bad1e1c663
When MTE is present, the GCR_EL1 register contains the tags mask that allows to exclude tags from the random generation via the IRG instruction. With the introduction of the new Tag-Based KASAN API that provides a mechanism to reserve tags for special reasons, the MTE implementation has to make sure that the GCR_EL1 setting for the kernel does not affect the userspace processes and viceversa. Save and restore the kernel/user mask in GCR_EL1 in kernel entry and exit. Link: https://lkml.kernel.org/r/578b03294708cc7258fad0dc9c2a2e809e5a8214.1606161801.git.andreyknvl@google.com Signed-off-by: Vincenzo Frascino <vincenzo.frascino@arm.com> Co-developed-by: Andrey Konovalov <andreyknvl@google.com> Signed-off-by: Andrey Konovalov <andreyknvl@google.com> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Tested-by: Vincenzo Frascino <vincenzo.frascino@arm.com> Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Branislav Rankov <Branislav.Rankov@arm.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Evgenii Stepanov <eugenis@google.com> Cc: Kevin Brodsky <kevin.brodsky@arm.com> Cc: Marco Elver <elver@google.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
428 lines
9.6 KiB
C
428 lines
9.6 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Copyright (C) 2020 ARM Ltd.
|
|
*/
|
|
|
|
#include <linux/bitops.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/prctl.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/sched/mm.h>
|
|
#include <linux/string.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/swapops.h>
|
|
#include <linux/thread_info.h>
|
|
#include <linux/types.h>
|
|
#include <linux/uio.h>
|
|
|
|
#include <asm/barrier.h>
|
|
#include <asm/cpufeature.h>
|
|
#include <asm/mte.h>
|
|
#include <asm/mte-kasan.h>
|
|
#include <asm/ptrace.h>
|
|
#include <asm/sysreg.h>
|
|
|
|
u64 gcr_kernel_excl __ro_after_init;
|
|
|
|
static void mte_sync_page_tags(struct page *page, pte_t *ptep, bool check_swap)
|
|
{
|
|
pte_t old_pte = READ_ONCE(*ptep);
|
|
|
|
if (check_swap && is_swap_pte(old_pte)) {
|
|
swp_entry_t entry = pte_to_swp_entry(old_pte);
|
|
|
|
if (!non_swap_entry(entry) && mte_restore_tags(entry, page))
|
|
return;
|
|
}
|
|
|
|
page_kasan_tag_reset(page);
|
|
/*
|
|
* We need smp_wmb() in between setting the flags and clearing the
|
|
* tags because if another thread reads page->flags and builds a
|
|
* tagged address out of it, there is an actual dependency to the
|
|
* memory access, but on the current thread we do not guarantee that
|
|
* the new page->flags are visible before the tags were updated.
|
|
*/
|
|
smp_wmb();
|
|
mte_clear_page_tags(page_address(page));
|
|
}
|
|
|
|
void mte_sync_tags(pte_t *ptep, pte_t pte)
|
|
{
|
|
struct page *page = pte_page(pte);
|
|
long i, nr_pages = compound_nr(page);
|
|
bool check_swap = nr_pages == 1;
|
|
|
|
/* if PG_mte_tagged is set, tags have already been initialised */
|
|
for (i = 0; i < nr_pages; i++, page++) {
|
|
if (!test_and_set_bit(PG_mte_tagged, &page->flags))
|
|
mte_sync_page_tags(page, ptep, check_swap);
|
|
}
|
|
}
|
|
|
|
int memcmp_pages(struct page *page1, struct page *page2)
|
|
{
|
|
char *addr1, *addr2;
|
|
int ret;
|
|
|
|
addr1 = page_address(page1);
|
|
addr2 = page_address(page2);
|
|
ret = memcmp(addr1, addr2, PAGE_SIZE);
|
|
|
|
if (!system_supports_mte() || ret)
|
|
return ret;
|
|
|
|
/*
|
|
* If the page content is identical but at least one of the pages is
|
|
* tagged, return non-zero to avoid KSM merging. If only one of the
|
|
* pages is tagged, set_pte_at() may zero or change the tags of the
|
|
* other page via mte_sync_tags().
