_name(port));
if (is_crt && port != PORT_E)
DRM_DEBUG_KMS("Port %c is analog\n", port_name(port));
if (is_crt && (is_dvi || is_dp))
DRM_DEBUG_KMS("Analog port %c is also DP or TMDS compatible\n",
port_name(port));
if (is_dvi && (port == PORT_A || port == PORT_E))
DRM_DEBUG_KMS("Port %c is TMDS compatible\n", port_name(port));
if (!is_dvi && !is_dp && !is_crt)
DRM_DEBUG_KMS("Port %c is not DP/TMDS/CRT compatible\n",
port_name(port));
if (is_edp && (port == PORT_B || port == PORT_C || port == PORT_E))
DRM_DEBUG_KMS("Port %c is internal DP\n", port_name(port));
if (is_dvi) {
u8 ddc_pin;
ddc_pin = map_ddc_pin(dev_priv, child->ddc_pin);
if (intel_gmbus_is_valid_pin(dev_priv, ddc_pin)) {
info->alternate_ddc_pin = ddc_pin;
sanitize_ddc_pin(dev_priv, port);
} else {
DRM_DEBUG_KMS("Port %c has invalid DDC pin %d, "
"sticking to defaults\n",
port_name(port), ddc_pin);
}
}
if (is_dp) {
info->alternate_aux_channel = child->aux_channel;
sanitize_aux_ch(dev_priv, port);
}
if (bdb_version >= 158) {
/* The VBT HDMI level shift values match the table we have. */
u8 hdmi_level_shift = child->hdmi_level_shifter_value;
DRM_DEBUG_KMS("VBT HDMI level shift for port %c: %d\n",
port_name(port),
hdmi_level_shift);
info->hdmi_level_shift = hdmi_level_shift;
}
if (bdb_version >= 204) {
int max_tmds_clock;
switch (child->hdmi_max_data_rate) {
default:
MISSING_CASE(child->hdmi_max_data_rate);
/* fall through */
case HDMI_MAX_DATA_RATE_PLATFORM:
max_tmds_clock = 0;
break;
case HDMI_MAX_DATA_RATE_297:
max_tmds_clock = 297000;
break;
case HDMI_MAX_DATA_RATE_165:
max_tmds_clock = 165000;
break;
}
if (max_tmds_clock)
DRM_DEBUG_KMS("VBT HDMI max TMDS clock for port %c: %d kHz\n",
port_name(port), max_tmds_clock);
info->max_tmds_clock = max_tmds_clock;
}
/* Parse the I_boost config for SKL and above */
if (bdb_version >= 196 && child->iboost) {
info->dp_boost_level = translate_iboost(child->dp_iboost_level);
DRM_DEBUG_KMS("VBT (e)DP boost level for port %c: %d\n",
port_name(port), info->dp_boost_level);
info->hdmi_boost_level = translate_iboost(child->hdmi_iboost_level);
DRM_DEBUG_KMS("VBT HDMI boost level for port %c: %d\n",
port_name(port), info->hdmi_boost_level);
}
/* DP max link rate for CNL+ */
if (bdb_version >= 216) {
switch (child->dp_max_link_rate) {
default:
case VBT_DP_MAX_LINK_RATE_HBR3:
info->dp_max_link_rate = 810000;
break;
case VBT_DP_MAX_LINK_RATE_HBR2:
info->dp_max_link_rate = 540000;
break;
case VBT_DP_MAX_LINK_RATE_HBR:
info->dp_max_link_rate = 270000;
break;
case VBT_DP_MAX_LINK_RATE_LBR:
info->dp_max_link_rate = 162000;
break;
}
DRM_DEBUG_KMS("VBT DP max link rate for port %c: %d\n",
port_name(port), info->dp_max_link_rate);
}
}
static void parse_ddi_ports(struct drm_i915_private *dev_priv, u8 bdb_version)
{
const struct child_device_config *child;
int i;
if (!HAS_DDI(dev_priv) && !IS_CHERRYVIEW(dev_priv))
return;
if (bdb_version < 155)
return;
for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
child = dev_priv->vbt.child_dev + i;
parse_ddi_port(dev_priv, child, bdb_version);
}
}
static void
parse_general_definitions(struct drm_i915_private *dev_priv,
const struct bdb_header *bdb)
{
const struct bdb_general_definitions *defs;
const struct child_device_config *child;
