linux/drivers/gpu/drm/i915/i915_gem_gtt.c
Mika Kuoppala d1c54acd67 drm/i915/gtt: Introduce kmap|kunmap for dma page
As there is flushing involved when we have done the cpu
write, make functions for mapping for cpu space. Make macros
to map any type of paging structure.

v2: Make it clear tha flushing kunmap is only for ppgtt (Ville)
v3: Flushing fixed (Ville, Michel). Removed superfluous semicolon

Cc: Ville Syrjälä <ville.syrjala@linux.intel.com>
Signed-off-by: Mika Kuoppala <mika.kuoppala@intel.com>
Reviewed-by: Michel Thierry <michel.thierry@intel.com>
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-06-26 10:53:41 +02:00

2897 lines
76 KiB
C

/*
* Copyright © 2010 Daniel Vetter
* Copyright © 2011-2014 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
*/
#include <linux/seq_file.h>
#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
#include "i915_vgpu.h"
#include "i915_trace.h"
#include "intel_drv.h"
/**
* DOC: Global GTT views
*
* Background and previous state
*
* Historically objects could exists (be bound) in global GTT space only as
* singular instances with a view representing all of the object's backing pages
* in a linear fashion. This view will be called a normal view.
*
* To support multiple views of the same object, where the number of mapped
* pages is not equal to the backing store, or where the layout of the pages
* is not linear, concept of a GGTT view was added.
*
* One example of an alternative view is a stereo display driven by a single
* image. In this case we would have a framebuffer looking like this
* (2x2 pages):
*
* 12
* 34
*
* Above would represent a normal GGTT view as normally mapped for GPU or CPU
* rendering. In contrast, fed to the display engine would be an alternative
* view which could look something like this:
*
* 1212
* 3434
*
* In this example both the size and layout of pages in the alternative view is
* different from the normal view.
*
* Implementation and usage
*
* GGTT views are implemented using VMAs and are distinguished via enum
* i915_ggtt_view_type and struct i915_ggtt_view.
*
* A new flavour of core GEM functions which work with GGTT bound objects were
* added with the _ggtt_ infix, and sometimes with _view postfix to avoid
* renaming in large amounts of code. They take the struct i915_ggtt_view
* parameter encapsulating all metadata required to implement a view.
*
* As a helper for callers which are only interested in the normal view,
* globally const i915_ggtt_view_normal singleton instance exists. All old core
* GEM API functions, the ones not taking the view parameter, are operating on,
* or with the normal GGTT view.
*
* Code wanting to add or use a new GGTT view needs to:
*
* 1. Add a new enum with a suitable name.
* 2. Extend the metadata in the i915_ggtt_view structure if required.
* 3. Add support to i915_get_vma_pages().
*
* New views are required to build a scatter-gather table from within the
* i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
* exists for the lifetime of an VMA.
*
* Core API is designed to have copy semantics which means that passed in
* struct i915_ggtt_view does not need to be persistent (left around after
* calling the core API functions).
*
*/
static int
i915_get_ggtt_vma_pages(struct i915_vma *vma);
const struct i915_ggtt_view i915_ggtt_view_normal;
const struct i915_ggtt_view i915_ggtt_view_rotated = {
.type = I915_GGTT_VIEW_ROTATED
};
static int sanitize_enable_ppgtt(struct drm_device *dev, int enable_ppgtt)
{
bool has_aliasing_ppgtt;
bool has_full_ppgtt;
has_aliasing_ppgtt = INTEL_INFO(dev)->gen >= 6;
has_full_ppgtt = INTEL_INFO(dev)->gen >= 7;
if (intel_vgpu_active(dev))
has_full_ppgtt = false; /* emulation is too hard */
/*
* We don't allow disabling PPGTT for gen9+ as it's a requirement for
* execlists, the sole mechanism available to submit work.
*/
if (INTEL_INFO(dev)->gen < 9 &&
(enable_ppgtt == 0 || !has_aliasing_ppgtt))
return 0;
if (enable_ppgtt == 1)
return 1;
if (enable_ppgtt == 2 && has_full_ppgtt)
return 2;
#ifdef CONFIG_INTEL_IOMMU
/* Disable ppgtt on SNB if VT-d is on. */
if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped) {
DRM_INFO("Disabling PPGTT because VT-d is on\n");
return 0;
}
#endif
/* Early VLV doesn't have this */
if (IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) &&
dev->pdev->revision < 0xb) {
DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n");
return 0;
}
if (INTEL_INFO(dev)->gen >= 8 && i915.enable_execlists)
return 2;
else
return has_aliasing_ppgtt ? 1 : 0;
}
static int ppgtt_bind_vma(struct i915_vma *vma,
enum i915_cache_level cache_level,
u32 unused)
{
u32 pte_flags = 0;
/* Currently applicable only to VLV */
if (vma->obj->gt_ro)
pte_flags |= PTE_READ_ONLY;
vma->vm->insert_entries(vma->vm, vma->obj->pages, vma->node.start,
cache_level, pte_flags);
return 0;
}
static void ppgtt_unbind_vma(struct i915_vma *vma)
{
vma->vm->clear_range(vma->vm,
vma->node.start,
vma->obj->base.size,
true);
}
static gen8_pte_t gen8_pte_encode(dma_addr_t addr,
enum i915_cache_level level,
bool valid)
{
gen8_pte_t pte = valid ? _PAGE_PRESENT | _PAGE_RW : 0;
pte |= addr;
switch (level) {
case I915_CACHE_NONE:
pte |= PPAT_UNCACHED_INDEX;
break;
case I915_CACHE_WT:
pte |= PPAT_DISPLAY_ELLC_INDEX;
break;
default:
pte |= PPAT_CACHED_INDEX;
break;
}
return pte;
}
static gen8_pde_t gen8_pde_encode(struct drm_device *dev,
dma_addr_t addr,
enum i915_cache_level level)
{
gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
pde |= addr;
if (level != I915_CACHE_NONE)
pde |= PPAT_CACHED_PDE_INDEX;
else
pde |= PPAT_UNCACHED_INDEX;
return pde;
}
static gen6_pte_t snb_pte_encode(dma_addr_t addr,
enum i915_cache_level level,
bool valid, u32 unused)
{
gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
pte |= GEN6_PTE_ADDR_ENCODE(addr);
switch (level) {
case I915_CACHE_L3_LLC:
case I915_CACHE_LLC:
pte |= GEN6_PTE_CACHE_LLC;
break;
case I915_CACHE_NONE:
pte |= GEN6_PTE_UNCACHED;
break;
default:
MISSING_CASE(level);
}
return pte;
}
static gen6_pte_t ivb_pte_encode(dma_addr_t addr,
enum i915_cache_level level,
bool valid, u32 unused)
{
gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
pte |= GEN6_PTE_ADDR_ENCODE(addr);
switch (level) {
case I915_CACHE_L3_LLC:
pte |= GEN7_PTE_CACHE_L3_LLC;
break;
case I915_CACHE_LLC:
pte |= GEN6_PTE_CACHE_LLC;
break;
case I915_CACHE_NONE:
pte |= GEN6_PTE_UNCACHED;
break;
default:
MISSING_CASE(level);
}
return pte;
}
static gen6_pte_t byt_pte_encode(dma_addr_t addr,
enum i915_cache_level level,
bool valid, u32 flags)
{
gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
pte |= GEN6_PTE_ADDR_ENCODE(addr);
if (!(flags & PTE_READ_ONLY))
pte |= BYT_PTE_WRITEABLE;
if (level != I915_CACHE_NONE)
pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
return pte;
}
static gen6_pte_t hsw_pte_encode(dma_addr_t addr,
enum i915_cache_level level,
bool valid, u32 unused)
{
gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
pte |= HSW_PTE_ADDR_ENCODE(addr);
if (level != I915_CACHE_NONE)
pte |= HSW_WB_LLC_AGE3;
return pte;
}
static gen6_pte_t iris_pte_encode(dma_addr_t addr,
enum i915_cache_level level,
bool valid, u32 unused)
{
gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
pte |= HSW_PTE_ADDR_ENCODE(addr);
switch (level) {
case I915_CACHE_NONE:
break;
case I915_CACHE_WT:
pte |= HSW_WT_ELLC_LLC_AGE3;
break;
default:
pte |= HSW_WB_ELLC_LLC_AGE3;
break;
}
return pte;
}
static int setup_page_dma(struct drm_device *dev, struct i915_page_dma *p)
{
struct device *device = &dev->pdev->dev;
p->page = alloc_page(GFP_KERNEL);
if (!p->page)
return -ENOMEM;
p->daddr = dma_map_page(device,
p->page, 0, 4096, PCI_DMA_BIDIRECTIONAL);
if (dma_mapping_error(device, p->daddr)) {
__free_page(p->page);
return -EINVAL;
}
return 0;
}
static void cleanup_page_dma(struct drm_device *dev, struct i915_page_dma *p)
{
if (WARN_ON(!p->page))
return;
dma_unmap_page(&dev->pdev->dev, p->daddr, 4096, PCI_DMA_BIDIRECTIONAL);
__free_page(p->page);
memset(p, 0, sizeof(*p));
}
static void *kmap_page_dma(struct i915_page_dma *p)
{
return kmap_atomic(p->page);
}
/* We use the flushing unmap only with ppgtt structures:
* page directories, page tables and scratch pages.
*/
static void kunmap_page_dma(struct drm_device *dev, void *vaddr)
{
/* There are only few exceptions for gen >=6. chv and bxt.
* And we are not sure about the latter so play safe for now.
*/
if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
drm_clflush_virt_range(vaddr, PAGE_SIZE);
kunmap_atomic(vaddr);
}
#define kmap_px(px) kmap_page_dma(&(px)->base)
#define kunmap_px(ppgtt, vaddr) kunmap_page_dma((ppgtt)->base.dev, (vaddr))
static void fill_page_dma(struct drm_device *dev, struct i915_page_dma *p,
const uint64_t val)
{
int i;
uint64_t * const vaddr = kmap_page_dma(p);
for (i = 0; i < 512; i++)
vaddr[i] = val;
kunmap_page_dma(dev, vaddr);
}
static void fill_page_dma_32(struct drm_device *dev, struct i915_page_dma *p,
const uint32_t val32)
{
uint64_t v = val32;
v = v << 32 | val32;
fill_page_dma(dev, p, v);
}
static void free_pt(struct drm_device *dev, struct i915_page_table *pt)
{
cleanup_page_dma(dev, &pt->base);
kfree(pt->used_ptes);
kfree(pt);
}
static void gen8_initialize_pt(struct i915_address_space *vm,
struct i915_page_table *pt)
{
gen8_pte_t scratch_pte;
scratch_pte = gen8_pte_encode(vm->scratch.addr, I915_CACHE_LLC, true);
fill_page_dma(vm->dev, &pt->base, scratch_pte);
}
static struct i915_page_table *alloc_pt(struct drm_device *dev)
{
struct i915_page_table *pt;
const size_t count = INTEL_INFO(dev)->gen >= 8 ?