|
|
*/
|
|
if (test_bit(PG_mte_tagged, &page1->flags) ||
|
|
test_bit(PG_mte_tagged, &page2->flags))
|
|
return addr1 != addr2;
|
|
|
|
return ret;
|
|
}
|
|
|
|
u8 mte_get_mem_tag(void *addr)
|
|
{
|
|
if (!system_supports_mte())
|
|
return 0xFF;
|
|
|
|
asm(__MTE_PREAMBLE "ldg %0, [%0]"
|
|
: "+r" (addr));
|
|
|
|
return mte_get_ptr_tag(addr);
|
|
}
|
|
|
|
u8 mte_get_random_tag(void)
|
|
{
|
|
void *addr;
|
|
|
|
if (!system_supports_mte())
|
|
return 0xFF;
|
|
|
|
asm(__MTE_PREAMBLE "irg %0, %0"
|
|
: "+r" (addr));
|
|
|
|
return mte_get_ptr_tag(addr);
|
|
}
|
|
|
|
void *mte_set_mem_tag_range(void *addr, size_t size, u8 tag)
|
|
{
|
|
void *ptr = addr;
|
|
|
|
if ((!system_supports_mte()) || (size == 0))
|
|
return addr;
|
|
|
|
/* Make sure that size is MTE granule aligned. */
|
|
WARN_ON(size & (MTE_GRANULE_SIZE - 1));
|
|
|
|
/* Make sure that the address is MTE granule aligned. */
|
|
WARN_ON((u64)addr & (MTE_GRANULE_SIZE - 1));
|
|
|
|
tag = 0xF0 | tag;
|
|
ptr = (void *)__tag_set(ptr, tag);
|
|
|
|
mte_assign_mem_tag_range(ptr, size);
|
|
|
|
return ptr;
|
|
}
|
|
|
|
void mte_init_tags(u64 max_tag)
|
|
{
|
|
static bool gcr_kernel_excl_initialized;
|
|
|
|
if (!gcr_kernel_excl_initialized) {
|
|
/*
|
|
* The format of the tags in KASAN is 0xFF and in MTE is 0xF.
|
|
* This conversion extracts an MTE tag from a KASAN tag.
|
|
*/
|
|
u64 incl = GENMASK(FIELD_GET(MTE_TAG_MASK >> MTE_TAG_SHIFT,
|
|
max_tag), 0);
|
|
|
|
gcr_kernel_excl = ~incl & SYS_GCR_EL1_EXCL_MASK;
|
|
gcr_kernel_excl_initialized = true;
|
|
}
|
|
|
|
/* Enable the kernel exclude mask for random tags generation. */
|
|
write_sysreg_s(SYS_GCR_EL1_RRND | gcr_kernel_excl, SYS_GCR_EL1);
|
|
}
|
|
|
|
void mte_enable_kernel(void)
|
|
{
|
|
/* Enable MTE Sync Mode for EL1. */
|
|
sysreg_clear_set(sctlr_el1, SCTLR_ELx_TCF_MASK, SCTLR_ELx_TCF_SYNC);
|
|
isb();
|
|
}
|
|
|
|
static void update_sctlr_el1_tcf0(u64 tcf0)
|
|
{
|
|
/* ISB required for the kernel uaccess routines */
|
|
sysreg_clear_set(sctlr_el1, SCTLR_EL1_TCF0_MASK, tcf0);
|
|
isb();
|
|
}
|
|
|
|
static void set_sctlr_el1_tcf0(u64 tcf0)
|
|
{
|
|
/*
|
|
* mte_thread_switch() checks current->thread.sctlr_tcf0 as an
|
|
* optimisation. Disable preemption so that it does not see
|
|
* the variable update before the SCTLR_EL1.TCF0 one.
|
|
*/
|
|
preempt_disable();
|
|
current->thread.sctlr_tcf0 = tcf0;
|
|
update_sctlr_el1_tcf0(tcf0);
|
|
preempt_enable();
|
|
}
|
|
|
|
static void update_gcr_el1_excl(u64 excl)
|
|
{
|
|
|
|
/*
|
|
* Note that the mask controlled by the user via prctl() is an
|
|
* include while GCR_EL1 accepts an exclude mask.
|
|
* No need for ISB since this only affects EL0 currently, implicit
|
|
* with ERET.
