linux/kernel/bpf/arraymap.c
Yonghong Song d3cc2ab546 bpf: Implement bpf iterator for array maps
The bpf iterators for array and percpu array
are implemented. Similar to hash maps, for percpu
array map, bpf program will receive values
from all cpus.

Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200723184115.590532-1-yhs@fb.com
2020-07-25 20:16:33 -07:00

1240 lines
32 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
* Copyright (c) 2016,2017 Facebook
*/
#include <linux/bpf.h>
#include <linux/btf.h>
#include <linux/err.h>
#include <linux/slab.h>
#include <linux/mm.h>
#include <linux/filter.h>
#include <linux/perf_event.h>
#include <uapi/linux/btf.h>
#include "map_in_map.h"
#define ARRAY_CREATE_FLAG_MASK \
(BPF_F_NUMA_NODE | BPF_F_MMAPABLE | BPF_F_ACCESS_MASK)
static void bpf_array_free_percpu(struct bpf_array *array)
{
int i;
for (i = 0; i < array->map.max_entries; i++) {
free_percpu(array->pptrs[i]);
cond_resched();
}
}
static int bpf_array_alloc_percpu(struct bpf_array *array)
{
void __percpu *ptr;
int i;
for (i = 0; i < array->map.max_entries; i++) {
ptr = __alloc_percpu_gfp(array->elem_size, 8,
GFP_USER | __GFP_NOWARN);
if (!ptr) {
bpf_array_free_percpu(array);
return -ENOMEM;
}
array->pptrs[i] = ptr;
cond_resched();
}
return 0;
}
/* Called from syscall */
int array_map_alloc_check(union bpf_attr *attr)
{
bool percpu = attr->map_type == BPF_MAP_TYPE_PERCPU_ARRAY;
int numa_node = bpf_map_attr_numa_node(attr);
/* check sanity of attributes */
if (attr->max_entries == 0 || attr->key_size != 4 ||
attr->value_size == 0 ||
attr->map_flags & ~ARRAY_CREATE_FLAG_MASK ||
!bpf_map_flags_access_ok(attr->map_flags) ||
(percpu && numa_node != NUMA_NO_NODE))
return -EINVAL;
if (attr->map_type != BPF_MAP_TYPE_ARRAY &&
attr->map_flags & BPF_F_MMAPABLE)
return -EINVAL;
if (attr->value_size > KMALLOC_MAX_SIZE)
/* if value_size is bigger, the user space won't be able to
* access the elements.
*/
return -E2BIG;
return 0;
}
static struct bpf_map *array_map_alloc(union bpf_attr *attr)
{
bool percpu = attr->map_type == BPF_MAP_TYPE_PERCPU_ARRAY;
int ret, numa_node = bpf_map_attr_numa_node(attr);
u32 elem_size, index_mask, max_entries;
bool bypass_spec_v1 = bpf_bypass_spec_v1();
u64 cost, array_size, mask64;
struct bpf_map_memory mem;
struct bpf_array *array;
elem_size = round_up(attr->value_size, 8);
max_entries = attr->max_entries;
/* On 32 bit archs roundup_pow_of_two() with max_entries that has
* upper most bit set in u32 space is undefined behavior due to
* resulting 1U << 32, so do it manually here in u64 space.
*/
mask64 = fls_long(max_entries - 1);
mask64 = 1ULL << mask64;
mask64 -= 1;
index_mask = mask64;
if (!bypass_spec_v1) {
/* round up array size to nearest power of 2,
* since cpu will speculate within index_mask limits
*/
max_entries = index_mask + 1;
/* Check for overflows. */
if (max_entries < attr->max_entries)
return ERR_PTR(-E2BIG);
}
array_size = sizeof(*array);
if (percpu) {
array_size += (u64) max_entries * sizeof(void *);
} else {
/* rely on vmalloc() to return page-aligned memory and
* ensure array->value is exactly page-aligned
*/
if (attr->map_flags & BPF_F_MMAPABLE) {
array_size = PAGE_ALIGN(array_size);
array_size += PAGE_ALIGN((u64) max_entries * elem_size);
} else {
array_size += (u64) max_entries * elem_size;
}
}
/* make sure there is no u32 overflow later in round_up() */
cost = array_size;
if (percpu)
cost += (u64)attr->max_entries * elem_size * num_possible_cpus();
ret = bpf_map_charge_init(&mem, cost);
if (ret < 0)
return ERR_PTR(ret);
/* allocate all map elements and zero-initialize them */
if (attr->map_flags & BPF_F_MMAPABLE) {
void *data;
/* kmalloc'ed memory can't be mmap'ed, use explicit vmalloc */
data = bpf_map_area_mmapable_alloc(array_size, numa_node);
if (!data) {
bpf_map_charge_finish(&mem);
return ERR_PTR(-ENOMEM);
}
array = data + PAGE_ALIGN(sizeof(struct bpf_array))
- offsetof(struct bpf_array, value);
} else {
array = bpf_map_area_alloc(array_size, numa_node);
}
if (!array) {
bpf_map_charge_finish(&mem);
return ERR_PTR(-ENOMEM);