int i, child_device_num, count;
u8 expected_size;
u16 block_size;
int bus_pin;
defs = find_section(bdb, BDB_GENERAL_DEFINITIONS);
if (!defs) {
DRM_DEBUG_KMS("No general definition block is found, no devices defined.\n");
return;
}
block_size = get_blocksize(defs);
if (block_size < sizeof(*defs)) {
DRM_DEBUG_KMS("General definitions block too small (%u)\n",
block_size);
return;
}
bus_pin = defs->crt_ddc_gmbus_pin;
DRM_DEBUG_KMS("crt_ddc_bus_pin: %d\n", bus_pin);
if (intel_gmbus_is_valid_pin(dev_priv, bus_pin))
dev_priv->vbt.crt_ddc_pin = bus_pin;
if (bdb->version < 106) {
expected_size = 22;
} else if (bdb->version < 111) {
expected_size = 27;
} else if (bdb->version < 195) {
expected_size = LEGACY_CHILD_DEVICE_CONFIG_SIZE;
} else if (bdb->version == 195) {
expected_size = 37;
} else if (bdb->version <= 215) {
expected_size = 38;
} else if (bdb->version <= 216) {
expected_size = 39;
} else {
expected_size = sizeof(*child);
BUILD_BUG_ON(sizeof(*child) < 39);
DRM_DEBUG_DRIVER("Expected child device config size for VBT version %u not known; assuming %u\n",
bdb->version, expected_size);
}
/* Flag an error for unexpected size, but continue anyway. */
if (defs->child_dev_size != expected_size)
DRM_ERROR("Unexpected child device config size %u (expected %u for VBT version %u)\n",
defs->child_dev_size, expected_size, bdb->version);
/* The legacy sized child device config is the minimum we need. */
if (defs->child_dev_size < LEGACY_CHILD_DEVICE_CONFIG_SIZE) {
DRM_DEBUG_KMS("Child device config size %u is too small.\n",
defs->child_dev_size);
return;
}
/* get the number of child device */
child_device_num = (block_size - sizeof(*defs)) / defs->child_dev_size;
count = 0;
/* get the number of child device that is present */
for (i = 0; i < child_device_num; i++) {
child = child_device_ptr(defs, i);
if (!child->device_type)
continue;
count++;
}
if (!count) {
DRM_DEBUG_KMS("no child dev is parsed from VBT\n");
return;
}
dev_priv->vbt.child_dev = kcalloc(count, sizeof(*child), GFP_KERNEL);
if (!dev_priv->vbt.child_dev) {
DRM_DEBUG_KMS("No memory space for child device\n");
return;
}
dev_priv->vbt.child_dev_num = count;
count = 0;
for (i = 0; i < child_device_num; i++) {
child = child_device_ptr(defs, i);
if (!child->device_type)
continue;
/*
* Copy as much as we know (sizeof) and is available
* (child_dev_size) of the child device. Accessing the data must
* depend on VBT version.
*/
memcpy(dev_priv->vbt.child_dev + count, child,
min_t(size_t, defs->child_dev_size, sizeof(*child)));
count++;
}
}
/* Common defaults which may be overridden by VBT. */
static void
init_vbt_defaults(struct drm_i915_private *dev_priv)
{
enum port port;
dev_priv->vbt.crt_ddc_pin = GMBUS_PIN_VGADDC;
/* Default to having backlight */
dev_priv->vbt.backlight.present = true;
/* LFP panel data */
dev_priv->vbt.lvds_dither = 1;
/* SDVO panel data */
dev_priv->vbt.sdvo_lvds_vbt_mode = NULL;
/* general features */
dev_priv->vbt.int_tv_support = 1;
dev_priv->vbt.int_crt_support = 1;
/* driver features */
dev_priv->vbt.int_lvds_support = 1;
/* Default to using SSC */
dev_priv->vbt.lvds_use_ssc = 1;
/*
* Core/SandyBridge/IvyBridge use alternative (120MHz) reference
* clock for LVDS.