GEN8_PTES : GEN6_PTES;
int ret = -ENOMEM;
pt = kzalloc(sizeof(*pt), GFP_KERNEL);
if (!pt)
return ERR_PTR(-ENOMEM);
pt->used_ptes = kcalloc(BITS_TO_LONGS(count), sizeof(*pt->used_ptes),
GFP_KERNEL);
if (!pt->used_ptes)
goto fail_bitmap;
ret = setup_page_dma(dev, &pt->base);
if (ret)
goto fail_page_m;
return pt;
fail_page_m:
kfree(pt->used_ptes);
fail_bitmap:
kfree(pt);
return ERR_PTR(ret);
}
static void free_pd(struct drm_device *dev, struct i915_page_directory *pd)
{
if (pd->base.page) {
cleanup_page_dma(dev, &pd->base);
kfree(pd->used_pdes);
kfree(pd);
}
}
static struct i915_page_directory *alloc_pd(struct drm_device *dev)
{
struct i915_page_directory *pd;
int ret = -ENOMEM;
pd = kzalloc(sizeof(*pd), GFP_KERNEL);
if (!pd)
return ERR_PTR(-ENOMEM);
pd->used_pdes = kcalloc(BITS_TO_LONGS(I915_PDES),
sizeof(*pd->used_pdes), GFP_KERNEL);
if (!pd->used_pdes)
goto fail_bitmap;
ret = setup_page_dma(dev, &pd->base);
if (ret)
goto fail_page_m;
return pd;
fail_page_m:
kfree(pd->used_pdes);
fail_bitmap:
kfree(pd);
return ERR_PTR(ret);
}
/* Broadwell Page Directory Pointer Descriptors */
static int gen8_write_pdp(struct drm_i915_gem_request *req,
unsigned entry,
dma_addr_t addr)
{
struct intel_engine_cs *ring = req->ring;
int ret;
BUG_ON(entry >= 4);
ret = intel_ring_begin(req, 6);
if (ret)
return ret;
intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
intel_ring_emit(ring, GEN8_RING_PDP_UDW(ring, entry));
intel_ring_emit(ring, upper_32_bits(addr));
intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
intel_ring_emit(ring, GEN8_RING_PDP_LDW(ring, entry));
intel_ring_emit(ring, lower_32_bits(addr));
intel_ring_advance(ring);
return 0;
}
static int gen8_mm_switch(struct i915_hw_ppgtt *ppgtt,
struct drm_i915_gem_request *req)
{
int i, ret;
for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
ret = gen8_write_pdp(req, i, pd_daddr);
if (ret)
return ret;
}
return 0;
}
static void gen8_ppgtt_clear_range(struct i915_address_space *vm,
uint64_t start,
uint64_t length,
bool use_scratch)
{
struct i915_hw_ppgtt *ppgtt =
container_of(vm, struct i915_hw_ppgtt, base);
gen8_pte_t *pt_vaddr, scratch_pte;
unsigned pdpe = start >> GEN8_PDPE_SHIFT & GEN8_PDPE_MASK;
unsigned pde = start >> GEN8_PDE_SHIFT & GEN8_PDE_MASK;
unsigned pte = start >> GEN8_PTE_SHIFT & GEN8_PTE_MASK;
unsigned num_entries = length >> PAGE_SHIFT;
unsigned last_pte, i;
scratch_pte = gen8_pte_encode(ppgtt->base.scratch.addr,
I915_CACHE_LLC, use_scratch);
while (num_entries) {
struct i915_page_directory *pd;
struct i915_page_table *pt;
if (WARN_ON(!ppgtt->pdp.page_directory[pdpe]))
continue;
pd = ppgtt->pdp.page_directory[pdpe];
if (WARN_ON(!pd->page_table[pde]))
continue;
pt = pd->page_table[pde];
if (WARN_ON(!pt->base.page))
continue;
last_pte = pte + num_entries;
if (last_pte > GEN8_PTES)
last_pte = GEN8_PTES;
pt_vaddr = kmap_px(pt);
for (i = pte; i < last_pte; i++) {
pt_vaddr[i] = scratch_pte;
num_entries--;
}
kunmap_px(ppgtt, pt);
pte = 0;
if (++pde == I915_PDES) {
pdpe++;
pde = 0;
}
}
}
static void gen8_ppgtt_insert_entries(struct i915_address_space *vm,
struct sg_table *pages,
uint64_t start,
enum i915_cache_level cache_level, u32 unused)
{
struct i915_hw_ppgtt *ppgtt =
container_of(vm, struct i915_hw_ppgtt, base);
gen8_pte_t *pt_vaddr;
unsigned pdpe = start >> GEN8_PDPE_SHIFT & GEN8_PDPE_MASK;
unsigned pde = start >> GEN8_PDE_SHIFT & GEN8_PDE_MASK;
unsigned pte = start >> GEN8_PTE_SHIFT & GEN8_PTE_MASK;
struct sg_page_iter sg_iter;
pt_vaddr = NULL;
for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
if (WARN_ON(pdpe >= GEN8_LEGACY_PDPES))
break;
if (pt_vaddr == NULL) {
struct i915_page_directory *pd = ppgtt->pdp.page_directory[pdpe];
struct i915_page_table *pt = pd->page_table[pde];
pt_vaddr = kmap_px(pt);
}
pt_vaddr[pte] =
gen8_pte_encode(sg_page_iter_dma_address(&sg_iter),
cache_level, true);
if (++pte == GEN8_PTES) {
kunmap_px(ppgtt, pt_vaddr);
pt_vaddr = NULL;
if (++pde == I915_PDES) {
pdpe++;
pde = 0;
}
pte = 0;
}
}
if (pt_vaddr)
kunmap_px(ppgtt, pt_vaddr);
}
static void __gen8_do_map_pt(gen8_pde_t * const pde,
struct i915_page_table *pt,
struct drm_device *dev)
{
gen8_pde_t entry =
gen8_pde_encode(dev, pt->base.daddr, I915_CACHE_LLC);
*pde = entry;
}
static void gen8_initialize_pd(struct i915_address_space *vm,
struct i915_page_directory *pd)
{
struct i915_hw_ppgtt *ppgtt =
container_of(vm, struct i915_hw_ppgtt, base);
gen8_pde_t scratch_pde;
scratch_pde = gen8_pde_encode(vm->dev, ppgtt->scratch_pt->base.daddr,
I915_CACHE_LLC);
fill_page_dma(vm->dev, &pd->base, scratch_pde);
}
static void gen8_free_page_tables(struct i915_page_directory *pd, struct drm_device *dev)
{
int i;
if (!pd->base.page)
return;
for_each_set_bit(i, pd->used_pdes, I915_PDES) {
if (WARN_ON(!pd->page_table[i]))
continue;
free_pt(dev, pd->page_table[i]);
pd->page_table[i] = NULL;
}
}
static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
{
struct i915_hw_ppgtt *ppgtt =
container_of(vm, struct i915_hw_ppgtt, base);
int i;
for_each_set_bit(i, ppgtt->pdp.used_pdpes, GEN8_LEGACY_PDPES) {
if (WARN_ON(!ppgtt->pdp.page_directory[i]))
continue;
gen8_free_page_tables(ppgtt->pdp.page_directory[i], ppgtt->base.dev);
free_pd(ppgtt->base.dev, ppgtt->pdp.page_directory[i]);
}
free_pd(ppgtt->base.dev, ppgtt->scratch_pd);
free_pt(ppgtt->base.dev, ppgtt->scratch_pt);
}
/**
* gen8_ppgtt_alloc_pagetabs() - Allocate page tables for VA range.
* @ppgtt: Master ppgtt structure.
* @pd: Page directory for this address range.
* @start: Starting virtual address to begin allocations.
* @length Size of the allocations.
* @new_pts: Bitmap set by function with new allocations. Likely used by the
* caller to free on error.
*
* Allocate the required number of page tables. Extremely similar to
* gen8_ppgtt_alloc_page_directories(). The main difference is here we are limited by
* the page directory boundary (instead of the page directory pointer). That
* boundary is 1GB virtual. Therefore, unlike gen8_ppgtt_alloc_page_directories(), it is
* possible, and likely that the caller will need to use multiple calls of this
* function to achieve the appropriate allocation.
*
* Return: 0 if success; negative error code otherwise.
*/
static int gen8_ppgtt_alloc_pagetabs(struct i915_hw_ppgtt *ppgtt,
struct i915_page_directory *pd,
uint64_t start,
uint64_t length,
unsigned long *new_pts)
{
struct drm_device *dev = ppgtt->base.dev;
struct i915_page_table *pt;
uint64_t temp;
uint32_t pde;
gen8_for_each_pde(pt, pd, start, length, temp, pde) {
/* Don't reallocate page tables */
if (pt) {
/* Scratch is never allocated this way */
WARN_ON(pt == ppgtt->scratch_pt);
continue;
}
pt = alloc_pt(dev);
if (IS_ERR(pt))
goto unwind_out;
gen8_initialize_pt(&ppgtt->base, pt);
pd->page_table[pde] = pt;
set_bit(pde, new_pts);
}
return 0;
unwind_out:
for_each_set_bit(pde, new_pts, I915_PDES)
free_pt(dev, pd->page_table[pde]);
return -ENOMEM;
}
/**
* gen8_ppgtt_alloc_page_directories() - Allocate page directories for VA range.
* @ppgtt: Master ppgtt structure.
* @pdp: Page directory pointer for this address range.
* @start: Starting virtual address to begin allocations.
* @length Size of the allocations.
* @new_pds Bitmap set by function with new allocations. Likely used by the
* caller to free on error.
*
* Allocate the required number of page directories starting at the pde index of
* @start, and ending at the pde index @start + @length. This function will skip
* over already allocated page directories within the range, and only allocate
* new ones, setting the appropriate pointer within the pdp as well as the
* correct position in the bitmap @new_pds.
*
* The function will only allocate the pages within the range for a give page
* directory pointer. In other words, if @start + @length straddles a virtually
* addressed PDP boundary (512GB for 4k pages), there will be more allocations
* required by the caller, This is not currently possible, and the BUG in the
* code will prevent it.
*
* Return: 0 if success; negative error code otherwise.
