forked from Minki/linux
5a0e3ad6af
percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
591 lines
14 KiB
C
591 lines
14 KiB
C
/*
|
|
* net/sched/sch_sfq.c Stochastic Fairness Queueing discipline.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*
|
|
* Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/types.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/jiffies.h>
|
|
#include <linux/string.h>
|
|
#include <linux/in.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/init.h>
|
|
#include <linux/ipv6.h>
|
|
#include <linux/skbuff.h>
|
|
#include <linux/jhash.h>
|
|
#include <linux/slab.h>
|
|
#include <net/ip.h>
|
|
#include <net/netlink.h>
|
|
#include <net/pkt_sched.h>
|
|
|
|
|
|
/* Stochastic Fairness Queuing algorithm.
|
|
=======================================
|
|
|
|
Source:
|
|
Paul E. McKenney "Stochastic Fairness Queuing",
|
|
IEEE INFOCOMM'90 Proceedings, San Francisco, 1990.
|
|
|
|
Paul E. McKenney "Stochastic Fairness Queuing",
|
|
"Interworking: Research and Experience", v.2, 1991, p.113-131.
|
|
|
|
|
|
See also:
|
|
M. Shreedhar and George Varghese "Efficient Fair
|
|
Queuing using Deficit Round Robin", Proc. SIGCOMM 95.
|
|
|
|
|
|
This is not the thing that is usually called (W)FQ nowadays.
|
|
It does not use any timestamp mechanism, but instead
|
|
processes queues in round-robin order.
|
|
|
|
ADVANTAGE:
|
|
|
|
- It is very cheap. Both CPU and memory requirements are minimal.
|
|
|
|
DRAWBACKS:
|
|
|
|
- "Stochastic" -> It is not 100% fair.
|
|
When hash collisions occur, several flows are considered as one.
|
|
|
|
- "Round-robin" -> It introduces larger delays than virtual clock
|
|
based schemes, and should not be used for isolating interactive
|
|
traffic from non-interactive. It means, that this scheduler
|
|
should be used as leaf of CBQ or P3, which put interactive traffic
|
|
to higher priority band.
|
|
|
|
We still need true WFQ for top level CSZ, but using WFQ
|
|
for the best effort traffic is absolutely pointless:
|
|
SFQ is superior for this purpose.
|
|
|
|
IMPLEMENTATION:
|
|
This implementation limits maximal queue length to 128;
|
|
maximal mtu to 2^15-1; number of hash buckets to 1024.
|
|
The only goal of this restrictions was that all data
|
|
fit into one 4K page :-). Struct sfq_sched_data is
|
|
organized in anti-cache manner: all the data for a bucket
|
|
are scattered over different locations. This is not good,
|
|
but it allowed me to put it into 4K.