|
|
*/
|
|
sysreg_clear_set_s(SYS_GCR_EL1, SYS_GCR_EL1_EXCL_MASK, excl);
|
|
}
|
|
|
|
static void set_gcr_el1_excl(u64 excl)
|
|
{
|
|
current->thread.gcr_user_excl = excl;
|
|
|
|
/*
|
|
* SYS_GCR_EL1 will be set to current->thread.gcr_user_excl value
|
|
* by mte_set_user_gcr() in kernel_exit,
|
|
*/
|
|
}
|
|
|
|
void flush_mte_state(void)
|
|
{
|
|
if (!system_supports_mte())
|
|
return;
|
|
|
|
/* clear any pending asynchronous tag fault */
|
|
dsb(ish);
|
|
write_sysreg_s(0, SYS_TFSRE0_EL1);
|
|
clear_thread_flag(TIF_MTE_ASYNC_FAULT);
|
|
/* disable tag checking */
|
|
set_sctlr_el1_tcf0(SCTLR_EL1_TCF0_NONE);
|
|
/* reset tag generation mask */
|
|
set_gcr_el1_excl(SYS_GCR_EL1_EXCL_MASK);
|
|
}
|
|
|
|
void mte_thread_switch(struct task_struct *next)
|
|
{
|
|
if (!system_supports_mte())
|
|
return;
|
|
|
|
/* avoid expensive SCTLR_EL1 accesses if no change */
|
|
if (current->thread.sctlr_tcf0 != next->thread.sctlr_tcf0)
|
|
update_sctlr_el1_tcf0(next->thread.sctlr_tcf0);
|
|
}
|
|
|
|
void mte_suspend_exit(void)
|
|
{
|
|
if (!system_supports_mte())
|
|
return;
|
|
|
|
update_gcr_el1_excl(gcr_kernel_excl);
|
|
}
|
|
|
|
long set_mte_ctrl(struct task_struct *task, unsigned long arg)
|
|
{
|
|
u64 tcf0;
|
|
u64 gcr_excl = ~((arg & PR_MTE_TAG_MASK) >> PR_MTE_TAG_SHIFT) &
|
|
SYS_GCR_EL1_EXCL_MASK;
|
|
|
|
if (!system_supports_mte())
|
|
return 0;
|
|
|
|
switch (arg & PR_MTE_TCF_MASK) {
|
|
case PR_MTE_TCF_NONE:
|
|
tcf0 = SCTLR_EL1_TCF0_NONE;
|
|
break;
|
|
case PR_MTE_TCF_SYNC:
|
|
tcf0 = SCTLR_EL1_TCF0_SYNC;
|
|
break;
|
|
case PR_MTE_TCF_ASYNC:
|
|
tcf0 = SCTLR_EL1_TCF0_ASYNC;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (task != current) {
|
|
task->thread.sctlr_tcf0 = tcf0;
|
|
task->thread.gcr_user_excl = gcr_excl;
|
|
} else {
|
|
set_sctlr_el1_tcf0(tcf0);
|
|
set_gcr_el1_excl(gcr_excl);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
long get_mte_ctrl(struct task_struct *task)
|
|
{
|
|
unsigned long ret;
|
|
u64 incl = ~task->thread.gcr_user_excl & SYS_GCR_EL1_EXCL_MASK;
|
|
|
|
if (!system_supports_mte())
|
|
return 0;
|
|
|
|
ret = incl << PR_MTE_TAG_SHIFT;
|
|
|
|
switch (task->thread.sctlr_tcf0) {
|
|
case SCTLR_EL1_TCF0_NONE:
|
|
ret |= PR_MTE_TCF_NONE;
|
|
break;
|
|
case SCTLR_EL1_TCF0_SYNC:
|
|
ret |= PR_MTE_TCF_SYNC;
|
|
break;
|
|
case SCTLR_EL1_TCF0_ASYNC:
|
|
ret |= PR_MTE_TCF_ASYNC;
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Access MTE tags in another process' address space as given in mm. Update
|
|
* the number of tags copied. Return 0 if any tags copied, error otherwise.
|
|
* Inspired by __access_remote_vm().