*/
static int gen8_ppgtt_alloc_page_directories(struct i915_hw_ppgtt *ppgtt,
struct i915_page_directory_pointer *pdp,
uint64_t start,
uint64_t length,
unsigned long *new_pds)
{
struct drm_device *dev = ppgtt->base.dev;
struct i915_page_directory *pd;
uint64_t temp;
uint32_t pdpe;
WARN_ON(!bitmap_empty(new_pds, GEN8_LEGACY_PDPES));
gen8_for_each_pdpe(pd, pdp, start, length, temp, pdpe) {
if (pd)
continue;
pd = alloc_pd(dev);
if (IS_ERR(pd))
goto unwind_out;
gen8_initialize_pd(&ppgtt->base, pd);
pdp->page_directory[pdpe] = pd;
set_bit(pdpe, new_pds);
}
return 0;
unwind_out:
for_each_set_bit(pdpe, new_pds, GEN8_LEGACY_PDPES)
free_pd(dev, pdp->page_directory[pdpe]);
return -ENOMEM;
}
static void
free_gen8_temp_bitmaps(unsigned long *new_pds, unsigned long **new_pts)
{
int i;
for (i = 0; i < GEN8_LEGACY_PDPES; i++)
kfree(new_pts[i]);
kfree(new_pts);
kfree(new_pds);
}
/* Fills in the page directory bitmap, and the array of page tables bitmap. Both
* of these are based on the number of PDPEs in the system.
*/
static
int __must_check alloc_gen8_temp_bitmaps(unsigned long **new_pds,
unsigned long ***new_pts)
{
int i;
unsigned long *pds;
unsigned long **pts;
pds = kcalloc(BITS_TO_LONGS(GEN8_LEGACY_PDPES), sizeof(unsigned long), GFP_KERNEL);
if (!pds)
return -ENOMEM;
pts = kcalloc(GEN8_LEGACY_PDPES, sizeof(unsigned long *), GFP_KERNEL);
if (!pts) {
kfree(pds);
return -ENOMEM;
}
for (i = 0; i < GEN8_LEGACY_PDPES; i++) {
pts[i] = kcalloc(BITS_TO_LONGS(I915_PDES),
sizeof(unsigned long), GFP_KERNEL);
if (!pts[i])
goto err_out;
}
*new_pds = pds;
*new_pts = pts;
return 0;
err_out:
free_gen8_temp_bitmaps(pds, pts);
return -ENOMEM;
}
/* PDE TLBs are a pain to invalidate on GEN8+. When we modify
* the page table structures, we mark them dirty so that
* context switching/execlist queuing code takes extra steps
* to ensure that tlbs are flushed.
*/
static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
{
ppgtt->pd_dirty_rings = INTEL_INFO(ppgtt->base.dev)->ring_mask;
}
static int gen8_alloc_va_range(struct i915_address_space *vm,
uint64_t start,
uint64_t length)
{
struct i915_hw_ppgtt *ppgtt =
container_of(vm, struct i915_hw_ppgtt, base);
unsigned long *new_page_dirs, **new_page_tables;
struct i915_page_directory *pd;
const uint64_t orig_start = start;
const uint64_t orig_length = length;
uint64_t temp;
uint32_t pdpe;
int ret;
/* Wrap is never okay since we can only represent 48b, and we don't
* actually use the other side of the canonical address space.
*/
if (WARN_ON(start + length < start))
return -ENODEV;
if (WARN_ON(start + length > ppgtt->base.total))
return -ENODEV;
ret = alloc_gen8_temp_bitmaps(&new_page_dirs, &new_page_tables);
if (ret)
return ret;
/* Do the allocations first so we can easily bail out */
ret = gen8_ppgtt_alloc_page_directories(ppgtt, &ppgtt->pdp, start, length,
new_page_dirs);
if (ret) {
free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
return ret;
}
/* For every page directory referenced, allocate page tables */
gen8_for_each_pdpe(pd, &ppgtt->pdp, start, length, temp, pdpe) {
ret = gen8_ppgtt_alloc_pagetabs(ppgtt, pd, start, length,
new_page_tables[pdpe]);
if (ret)
goto err_out;
}
start = orig_start;
length = orig_length;
/* Allocations have completed successfully, so set the bitmaps, and do
* the mappings. */
gen8_for_each_pdpe(pd, &ppgtt->pdp, start, length, temp, pdpe) {
gen8_pde_t *const page_directory = kmap_px(pd);
struct i915_page_table *pt;
uint64_t pd_len = gen8_clamp_pd(start, length);
uint64_t pd_start = start;
uint32_t pde;
/* Every pd should be allocated, we just did that above. */
WARN_ON(!pd);
gen8_for_each_pde(pt, pd, pd_start, pd_len, temp, pde) {
/* Same reasoning as pd */
WARN_ON(!pt);
WARN_ON(!pd_len);
WARN_ON(!gen8_pte_count(pd_start, pd_len));
/* Set our used ptes within the page table */
bitmap_set(pt->used_ptes,
gen8_pte_index(pd_start),
gen8_pte_count(pd_start, pd_len));
/* Our pde is now pointing to the pagetable, pt */
set_bit(pde, pd->used_pdes);
/* Map the PDE to the page table */
__gen8_do_map_pt(page_directory + pde, pt, vm->dev);
/* NB: We haven't yet mapped ptes to pages. At this
* point we're still relying on insert_entries() */
}
kunmap_px(ppgtt, page_directory);
set_bit(pdpe, ppgtt->pdp.used_pdpes);
}
free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
mark_tlbs_dirty(ppgtt);
return 0;
err_out:
while (pdpe--) {
for_each_set_bit(temp, new_page_tables[pdpe], I915_PDES)
free_pt(vm->dev, ppgtt->pdp.page_directory[pdpe]->page_table[temp]);
}
for_each_set_bit(pdpe, new_page_dirs, GEN8_LEGACY_PDPES)
free_pd(vm->dev, ppgtt->pdp.page_directory[pdpe]);
free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
mark_tlbs_dirty(ppgtt);
return ret;
}
/*
* GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
* with a net effect resembling a 2-level page table in normal x86 terms. Each
* PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
* space.
*
*/
static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
{
ppgtt->scratch_pt = alloc_pt(ppgtt->base.dev);
if (IS_ERR(ppgtt->scratch_pt))
return PTR_ERR(ppgtt->scratch_pt);
ppgtt->scratch_pd = alloc_pd(ppgtt->base.dev);
if (IS_ERR(ppgtt->scratch_pd))
return PTR_ERR(ppgtt->scratch_pd);
gen8_initialize_pt(&ppgtt->base, ppgtt->scratch_pt);
gen8_initialize_pd(&ppgtt->base, ppgtt->scratch_pd);
ppgtt->base.start = 0;
ppgtt->base.total = 1ULL << 32;
if (IS_ENABLED(CONFIG_X86_32))
/* While we have a proliferation of size_t variables
* we cannot represent the full ppgtt size on 32bit,
* so limit it to the same size as the GGTT (currently
* 2GiB).
*/
ppgtt->base.total = to_i915(ppgtt->base.dev)->gtt.base.total;
ppgtt->base.cleanup = gen8_ppgtt_cleanup;
ppgtt->base.allocate_va_range = gen8_alloc_va_range;
ppgtt->base.insert_entries = gen8_ppgtt_insert_entries;
ppgtt->base.clear_range = gen8_ppgtt_clear_range;
ppgtt->base.unbind_vma = ppgtt_unbind_vma;
ppgtt->base.bind_vma = ppgtt_bind_vma;
ppgtt->switch_mm = gen8_mm_switch;
return 0;
}
static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
{
struct i915_address_space *vm = &ppgtt->base;
struct i915_page_table *unused;
gen6_pte_t scratch_pte;
uint32_t pd_entry;
uint32_t pte, pde, temp;
uint32_t start = ppgtt->base.start, length = ppgtt->base.total;
scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, true, 0);
gen6_for_each_pde(unused, &ppgtt->pd, start, length, temp, pde) {
u32 expected;
gen6_pte_t *pt_vaddr;
dma_addr_t pt_addr = ppgtt->pd.page_table[pde]->base.daddr;
pd_entry = readl(ppgtt->pd_addr + pde);
expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID);
if (pd_entry != expected)
seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
pde,
pd_entry,
expected);
seq_printf(m, "\tPDE: %x\n", pd_entry);
pt_vaddr = kmap_px(ppgtt->pd.page_table[pde]);
for (pte = 0; pte < GEN6_PTES; pte+=4) {
unsigned long va =
(pde * PAGE_SIZE * GEN6_PTES) +
(pte * PAGE_SIZE);
int i;
bool found = false;
for (i = 0; i < 4; i++)
if (pt_vaddr[pte + i] != scratch_pte)
found = true;
if (!found)
continue;
seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte);
for (i = 0; i < 4; i++) {
if (pt_vaddr[pte + i] != scratch_pte)
seq_printf(m, " %08x", pt_vaddr[pte + i]);
else
seq_puts(m, " SCRATCH ");
}
seq_puts(m, "\n");
}
kunmap_px(ppgtt, pt_vaddr);
}
}
/* Write pde (index) from the page directory @pd to the page table @pt */
static void gen6_write_pde(struct i915_page_directory *pd,
const int pde, struct i915_page_table *pt)
{
/* Caller needs to make sure the write completes if necessary */
struct i915_hw_ppgtt *ppgtt =
container_of(pd, struct i915_hw_ppgtt, pd);
u32 pd_entry;
pd_entry = GEN6_PDE_ADDR_ENCODE(pt->base.daddr);
pd_entry |= GEN6_PDE_VALID;
writel(pd_entry, ppgtt->pd_addr + pde);
}
/* Write all the page tables found in the ppgtt structure to incrementing page
* directories. */
static void gen6_write_page_range(struct drm_i915_private *dev_priv,
struct i915_page_directory *pd,
uint32_t start, uint32_t length)
{
struct i915_page_table *pt;
uint32_t pde, temp;
gen6_for_each_pde(pt, pd, start, length, temp, pde)
gen6_write_pde(pd, pde, pt);
/* Make sure write is complete before other code can use this page
* table. Also require for WC mapped PTEs */
readl(dev_priv->gtt.gsm);
}
static uint32_t get_pd_offset(struct i915_hw_ppgtt *ppgtt)
{
BUG_ON(ppgtt->pd.base.ggtt_offset & 0x3f);