}
array->index_mask = index_mask;
array->map.bypass_spec_v1 = bypass_spec_v1;
/* copy mandatory map attributes */
bpf_map_init_from_attr(&array->map, attr);
bpf_map_charge_move(&array->map.memory, &mem);
array->elem_size = elem_size;
if (percpu && bpf_array_alloc_percpu(array)) {
bpf_map_charge_finish(&array->map.memory);
bpf_map_area_free(array);
return ERR_PTR(-ENOMEM);
}
return &array->map;
}
/* Called from syscall or from eBPF program */
static void *array_map_lookup_elem(struct bpf_map *map, void *key)
{
struct bpf_array *array = container_of(map, struct bpf_array, map);
u32 index = *(u32 *)key;
if (unlikely(index >= array->map.max_entries))
return NULL;
return array->value + array->elem_size * (index & array->index_mask);
}
static int array_map_direct_value_addr(const struct bpf_map *map, u64 *imm,
u32 off)
{
struct bpf_array *array = container_of(map, struct bpf_array, map);
if (map->max_entries != 1)
return -ENOTSUPP;
if (off >= map->value_size)
return -EINVAL;
*imm = (unsigned long)array->value;
return 0;
}
static int array_map_direct_value_meta(const struct bpf_map *map, u64 imm,
u32 *off)
{
struct bpf_array *array = container_of(map, struct bpf_array, map);
u64 base = (unsigned long)array->value;
u64 range = array->elem_size;
if (map->max_entries != 1)
return -ENOTSUPP;
if (imm < base || imm >= base + range)
return -ENOENT;
*off = imm - base;
return 0;
}
/* emit BPF instructions equivalent to C code of array_map_lookup_elem() */
static u32 array_map_gen_lookup(struct bpf_map *map, struct bpf_insn *insn_buf)
{
struct bpf_array *array = container_of(map, struct bpf_array, map);
struct bpf_insn *insn = insn_buf;
u32 elem_size = round_up(map->value_size, 8);
const int ret = BPF_REG_0;
const int map_ptr = BPF_REG_1;
const int index = BPF_REG_2;
*insn++ = BPF_ALU64_IMM(BPF_ADD, map_ptr, offsetof(struct bpf_array, value));
*insn++ = BPF_LDX_MEM(BPF_W, ret, index, 0);
if (!map->bypass_spec_v1) {
*insn++ = BPF_JMP_IMM(BPF_JGE, ret, map->max_entries, 4);
*insn++ = BPF_ALU32_IMM(BPF_AND, ret, array->index_mask);
} else {
*insn++ = BPF_JMP_IMM(BPF_JGE, ret, map->max_entries, 3);
}
if (is_power_of_2(elem_size)) {
*insn++ = BPF_ALU64_IMM(BPF_LSH, ret, ilog2(elem_size));
} else {
*insn++ = BPF_ALU64_IMM(BPF_MUL, ret, elem_size);
}
*insn++ = BPF_ALU64_REG(BPF_ADD, ret, map_ptr);
*insn++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1);
*insn++ = BPF_MOV64_IMM(ret, 0);
return insn - insn_buf;
}
/* Called from eBPF program */
static void *percpu_array_map_lookup_elem(struct bpf_map *map, void *key)
{
struct bpf_array *array = container_of(map, struct bpf_array, map);
u32 index = *(u32 *)key;
if (unlikely(index >= array->map.max_entries))
return NULL;
return this_cpu_ptr(array->pptrs[index & array->index_mask]);
}
int bpf_percpu_array_copy(struct bpf_map *map, void *key, void *value)
{
struct bpf_array *array = container_of(map, struct bpf_array, map);
u32 index = *(u32 *)key;
void __percpu *pptr;
int cpu, off = 0;
u32 size;
if (unlikely(index >= array->map.max_entries))
return -ENOENT;
/* per_cpu areas are zero-filled and bpf programs can only
* access 'value_size' of them, so copying rounded areas
* will not leak any kernel data
*/
size = round_up(map->value_size, 8);
rcu_read_lock();
pptr = array->pptrs[index & array->index_mask];
for_each_possible_cpu(cpu) {
bpf_long_memcpy(value + off, per_cpu_ptr(pptr, cpu), size);
off += size;
}
rcu_read_unlock();
return 0;
}
/* Called from syscall */
static int array_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
{
struct bpf_array *array = container_of(map, struct bpf_array, map);
u32 index = key ? *(u32 *)key : U32_MAX;
u32 *next = (u32 *)next_key;
if (index >= array->map.max_entries) {
*next = 0;
return 0;
}
if (index == array->map.max_entries - 1)
return -ENOENT;
*next = index + 1;
return 0;
}
/* Called from syscall or from eBPF program */
static int array_map_update_elem(struct bpf_map *map, void *key, void *value,
u64 map_flags)
{
struct bpf_array *array = container_of(map, struct bpf_array, map);