*/
dev_priv->vbt.lvds_ssc_freq = intel_bios_ssc_frequency(dev_priv,
!HAS_PCH_SPLIT(dev_priv));
DRM_DEBUG_KMS("Set default to SSC at %d kHz\n", dev_priv->vbt.lvds_ssc_freq);
for (port = PORT_A; port < I915_MAX_PORTS; port++) {
struct ddi_vbt_port_info *info =
&dev_priv->vbt.ddi_port_info[port];
info->hdmi_level_shift = HDMI_LEVEL_SHIFT_UNKNOWN;
}
}
/* Defaults to initialize only if there is no VBT. */
static void
init_vbt_missing_defaults(struct drm_i915_private *dev_priv)
{
enum port port;
for (port = PORT_A; port < I915_MAX_PORTS; port++) {
struct ddi_vbt_port_info *info =
&dev_priv->vbt.ddi_port_info[port];
/*
* VBT has the TypeC mode (native,TBT/USB) and we don't want
* to detect it.
*/
if (intel_port_is_tc(dev_priv, port))
continue;
info->supports_dvi = (port != PORT_A && port != PORT_E);
info->supports_hdmi = info->supports_dvi;
info->supports_dp = (port != PORT_E);
info->supports_edp = (port == PORT_A);
}
}
static const struct bdb_header *get_bdb_header(const struct vbt_header *vbt)
{
const void *_vbt = vbt;
return _vbt + vbt->bdb_offset;
}
/**
* intel_bios_is_valid_vbt - does the given buffer contain a valid VBT
* @buf: pointer to a buffer to validate
* @size: size of the buffer
*
* Returns true on valid VBT.
*/
bool intel_bios_is_valid_vbt(const void *buf, size_t size)
{
const struct vbt_header *vbt = buf;
const struct bdb_header *bdb;
if (!vbt)
return false;
if (sizeof(struct vbt_header) > size) {
DRM_DEBUG_DRIVER("VBT header incomplete\n");
return false;
}
if (memcmp(vbt->signature, "$VBT", 4)) {
DRM_DEBUG_DRIVER("VBT invalid signature\n");
return false;
}
if (range_overflows_t(size_t,
vbt->bdb_offset,
sizeof(struct bdb_header),
size)) {
DRM_DEBUG_DRIVER("BDB header incomplete\n");
return false;
}
bdb = get_bdb_header(vbt);
if (range_overflows_t(size_t, vbt->bdb_offset, bdb->bdb_size, size)) {
DRM_DEBUG_DRIVER("BDB incomplete\n");
return false;
}
return vbt;
}
static const struct vbt_header *find_vbt(void __iomem *bios, size_t size)
{
size_t i;
/* Scour memory looking for the VBT signature. */
for (i = 0; i + 4 < size; i++) {
void *vbt;
if (ioread32(bios + i) != *((const u32 *) "$VBT"))
continue;
/*
* This is the one place where we explicitly discard the address
* space (__iomem) of the BIOS/VBT.
*/
vbt = (void __force *) bios + i;
if (intel_bios_is_valid_vbt(vbt, size - i))
return vbt;
break;
}
return NULL;
}
/**
* intel_bios_init - find VBT and initialize settings from the BIOS
* @dev_priv: i915 device instance
*
* Parse and initialize settings from the Video BIOS Tables (VBT). If the VBT
* was not found in ACPI OpRegion, try to find it in PCI ROM first. Also
* initialize some defaults if the VBT is not present at all.
*/
void intel_bios_init(struct drm_i915_private *dev_priv)
{
struct pci_dev *pdev = dev_priv->drm.pdev;
const struct vbt_header *vbt = dev_priv->opregion.vbt;
const struct bdb_header *bdb;
u8 __iomem *bios = NULL;
if (!HAS_DISPLAY(dev_priv)) {
DRM_DEBUG_KMS("Skipping VBT init due to disabled display.\n");
return;
}
init_vbt_defaults(dev_priv);
/* If the OpRegion does not have VBT, look in PCI ROM. */
if (!vbt) {
size_t size;
bios = pci_map_rom(pdev, &size);
if (!bios)
goto out;
vbt = find_vbt(bios, size);
if (!vbt)
goto out;
DRM_DEBUG_KMS("Found valid VBT in PCI ROM\n");
}
bdb = get_bdb_header(vbt);
DRM_DEBUG_KMS("VBT signature \"%.*s\", BDB version %d\n",
(int)sizeof(vbt->signature), vbt->signature, bdb->version);
/* Grab useful general definitions */
parse_general_features(dev_priv, bdb);
parse_general_definitions(dev_priv, bdb);
parse_lfp_panel_data(dev_priv, bdb);
parse_lfp_backlight(dev_priv, bdb);
