linux/drivers/thunderbolt/nhi.h
Mika Westerberg d1ff70241a thunderbolt: Add support for XDomain discovery protocol
When two hosts are connected over a Thunderbolt cable, there is a
protocol they can use to communicate capabilities supported by the host.
The discovery protocol uses automatically configured control channel
(ring 0) and is build on top of request/response transactions using
special XDomain primitives provided by the Thunderbolt base protocol.

The capabilities consists of a root directory block of basic properties
used for identification of the host, and then there can be zero or more
directories each describing a Thunderbolt service and its capabilities.

Once both sides have discovered what is supported the two hosts can
setup high-speed DMA paths and transfer data to the other side using
whatever protocol was agreed based on the properties. The software
protocol used to communicate which DMA paths to enable is service
specific.

This patch adds support for the XDomain discovery protocol to the
Thunderbolt bus. We model each remote host connection as a Linux XDomain
device. For each Thunderbolt service found supported on the XDomain
device, we create Linux Thunderbolt service device which Thunderbolt
service drivers can then bind to based on the protocol identification
information retrieved from the property directory describing the
service.

This code is based on the work done by Amir Levy and Michael Jamet.

Signed-off-by: Michael Jamet <michael.jamet@intel.com>
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com>
Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-02 11:24:41 -07:00