return (ppgtt->pd.base.ggtt_offset / 64) << 16;
}
static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt,
struct drm_i915_gem_request *req)
{
struct intel_engine_cs *ring = req->ring;
int ret;
/* NB: TLBs must be flushed and invalidated before a switch */
ret = ring->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
if (ret)
return ret;
ret = intel_ring_begin(req, 6);
if (ret)
return ret;
intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
intel_ring_emit(ring, RING_PP_DIR_DCLV(ring));
intel_ring_emit(ring, PP_DIR_DCLV_2G);
intel_ring_emit(ring, RING_PP_DIR_BASE(ring));
intel_ring_emit(ring, get_pd_offset(ppgtt));
intel_ring_emit(ring, MI_NOOP);
intel_ring_advance(ring);
return 0;
}
static int vgpu_mm_switch(struct i915_hw_ppgtt *ppgtt,
struct drm_i915_gem_request *req)
{
struct intel_engine_cs *ring = req->ring;
struct drm_i915_private *dev_priv = to_i915(ppgtt->base.dev);
I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
return 0;
}
static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt,
struct drm_i915_gem_request *req)
{
struct intel_engine_cs *ring = req->ring;
int ret;
/* NB: TLBs must be flushed and invalidated before a switch */
ret = ring->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
if (ret)
return ret;
ret = intel_ring_begin(req, 6);
if (ret)
return ret;
intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
intel_ring_emit(ring, RING_PP_DIR_DCLV(ring));
intel_ring_emit(ring, PP_DIR_DCLV_2G);
intel_ring_emit(ring, RING_PP_DIR_BASE(ring));
intel_ring_emit(ring, get_pd_offset(ppgtt));
intel_ring_emit(ring, MI_NOOP);
intel_ring_advance(ring);
/* XXX: RCS is the only one to auto invalidate the TLBs? */
if (ring->id != RCS) {
ret = ring->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
if (ret)
return ret;
}
return 0;
}
static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt,
struct drm_i915_gem_request *req)
{
struct intel_engine_cs *ring = req->ring;
struct drm_device *dev = ppgtt->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
POSTING_READ(RING_PP_DIR_DCLV(ring));
return 0;
}
static void gen8_ppgtt_enable(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_engine_cs *ring;
int j;
for_each_ring(ring, dev_priv, j) {
I915_WRITE(RING_MODE_GEN7(ring),
_MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
}
}
static void gen7_ppgtt_enable(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_engine_cs *ring;
uint32_t ecochk, ecobits;
int i;
ecobits = I915_READ(GAC_ECO_BITS);
I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
ecochk = I915_READ(GAM_ECOCHK);
if (IS_HASWELL(dev)) {
ecochk |= ECOCHK_PPGTT_WB_HSW;
} else {
ecochk |= ECOCHK_PPGTT_LLC_IVB;
ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
}
I915_WRITE(GAM_ECOCHK, ecochk);
for_each_ring(ring, dev_priv, i) {
/* GFX_MODE is per-ring on gen7+ */
I915_WRITE(RING_MODE_GEN7(ring),
_MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
}
}
static void gen6_ppgtt_enable(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t ecochk, gab_ctl, ecobits;
ecobits = I915_READ(GAC_ECO_BITS);
I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
ECOBITS_PPGTT_CACHE64B);
gab_ctl = I915_READ(GAB_CTL);
I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
ecochk = I915_READ(GAM_ECOCHK);
I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
}
/* PPGTT support for Sandybdrige/Gen6 and later */
static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
uint64_t start,
uint64_t length,
bool use_scratch)
{
struct i915_hw_ppgtt *ppgtt =
container_of(vm, struct i915_hw_ppgtt, base);
gen6_pte_t *pt_vaddr, scratch_pte;
unsigned first_entry = start >> PAGE_SHIFT;
unsigned num_entries = length >> PAGE_SHIFT;
unsigned act_pt = first_entry / GEN6_PTES;
unsigned first_pte = first_entry % GEN6_PTES;
unsigned last_pte, i;
scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, true, 0);
while (num_entries) {
last_pte = first_pte + num_entries;
if (last_pte > GEN6_PTES)
last_pte = GEN6_PTES;
pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]);
for (i = first_pte; i < last_pte; i++)
pt_vaddr[i] = scratch_pte;
kunmap_px(ppgtt, pt_vaddr);
num_entries -= last_pte - first_pte;
first_pte = 0;
act_pt++;
}
}
static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
struct sg_table *pages,
uint64_t start,
enum i915_cache_level cache_level, u32 flags)
{
struct i915_hw_ppgtt *ppgtt =
container_of(vm, struct i915_hw_ppgtt, base);
gen6_pte_t *pt_vaddr;
unsigned first_entry = start >> PAGE_SHIFT;
unsigned act_pt = first_entry / GEN6_PTES;
unsigned act_pte = first_entry % GEN6_PTES;
struct sg_page_iter sg_iter;
pt_vaddr = NULL;
for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
if (pt_vaddr == NULL)
pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]);
pt_vaddr[act_pte] =
vm->pte_encode(sg_page_iter_dma_address(&sg_iter),
cache_level, true, flags);
if (++act_pte == GEN6_PTES) {
kunmap_px(ppgtt, pt_vaddr);
pt_vaddr = NULL;
act_pt++;
act_pte = 0;
}
}
if (pt_vaddr)
kunmap_px(ppgtt, pt_vaddr);
}
static void gen6_initialize_pt(struct i915_address_space *vm,
struct i915_page_table *pt)
{
gen6_pte_t scratch_pte;
WARN_ON(vm->scratch.addr == 0);
scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, true, 0);
fill_page_dma_32(vm->dev, &pt->base, scratch_pte);
}
static int gen6_alloc_va_range(struct i915_address_space *vm,
uint64_t start_in, uint64_t length_in)
{
DECLARE_BITMAP(new_page_tables, I915_PDES);
struct drm_device *dev = vm->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct i915_hw_ppgtt *ppgtt =
container_of(vm, struct i915_hw_ppgtt, base);
struct i915_page_table *pt;
uint32_t start, length, start_save, length_save;
uint32_t pde, temp;
int ret;
if (WARN_ON(start_in + length_in > ppgtt->base.total))
return -ENODEV;
start = start_save = start_in;
length = length_save = length_in;
bitmap_zero(new_page_tables, I915_PDES);
/* The allocation is done in two stages so that we can bail out with
* minimal amount of pain. The first stage finds new page tables that
* need allocation. The second stage marks use ptes within the page
* tables.
*/
gen6_for_each_pde(pt, &ppgtt->pd, start, length, temp, pde) {
if (pt != ppgtt->scratch_pt) {
WARN_ON(bitmap_empty(pt->used_ptes, GEN6_PTES));
continue;
}
/* We've already allocated a page table */
WARN_ON(!bitmap_empty(pt->used_ptes, GEN6_PTES));
pt = alloc_pt(dev);
if (IS_ERR(pt)) {
ret = PTR_ERR(pt);
goto unwind_out;
}
gen6_initialize_pt(vm, pt);
ppgtt->pd.page_table[pde] = pt;
set_bit(pde, new_page_tables);
trace_i915_page_table_entry_alloc(vm, pde, start, GEN6_PDE_SHIFT);
}
start = start_save;
length = length_save;
gen6_for_each_pde(pt, &ppgtt->pd, start, length, temp, pde) {
DECLARE_BITMAP(tmp_bitmap, GEN6_PTES);
bitmap_zero(tmp_bitmap, GEN6_PTES);
bitmap_set(tmp_bitmap, gen6_pte_index(start),
gen6_pte_count(start, length));
if (test_and_clear_bit(pde, new_page_tables))
gen6_write_pde(&ppgtt->pd, pde, pt);
trace_i915_page_table_entry_map(vm, pde, pt,
gen6_pte_index(start),
gen6_pte_count(start, length),
GEN6_PTES);
bitmap_or(pt->used_ptes, tmp_bitmap, pt->used_ptes,
GEN6_PTES);
}
WARN_ON(!bitmap_empty(new_page_tables, I915_PDES));
/* Make sure write is complete before other code can use this page
* table. Also require for WC mapped PTEs */
readl(dev_priv->gtt.gsm);
mark_tlbs_dirty(ppgtt);
return 0;
unwind_out:
for_each_set_bit(pde, new_page_tables, I915_PDES) {
struct i915_page_table *pt = ppgtt->pd.page_table[pde];
ppgtt->pd.page_table[pde] = ppgtt->scratch_pt;
free_pt(vm->dev, pt);
}
mark_tlbs_dirty(ppgtt);
return ret;
}
static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
{
struct i915_hw_ppgtt *ppgtt =
container_of(vm, struct i915_hw_ppgtt, base);
struct i915_page_table *pt;
uint32_t pde;
drm_mm_remove_node(&ppgtt->node);
gen6_for_all_pdes(pt, ppgtt, pde) {
if (pt != ppgtt->scratch_pt)
free_pt(ppgtt->base.dev, pt);
}
free_pt(ppgtt->base.dev, ppgtt->scratch_pt);
}
static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt)
{
struct drm_device *dev = ppgtt->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
bool retried = false;
int ret;
/* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
* allocator works in address space sizes, so it's multiplied by page
* size. We allocate at the top of the GTT to avoid fragmentation.