parse_sdvo_panel_data(dev_priv, bdb);
parse_driver_features(dev_priv, bdb);
parse_edp(dev_priv, bdb);
parse_psr(dev_priv, bdb);
parse_mipi_config(dev_priv, bdb);
parse_mipi_sequence(dev_priv, bdb);
/* Further processing on pre-parsed data */
parse_sdvo_device_mapping(dev_priv, bdb->version);
parse_ddi_ports(dev_priv, bdb->version);
out:
if (!vbt) {
DRM_INFO("Failed to find VBIOS tables (VBT)\n");
init_vbt_missing_defaults(dev_priv);
}
if (bios)
pci_unmap_rom(pdev, bios);
}
/**
* intel_bios_cleanup - Free any resources allocated by intel_bios_init()
* @dev_priv: i915 device instance
*/
void intel_bios_cleanup(struct drm_i915_private *dev_priv)
{
kfree(dev_priv->vbt.child_dev);
dev_priv->vbt.child_dev = NULL;
dev_priv->vbt.child_dev_num = 0;
kfree(dev_priv->vbt.sdvo_lvds_vbt_mode);
dev_priv->vbt.sdvo_lvds_vbt_mode = NULL;
kfree(dev_priv->vbt.lfp_lvds_vbt_mode);
dev_priv->vbt.lfp_lvds_vbt_mode = NULL;
kfree(dev_priv->vbt.dsi.data);
dev_priv->vbt.dsi.data = NULL;
kfree(dev_priv->vbt.dsi.pps);
dev_priv->vbt.dsi.pps = NULL;
kfree(dev_priv->vbt.dsi.config);
dev_priv->vbt.dsi.config = NULL;
kfree(dev_priv->vbt.dsi.deassert_seq);
dev_priv->vbt.dsi.deassert_seq = NULL;
}
/**
* intel_bios_is_tv_present - is integrated TV present in VBT
* @dev_priv: i915 device instance
*
* Return true if TV is present. If no child devices were parsed from VBT,
* assume TV is present.
*/
bool intel_bios_is_tv_present(struct drm_i915_private *dev_priv)
{
const struct child_device_config *child;
int i;
if (!dev_priv->vbt.int_tv_support)
return false;
if (!dev_priv->vbt.child_dev_num)
return true;
for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
child = dev_priv->vbt.child_dev + i;
/*
* If the device type is not TV, continue.
*/
switch (child->device_type) {
case DEVICE_TYPE_INT_TV:
case DEVICE_TYPE_TV:
case DEVICE_TYPE_TV_SVIDEO_COMPOSITE:
break;
default:
continue;
}
/* Only when the addin_offset is non-zero, it is regarded
* as present.
*/
if (child->addin_offset)
return true;
}
return false;
}
/**
* intel_bios_is_lvds_present - is LVDS present in VBT
* @dev_priv: i915 device instance
* @i2c_pin: i2c pin for LVDS if present
*
* Return true if LVDS is present. If no child devices were parsed from VBT,
* assume LVDS is present.
*/
bool intel_bios_is_lvds_present(struct drm_i915_private *dev_priv, u8 *i2c_pin)
{
const struct child_device_config *child;
int i;
if (!dev_priv->vbt.child_dev_num)
return true;
for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
child = dev_priv->vbt.child_dev + i;
/* If the device type is not LFP, continue.
* We have to check both the new identifiers as well as the
* old for compatibility with some BIOSes.
*/
if (child->device_type != DEVICE_TYPE_INT_LFP &&
child->device_type != DEVICE_TYPE_LFP)
continue;
if (intel_gmbus_is_valid_pin(dev_priv, child->i2c_pin))
*i2c_pin = child->i2c_pin;
/* However, we cannot trust the BIOS writers to populate
* the VBT correctly. Since LVDS requires additional
* information from AIM blocks, a non-zero addin offset is
* a good indicator that the LVDS is actually present.
*/
if (child->addin_offset)
return true;
/* But even then some BIOS writers perform some black magic
* and instantiate the device without reference to any
* additional data. Trust that if the VBT was written into
* the OpRegion then they have validated the LVDS's existence.
*/
if (dev_priv->opregion.vbt)
return true;
}
return false;
}
/**
* intel_bios_is_port_present - is the specified digital port present
* @dev_priv: i915 device instance
* @port: port to check
*
* Return true if the device in %port is present.