|
|
*/
|
|
static int __access_remote_tags(struct mm_struct *mm, unsigned long addr,
|
|
struct iovec *kiov, unsigned int gup_flags)
|
|
{
|
|
struct vm_area_struct *vma;
|
|
void __user *buf = kiov->iov_base;
|
|
size_t len = kiov->iov_len;
|
|
int ret;
|
|
int write = gup_flags & FOLL_WRITE;
|
|
|
|
if (!access_ok(buf, len))
|
|
return -EFAULT;
|
|
|
|
if (mmap_read_lock_killable(mm))
|
|
return -EIO;
|
|
|
|
while (len) {
|
|
unsigned long tags, offset;
|
|
void *maddr;
|
|
struct page *page = NULL;
|
|
|
|
ret = get_user_pages_remote(mm, addr, 1, gup_flags, &page,
|
|
&vma, NULL);
|
|
if (ret <= 0)
|
|
break;
|
|
|
|
/*
|
|
* Only copy tags if the page has been mapped as PROT_MTE
|
|
* (PG_mte_tagged set). Otherwise the tags are not valid and
|
|
* not accessible to user. Moreover, an mprotect(PROT_MTE)
|
|
* would cause the existing tags to be cleared if the page
|
|
* was never mapped with PROT_MTE.
|
|
*/
|
|
if (!test_bit(PG_mte_tagged, &page->flags)) {
|
|
ret = -EOPNOTSUPP;
|
|
put_page(page);
|
|
break;
|
|
}
|
|
|
|
/* limit access to the end of the page */
|
|
offset = offset_in_page(addr);
|
|
tags = min(len, (PAGE_SIZE - offset) / MTE_GRANULE_SIZE);
|
|
|
|
maddr = page_address(page);
|
|
if (write) {
|
|
tags = mte_copy_tags_from_user(maddr + offset, buf, tags);
|
|
set_page_dirty_lock(page);
|
|
} else {
|
|
tags = mte_copy_tags_to_user(buf, maddr + offset, tags);
|
|
}
|
|
put_page(page);
|
|
|
|
/* error accessing the tracer's buffer */
|
|
if (!tags)
|
|
break;
|
|
|
|
len -= tags;
|
|
buf += tags;
|
|
addr += tags * MTE_GRANULE_SIZE;
|
|
}
|
|
mmap_read_unlock(mm);
|
|
|
|
/* return an error if no tags copied */
|
|
kiov->iov_len = buf - kiov->iov_base;
|
|
if (!kiov->iov_len) {
|
|
/* check for error accessing the tracee's address space */
|
|
if (ret <= 0)
|
|
return -EIO;
|
|
else
|
|
return -EFAULT;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Copy MTE tags in another process' address space at 'addr' to/from tracer's
|
|
* iovec buffer. Return 0 on success. Inspired by ptrace_access_vm().
|
|
*/
|
|
static int access_remote_tags(struct task_struct *tsk, unsigned long addr,
|
|
struct iovec *kiov, unsigned int gup_flags)
|
|
{
|
|
struct mm_struct *mm;
|
|
int ret;
|
|
|
|
mm = get_task_mm(tsk);
|
|
if (!mm)
|
|
return -EPERM;
|
|
|
|
if (!tsk->ptrace || (current != tsk->parent) ||
|
|
((get_dumpable(mm) != SUID_DUMP_USER) &&
|
|
!ptracer_capable(tsk, mm->user_ns))) {
|
|
mmput(mm);
|
|
return -EPERM;
|
|
}
|
|
|
|
ret = __access_remote_tags(mm, addr, kiov, gup_flags);
|
|
mmput(mm);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int mte_ptrace_copy_tags(struct task_struct *child, long request,
|
|
unsigned long addr, unsigned long data)
|
|
{
|
|
int ret;
|
|
struct iovec kiov;
|
|
struct iovec __user *uiov = (void __user *)data;
|
|
unsigned int gup_flags = FOLL_FORCE;
|
|
|
|
if (!system_supports_mte())
|
|
return -EIO;
|
|
|
|
if (get_user(kiov.iov_base, &uiov->iov_base) ||
|
|
get_user(kiov.iov_len, &uiov->iov_len))
|
|
return -EFAULT;
|
|
|
|
if (request == PTRACE_POKEMTETAGS)
|
|
gup_flags |= FOLL_WRITE;
|
|
|
|
/* align addr to the MTE tag granule */
|
|
addr &= MTE_GRANULE_MASK;
|
|
|
|
ret = access_remote_tags(child, addr, &kiov, gup_flags);
|
|
if (!ret)
|
|
ret = put_user(kiov.iov_len, &uiov->iov_len);
|
|
|
|
return ret;
|
|
}
|