*/
BUG_ON(!drm_mm_initialized(&dev_priv->gtt.base.mm));
ppgtt->scratch_pt = alloc_pt(ppgtt->base.dev);
if (IS_ERR(ppgtt->scratch_pt))
return PTR_ERR(ppgtt->scratch_pt);
gen6_initialize_pt(&ppgtt->base, ppgtt->scratch_pt);
alloc:
ret = drm_mm_insert_node_in_range_generic(&dev_priv->gtt.base.mm,
&ppgtt->node, GEN6_PD_SIZE,
GEN6_PD_ALIGN, 0,
0, dev_priv->gtt.base.total,
DRM_MM_TOPDOWN);
if (ret == -ENOSPC && !retried) {
ret = i915_gem_evict_something(dev, &dev_priv->gtt.base,
GEN6_PD_SIZE, GEN6_PD_ALIGN,
I915_CACHE_NONE,
0, dev_priv->gtt.base.total,
0);
if (ret)
goto err_out;
retried = true;
goto alloc;
}
if (ret)
goto err_out;
if (ppgtt->node.start < dev_priv->gtt.mappable_end)
DRM_DEBUG("Forced to use aperture for PDEs\n");
return 0;
err_out:
free_pt(ppgtt->base.dev, ppgtt->scratch_pt);
return ret;
}
static int gen6_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt)
{
return gen6_ppgtt_allocate_page_directories(ppgtt);
}
static void gen6_scratch_va_range(struct i915_hw_ppgtt *ppgtt,
uint64_t start, uint64_t length)
{
struct i915_page_table *unused;
uint32_t pde, temp;
gen6_for_each_pde(unused, &ppgtt->pd, start, length, temp, pde)
ppgtt->pd.page_table[pde] = ppgtt->scratch_pt;
}
static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
{
struct drm_device *dev = ppgtt->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
int ret;
ppgtt->base.pte_encode = dev_priv->gtt.base.pte_encode;
if (IS_GEN6(dev)) {
ppgtt->switch_mm = gen6_mm_switch;
} else if (IS_HASWELL(dev)) {
ppgtt->switch_mm = hsw_mm_switch;
} else if (IS_GEN7(dev)) {
ppgtt->switch_mm = gen7_mm_switch;
} else
BUG();
if (intel_vgpu_active(dev))
ppgtt->switch_mm = vgpu_mm_switch;
ret = gen6_ppgtt_alloc(ppgtt);
if (ret)
return ret;
ppgtt->base.allocate_va_range = gen6_alloc_va_range;
ppgtt->base.clear_range = gen6_ppgtt_clear_range;
ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
ppgtt->base.unbind_vma = ppgtt_unbind_vma;
ppgtt->base.bind_vma = ppgtt_bind_vma;
ppgtt->base.cleanup = gen6_ppgtt_cleanup;
ppgtt->base.start = 0;
ppgtt->base.total = I915_PDES * GEN6_PTES * PAGE_SIZE;
ppgtt->debug_dump = gen6_dump_ppgtt;
ppgtt->pd.base.ggtt_offset =
ppgtt->node.start / PAGE_SIZE * sizeof(gen6_pte_t);
ppgtt->pd_addr = (gen6_pte_t __iomem *)dev_priv->gtt.gsm +
ppgtt->pd.base.ggtt_offset / sizeof(gen6_pte_t);
gen6_scratch_va_range(ppgtt, 0, ppgtt->base.total);
gen6_write_page_range(dev_priv, &ppgtt->pd, 0, ppgtt->base.total);
DRM_DEBUG_DRIVER("Allocated pde space (%lldM) at GTT entry: %llx\n",
ppgtt->node.size >> 20,
ppgtt->node.start / PAGE_SIZE);
DRM_DEBUG("Adding PPGTT at offset %x\n",
ppgtt->pd.base.ggtt_offset << 10);
return 0;
}
static int __hw_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
{
struct drm_i915_private *dev_priv = dev->dev_private;
ppgtt->base.dev = dev;
ppgtt->base.scratch = dev_priv->gtt.base.scratch;
if (INTEL_INFO(dev)->gen < 8)
return gen6_ppgtt_init(ppgtt);
else
return gen8_ppgtt_init(ppgtt);
}
int i915_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
{
struct drm_i915_private *dev_priv = dev->dev_private;
int ret = 0;
ret = __hw_ppgtt_init(dev, ppgtt);
if (ret == 0) {
kref_init(&ppgtt->ref);
drm_mm_init(&ppgtt->base.mm, ppgtt->base.start,
ppgtt->base.total);
i915_init_vm(dev_priv, &ppgtt->base);
}
return ret;
}
int i915_ppgtt_init_hw(struct drm_device *dev)
{
/* In the case of execlists, PPGTT is enabled by the context descriptor
* and the PDPs are contained within the context itself. We don't
* need to do anything here. */
if (i915.enable_execlists)
return 0;
if (!USES_PPGTT(dev))
return 0;
if (IS_GEN6(dev))
gen6_ppgtt_enable(dev);
else if (IS_GEN7(dev))
gen7_ppgtt_enable(dev);
else if (INTEL_INFO(dev)->gen >= 8)
gen8_ppgtt_enable(dev);
else
MISSING_CASE(INTEL_INFO(dev)->gen);
return 0;
}
int i915_ppgtt_init_ring(struct drm_i915_gem_request *req)
{
struct drm_i915_private *dev_priv = req->ring->dev->dev_private;
struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
if (i915.enable_execlists)
return 0;
if (!ppgtt)
return 0;
return ppgtt->switch_mm(ppgtt, req);
}
struct i915_hw_ppgtt *
i915_ppgtt_create(struct drm_device *dev, struct drm_i915_file_private *fpriv)
{
struct i915_hw_ppgtt *ppgtt;
int ret;
ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
if (!ppgtt)
return ERR_PTR(-ENOMEM);
ret = i915_ppgtt_init(dev, ppgtt);
if (ret) {
kfree(ppgtt);
return ERR_PTR(ret);
}
ppgtt->file_priv = fpriv;
trace_i915_ppgtt_create(&ppgtt->base);
return ppgtt;
}
void i915_ppgtt_release(struct kref *kref)
{
struct i915_hw_ppgtt *ppgtt =
container_of(kref, struct i915_hw_ppgtt, ref);
trace_i915_ppgtt_release(&ppgtt->base);
/* vmas should already be unbound */
WARN_ON(!list_empty(&ppgtt->base.active_list));
WARN_ON(!list_empty(&ppgtt->base.inactive_list));
list_del(&ppgtt->base.global_link);
drm_mm_takedown(&ppgtt->base.mm);
ppgtt->base.cleanup(&ppgtt->base);
kfree(ppgtt);
}
extern int intel_iommu_gfx_mapped;
/* Certain Gen5 chipsets require require idling the GPU before
* unmapping anything from the GTT when VT-d is enabled.
*/
static bool needs_idle_maps(struct drm_device *dev)
{
#ifdef CONFIG_INTEL_IOMMU
/* Query intel_iommu to see if we need the workaround. Presumably that
* was loaded first.
*/
if (IS_GEN5(dev) && IS_MOBILE(dev) && intel_iommu_gfx_mapped)
return true;
#endif
return false;
}
static bool do_idling(struct drm_i915_private *dev_priv)
{
bool ret = dev_priv->mm.interruptible;
if (unlikely(dev_priv->gtt.do_idle_maps)) {
dev_priv->mm.interruptible = false;
if (i915_gpu_idle(dev_priv->dev)) {
DRM_ERROR("Couldn't idle GPU\n");
/* Wait a bit, in hopes it avoids the hang */
udelay(10);
}
}
return ret;
}
static void undo_idling(struct drm_i915_private *dev_priv, bool interruptible)
{
if (unlikely(dev_priv->gtt.do_idle_maps))
dev_priv->mm.interruptible = interruptible;
}
void i915_check_and_clear_faults(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_engine_cs *ring;
int i;
if (INTEL_INFO(dev)->gen < 6)
return;
for_each_ring(ring, dev_priv, i) {
u32 fault_reg;
fault_reg = I915_READ(RING_FAULT_REG(ring));
if (fault_reg & RING_FAULT_VALID) {
DRM_DEBUG_DRIVER("Unexpected fault\n"
"\tAddr: 0x%08lx\n"
"\tAddress space: %s\n"
"\tSource ID: %d\n"
"\tType: %d\n",
fault_reg & PAGE_MASK,
fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
RING_FAULT_SRCID(fault_reg),
RING_FAULT_FAULT_TYPE(fault_reg));
I915_WRITE(RING_FAULT_REG(ring),
fault_reg & ~RING_FAULT_VALID);
}
}
POSTING_READ(RING_FAULT_REG(&dev_priv->ring[RCS]));
}
static void i915_ggtt_flush(struct drm_i915_private *dev_priv)
{
if (INTEL_INFO(dev_priv->dev)->gen < 6) {
intel_gtt_chipset_flush();
} else {
I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
POSTING_READ(GFX_FLSH_CNTL_GEN6);
}
}
void i915_gem_suspend_gtt_mappings(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
/* Don't bother messing with faults pre GEN6 as we have little
* documentation supporting that it's a good idea.
*/
if (INTEL_INFO(dev)->gen < 6)
return;
i915_check_and_clear_faults(dev);
dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
dev_priv->gtt.base.start,
dev_priv->gtt.base.total,
true);
i915_ggtt_flush(dev_priv);
}
int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj)
{
if (obj->has_dma_mapping)
return 0;
if (!dma_map_sg(&obj->base.dev->pdev->dev,
obj->pages->sgl, obj->pages->nents,
PCI_DMA_BIDIRECTIONAL))
return -ENOSPC;
return 0;
}
static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
{
#ifdef writeq
writeq(pte, addr);
#else
iowrite32((u32)pte, addr);
iowrite32(pte >> 32, addr + 4);
#endif
}
static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
struct sg_table *st,
uint64_t start,
enum i915_cache_level level, u32 unused)
{
struct drm_i915_private *dev_priv = vm->dev->dev_private;
unsigned first_entry = start >> PAGE_SHIFT;
gen8_pte_t __iomem *gtt_entries =
(gen8_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
int i = 0;
struct sg_page_iter sg_iter;
dma_addr_t addr = 0; /* shut up gcc */
for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
addr = sg_dma_address(sg_iter.sg) +
(sg_iter.sg_pgoffset << PAGE_SHIFT);
gen8_set_pte(&gtt_entries[i],
gen8_pte_encode(addr, level, true));
i++;
}
/*
* XXX: This serves as a posting read to make sure that the PTE has
* actually been updated. There is some concern that even though
* registers and PTEs are within the same BAR that they are potentially
* of NUMA access patterns. Therefore, even with the way we assume
* hardware should work, we must keep this posting read for paranoia.
*/
if (i != 0)
WARN_ON(readq(&gtt_entries[i-1])
!= gen8_pte_encode(addr, level, true));
/* This next bit makes the above posting read even more important. We
* want to flush the TLBs only after we're certain all the PTE updates
* have finished.
*/
I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
POSTING_READ(GFX_FLSH_CNTL_GEN6);
}
/*
* Binds an object into the global gtt with the specified cache level. The object
* will be accessible to the GPU via commands whose operands reference offsets
* within the global GTT as well as accessible by the GPU through the GMADR
* mapped BAR (dev_priv->mm.gtt->gtt).
*/
static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
struct sg_table *st,
uint64_t start,
enum i915_cache_level level, u32 flags)
{
struct drm_i915_private *dev_priv = vm->dev->dev_private;
unsigned first_entry = start >> PAGE_SHIFT;
gen6_pte_t __iomem *gtt_entries =
(gen6_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
int i = 0;
struct sg_page_iter sg_iter;
dma_addr_t addr = 0;
for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
addr = sg_page_iter_dma_address(&sg_iter);
iowrite32(vm->pte_encode(addr, level, true, flags), &gtt_entries[i]);
i++;
}
/* XXX: This serves as a posting read to make sure that the PTE has
* actually been updated. There is some concern that even though
* registers and PTEs are within the same BAR that they are potentially
* of NUMA access patterns. Therefore, even with the way we assume
* hardware should work, we must keep this posting read for paranoia.