u32 index = *(u32 *)key;
char *val;
if (unlikely((map_flags & ~BPF_F_LOCK) > BPF_EXIST))
/* unknown flags */
return -EINVAL;
if (unlikely(index >= array->map.max_entries))
/* all elements were pre-allocated, cannot insert a new one */
return -E2BIG;
if (unlikely(map_flags & BPF_NOEXIST))
/* all elements already exist */
return -EEXIST;
if (unlikely((map_flags & BPF_F_LOCK) &&
!map_value_has_spin_lock(map)))
return -EINVAL;
if (array->map.map_type == BPF_MAP_TYPE_PERCPU_ARRAY) {
memcpy(this_cpu_ptr(array->pptrs[index & array->index_mask]),
value, map->value_size);
} else {
val = array->value +
array->elem_size * (index & array->index_mask);
if (map_flags & BPF_F_LOCK)
copy_map_value_locked(map, val, value, false);
else
copy_map_value(map, val, value);
}
return 0;
}
int bpf_percpu_array_update(struct bpf_map *map, void *key, void *value,
u64 map_flags)
{
struct bpf_array *array = container_of(map, struct bpf_array, map);
u32 index = *(u32 *)key;
void __percpu *pptr;
int cpu, off = 0;
u32 size;
if (unlikely(map_flags > BPF_EXIST))
/* unknown flags */
return -EINVAL;
if (unlikely(index >= array->map.max_entries))
/* all elements were pre-allocated, cannot insert a new one */
return -E2BIG;
if (unlikely(map_flags == BPF_NOEXIST))
/* all elements already exist */
return -EEXIST;
/* the user space will provide round_up(value_size, 8) bytes that
* will be copied into per-cpu area. bpf programs can only access
* value_size of it. During lookup the same extra bytes will be
* returned or zeros which were zero-filled by percpu_alloc,
* so no kernel data leaks possible
*/
size = round_up(map->value_size, 8);
rcu_read_lock();
pptr = array->pptrs[index & array->index_mask];
for_each_possible_cpu(cpu) {
bpf_long_memcpy(per_cpu_ptr(pptr, cpu), value + off, size);
off += size;
}
rcu_read_unlock();
return 0;
}
/* Called from syscall or from eBPF program */
static int array_map_delete_elem(struct bpf_map *map, void *key)
{
return -EINVAL;
}
static void *array_map_vmalloc_addr(struct bpf_array *array)
{
return (void *)round_down((unsigned long)array, PAGE_SIZE);
}
/* Called when map->refcnt goes to zero, either from workqueue or from syscall */
static void array_map_free(struct bpf_map *map)
{
struct bpf_array *array = container_of(map, struct bpf_array, map);
if (array->map.map_type == BPF_MAP_TYPE_PERCPU_ARRAY)
bpf_array_free_percpu(array);
if (array->map.map_flags & BPF_F_MMAPABLE)
bpf_map_area_free(array_map_vmalloc_addr(array));
else
bpf_map_area_free(array);
}
static void array_map_seq_show_elem(struct bpf_map *map, void *key,
struct seq_file *m)
{
void *value;
rcu_read_lock();
value = array_map_lookup_elem(map, key);
if (!value) {
rcu_read_unlock();
return;
}
if (map->btf_key_type_id)
seq_printf(m, "%u: ", *(u32 *)key);
btf_type_seq_show(map->btf, map->btf_value_type_id, value, m);
seq_puts(m, "\n");
rcu_read_unlock();
}
static void percpu_array_map_seq_show_elem(struct bpf_map *map, void *key,
struct seq_file *m)
{
struct bpf_array *array = container_of(map, struct bpf_array, map);
u32 index = *(u32 *)key;
void __percpu *pptr;
int cpu;
rcu_read_lock();
seq_printf(m, "%u: {\n", *(u32 *)key);
pptr = array->pptrs[index & array->index_mask];
for_each_possible_cpu(cpu) {
seq_printf(m, "\tcpu%d: ", cpu);
btf_type_seq_show(map->btf, map->btf_value_type_id,
per_cpu_ptr(pptr, cpu), m);
seq_puts(m, "\n");
}
seq_puts(m, "}\n");
rcu_read_unlock();
}
static int array_map_check_btf(const struct bpf_map *map,
const struct btf *btf,
const struct btf_type *key_type,
const struct btf_type *value_type)
{
u32 int_data;
/* One exception for keyless BTF: .bss/.data/.rodata map */
if (btf_type_is_void(key_type)) {
if (map->map_type != BPF_MAP_TYPE_ARRAY ||
map->max_entries != 1)
return -EINVAL;
if (BTF_INFO_KIND(value_type->info) != BTF_KIND_DATASEC)
return -EINVAL;
return 0;
}
if (BTF_INFO_KIND(key_type->info) != BTF_KIND_INT)
return -EINVAL;
int_data = *(u32 *)(key_type + 1);
/* bpf array can only take a u32 key. This check makes sure
* that the btf matches the attr used during map_create.