|
|
|
|
It is easy to increase these values, but not in flight. */
|
|
|
|
#define SFQ_DEPTH 128
|
|
#define SFQ_HASH_DIVISOR 1024
|
|
|
|
/* This type should contain at least SFQ_DEPTH*2 values */
|
|
typedef unsigned char sfq_index;
|
|
|
|
struct sfq_head
|
|
{
|
|
sfq_index next;
|
|
sfq_index prev;
|
|
};
|
|
|
|
struct sfq_sched_data
|
|
{
|
|
/* Parameters */
|
|
int perturb_period;
|
|
unsigned quantum; /* Allotment per round: MUST BE >= MTU */
|
|
int limit;
|
|
|
|
/* Variables */
|
|
struct tcf_proto *filter_list;
|
|
struct timer_list perturb_timer;
|
|
u32 perturbation;
|
|
sfq_index tail; /* Index of current slot in round */
|
|
sfq_index max_depth; /* Maximal depth */
|
|
|
|
sfq_index ht[SFQ_HASH_DIVISOR]; /* Hash table */
|
|
sfq_index next[SFQ_DEPTH]; /* Active slots link */
|
|
short allot[SFQ_DEPTH]; /* Current allotment per slot */
|
|
unsigned short hash[SFQ_DEPTH]; /* Hash value indexed by slots */
|
|
struct sk_buff_head qs[SFQ_DEPTH]; /* Slot queue */
|
|
struct sfq_head dep[SFQ_DEPTH*2]; /* Linked list of slots, indexed by depth */
|
|
};
|
|
|
|
static __inline__ unsigned sfq_fold_hash(struct sfq_sched_data *q, u32 h, u32 h1)
|
|
{
|
|
return jhash_2words(h, h1, q->perturbation) & (SFQ_HASH_DIVISOR - 1);
|
|
}
|
|
|
|
static unsigned sfq_hash(struct sfq_sched_data *q, struct sk_buff *skb)
|
|
{
|
|
u32 h, h2;
|
|
|
|
switch (skb->protocol) {
|
|
case htons(ETH_P_IP):
|
|
{
|
|
const struct iphdr *iph = ip_hdr(skb);
|
|
h = iph->daddr;
|
|
h2 = iph->saddr ^ iph->protocol;
|
|
if (!(iph->frag_off&htons(IP_MF|IP_OFFSET)) &&
|
|
(iph->protocol == IPPROTO_TCP ||
|
|
iph->protocol == IPPROTO_UDP ||
|
|
iph->protocol == IPPROTO_UDPLITE ||
|
|
iph->protocol == IPPROTO_SCTP ||
|
|
iph->protocol == IPPROTO_DCCP ||
|
|
iph->protocol == IPPROTO_ESP))
|
|
h2 ^= *(((u32*)iph) + iph->ihl);
|
|
break;
|
|
}
|
|
case htons(ETH_P_IPV6):
|
|
{
|
|
struct ipv6hdr *iph = ipv6_hdr(skb);
|
|
h = iph->daddr.s6_addr32[3];
|
|
h2 = iph->saddr.s6_addr32[3] ^ iph->nexthdr;
|
|
if (iph->nexthdr == IPPROTO_TCP ||
|
|
iph->nexthdr == IPPROTO_UDP ||
|
|
iph->nexthdr == IPPROTO_UDPLITE ||
|
|
iph->nexthdr == IPPROTO_SCTP ||
|
|
iph->nexthdr == IPPROTO_DCCP ||
|
|
iph->nexthdr == IPPROTO_ESP)
|
|
h2 ^= *(u32*)&iph[1];
|
|
break;
|
|
}
|
|
default:
|
|
h = (unsigned long)skb_dst(skb) ^ skb->protocol;
|
|
h2 = (unsigned long)skb->sk;
|
|
}
|
|
|
|
return sfq_fold_hash(q, h, h2);
|
|
}
|
|
|
|
static unsigned int sfq_classify(struct sk_buff *skb, struct Qdisc *sch,
|
|
int *qerr)
|
|
{
|
|
struct sfq_sched_data *q = qdisc_priv(sch);
|
|
struct tcf_result res;
|
|
int result;
|
|
|
|
if (TC_H_MAJ(skb->priority) == sch->handle &&
|
|
TC_H_MIN(skb->priority) > 0 &&
|
|
TC_H_MIN(skb->priority) <= SFQ_HASH_DIVISOR)
|
|
return TC_H_MIN(skb->priority);
|
|
|
|
if (!q->filter_list)
|
|
return sfq_hash(q, skb) + 1;
|
|
|
|
*qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
|
|
result = tc_classify(skb, q->filter_list, &res);
|