*/
if (i != 0) {
unsigned long gtt = readl(&gtt_entries[i-1]);
WARN_ON(gtt != vm->pte_encode(addr, level, true, flags));
}
/* This next bit makes the above posting read even more important. We
* want to flush the TLBs only after we're certain all the PTE updates
* have finished.
*/
I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
POSTING_READ(GFX_FLSH_CNTL_GEN6);
}
static void gen8_ggtt_clear_range(struct i915_address_space *vm,
uint64_t start,
uint64_t length,
bool use_scratch)
{
struct drm_i915_private *dev_priv = vm->dev->dev_private;
unsigned first_entry = start >> PAGE_SHIFT;
unsigned num_entries = length >> PAGE_SHIFT;
gen8_pte_t scratch_pte, __iomem *gtt_base =
(gen8_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
int i;
if (WARN(num_entries > max_entries,
"First entry = %d; Num entries = %d (max=%d)\n",
first_entry, num_entries, max_entries))
num_entries = max_entries;
scratch_pte = gen8_pte_encode(vm->scratch.addr,
I915_CACHE_LLC,
use_scratch);
for (i = 0; i < num_entries; i++)
gen8_set_pte(&gtt_base[i], scratch_pte);
readl(gtt_base);
}
static void gen6_ggtt_clear_range(struct i915_address_space *vm,
uint64_t start,
uint64_t length,
bool use_scratch)
{
struct drm_i915_private *dev_priv = vm->dev->dev_private;
unsigned first_entry = start >> PAGE_SHIFT;
unsigned num_entries = length >> PAGE_SHIFT;
gen6_pte_t scratch_pte, __iomem *gtt_base =
(gen6_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
int i;
if (WARN(num_entries > max_entries,
"First entry = %d; Num entries = %d (max=%d)\n",
first_entry, num_entries, max_entries))
num_entries = max_entries;
scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, use_scratch, 0);
for (i = 0; i < num_entries; i++)
iowrite32(scratch_pte, &gtt_base[i]);
readl(gtt_base);
}
static void i915_ggtt_insert_entries(struct i915_address_space *vm,
struct sg_table *pages,
uint64_t start,
enum i915_cache_level cache_level, u32 unused)
{
unsigned int flags = (cache_level == I915_CACHE_NONE) ?
AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
intel_gtt_insert_sg_entries(pages, start >> PAGE_SHIFT, flags);
}
static void i915_ggtt_clear_range(struct i915_address_space *vm,
uint64_t start,
uint64_t length,
bool unused)
{
unsigned first_entry = start >> PAGE_SHIFT;
unsigned num_entries = length >> PAGE_SHIFT;
intel_gtt_clear_range(first_entry, num_entries);
}
static int ggtt_bind_vma(struct i915_vma *vma,
enum i915_cache_level cache_level,
u32 flags)
{
struct drm_device *dev = vma->vm->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_i915_gem_object *obj = vma->obj;
struct sg_table *pages = obj->pages;
u32 pte_flags = 0;
int ret;
ret = i915_get_ggtt_vma_pages(vma);
if (ret)
return ret;
pages = vma->ggtt_view.pages;
/* Currently applicable only to VLV */
if (obj->gt_ro)
pte_flags |= PTE_READ_ONLY;
if (!dev_priv->mm.aliasing_ppgtt || flags & GLOBAL_BIND) {
vma->vm->insert_entries(vma->vm, pages,
vma->node.start,
cache_level, pte_flags);
}
if (dev_priv->mm.aliasing_ppgtt && flags & LOCAL_BIND) {
struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
appgtt->base.insert_entries(&appgtt->base, pages,
vma->node.start,
cache_level, pte_flags);
}
return 0;
}
static void ggtt_unbind_vma(struct i915_vma *vma)
{
struct drm_device *dev = vma->vm->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_i915_gem_object *obj = vma->obj;
const uint64_t size = min_t(uint64_t,
obj->base.size,
vma->node.size);
if (vma->bound & GLOBAL_BIND) {
vma->vm->clear_range(vma->vm,
vma->node.start,
size,
true);
}
if (dev_priv->mm.aliasing_ppgtt && vma->bound & LOCAL_BIND) {
struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
appgtt->base.clear_range(&appgtt->base,
vma->node.start,
size,
true);
}
}
void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj)
{
struct drm_device *dev = obj->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
bool interruptible;
interruptible = do_idling(dev_priv);
if (!obj->has_dma_mapping)
dma_unmap_sg(&dev->pdev->dev,
obj->pages->sgl, obj->pages->nents,
PCI_DMA_BIDIRECTIONAL);
undo_idling(dev_priv, interruptible);
}
static void i915_gtt_color_adjust(struct drm_mm_node *node,
unsigned long color,
u64 *start,
u64 *end)
{
if (node->color != color)
*start += 4096;
if (!list_empty(&node->node_list)) {
node = list_entry(node->node_list.next,
struct drm_mm_node,
node_list);
if (node->allocated && node->color != color)
*end -= 4096;
}
}
static int i915_gem_setup_global_gtt(struct drm_device *dev,
unsigned long start,
unsigned long mappable_end,
unsigned long end)
{
/* Let GEM Manage all of the aperture.
*
* However, leave one page at the end still bound to the scratch page.
* There are a number of places where the hardware apparently prefetches
* past the end of the object, and we've seen multiple hangs with the
* GPU head pointer stuck in a batchbuffer bound at the last page of the
* aperture. One page should be enough to keep any prefetching inside
* of the aperture.
*/
struct drm_i915_private *dev_priv = dev->dev_private;
struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
struct drm_mm_node *entry;
struct drm_i915_gem_object *obj;
unsigned long hole_start, hole_end;
int ret;
BUG_ON(mappable_end > end);
/* Subtract the guard page ... */
drm_mm_init(&ggtt_vm->mm, start, end - start - PAGE_SIZE);
dev_priv->gtt.base.start = start;
dev_priv->gtt.base.total = end - start;
if (intel_vgpu_active(dev)) {
ret = intel_vgt_balloon(dev);
if (ret)
return ret;
}
if (!HAS_LLC(dev))
dev_priv->gtt.base.mm.color_adjust = i915_gtt_color_adjust;
/* Mark any preallocated objects as occupied */
list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
DRM_DEBUG_KMS("reserving preallocated space: %lx + %zx\n",
i915_gem_obj_ggtt_offset(obj), obj->base.size);
WARN_ON(i915_gem_obj_ggtt_bound(obj));
ret = drm_mm_reserve_node(&ggtt_vm->mm, &vma->node);
if (ret) {
DRM_DEBUG_KMS("Reservation failed: %i\n", ret);
return ret;
}
vma->bound |= GLOBAL_BIND;
}
/* Clear any non-preallocated blocks */
drm_mm_for_each_hole(entry, &ggtt_vm->mm, hole_start, hole_end) {
DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
hole_start, hole_end);
ggtt_vm->clear_range(ggtt_vm, hole_start,
hole_end - hole_start, true);
}
/* And finally clear the reserved guard page */
ggtt_vm->clear_range(ggtt_vm, end - PAGE_SIZE, PAGE_SIZE, true);
if (USES_PPGTT(dev) && !USES_FULL_PPGTT(dev)) {
struct i915_hw_ppgtt *ppgtt;
ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
if (!ppgtt)
return -ENOMEM;
ret = __hw_ppgtt_init(dev, ppgtt);
if (ret) {
ppgtt->base.cleanup(&ppgtt->base);
kfree(ppgtt);
return ret;
}
if (ppgtt->base.allocate_va_range)
ret = ppgtt->base.allocate_va_range(&ppgtt->base, 0,
ppgtt->base.total);
if (ret) {
ppgtt->base.cleanup(&ppgtt->base);
kfree(ppgtt);
return ret;
}
ppgtt->base.clear_range(&ppgtt->base,
ppgtt->base.start,
ppgtt->base.total,
true);
dev_priv->mm.aliasing_ppgtt = ppgtt;
}
return 0;
}
void i915_gem_init_global_gtt(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u64 gtt_size, mappable_size;
gtt_size = dev_priv->gtt.base.total;
mappable_size = dev_priv->gtt.mappable_end;
i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size);
}
void i915_global_gtt_cleanup(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct i915_address_space *vm = &dev_priv->gtt.base;
if (dev_priv->mm.aliasing_ppgtt) {
struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
ppgtt->base.cleanup(&ppgtt->base);
}
if (drm_mm_initialized(&vm->mm)) {
if (intel_vgpu_active(dev))
intel_vgt_deballoon();
drm_mm_takedown(&vm->mm);
list_del(&vm->global_link);
}
vm->cleanup(vm);
}
static int setup_scratch_page(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct page *page;
dma_addr_t dma_addr;
page = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO);
if (page == NULL)
return -ENOMEM;
set_pages_uc(page, 1);
#ifdef CONFIG_INTEL_IOMMU
dma_addr = pci_map_page(dev->pdev, page, 0, PAGE_SIZE,
PCI_DMA_BIDIRECTIONAL);
if (pci_dma_mapping_error(dev->pdev, dma_addr)) {
__free_page(page);
return -EINVAL;
}
#else
dma_addr = page_to_phys(page);
#endif
dev_priv->gtt.base.scratch.page = page;
dev_priv->gtt.base.scratch.addr = dma_addr;
return 0;
}
static void teardown_scratch_page(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct page *page = dev_priv->gtt.base.scratch.page;
set_pages_wb(page, 1);
pci_unmap_page(dev->pdev, dev_priv->gtt.base.scratch.addr,
PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
__free_page(page);
}
static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
{
snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
return snb_gmch_ctl << 20;
}
static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
{
bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
if (bdw_gmch_ctl)
bdw_gmch_ctl = 1 << bdw_gmch_ctl;
#ifdef CONFIG_X86_32
/* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */
if (bdw_gmch_ctl > 4)
bdw_gmch_ctl = 4;
#endif
return bdw_gmch_ctl << 20;
}
static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
{
gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
gmch_ctrl &= SNB_GMCH_GGMS_MASK;
if (gmch_ctrl)
return 1 << (20 + gmch_ctrl);
return 0;
}
static size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
{
snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
return snb_gmch_ctl << 25; /* 32 MB units */
}
static size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
{
bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
return bdw_gmch_ctl << 25; /* 32 MB units */
}
static size_t chv_get_stolen_size(u16 gmch_ctrl)
{
gmch_ctrl >>= SNB_GMCH_GMS_SHIFT;
gmch_ctrl &= SNB_GMCH_GMS_MASK;
/*
* 0x0 to 0x10: 32MB increments starting at 0MB
* 0x11 to 0x16: 4MB increments starting at 8MB
* 0x17 to 0x1d: 4MB increments start at 36MB
*/
if (gmch_ctrl < 0x11)
return gmch_ctrl << 25;
else if (gmch_ctrl < 0x17)
return (gmch_ctrl - 0x11 + 2) << 22;
else
return (gmch_ctrl - 0x17 + 9) << 22;
}
static size_t gen9_get_stolen_size(u16 gen9_gmch_ctl)
{
gen9_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
gen9_gmch_ctl &= BDW_GMCH_GMS_MASK;
if (gen9_gmch_ctl < 0xf0)
return gen9_gmch_ctl << 25; /* 32 MB units */
else
/* 4MB increments starting at 0xf0 for 4MB */
return (gen9_gmch_ctl - 0xf0 + 1) << 22;
}
static int ggtt_probe_common(struct drm_device *dev,
size_t gtt_size)
{
struct drm_i915_private *dev_priv = dev->dev_private;
phys_addr_t gtt_phys_addr;
int ret;
/* For Modern GENs the PTEs and register space are split in the BAR */
gtt_phys_addr = pci_resource_start(dev->pdev, 0) +
(pci_resource_len(dev->pdev, 0) / 2);
/*
* On BXT writes larger than 64 bit to the GTT pagetable range will be
* dropped. For WC mappings in general we have 64 byte burst writes
* when the WC buffer is flushed, so we can't use it, but have to
* resort to an uncached mapping. The WC issue is easily caught by the
* readback check when writing GTT PTE entries.