*/
if (BTF_INT_BITS(int_data) != 32 || BTF_INT_OFFSET(int_data))
return -EINVAL;
return 0;
}
static int array_map_mmap(struct bpf_map *map, struct vm_area_struct *vma)
{
struct bpf_array *array = container_of(map, struct bpf_array, map);
pgoff_t pgoff = PAGE_ALIGN(sizeof(*array)) >> PAGE_SHIFT;
if (!(map->map_flags & BPF_F_MMAPABLE))
return -EINVAL;
if (vma->vm_pgoff * PAGE_SIZE + (vma->vm_end - vma->vm_start) >
PAGE_ALIGN((u64)array->map.max_entries * array->elem_size))
return -EINVAL;
return remap_vmalloc_range(vma, array_map_vmalloc_addr(array),
vma->vm_pgoff + pgoff);
}
struct bpf_iter_seq_array_map_info {
struct bpf_map *map;
void *percpu_value_buf;
u32 index;
};
static void *bpf_array_map_seq_start(struct seq_file *seq, loff_t *pos)
{
struct bpf_iter_seq_array_map_info *info = seq->private;
struct bpf_map *map = info->map;
struct bpf_array *array;
u32 index;
if (info->index >= map->max_entries)
return NULL;
if (*pos == 0)
++*pos;
array = container_of(map, struct bpf_array, map);
index = info->index & array->index_mask;
if (info->percpu_value_buf)
return array->pptrs[index];
return array->value + array->elem_size * index;
}
static void *bpf_array_map_seq_next(struct seq_file *seq, void *v, loff_t *pos)
{
struct bpf_iter_seq_array_map_info *info = seq->private;
struct bpf_map *map = info->map;
struct bpf_array *array;
u32 index;
++*pos;
++info->index;
if (info->index >= map->max_entries)
return NULL;
array = container_of(map, struct bpf_array, map);
index = info->index & array->index_mask;
if (info->percpu_value_buf)
return array->pptrs[index];
return array->value + array->elem_size * index;
}
static int __bpf_array_map_seq_show(struct seq_file *seq, void *v)
{
struct bpf_iter_seq_array_map_info *info = seq->private;
struct bpf_iter__bpf_map_elem ctx = {};
struct bpf_map *map = info->map;
struct bpf_iter_meta meta;
struct bpf_prog *prog;
int off = 0, cpu = 0;
void __percpu **pptr;
u32 size;
meta.seq = seq;
prog = bpf_iter_get_info(&meta, v == NULL);
if (!prog)
return 0;
ctx.meta = &meta;
ctx.map = info->map;
if (v) {
ctx.key = &info->index;
if (!info->percpu_value_buf) {
ctx.value = v;
} else {
pptr = v;
size = round_up(map->value_size, 8);
for_each_possible_cpu(cpu) {
bpf_long_memcpy(info->percpu_value_buf + off,
per_cpu_ptr(pptr, cpu),
size);
off += size;
}
ctx.value = info->percpu_value_buf;
}
}
return bpf_iter_run_prog(prog, &ctx);
}
static int bpf_array_map_seq_show(struct seq_file *seq, void *v)
{
return __bpf_array_map_seq_show(seq, v);
}
static void bpf_array_map_seq_stop(struct seq_file *seq, void *v)
{
if (!v)
(void)__bpf_array_map_seq_show(seq, NULL);
}
static int bpf_iter_init_array_map(void *priv_data,
struct bpf_iter_aux_info *aux)
{
struct bpf_iter_seq_array_map_info *seq_info = priv_data;
struct bpf_map *map = aux->map;
void *value_buf;
u32 buf_size;
if (map->map_type == BPF_MAP_TYPE_PERCPU_ARRAY) {
buf_size = round_up(map->value_size, 8) * num_possible_cpus();
value_buf = kmalloc(buf_size, GFP_USER | __GFP_NOWARN);
if (!value_buf)
return -ENOMEM;
seq_info->percpu_value_buf = value_buf;
}
seq_info->map = map;
return 0;
}
static void bpf_iter_fini_array_map(void *priv_data)
{
struct bpf_iter_seq_array_map_info *seq_info = priv_data;
kfree(seq_info->percpu_value_buf);
}
static const struct seq_operations bpf_array_map_seq_ops = {
.start = bpf_array_map_seq_start,
.next = bpf_array_map_seq_next,
.stop = bpf_array_map_seq_stop,
.show = bpf_array_map_seq_show,
};
static const struct bpf_iter_seq_info iter_seq_info = {
.seq_ops = &bpf_array_map_seq_ops,
.init_seq_private = bpf_iter_init_array_map,
.fini_seq_private = bpf_iter_fini_array_map,
.seq_priv_size = sizeof(struct bpf_iter_seq_array_map_info),
};
static int array_map_btf_id;
const struct bpf_map_ops array_map_ops = {
.map_alloc_check = array_map_alloc_check,
.map_alloc = array_map_alloc,
.map_free = array_map_free,
.map_get_next_key = array_map_get_next_key,
.map_lookup_elem = array_map_lookup_elem,