|
if (result >= 0) {
|
|
#ifdef CONFIG_NET_CLS_ACT
|
|
switch (result) {
|
|
case TC_ACT_STOLEN:
|
|
case TC_ACT_QUEUED:
|
|
*qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
|
|
case TC_ACT_SHOT:
|
|
return 0;
|
|
}
|
|
#endif
|
|
if (TC_H_MIN(res.classid) <= SFQ_HASH_DIVISOR)
|
|
return TC_H_MIN(res.classid);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static inline void sfq_link(struct sfq_sched_data *q, sfq_index x)
|
|
{
|
|
sfq_index p, n;
|
|
int d = q->qs[x].qlen + SFQ_DEPTH;
|
|
|
|
p = d;
|
|
n = q->dep[d].next;
|
|
q->dep[x].next = n;
|
|
q->dep[x].prev = p;
|
|
q->dep[p].next = q->dep[n].prev = x;
|
|
}
|
|
|
|
static inline void sfq_dec(struct sfq_sched_data *q, sfq_index x)
|
|
{
|
|
sfq_index p, n;
|
|
|
|
n = q->dep[x].next;
|
|
p = q->dep[x].prev;
|
|
q->dep[p].next = n;
|
|
q->dep[n].prev = p;
|
|
|
|
if (n == p && q->max_depth == q->qs[x].qlen + 1)
|
|
q->max_depth--;
|
|
|
|
sfq_link(q, x);
|
|
}
|
|
|
|
static inline void sfq_inc(struct sfq_sched_data *q, sfq_index x)
|
|
{
|
|
sfq_index p, n;
|
|
int d;
|
|
|
|
n = q->dep[x].next;
|
|
p = q->dep[x].prev;
|
|
q->dep[p].next = n;
|
|
q->dep[n].prev = p;
|
|
d = q->qs[x].qlen;
|
|
if (q->max_depth < d)
|
|
q->max_depth = d;
|
|
|
|
sfq_link(q, x);
|
|
}
|
|
|
|
static unsigned int sfq_drop(struct Qdisc *sch)
|
|
{
|
|
struct sfq_sched_data *q = qdisc_priv(sch);
|
|
sfq_index d = q->max_depth;
|
|
struct sk_buff *skb;
|
|
unsigned int len;
|
|
|
|
/* Queue is full! Find the longest slot and
|
|
drop a packet from it */
|
|
|
|
if (d > 1) {
|
|
sfq_index x = q->dep[d + SFQ_DEPTH].next;
|
|
skb = q->qs[x].prev;
|
|
len = qdisc_pkt_len(skb);
|
|
__skb_unlink(skb, &q->qs[x]);
|
|
kfree_skb(skb);
|
|
sfq_dec(q, x);
|
|
sch->q.qlen--;
|
|
sch->qstats.drops++;
|
|
sch->qstats.backlog -= len;
|
|
return len;
|
|
}
|
|
|
|
if (d == 1) {
|
|
/* It is difficult to believe, but ALL THE SLOTS HAVE LENGTH 1. */
|
|
d = q->next[q->tail];
|
|
q->next[q->tail] = q->next[d];
|
|
q->allot[q->next[d]] += q->quantum;
|
|
skb = q->qs[d].prev;
|
|
len = qdisc_pkt_len(skb);
|
|
__skb_unlink(skb, &q->qs[d]);
|
|
kfree_skb(skb);
|
|
sfq_dec(q, d);
|
|
sch->q.qlen--;
|
|
q->ht[q->hash[d]] = SFQ_DEPTH;
|
|
sch->qstats.drops++;
|
|
sch->qstats.backlog -= len;
|
|
return len;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
sfq_enqueue(struct sk_buff *skb, struct Qdisc *sch)
|
|
{
|
|
struct sfq_sched_data *q = qdisc_priv(sch);
|
|
unsigned int hash;
|
|
sfq_index x;
|
|
int uninitialized_var(ret);
|
|
|
|
hash = sfq_classify(skb, sch, &ret);
|
|
if (hash == 0) {
|
|
if (ret & __NET_XMIT_BYPASS)
|
|
sch->qstats.drops++;
|
|
kfree_skb(skb);
|
|
return ret;
|
|
}
|
|
hash--;
|
|
|
|
x = q->ht[hash];
|
|
if (x == SFQ_DEPTH) {
|
|
q->ht[hash] = x = q->dep[SFQ_DEPTH].next;
|
|
q->hash[x] = hash;
|
|
}
|
|
|
|
/* If selected queue has length q->limit, this means that
|
|
* all another queues are empty and that we do simple tail drop,
|
|
* i.e. drop _this_ packet.