*/
bool intel_bios_is_port_present(struct drm_i915_private *dev_priv, enum port port)
{
const struct child_device_config *child;
static const struct {
u16 dp, hdmi;
} port_mapping[] = {
[PORT_B] = { DVO_PORT_DPB, DVO_PORT_HDMIB, },
[PORT_C] = { DVO_PORT_DPC, DVO_PORT_HDMIC, },
[PORT_D] = { DVO_PORT_DPD, DVO_PORT_HDMID, },
[PORT_E] = { DVO_PORT_DPE, DVO_PORT_HDMIE, },
[PORT_F] = { DVO_PORT_DPF, DVO_PORT_HDMIF, },
};
int i;
if (HAS_DDI(dev_priv)) {
const struct ddi_vbt_port_info *port_info =
&dev_priv->vbt.ddi_port_info[port];
return port_info->supports_dp ||
port_info->supports_dvi ||
port_info->supports_hdmi;
}
/* FIXME maybe deal with port A as well? */
if (WARN_ON(port == PORT_A) || port >= ARRAY_SIZE(port_mapping))
return false;
if (!dev_priv->vbt.child_dev_num)
return false;
for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
child = dev_priv->vbt.child_dev + i;
if ((child->dvo_port == port_mapping[port].dp ||
child->dvo_port == port_mapping[port].hdmi) &&
(child->device_type & (DEVICE_TYPE_TMDS_DVI_SIGNALING |
DEVICE_TYPE_DISPLAYPORT_OUTPUT)))
return true;
}
return false;
}
/**
* intel_bios_is_port_edp - is the device in given port eDP
* @dev_priv: i915 device instance
* @port: port to check
*
* Return true if the device in %port is eDP.
*/
bool intel_bios_is_port_edp(struct drm_i915_private *dev_priv, enum port port)
{
const struct child_device_config *child;
static const short port_mapping[] = {
[PORT_B] = DVO_PORT_DPB,
[PORT_C] = DVO_PORT_DPC,
[PORT_D] = DVO_PORT_DPD,
[PORT_E] = DVO_PORT_DPE,
[PORT_F] = DVO_PORT_DPF,
};
int i;
if (HAS_DDI(dev_priv))
return dev_priv->vbt.ddi_port_info[port].supports_edp;
if (!dev_priv->vbt.child_dev_num)
return false;
for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
child = dev_priv->vbt.child_dev + i;
if (child->dvo_port == port_mapping[port] &&
(child->device_type & DEVICE_TYPE_eDP_BITS) ==
(DEVICE_TYPE_eDP & DEVICE_TYPE_eDP_BITS))
return true;
}
return false;
}
static bool child_dev_is_dp_dual_mode(const struct child_device_config *child,
enum port port)
{
static const struct {
u16 dp, hdmi;
} port_mapping[] = {
/*
* Buggy VBTs may declare DP ports as having
* HDMI type dvo_port :( So let's check both.
*/
[PORT_B] = { DVO_PORT_DPB, DVO_PORT_HDMIB, },
[PORT_C] = { DVO_PORT_DPC, DVO_PORT_HDMIC, },
[PORT_D] = { DVO_PORT_DPD, DVO_PORT_HDMID, },
[PORT_E] = { DVO_PORT_DPE, DVO_PORT_HDMIE, },
[PORT_F] = { DVO_PORT_DPF, DVO_PORT_HDMIF, },
};
if (port == PORT_A || port >= ARRAY_SIZE(port_mapping))
return false;
if ((child->device_type & DEVICE_TYPE_DP_DUAL_MODE_BITS) !=
(DEVICE_TYPE_DP_DUAL_MODE & DEVICE_TYPE_DP_DUAL_MODE_BITS))
return false;
if (child->dvo_port == port_mapping[port].dp)
return true;
/* Only accept a HDMI dvo_port as DP++ if it has an AUX channel */
if (child->dvo_port == port_mapping[port].hdmi &&
child->aux_channel != 0)
return true;
return false;
}
bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *dev_priv,
enum port port)
{
const struct child_device_config *child;
int i;
for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
child = dev_priv->vbt.child_dev + i;
if (child_dev_is_dp_dual_mode(child, port))
return true;
}
return false;
}
/**
* intel_bios_is_dsi_present - is DSI present in VBT
* @dev_priv: i915 device instance
* @port: port for DSI if present
*
* Return true if DSI is present, and return the port in %port.