.map_update_elem = array_map_update_elem,
.map_delete_elem = array_map_delete_elem,
.map_gen_lookup = array_map_gen_lookup,
.map_direct_value_addr = array_map_direct_value_addr,
.map_direct_value_meta = array_map_direct_value_meta,
.map_mmap = array_map_mmap,
.map_seq_show_elem = array_map_seq_show_elem,
.map_check_btf = array_map_check_btf,
.map_lookup_batch = generic_map_lookup_batch,
.map_update_batch = generic_map_update_batch,
.map_btf_name = "bpf_array",
.map_btf_id = &array_map_btf_id,
.iter_seq_info = &iter_seq_info,
};
static int percpu_array_map_btf_id;
const struct bpf_map_ops percpu_array_map_ops = {
.map_alloc_check = array_map_alloc_check,
.map_alloc = array_map_alloc,
.map_free = array_map_free,
.map_get_next_key = array_map_get_next_key,
.map_lookup_elem = percpu_array_map_lookup_elem,
.map_update_elem = array_map_update_elem,
.map_delete_elem = array_map_delete_elem,
.map_seq_show_elem = percpu_array_map_seq_show_elem,
.map_check_btf = array_map_check_btf,
.map_btf_name = "bpf_array",
.map_btf_id = &percpu_array_map_btf_id,
.iter_seq_info = &iter_seq_info,
};
static int fd_array_map_alloc_check(union bpf_attr *attr)
{
/* only file descriptors can be stored in this type of map */
if (attr->value_size != sizeof(u32))
return -EINVAL;
/* Program read-only/write-only not supported for special maps yet. */
if (attr->map_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG))
return -EINVAL;
return array_map_alloc_check(attr);
}
static void fd_array_map_free(struct bpf_map *map)
{
struct bpf_array *array = container_of(map, struct bpf_array, map);
int i;
/* make sure it's empty */
for (i = 0; i < array->map.max_entries; i++)
BUG_ON(array->ptrs[i] != NULL);
bpf_map_area_free(array);
}
static void *fd_array_map_lookup_elem(struct bpf_map *map, void *key)
{
return ERR_PTR(-EOPNOTSUPP);
}
/* only called from syscall */
int bpf_fd_array_map_lookup_elem(struct bpf_map *map, void *key, u32 *value)
{
void **elem, *ptr;
int ret = 0;
if (!map->ops->map_fd_sys_lookup_elem)
return -ENOTSUPP;
rcu_read_lock();
elem = array_map_lookup_elem(map, key);
if (elem && (ptr = READ_ONCE(*elem)))
*value = map->ops->map_fd_sys_lookup_elem(ptr);
else
ret = -ENOENT;
rcu_read_unlock();
return ret;
}
/* only called from syscall */
int bpf_fd_array_map_update_elem(struct bpf_map *map, struct file *map_file,
void *key, void *value, u64 map_flags)
{
struct bpf_array *array = container_of(map, struct bpf_array, map);
void *new_ptr, *old_ptr;
u32 index = *(u32 *)key, ufd;
if (map_flags != BPF_ANY)
return -EINVAL;
if (index >= array->map.max_entries)
return -E2BIG;
ufd = *(u32 *)value;
new_ptr = map->ops->map_fd_get_ptr(map, map_file, ufd);
if (IS_ERR(new_ptr))
return PTR_ERR(new_ptr);
if (map->ops->map_poke_run) {
mutex_lock(&array->aux->poke_mutex);
old_ptr = xchg(array->ptrs + index, new_ptr);
map->ops->map_poke_run(map, index, old_ptr, new_ptr);
mutex_unlock(&array->aux->poke_mutex);
} else {
old_ptr = xchg(array->ptrs + index, new_ptr);
}
if (old_ptr)
map->ops->map_fd_put_ptr(old_ptr);
return 0;
}
static int fd_array_map_delete_elem(struct bpf_map *map, void *key)
{
struct bpf_array *array = container_of(map, struct bpf_array, map);
void *old_ptr;
u32 index = *(u32 *)key;
if (index >= array->map.max_entries)
return -E2BIG;
if (map->ops->map_poke_run) {
mutex_lock(&array->aux->poke_mutex);
old_ptr = xchg(array->ptrs + index, NULL);
map->ops->map_poke_run(map, index, old_ptr, NULL);
mutex_unlock(&array->aux->poke_mutex);
} else {
old_ptr = xchg(array->ptrs + index, NULL);
}
if (old_ptr) {
map->ops->map_fd_put_ptr(old_ptr);
return 0;
} else {
return -ENOENT;
}
}
static void *prog_fd_array_get_ptr(struct bpf_map *map,
struct file *map_file, int fd)
{
struct bpf_array *array = container_of(map, struct bpf_array, map);
struct bpf_prog *prog = bpf_prog_get(fd);
if (IS_ERR(prog))
return prog;
if (!bpf_prog_array_compatible(array, prog)) {
bpf_prog_put(prog);
return ERR_PTR(-EINVAL);
}