*/
if (IS_BROXTON(dev))
dev_priv->gtt.gsm = ioremap_nocache(gtt_phys_addr, gtt_size);
else
dev_priv->gtt.gsm = ioremap_wc(gtt_phys_addr, gtt_size);
if (!dev_priv->gtt.gsm) {
DRM_ERROR("Failed to map the gtt page table\n");
return -ENOMEM;
}
ret = setup_scratch_page(dev);
if (ret) {
DRM_ERROR("Scratch setup failed\n");
/* iounmap will also get called at remove, but meh */
iounmap(dev_priv->gtt.gsm);
}
return ret;
}
/* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
* bits. When using advanced contexts each context stores its own PAT, but
* writing this data shouldn't be harmful even in those cases. */
static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv)
{
uint64_t pat;
pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC) | /* for normal objects, no eLLC */
GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
GEN8_PPAT(3, GEN8_PPAT_UC) | /* Uncached objects, mostly for scanout */
GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
if (!USES_PPGTT(dev_priv->dev))
/* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
* so RTL will always use the value corresponding to
* pat_sel = 000".
* So let's disable cache for GGTT to avoid screen corruptions.
* MOCS still can be used though.
* - System agent ggtt writes (i.e. cpu gtt mmaps) already work
* before this patch, i.e. the same uncached + snooping access
* like on gen6/7 seems to be in effect.
* - So this just fixes blitter/render access. Again it looks
* like it's not just uncached access, but uncached + snooping.
* So we can still hold onto all our assumptions wrt cpu
* clflushing on LLC machines.
*/
pat = GEN8_PPAT(0, GEN8_PPAT_UC);
/* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
* write would work. */
I915_WRITE(GEN8_PRIVATE_PAT, pat);
I915_WRITE(GEN8_PRIVATE_PAT + 4, pat >> 32);
}
static void chv_setup_private_ppat(struct drm_i915_private *dev_priv)
{
uint64_t pat;
/*
* Map WB on BDW to snooped on CHV.
*
* Only the snoop bit has meaning for CHV, the rest is
* ignored.
*
* The hardware will never snoop for certain types of accesses:
* - CPU GTT (GMADR->GGTT->no snoop->memory)
* - PPGTT page tables
* - some other special cycles
*
* As with BDW, we also need to consider the following for GT accesses:
* "For GGTT, there is NO pat_sel[2:0] from the entry,
* so RTL will always use the value corresponding to
* pat_sel = 000".
* Which means we must set the snoop bit in PAT entry 0
* in order to keep the global status page working.
*/
pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
GEN8_PPAT(1, 0) |
GEN8_PPAT(2, 0) |
GEN8_PPAT(3, 0) |
GEN8_PPAT(4, CHV_PPAT_SNOOP) |
GEN8_PPAT(5, CHV_PPAT_SNOOP) |
GEN8_PPAT(6, CHV_PPAT_SNOOP) |
GEN8_PPAT(7, CHV_PPAT_SNOOP);
I915_WRITE(GEN8_PRIVATE_PAT, pat);
I915_WRITE(GEN8_PRIVATE_PAT + 4, pat >> 32);
}
static int gen8_gmch_probe(struct drm_device *dev,
u64 *gtt_total,
size_t *stolen,
phys_addr_t *mappable_base,
u64 *mappable_end)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u64 gtt_size;
u16 snb_gmch_ctl;
int ret;
/* TODO: We're not aware of mappable constraints on gen8 yet */
*mappable_base = pci_resource_start(dev->pdev, 2);
*mappable_end = pci_resource_len(dev->pdev, 2);
if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(39)))
pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(39));
pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
if (INTEL_INFO(dev)->gen >= 9) {
*stolen = gen9_get_stolen_size(snb_gmch_ctl);
gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
} else if (IS_CHERRYVIEW(dev)) {
*stolen = chv_get_stolen_size(snb_gmch_ctl);
gtt_size = chv_get_total_gtt_size(snb_gmch_ctl);
} else {
*stolen = gen8_get_stolen_size(snb_gmch_ctl);
gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
}
*gtt_total = (gtt_size / sizeof(gen8_pte_t)) << PAGE_SHIFT;
if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
chv_setup_private_ppat(dev_priv);
else
bdw_setup_private_ppat(dev_priv);
ret = ggtt_probe_common(dev, gtt_size);
dev_priv->gtt.base.clear_range = gen8_ggtt_clear_range;
dev_priv->gtt.base.insert_entries = gen8_ggtt_insert_entries;
dev_priv->gtt.base.bind_vma = ggtt_bind_vma;
dev_priv->gtt.base.unbind_vma = ggtt_unbind_vma;
return ret;
}
static int gen6_gmch_probe(struct drm_device *dev,
u64 *gtt_total,
size_t *stolen,
phys_addr_t *mappable_base,
u64 *mappable_end)
{
struct drm_i915_private *dev_priv = dev->dev_private;
unsigned int gtt_size;
u16 snb_gmch_ctl;
int ret;
*mappable_base = pci_resource_start(dev->pdev, 2);
*mappable_end = pci_resource_len(dev->pdev, 2);
/* 64/512MB is the current min/max we actually know of, but this is just
* a coarse sanity check.
*/
if ((*mappable_end < (64<<20) || (*mappable_end > (512<<20)))) {
DRM_ERROR("Unknown GMADR size (%llx)\n",
dev_priv->gtt.mappable_end);
return -ENXIO;
}
if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(40)))
pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(40));
pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
*stolen = gen6_get_stolen_size(snb_gmch_ctl);
gtt_size = gen6_get_total_gtt_size(snb_gmch_ctl);
*gtt_total = (gtt_size / sizeof(gen6_pte_t)) << PAGE_SHIFT;
ret = ggtt_probe_common(dev, gtt_size);
dev_priv->gtt.base.clear_range = gen6_ggtt_clear_range;
dev_priv->gtt.base.insert_entries = gen6_ggtt_insert_entries;
dev_priv->gtt.base.bind_vma = ggtt_bind_vma;
dev_priv->gtt.base.unbind_vma = ggtt_unbind_vma;
return ret;
}
static void gen6_gmch_remove(struct i915_address_space *vm)
{
struct i915_gtt *gtt = container_of(vm, struct i915_gtt, base);
iounmap(gtt->gsm);
teardown_scratch_page(vm->dev);
}
static int i915_gmch_probe(struct drm_device *dev,
u64 *gtt_total,
size_t *stolen,
phys_addr_t *mappable_base,
u64 *mappable_end)
{
struct drm_i915_private *dev_priv = dev->dev_private;
int ret;
ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->dev->pdev, NULL);
if (!ret) {
DRM_ERROR("failed to set up gmch\n");
return -EIO;
}
intel_gtt_get(gtt_total, stolen, mappable_base, mappable_end);
dev_priv->gtt.do_idle_maps = needs_idle_maps(dev_priv->dev);
dev_priv->gtt.base.insert_entries = i915_ggtt_insert_entries;
dev_priv->gtt.base.clear_range = i915_ggtt_clear_range;
dev_priv->gtt.base.bind_vma = ggtt_bind_vma;
dev_priv->gtt.base.unbind_vma = ggtt_unbind_vma;
if (unlikely(dev_priv->gtt.do_idle_maps))
DRM_INFO("applying Ironlake quirks for intel_iommu\n");
return 0;
}
static void i915_gmch_remove(struct i915_address_space *vm)
{
intel_gmch_remove();
}
int i915_gem_gtt_init(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct i915_gtt *gtt = &dev_priv->gtt;
int ret;
if (INTEL_INFO(dev)->gen <= 5) {
gtt->gtt_probe = i915_gmch_probe;
gtt->base.cleanup = i915_gmch_remove;
} else if (INTEL_INFO(dev)->gen < 8) {
gtt->gtt_probe = gen6_gmch_probe;
gtt->base.cleanup = gen6_gmch_remove;
if (IS_HASWELL(dev) && dev_priv->ellc_size)
gtt->base.pte_encode = iris_pte_encode;
else if (IS_HASWELL(dev))
gtt->base.pte_encode = hsw_pte_encode;
else if (IS_VALLEYVIEW(dev))
gtt->base.pte_encode = byt_pte_encode;
else if (INTEL_INFO(dev)->gen >= 7)
gtt->base.pte_encode = ivb_pte_encode;
else
gtt->base.pte_encode = snb_pte_encode;
} else {
dev_priv->gtt.gtt_probe = gen8_gmch_probe;
dev_priv->gtt.base.cleanup = gen6_gmch_remove;
}
ret = gtt->gtt_probe(dev, &gtt->base.total, &gtt->stolen_size,
&gtt->mappable_base, &gtt->mappable_end);
if (ret)
return ret;
gtt->base.dev = dev;
/* GMADR is the PCI mmio aperture into the global GTT. */
DRM_INFO("Memory usable by graphics device = %lluM\n",
gtt->base.total >> 20);
DRM_DEBUG_DRIVER("GMADR size = %lldM\n", gtt->mappable_end >> 20);
DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", gtt->stolen_size >> 20);
#ifdef CONFIG_INTEL_IOMMU
if (intel_iommu_gfx_mapped)
DRM_INFO("VT-d active for gfx access\n");
#endif
/*
* i915.enable_ppgtt is read-only, so do an early pass to validate the
* user's requested state against the hardware/driver capabilities. We
* do this now so that we can print out any log messages once rather
* than every time we check intel_enable_ppgtt().