|
|
*/
|
|
if (q->qs[x].qlen >= q->limit)
|
|
return qdisc_drop(skb, sch);
|
|
|
|
sch->qstats.backlog += qdisc_pkt_len(skb);
|
|
__skb_queue_tail(&q->qs[x], skb);
|
|
sfq_inc(q, x);
|
|
if (q->qs[x].qlen == 1) { /* The flow is new */
|
|
if (q->tail == SFQ_DEPTH) { /* It is the first flow */
|
|
q->tail = x;
|
|
q->next[x] = x;
|
|
q->allot[x] = q->quantum;
|
|
} else {
|
|
q->next[x] = q->next[q->tail];
|
|
q->next[q->tail] = x;
|
|
q->tail = x;
|
|
}
|
|
}
|
|
if (++sch->q.qlen <= q->limit) {
|
|
sch->bstats.bytes += qdisc_pkt_len(skb);
|
|
sch->bstats.packets++;
|
|
return 0;
|
|
}
|
|
|
|
sfq_drop(sch);
|
|
return NET_XMIT_CN;
|
|
}
|
|
|
|
static struct sk_buff *
|
|
sfq_peek(struct Qdisc *sch)
|
|
{
|
|
struct sfq_sched_data *q = qdisc_priv(sch);
|
|
sfq_index a;
|
|
|
|
/* No active slots */
|
|
if (q->tail == SFQ_DEPTH)
|
|
return NULL;
|
|
|
|
a = q->next[q->tail];
|
|
return skb_peek(&q->qs[a]);
|
|
}
|
|
|
|
static struct sk_buff *
|
|
sfq_dequeue(struct Qdisc *sch)
|
|
{
|
|
struct sfq_sched_data *q = qdisc_priv(sch);
|
|
struct sk_buff *skb;
|
|
sfq_index a, old_a;
|
|
|
|
/* No active slots */
|
|
if (q->tail == SFQ_DEPTH)
|
|
return NULL;
|
|
|
|
a = old_a = q->next[q->tail];
|
|
|
|
/* Grab packet */
|
|
skb = __skb_dequeue(&q->qs[a]);
|
|
sfq_dec(q, a);
|
|
sch->q.qlen--;
|
|
sch->qstats.backlog -= qdisc_pkt_len(skb);
|
|
|
|
/* Is the slot empty? */
|
|
if (q->qs[a].qlen == 0) {
|
|
q->ht[q->hash[a]] = SFQ_DEPTH;
|
|
a = q->next[a];
|
|
if (a == old_a) {
|
|
q->tail = SFQ_DEPTH;
|
|
return skb;
|
|
}
|
|
q->next[q->tail] = a;
|
|
q->allot[a] += q->quantum;
|
|
} else if ((q->allot[a] -= qdisc_pkt_len(skb)) <= 0) {
|
|
q->tail = a;
|
|
a = q->next[a];
|
|
q->allot[a] += q->quantum;
|
|
}
|
|
return skb;
|
|
}
|
|
|
|
static void
|
|
sfq_reset(struct Qdisc *sch)
|
|
{
|
|
struct sk_buff *skb;
|
|
|
|
while ((skb = sfq_dequeue(sch)) != NULL)
|
|
kfree_skb(skb);
|
|
}
|
|
|
|
static void sfq_perturbation(unsigned long arg)
|
|
{
|
|
struct Qdisc *sch = (struct Qdisc *)arg;
|
|
struct sfq_sched_data *q = qdisc_priv(sch);
|
|
|
|
q->perturbation = net_random();
|
|
|
|
if (q->perturb_period)
|
|
mod_timer(&q->perturb_timer, jiffies + q->perturb_period);
|
|
}
|
|
|
|
static int sfq_change(struct Qdisc *sch, struct nlattr *opt)
|
|
{
|
|
struct sfq_sched_data *q = qdisc_priv(sch);