return prog;
}
static void prog_fd_array_put_ptr(void *ptr)
{
bpf_prog_put(ptr);
}
static u32 prog_fd_array_sys_lookup_elem(void *ptr)
{
return ((struct bpf_prog *)ptr)->aux->id;
}
/* decrement refcnt of all bpf_progs that are stored in this map */
static void bpf_fd_array_map_clear(struct bpf_map *map)
{
struct bpf_array *array = container_of(map, struct bpf_array, map);
int i;
for (i = 0; i < array->map.max_entries; i++)
fd_array_map_delete_elem(map, &i);
}
static void prog_array_map_seq_show_elem(struct bpf_map *map, void *key,
struct seq_file *m)
{
void **elem, *ptr;
u32 prog_id;
rcu_read_lock();
elem = array_map_lookup_elem(map, key);
if (elem) {
ptr = READ_ONCE(*elem);
if (ptr) {
seq_printf(m, "%u: ", *(u32 *)key);
prog_id = prog_fd_array_sys_lookup_elem(ptr);
btf_type_seq_show(map->btf, map->btf_value_type_id,
&prog_id, m);
seq_puts(m, "\n");
}
}
rcu_read_unlock();
}
struct prog_poke_elem {
struct list_head list;
struct bpf_prog_aux *aux;
};
static int prog_array_map_poke_track(struct bpf_map *map,
struct bpf_prog_aux *prog_aux)
{
struct prog_poke_elem *elem;
struct bpf_array_aux *aux;
int ret = 0;
aux = container_of(map, struct bpf_array, map)->aux;
mutex_lock(&aux->poke_mutex);
list_for_each_entry(elem, &aux->poke_progs, list) {
if (elem->aux == prog_aux)
goto out;
}
elem = kmalloc(sizeof(*elem), GFP_KERNEL);
if (!elem) {
ret = -ENOMEM;
goto out;
}
INIT_LIST_HEAD(&elem->list);
/* We must track the program's aux info at this point in time
* since the program pointer itself may not be stable yet, see
* also comment in prog_array_map_poke_run().
*/
elem->aux = prog_aux;
list_add_tail(&elem->list, &aux->poke_progs);
out:
mutex_unlock(&aux->poke_mutex);
return ret;
}
static void prog_array_map_poke_untrack(struct bpf_map *map,
struct bpf_prog_aux *prog_aux)
{
struct prog_poke_elem *elem, *tmp;
struct bpf_array_aux *aux;
aux = container_of(map, struct bpf_array, map)->aux;
mutex_lock(&aux->poke_mutex);
list_for_each_entry_safe(elem, tmp, &aux->poke_progs, list) {
if (elem->aux == prog_aux) {
list_del_init(&elem->list);
kfree(elem);
break;
}
}
mutex_unlock(&aux->poke_mutex);
}
static void prog_array_map_poke_run(struct bpf_map *map, u32 key,
struct bpf_prog *old,
struct bpf_prog *new)
{
struct prog_poke_elem *elem;
struct bpf_array_aux *aux;
aux = container_of(map, struct bpf_array, map)->aux;
WARN_ON_ONCE(!mutex_is_locked(&aux->poke_mutex));
list_for_each_entry(elem, &aux->poke_progs, list) {
struct bpf_jit_poke_descriptor *poke;
int i, ret;
for (i = 0; i < elem->aux->size_poke_tab; i++) {
poke = &elem->aux->poke_tab[i];
/* Few things to be aware of:
*
* 1) We can only ever access aux in this context, but
* not aux->prog since it might not be stable yet and
* there could be danger of use after free otherwise.
* 2) Initially when we start tracking aux, the program
* is not JITed yet and also does not have a kallsyms
* entry. We skip these as poke->ip_stable is not
* active yet. The JIT will do the final fixup before
* setting it stable. The various poke->ip_stable are
* successively activated, so tail call updates can
* arrive from here while JIT is still finishing its
* final fixup for non-activated poke entries.
* 3) On program teardown, the program's kallsym entry gets
* removed out of RCU callback, but we can only untrack
* from sleepable context, therefore bpf_arch_text_poke()
* might not see that this is in BPF text section and
* bails out with -EINVAL. As these are unreachable since
* RCU grace period already passed, we simply skip them.
* 4) Also programs reaching refcount of zero while patching
* is in progress is okay since we're protected under
* poke_mutex and untrack the programs before the JIT
* buffer is freed. When we're still in the middle of
* patching and suddenly kallsyms entry of the program
* gets evicted, we just skip the rest which is fine due
* to point 3).
* 5) Any other error happening below from bpf_arch_text_poke()
* is a unexpected bug.