*/
i915.enable_ppgtt = sanitize_enable_ppgtt(dev, i915.enable_ppgtt);
DRM_DEBUG_DRIVER("ppgtt mode: %i\n", i915.enable_ppgtt);
return 0;
}
void i915_gem_restore_gtt_mappings(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_i915_gem_object *obj;
struct i915_address_space *vm;
i915_check_and_clear_faults(dev);
/* First fill our portion of the GTT with scratch pages */
dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
dev_priv->gtt.base.start,
dev_priv->gtt.base.total,
true);
list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
struct i915_vma *vma = i915_gem_obj_to_vma(obj,
&dev_priv->gtt.base);
if (!vma)
continue;
i915_gem_clflush_object(obj, obj->pin_display);
WARN_ON(i915_vma_bind(vma, obj->cache_level, PIN_UPDATE));
}
if (INTEL_INFO(dev)->gen >= 8) {
if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
chv_setup_private_ppat(dev_priv);
else
bdw_setup_private_ppat(dev_priv);
return;
}
if (USES_PPGTT(dev)) {
list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
/* TODO: Perhaps it shouldn't be gen6 specific */
struct i915_hw_ppgtt *ppgtt =
container_of(vm, struct i915_hw_ppgtt,
base);
if (i915_is_ggtt(vm))
ppgtt = dev_priv->mm.aliasing_ppgtt;
gen6_write_page_range(dev_priv, &ppgtt->pd,
0, ppgtt->base.total);
}
}
i915_ggtt_flush(dev_priv);
}
static struct i915_vma *
__i915_gem_vma_create(struct drm_i915_gem_object *obj,
struct i915_address_space *vm,
const struct i915_ggtt_view *ggtt_view)
{
struct i915_vma *vma;
if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
return ERR_PTR(-EINVAL);
vma = kmem_cache_zalloc(to_i915(obj->base.dev)->vmas, GFP_KERNEL);
if (vma == NULL)
return ERR_PTR(-ENOMEM);
INIT_LIST_HEAD(&vma->vma_link);
INIT_LIST_HEAD(&vma->mm_list);
INIT_LIST_HEAD(&vma->exec_list);
vma->vm = vm;
vma->obj = obj;
if (i915_is_ggtt(vm))
vma->ggtt_view = *ggtt_view;
list_add_tail(&vma->vma_link, &obj->vma_list);
if (!i915_is_ggtt(vm))
i915_ppgtt_get(i915_vm_to_ppgtt(vm));
return vma;
}
struct i915_vma *
i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
struct i915_address_space *vm)
{
struct i915_vma *vma;
vma = i915_gem_obj_to_vma(obj, vm);
if (!vma)
vma = __i915_gem_vma_create(obj, vm,
i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL);
return vma;
}
struct i915_vma *
i915_gem_obj_lookup_or_create_ggtt_vma(struct drm_i915_gem_object *obj,
const struct i915_ggtt_view *view)
{
struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
struct i915_vma *vma;
if (WARN_ON(!view))
return ERR_PTR(-EINVAL);
vma = i915_gem_obj_to_ggtt_view(obj, view);
if (IS_ERR(vma))
return vma;
if (!vma)
vma = __i915_gem_vma_create(obj, ggtt, view);
return vma;
}
static void
rotate_pages(dma_addr_t *in, unsigned int width, unsigned int height,
struct sg_table *st)
{
unsigned int column, row;
unsigned int src_idx;
struct scatterlist *sg = st->sgl;
st->nents = 0;
for (column = 0; column < width; column++) {
src_idx = width * (height - 1) + column;
for (row = 0; row < height; row++) {
st->nents++;
/* We don't need the pages, but need to initialize
* the entries so the sg list can be happily traversed.
* The only thing we need are DMA addresses.
*/
sg_set_page(sg, NULL, PAGE_SIZE, 0);
sg_dma_address(sg) = in[src_idx];
sg_dma_len(sg) = PAGE_SIZE;
sg = sg_next(sg);
src_idx -= width;
}
}
}
static struct sg_table *
intel_rotate_fb_obj_pages(struct i915_ggtt_view *ggtt_view,
struct drm_i915_gem_object *obj)
{
struct intel_rotation_info *rot_info = &ggtt_view->rotation_info;
unsigned int size_pages = rot_info->size >> PAGE_SHIFT;
struct sg_page_iter sg_iter;
unsigned long i;
dma_addr_t *page_addr_list;
struct sg_table *st;
int ret = -ENOMEM;
/* Allocate a temporary list of source pages for random access. */
page_addr_list = drm_malloc_ab(obj->base.size / PAGE_SIZE,
sizeof(dma_addr_t));
if (!page_addr_list)
return ERR_PTR(ret);
/* Allocate target SG list. */
st = kmalloc(sizeof(*st), GFP_KERNEL);
if (!st)
goto err_st_alloc;
ret = sg_alloc_table(st, size_pages, GFP_KERNEL);
if (ret)
goto err_sg_alloc;
/* Populate source page list from the object. */
i = 0;
for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
page_addr_list[i] = sg_page_iter_dma_address(&sg_iter);
i++;
}
/* Rotate the pages. */
rotate_pages(page_addr_list,
rot_info->width_pages, rot_info->height_pages,
st);
DRM_DEBUG_KMS(
"Created rotated page mapping for object size %zu (pitch=%u, height=%u, pixel_format=0x%x, %ux%u tiles, %u pages).\n",
obj->base.size, rot_info->pitch, rot_info->height,
rot_info->pixel_format, rot_info->width_pages,
rot_info->height_pages, size_pages);
drm_free_large(page_addr_list);
return st;
err_sg_alloc:
kfree(st);
err_st_alloc:
drm_free_large(page_addr_list);
DRM_DEBUG_KMS(
"Failed to create rotated mapping for object size %zu! (%d) (pitch=%u, height=%u, pixel_format=0x%x, %ux%u tiles, %u pages)\n",
obj->base.size, ret, rot_info->pitch, rot_info->height,
rot_info->pixel_format, rot_info->width_pages,
rot_info->height_pages, size_pages);
return ERR_PTR(ret);
}
static struct sg_table *
intel_partial_pages(const struct i915_ggtt_view *view,
struct drm_i915_gem_object *obj)
{
struct sg_table *st;
struct scatterlist *sg;
struct sg_page_iter obj_sg_iter;
int ret = -ENOMEM;
st = kmalloc(sizeof(*st), GFP_KERNEL);
if (!st)
goto err_st_alloc;
ret = sg_alloc_table(st, view->params.partial.size, GFP_KERNEL);
if (ret)
goto err_sg_alloc;
sg = st->sgl;
st->nents = 0;
for_each_sg_page(obj->pages->sgl, &obj_sg_iter, obj->pages->nents,
view->params.partial.offset)
{
if (st->nents >= view->params.partial.size)
break;
sg_set_page(sg, NULL, PAGE_SIZE, 0);
sg_dma_address(sg) = sg_page_iter_dma_address(&obj_sg_iter);
sg_dma_len(sg) = PAGE_SIZE;
sg = sg_next(sg);
st->nents++;
}
return st;
err_sg_alloc:
kfree(st);
err_st_alloc:
return ERR_PTR(ret);
}
static int
i915_get_ggtt_vma_pages(struct i915_vma *vma)
{
int ret = 0;
if (vma->ggtt_view.pages)
return 0;
if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
vma->ggtt_view.pages = vma->obj->pages;
else if (vma->ggtt_view.type == I915_GGTT_VIEW_ROTATED)
vma->ggtt_view.pages =
intel_rotate_fb_obj_pages(&vma->ggtt_view, vma->obj);
else if (vma->ggtt_view.type == I915_GGTT_VIEW_PARTIAL)
vma->ggtt_view.pages =
intel_partial_pages(&vma->ggtt_view, vma->obj);
else
WARN_ONCE(1, "GGTT view %u not implemented!\n",
vma->ggtt_view.type);
if (!vma->ggtt_view.pages) {
DRM_ERROR("Failed to get pages for GGTT view type %u!\n",
vma->ggtt_view.type);
ret = -EINVAL;
} else if (IS_ERR(vma->ggtt_view.pages)) {
ret = PTR_ERR(vma->ggtt_view.pages);
vma->ggtt_view.pages = NULL;
DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
vma->ggtt_view.type, ret);
}
return ret;
}
/**
* i915_vma_bind - Sets up PTEs for an VMA in it's corresponding address space.
* @vma: VMA to map
* @cache_level: mapping cache level
* @flags: flags like global or local mapping
*
* DMA addresses are taken from the scatter-gather table of this object (or of
* this VMA in case of non-default GGTT views) and PTE entries set up.
* Note that DMA addresses are also the only part of the SG table we care about.
*/
int i915_vma_bind(struct i915_vma *vma, enum i915_cache_level cache_level,
u32 flags)
{
int ret;
u32 bind_flags;
if (WARN_ON(flags == 0))
return -EINVAL;
bind_flags = 0;
if (flags & PIN_GLOBAL)
bind_flags |= GLOBAL_BIND;
if (flags & PIN_USER)
bind_flags |= LOCAL_BIND;
if (flags & PIN_UPDATE)
bind_flags |= vma->bound;
else
bind_flags &= ~vma->bound;
if (bind_flags == 0)
return 0;
if (vma->bound == 0 && vma->vm->allocate_va_range) {
trace_i915_va_alloc(vma->vm,
vma->node.start,
vma->node.size,
VM_TO_TRACE_NAME(vma->vm));
ret = vma->vm->allocate_va_range(vma->vm,
vma->node.start,
vma->node.size);
if (ret)
return ret;
}
ret = vma->vm->bind_vma(vma, cache_level, bind_flags);
if (ret)
return ret;
vma->bound |= bind_flags;
return 0;
}
/**
* i915_ggtt_view_size - Get the size of a GGTT view.
* @obj: Object the view is of.
* @view: The view in question.
*
* @return The size of the GGTT view in bytes.
*/
size_t
i915_ggtt_view_size(struct drm_i915_gem_object *obj,
const struct i915_ggtt_view *view)
{
if (view->type == I915_GGTT_VIEW_NORMAL) {
return obj->base.size;
} else if (view->type == I915_GGTT_VIEW_ROTATED) {
return view->rotation_info.size;
} else if (view->type == I915_GGTT_VIEW_PARTIAL) {
return view->params.partial.size << PAGE_SHIFT;
} else {
WARN_ONCE(1, "GGTT view %u not implemented!\n", view->type);
return obj->base.size;
}
}