186 lines
5.7 KiB
C

/*
* Thunderbolt Cactus Ridge driver - NHI driver
*
* Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
*/
#ifndef DSL3510_H_
#define DSL3510_H_
#include <linux/idr.h>
#include <linux/mutex.h>
#include <linux/workqueue.h>
/**
* struct tb_nhi - thunderbolt native host interface
* @lock: Must be held during ring creation/destruction. Is acquired by
* interrupt_work when dispatching interrupts to individual rings.
* @pdev: Pointer to the PCI device
* @iobase: MMIO space of the NHI
* @tx_rings: All Tx rings available on this host controller
* @rx_rings: All Rx rings available on this host controller
* @msix_ida: Used to allocate MSI-X vectors for rings
* @going_away: The host controller device is about to disappear so when
* this flag is set, avoid touching the hardware anymore.
* @interrupt_work: Work scheduled to handle ring interrupt when no
* MSI-X is used.
* @hop_count: Number of rings (end point hops) supported by NHI.
*/
struct tb_nhi {
struct mutex lock;
struct pci_dev *pdev;
void __iomem *iobase;
struct tb_ring **tx_rings;
struct tb_ring **rx_rings;
struct ida msix_ida;
bool going_away;
struct work_struct interrupt_work;
u32 hop_count;
};
/**
* struct tb_ring - thunderbolt TX or RX ring associated with a NHI
* @lock: Lock serializing actions to this ring. Must be acquired after
* nhi->lock.
* @nhi: Pointer to the native host controller interface
* @size: Size of the ring
* @hop: Hop (DMA channel) associated with this ring
* @head: Head of the ring (write next descriptor here)
* @tail: Tail of the ring (complete next descriptor here)
* @descriptors: Allocated descriptors for this ring
* @queue: Queue holding frames to be transferred over this ring
* @in_flight: Queue holding frames that are currently in flight
* @work: Interrupt work structure
* @is_tx: Is the ring Tx or Rx
* @running: Is the ring running
* @irq: MSI-X irq number if the ring uses MSI-X. %0 otherwise.
* @vector: MSI-X vector number the ring uses (only set if @irq is > 0)
* @flags: Ring specific flags
*/
struct tb_ring {
struct mutex lock;
struct tb_nhi *nhi;
int size;
int hop;
int head;
int tail;
struct ring_desc *descriptors;
dma_addr_t descriptors_dma;
struct list_head queue;
struct list_head in_flight;
struct work_struct work;
bool is_tx:1;
bool running:1;
int irq;
u8 vector;
unsigned int flags;
};
/* Leave ring interrupt enabled on suspend */
#define RING_FLAG_NO_SUSPEND BIT(0)
struct ring_frame;
typedef void (*ring_cb)(struct tb_ring*, struct ring_frame*, bool canceled);
/**
* struct ring_frame - for use with ring_rx/ring_tx
*/
struct ring_frame {
dma_addr_t buffer_phy;
ring_cb callback;
struct list_head list;
u32 size:12; /* TX: in, RX: out*/
u32 flags:12; /* RX: out */
u32 eof:4; /* TX:in, RX: out */
u32 sof:4; /* TX:in, RX: out */
};
#define TB_FRAME_SIZE 0x100 /* minimum size for ring_rx */
struct tb_ring *ring_alloc_tx(struct tb_nhi *nhi, int hop, int size,
unsigned int flags);
struct tb_ring *ring_alloc_rx(struct tb_nhi *nhi, int hop, int size,
unsigned int flags);
void ring_start(struct tb_ring *ring);
void ring_stop(struct tb_ring *ring);
void ring_free(struct tb_ring *ring);
int __ring_enqueue(struct tb_ring *ring, struct ring_frame *frame);
/**
* ring_rx() - enqueue a frame on an RX ring
*
* frame->buffer, frame->buffer_phy and frame->callback have to be set. The
* buffer must contain at least TB_FRAME_SIZE bytes.
*
* frame->callback will be invoked with frame->size, frame->flags, frame->eof,
* frame->sof set once the frame has been received.
*
* If ring_stop is called after the packet has been enqueued frame->callback
* will be called with canceled set to true.
*
* Return: Returns ESHUTDOWN if ring_stop has been called. Zero otherwise.
*/
static inline int ring_rx(struct tb_ring *ring, struct ring_frame *frame)
{
WARN_ON(ring->is_tx);
return __ring_enqueue(ring, frame);
}
/**
* ring_tx() - enqueue a frame on an TX ring
*
* frame->buffer, frame->buffer_phy, frame->callback, frame->size, frame->eof
* and frame->sof have to be set.
*
* frame->callback will be invoked with once the frame has been transmitted.
*
* If ring_stop is called after the packet has been enqueued frame->callback
* will be called with canceled set to true.
*
* Return: Returns ESHUTDOWN if ring_stop has been called. Zero otherwise.
*/
static inline int ring_tx(struct tb_ring *ring, struct ring_frame *frame)
{
WARN_ON(!ring->is_tx);
return __ring_enqueue(ring, frame);
}
enum nhi_fw_mode {
NHI_FW_SAFE_MODE,
NHI_FW_AUTH_MODE,
NHI_FW_EP_MODE,
NHI_FW_CM_MODE,
};
enum nhi_mailbox_cmd {
NHI_MAILBOX_SAVE_DEVS = 0x05,
NHI_MAILBOX_DISCONNECT_PCIE_PATHS = 0x06,
NHI_MAILBOX_DRV_UNLOADS = 0x07,
NHI_MAILBOX_DISCONNECT_PA = 0x10,
NHI_MAILBOX_DISCONNECT_PB = 0x11,
NHI_MAILBOX_ALLOW_ALL_DEVS = 0x23,
};
int nhi_mailbox_cmd(struct tb_nhi *nhi, enum nhi_mailbox_cmd cmd, u32 data);
enum nhi_fw_mode nhi_mailbox_mode(struct tb_nhi *nhi);
/*
* PCI IDs used in this driver from Win Ridge forward. There is no
* need for the PCI quirk anymore as we will use ICM also on Apple
* hardware.
*/
#define PCI_DEVICE_ID_INTEL_WIN_RIDGE_2C_NHI 0x157d
#define PCI_DEVICE_ID_INTEL_WIN_RIDGE_2C_BRIDGE 0x157e
#define PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_NHI 0x15bf
#define PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_BRIDGE 0x15c0
#define PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_NHI 0x15d2
#define PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_BRIDGE 0x15d3
#define PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_NHI 0x15d9
#define PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_BRIDGE 0x15da
#define PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_USBONLY_NHI 0x15dc
#define PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_USBONLY_NHI 0x15dd
#define PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_USBONLY_NHI 0x15de
#endif