*/
if (!READ_ONCE(poke->ip_stable))
continue;
if (poke->reason != BPF_POKE_REASON_TAIL_CALL)
continue;
if (poke->tail_call.map != map ||
poke->tail_call.key != key)
continue;
ret = bpf_arch_text_poke(poke->ip, BPF_MOD_JUMP,
old ? (u8 *)old->bpf_func +
poke->adj_off : NULL,
new ? (u8 *)new->bpf_func +
poke->adj_off : NULL);
BUG_ON(ret < 0 && ret != -EINVAL);
}
}
}
static void prog_array_map_clear_deferred(struct work_struct *work)
{
struct bpf_map *map = container_of(work, struct bpf_array_aux,
work)->map;
bpf_fd_array_map_clear(map);
bpf_map_put(map);
}
static void prog_array_map_clear(struct bpf_map *map)
{
struct bpf_array_aux *aux = container_of(map, struct bpf_array,
map)->aux;
bpf_map_inc(map);
schedule_work(&aux->work);
}
static struct bpf_map *prog_array_map_alloc(union bpf_attr *attr)
{
struct bpf_array_aux *aux;
struct bpf_map *map;
aux = kzalloc(sizeof(*aux), GFP_KERNEL);
if (!aux)
return ERR_PTR(-ENOMEM);
INIT_WORK(&aux->work, prog_array_map_clear_deferred);
INIT_LIST_HEAD(&aux->poke_progs);
mutex_init(&aux->poke_mutex);
map = array_map_alloc(attr);
if (IS_ERR(map)) {
kfree(aux);
return map;
}
container_of(map, struct bpf_array, map)->aux = aux;
aux->map = map;
return map;
}
static void prog_array_map_free(struct bpf_map *map)
{
struct prog_poke_elem *elem, *tmp;
struct bpf_array_aux *aux;
aux = container_of(map, struct bpf_array, map)->aux;
list_for_each_entry_safe(elem, tmp, &aux->poke_progs, list) {
list_del_init(&elem->list);
kfree(elem);
}
kfree(aux);
fd_array_map_free(map);
}
static int prog_array_map_btf_id;
const struct bpf_map_ops prog_array_map_ops = {
.map_alloc_check = fd_array_map_alloc_check,
.map_alloc = prog_array_map_alloc,
.map_free = prog_array_map_free,
.map_poke_track = prog_array_map_poke_track,
.map_poke_untrack = prog_array_map_poke_untrack,
.map_poke_run = prog_array_map_poke_run,
.map_get_next_key = array_map_get_next_key,
.map_lookup_elem = fd_array_map_lookup_elem,
.map_delete_elem = fd_array_map_delete_elem,
.map_fd_get_ptr = prog_fd_array_get_ptr,
.map_fd_put_ptr = prog_fd_array_put_ptr,
.map_fd_sys_lookup_elem = prog_fd_array_sys_lookup_elem,
.map_release_uref = prog_array_map_clear,
.map_seq_show_elem = prog_array_map_seq_show_elem,
.map_btf_name = "bpf_array",
.map_btf_id = &prog_array_map_btf_id,
};
static struct bpf_event_entry *bpf_event_entry_gen(struct file *perf_file,
struct file *map_file)
{
struct bpf_event_entry *ee;
ee = kzalloc(sizeof(*ee), GFP_ATOMIC);
if (ee) {
ee->event = perf_file->private_data;
ee->perf_file = perf_file;
ee->map_file = map_file;
}
return ee;
}
static void __bpf_event_entry_free(struct rcu_head *rcu)
{
struct bpf_event_entry *ee;
ee = container_of(rcu, struct bpf_event_entry, rcu);
fput(ee->perf_file);
kfree(ee);
}
static void bpf_event_entry_free_rcu(struct bpf_event_entry *ee)
{
call_rcu(&ee->rcu, __bpf_event_entry_free);
}
static void *perf_event_fd_array_get_ptr(struct bpf_map *map,
struct file *map_file, int fd)
{
struct bpf_event_entry *ee;
struct perf_event *event;
struct file *perf_file;
u64 value;
perf_file = perf_event_get(fd);
if (IS_ERR(perf_file))
return perf_file;
ee = ERR_PTR(-EOPNOTSUPP);
event = perf_file->private_data;
if (perf_event_read_local(event, &value, NULL, NULL) == -EOPNOTSUPP)
goto err_out;
ee = bpf_event_entry_gen(perf_file, map_file);
if (ee)
return ee;
ee = ERR_PTR(-ENOMEM);
err_out:
fput(perf_file);
return ee;
}
static void perf_event_fd_array_put_ptr(void *ptr)
{
bpf_event_entry_free_rcu(ptr);
}
static void perf_event_fd_array_release(struct bpf_map *map,
struct file *map_file)
{
struct bpf_array *array = container_of(map, struct bpf_array, map);
struct bpf_event_entry *ee;
int i;
rcu_read_lock();
for (i = 0; i < array->map.max_entries; i++) {
ee = READ_ONCE(array->ptrs[i]);
if (ee && ee->map_file == map_file)
fd_array_map_delete_elem(map, &i);
}
rcu_read_unlock();
}
static int perf_event_array_map_btf_id;
const struct bpf_map_ops perf_event_array_map_ops = {