*/
bool intel_bios_is_dsi_present(struct drm_i915_private *dev_priv,
enum port *port)
{
const struct child_device_config *child;
u8 dvo_port;
int i;
for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
child = dev_priv->vbt.child_dev + i;
if (!(child->device_type & DEVICE_TYPE_MIPI_OUTPUT))
continue;
dvo_port = child->dvo_port;
if (dvo_port == DVO_PORT_MIPIA ||
(dvo_port == DVO_PORT_MIPIB && INTEL_GEN(dev_priv) >= 11) ||
(dvo_port == DVO_PORT_MIPIC && INTEL_GEN(dev_priv) < 11)) {
if (port)
*port = dvo_port - DVO_PORT_MIPIA;
return true;
} else if (dvo_port == DVO_PORT_MIPIB ||
dvo_port == DVO_PORT_MIPIC ||
dvo_port == DVO_PORT_MIPID) {
DRM_DEBUG_KMS("VBT has unsupported DSI port %c\n",
port_name(dvo_port - DVO_PORT_MIPIA));
}
}
return false;
}
/**
* intel_bios_is_port_hpd_inverted - is HPD inverted for %port
* @dev_priv: i915 device instance
* @port: port to check
*
* Return true if HPD should be inverted for %port.
*/
bool
intel_bios_is_port_hpd_inverted(struct drm_i915_private *dev_priv,
enum port port)
{
const struct child_device_config *child;
int i;
if (WARN_ON_ONCE(!IS_GEN9_LP(dev_priv)))
return false;
for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
child = dev_priv->vbt.child_dev + i;
if (!child->hpd_invert)
continue;
switch (child->dvo_port) {
case DVO_PORT_DPA:
case DVO_PORT_HDMIA:
if (port == PORT_A)
return true;
break;
case DVO_PORT_DPB:
case DVO_PORT_HDMIB:
if (port == PORT_B)
return true;
break;
case DVO_PORT_DPC:
case DVO_PORT_HDMIC:
if (port == PORT_C)
return true;
break;
default:
break;
}
}
return false;
}
/**
* intel_bios_is_lspcon_present - if LSPCON is attached on %port
* @dev_priv: i915 device instance
* @port: port to check
*
* Return true if LSPCON is present on this port
*/
bool
intel_bios_is_lspcon_present(struct drm_i915_private *dev_priv,
enum port port)
{
const struct child_device_config *child;
int i;
if (!HAS_LSPCON(dev_priv))
return false;
for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
child = dev_priv->vbt.child_dev + i;
if (!child->lspcon)
continue;
switch (child->dvo_port) {
case DVO_PORT_DPA:
case DVO_PORT_HDMIA:
if (port == PORT_A)
return true;
break;
case DVO_PORT_DPB:
case DVO_PORT_HDMIB:
if (port == PORT_B)
return true;
break;
case DVO_PORT_DPC:
case DVO_PORT_HDMIC:
if (port == PORT_C)
return true;
break;
case DVO_PORT_DPD:
case DVO_PORT_HDMID:
if (port == PORT_D)
return true;
break;
case DVO_PORT_DPF:
case DVO_PORT_HDMIF:
if (port == PORT_F)
return true;
break;
default:
break;
}
}
return false;
}
enum aux_ch intel_bios_port_aux_ch(struct drm_i915_private *dev_priv,
enum port port)
{
const struct ddi_vbt_port_info *info =
&dev_priv->vbt.ddi_port_info[port];
enum aux_ch aux_ch;
if (!info->alternate_aux_channel) {
aux_ch = (enum aux_ch)port;
DRM_DEBUG_KMS("using AUX %c for port %c (platform default)\n",
aux_ch_name(aux_ch), port_name(port));
return aux_ch;
}
switch (info->alternate_aux_channel) {
case DP_AUX_A:
aux_ch = AUX_CH_A;
break;
case DP_AUX_B:
aux_ch = AUX_CH_B;
break;
case DP_AUX_C:
aux_ch = AUX_CH_C;
break;
case DP_AUX_D:
aux_ch = AUX_CH_D;
break;
case DP_AUX_E:
aux_ch = AUX_CH_E;
break;
case DP_AUX_F:
aux_ch = AUX_CH_F;
break;
default:
MISSING_CASE(info->alternate_aux_channel);
aux_ch = AUX_CH_A;
break;
}
DRM_DEBUG_KMS("using AUX %c for port %c (VBT)\n",
aux_ch_name(aux_ch), port_name(port));
return aux_ch;
}