|
|
struct tc_sfq_qopt *ctl = nla_data(opt);
|
|
unsigned int qlen;
|
|
|
|
if (opt->nla_len < nla_attr_size(sizeof(*ctl)))
|
|
return -EINVAL;
|
|
|
|
sch_tree_lock(sch);
|
|
q->quantum = ctl->quantum ? : psched_mtu(qdisc_dev(sch));
|
|
q->perturb_period = ctl->perturb_period * HZ;
|
|
if (ctl->limit)
|
|
q->limit = min_t(u32, ctl->limit, SFQ_DEPTH - 1);
|
|
|
|
qlen = sch->q.qlen;
|
|
while (sch->q.qlen > q->limit)
|
|
sfq_drop(sch);
|
|
qdisc_tree_decrease_qlen(sch, qlen - sch->q.qlen);
|
|
|
|
del_timer(&q->perturb_timer);
|
|
if (q->perturb_period) {
|
|
mod_timer(&q->perturb_timer, jiffies + q->perturb_period);
|
|
q->perturbation = net_random();
|
|
}
|
|
sch_tree_unlock(sch);
|
|
return 0;
|
|
}
|
|
|
|
static int sfq_init(struct Qdisc *sch, struct nlattr *opt)
|
|
{
|
|
struct sfq_sched_data *q = qdisc_priv(sch);
|
|
int i;
|
|
|
|
q->perturb_timer.function = sfq_perturbation;
|
|
q->perturb_timer.data = (unsigned long)sch;
|
|
init_timer_deferrable(&q->perturb_timer);
|
|
|
|
for (i = 0; i < SFQ_HASH_DIVISOR; i++)
|
|
q->ht[i] = SFQ_DEPTH;
|
|
|
|
for (i = 0; i < SFQ_DEPTH; i++) {
|
|
skb_queue_head_init(&q->qs[i]);
|
|
q->dep[i + SFQ_DEPTH].next = i + SFQ_DEPTH;
|
|
q->dep[i + SFQ_DEPTH].prev = i + SFQ_DEPTH;
|
|
}
|
|
|
|
q->limit = SFQ_DEPTH - 1;
|
|
q->max_depth = 0;
|
|
q->tail = SFQ_DEPTH;
|
|
if (opt == NULL) {
|
|
q->quantum = psched_mtu(qdisc_dev(sch));
|
|
q->perturb_period = 0;
|
|
q->perturbation = net_random();
|
|
} else {
|
|
int err = sfq_change(sch, opt);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
for (i = 0; i < SFQ_DEPTH; i++)
|
|
sfq_link(q, i);
|
|
return 0;
|
|
}
|
|
|
|
static void sfq_destroy(struct Qdisc *sch)
|
|
{
|
|
struct sfq_sched_data *q = qdisc_priv(sch);
|
|
|
|
tcf_destroy_chain(&q->filter_list);
|
|
q->perturb_period = 0;
|
|
del_timer_sync(&q->perturb_timer);
|
|
}
|
|
|
|
static int sfq_dump(struct Qdisc *sch, struct sk_buff *skb)
|
|
{
|
|
struct sfq_sched_data *q = qdisc_priv(sch);
|
|
unsigned char *b = skb_tail_pointer(skb);
|
|
struct tc_sfq_qopt opt;
|
|
|
|
opt.quantum = q->quantum;
|
|
opt.perturb_period = q->perturb_period / HZ;
|
|
|
|
opt.limit = q->limit;
|
|
opt.divisor = SFQ_HASH_DIVISOR;
|
|
opt.flows = q->limit;
|
|
|
|
NLA_PUT(skb, TCA_OPTIONS, sizeof(opt), &opt);
|
|
|
|
return skb->len;
|
|
|
|
nla_put_failure:
|
|
nlmsg_trim(skb, b);
|
|
return -1;
|
|
}
|
|
|
|
static unsigned long sfq_get(struct Qdisc *sch, u32 classid)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static struct tcf_proto **sfq_find_tcf(struct Qdisc *sch, unsigned long cl)
|
|
{
|
|
struct sfq_sched_data *q = qdisc_priv(sch);
|
|
|
|
if (cl)
|
|
return NULL;
|
|
return &q->filter_list;
|
|
}
|
|
|
|
static int sfq_dump_class(struct Qdisc *sch, unsigned long cl,
|
|
struct sk_buff *skb, struct tcmsg *tcm)
|
|
{
|
|
tcm->tcm_handle |= TC_H_MIN(cl);
|
|
return 0;
|
|
}
|
|
|
|
static int sfq_dump_class_stats(struct Qdisc *sch, unsigned long cl,
|
|
struct gnet_dump *d)
|
|
{
|
|
struct sfq_sched_data *q = qdisc_priv(sch);
|
|
sfq_index idx = q->ht[cl-1];
|
|
struct gnet_stats_queue qs = { .qlen = q->qs[idx].qlen };
|
|
struct tc_sfq_xstats xstats = { .allot = q->allot[idx] };
|
|
|
|
if (gnet_stats_copy_queue(d, &qs) < 0)
|
|
return -1;
|
|
return gnet_stats_copy_app(d, &xstats, sizeof(xstats));
|
|
}
|
|
|
|
static void sfq_walk(struct Qdisc *sch, struct qdisc_walker *arg)
|
|
{
|
|
struct sfq_sched_data *q = qdisc_priv(sch);
|
|
unsigned int i;
|
|
|
|
if (arg->stop)
|
|
return;
|
|
|
|
for (i = 0; i < SFQ_HASH_DIVISOR; i++) {
|
|
if (q->ht[i] == SFQ_DEPTH ||
|
|
arg->count < arg->skip) {
|
|
arg->count++;
|
|
continue;
|
|
}
|
|
if (arg->fn(sch, i + 1, arg) < 0) {
|
|
arg->stop = 1;
|
|
break;
|
|
}
|
|
arg->count++;
|
|
}
|
|
}
|
|
|
|
static const struct Qdisc_class_ops sfq_class_ops = {
|
|
.get = sfq_get,
|
|
.tcf_chain = sfq_find_tcf,
|
|
.dump = sfq_dump_class,
|
|
.dump_stats = sfq_dump_class_stats,
|
|
.walk = sfq_walk,
|
|
};
|
|
|
|
static struct Qdisc_ops sfq_qdisc_ops __read_mostly = {
|
|
.cl_ops = &sfq_class_ops,
|
|
.id = "sfq",
|
|
.priv_size = sizeof(struct sfq_sched_data),
|
|
.enqueue = sfq_enqueue,
|
|
.dequeue = sfq_dequeue,
|
|
.peek = sfq_peek,
|
|
.drop = sfq_drop,
|
|
.init = sfq_init,
|
|
.reset = sfq_reset,
|
|
.destroy = sfq_destroy,
|
|
.change = NULL,
|
|
.dump = sfq_dump,
|
|
.owner = THIS_MODULE,
|
|
};
|
|
|
|
static int __init sfq_module_init(void)
|
|
{
|
|
return register_qdisc(&sfq_qdisc_ops);
|
|
}
|
|
static void __exit sfq_module_exit(void)
|
|
{
|
|
unregister_qdisc(&sfq_qdisc_ops);
|
|
}
|
|
module_init(sfq_module_init)
|
|
module_exit(sfq_module_exit)
|
|
MODULE_LICENSE("GPL");
|