.map_alloc_check = fd_array_map_alloc_check,
.map_alloc = array_map_alloc,
.map_free = fd_array_map_free,
.map_get_next_key = array_map_get_next_key,
.map_lookup_elem = fd_array_map_lookup_elem,
.map_delete_elem = fd_array_map_delete_elem,
.map_fd_get_ptr = perf_event_fd_array_get_ptr,
.map_fd_put_ptr = perf_event_fd_array_put_ptr,
.map_release = perf_event_fd_array_release,
.map_check_btf = map_check_no_btf,
.map_btf_name = "bpf_array",
.map_btf_id = &perf_event_array_map_btf_id,
};
#ifdef CONFIG_CGROUPS
static void *cgroup_fd_array_get_ptr(struct bpf_map *map,
struct file *map_file /* not used */,
int fd)
{
return cgroup_get_from_fd(fd);
}
static void cgroup_fd_array_put_ptr(void *ptr)
{
/* cgroup_put free cgrp after a rcu grace period */
cgroup_put(ptr);
}
static void cgroup_fd_array_free(struct bpf_map *map)
{
bpf_fd_array_map_clear(map);
fd_array_map_free(map);
}
static int cgroup_array_map_btf_id;
const struct bpf_map_ops cgroup_array_map_ops = {
.map_alloc_check = fd_array_map_alloc_check,
.map_alloc = array_map_alloc,
.map_free = cgroup_fd_array_free,
.map_get_next_key = array_map_get_next_key,
.map_lookup_elem = fd_array_map_lookup_elem,
.map_delete_elem = fd_array_map_delete_elem,
.map_fd_get_ptr = cgroup_fd_array_get_ptr,
.map_fd_put_ptr = cgroup_fd_array_put_ptr,
.map_check_btf = map_check_no_btf,
.map_btf_name = "bpf_array",
.map_btf_id = &cgroup_array_map_btf_id,
};
#endif
static struct bpf_map *array_of_map_alloc(union bpf_attr *attr)
{
struct bpf_map *map, *inner_map_meta;
inner_map_meta = bpf_map_meta_alloc(attr->inner_map_fd);
if (IS_ERR(inner_map_meta))
return inner_map_meta;
map = array_map_alloc(attr);
if (IS_ERR(map)) {
bpf_map_meta_free(inner_map_meta);
return map;
}
map->inner_map_meta = inner_map_meta;
return map;
}
static void array_of_map_free(struct bpf_map *map)
{
/* map->inner_map_meta is only accessed by syscall which
* is protected by fdget/fdput.
*/
bpf_map_meta_free(map->inner_map_meta);
bpf_fd_array_map_clear(map);
fd_array_map_free(map);
}
static void *array_of_map_lookup_elem(struct bpf_map *map, void *key)
{
struct bpf_map **inner_map = array_map_lookup_elem(map, key);
if (!inner_map)
return NULL;
return READ_ONCE(*inner_map);
}
static u32 array_of_map_gen_lookup(struct bpf_map *map,
struct bpf_insn *insn_buf)
{
struct bpf_array *array = container_of(map, struct bpf_array, map);
u32 elem_size = round_up(map->value_size, 8);
struct bpf_insn *insn = insn_buf;
const int ret = BPF_REG_0;
const int map_ptr = BPF_REG_1;
const int index = BPF_REG_2;
*insn++ = BPF_ALU64_IMM(BPF_ADD, map_ptr, offsetof(struct bpf_array, value));
*insn++ = BPF_LDX_MEM(BPF_W, ret, index, 0);
if (!map->bypass_spec_v1) {
*insn++ = BPF_JMP_IMM(BPF_JGE, ret, map->max_entries, 6);
*insn++ = BPF_ALU32_IMM(BPF_AND, ret, array->index_mask);
} else {
*insn++ = BPF_JMP_IMM(BPF_JGE, ret, map->max_entries, 5);
}
if (is_power_of_2(elem_size))
*insn++ = BPF_ALU64_IMM(BPF_LSH, ret, ilog2(elem_size));
else
*insn++ = BPF_ALU64_IMM(BPF_MUL, ret, elem_size);
*insn++ = BPF_ALU64_REG(BPF_ADD, ret, map_ptr);
*insn++ = BPF_LDX_MEM(BPF_DW, ret, ret, 0);
*insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 1);
*insn++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1);
*insn++ = BPF_MOV64_IMM(ret, 0);
return insn - insn_buf;
}
static int array_of_maps_map_btf_id;
const struct bpf_map_ops array_of_maps_map_ops = {
.map_alloc_check = fd_array_map_alloc_check,
.map_alloc = array_of_map_alloc,
.map_free = array_of_map_free,
.map_get_next_key = array_map_get_next_key,
.map_lookup_elem = array_of_map_lookup_elem,
.map_delete_elem = fd_array_map_delete_elem,
.map_fd_get_ptr = bpf_map_fd_get_ptr,
.map_fd_put_ptr = bpf_map_fd_put_ptr,
.map_fd_sys_lookup_elem = bpf_map_fd_sys_lookup_elem,
.map_gen_lookup = array_of_map_gen_lookup,
.map_check_btf = map_check_no_btf,
.map_btf_name = "bpf_array",
.map_btf_id = &array_of_maps_map_btf_id,
};