linux/drivers/media/pci/cx25821/cx25821-audio-upstream.c
Sakari Ailus bcb63314e2 [media] media: Drop FSF's postal address from the source code files
Drop the FSF's postal address from the source code files that typically
contain mostly the license text. Of the 628 removed instances, 578 are
outdated.

The patch has been created with the following command without manual edits:

git grep -l "675 Mass Ave\|59 Temple Place\|51 Franklin St" -- \
	drivers/media/ include/media|while read i; do i=$i perl -e '
open(F,"< $ENV{i}");
$a=join("", <F>);
$a =~ s/[ \t]*\*\n.*You should.*\n.*along with.*\n.*(\n.*USA.*$)?\n//m
	&& $a =~ s/(^.*)Or, (point your browser to) /$1To obtain the license, $2\n$1/m;
close(F);
open(F, "> $ENV{i}");
print F $a;
close(F);'; done

Signed-off-by: Sakari Ailus <sakari.ailus@linux.intel.com>
2017-01-27 11:38:09 -02:00

683 lines
18 KiB
C

/*
* Driver for the Conexant CX25821 PCIe bridge
*
* Copyright (C) 2009 Conexant Systems Inc.
* Authors <hiep.huynh@conexant.com>, <shu.lin@conexant.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
*
* GNU General Public License for more details.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include "cx25821-video.h"
#include "cx25821-audio-upstream.h"
#include <linux/fs.h>
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/syscalls.h>
#include <linux/file.h>
#include <linux/fcntl.h>
#include <linux/delay.h>
#include <linux/slab.h>
#include <linux/uaccess.h>
MODULE_DESCRIPTION("v4l2 driver module for cx25821 based TV cards");
MODULE_AUTHOR("Hiep Huynh <hiep.huynh@conexant.com>");
MODULE_LICENSE("GPL");
static int _intr_msk = FLD_AUD_SRC_RISCI1 | FLD_AUD_SRC_OF |
FLD_AUD_SRC_SYNC | FLD_AUD_SRC_OPC_ERR;
static int cx25821_sram_channel_setup_upstream_audio(struct cx25821_dev *dev,
const struct sram_channel *ch,
unsigned int bpl, u32 risc)
{
unsigned int i, lines;
u32 cdt;
if (ch->cmds_start == 0) {
cx_write(ch->ptr1_reg, 0);
cx_write(ch->ptr2_reg, 0);
cx_write(ch->cnt2_reg, 0);
cx_write(ch->cnt1_reg, 0);
return 0;
}
bpl = (bpl + 7) & ~7; /* alignment */
cdt = ch->cdt;
lines = ch->fifo_size / bpl;
if (lines > 3)
lines = 3;
BUG_ON(lines < 2);
/* write CDT */
for (i = 0; i < lines; i++) {
cx_write(cdt + 16 * i, ch->fifo_start + bpl * i);
cx_write(cdt + 16 * i + 4, 0);
cx_write(cdt + 16 * i + 8, 0);
cx_write(cdt + 16 * i + 12, 0);
}
/* write CMDS */
cx_write(ch->cmds_start + 0, risc);
cx_write(ch->cmds_start + 4, 0);
cx_write(ch->cmds_start + 8, cdt);
cx_write(ch->cmds_start + 12, AUDIO_CDT_SIZE_QW);
cx_write(ch->cmds_start + 16, ch->ctrl_start);
/* IQ size */
cx_write(ch->cmds_start + 20, AUDIO_IQ_SIZE_DW);
for (i = 24; i < 80; i += 4)
cx_write(ch->cmds_start + i, 0);
/* fill registers */
cx_write(ch->ptr1_reg, ch->fifo_start);
cx_write(ch->ptr2_reg, cdt);
cx_write(ch->cnt2_reg, AUDIO_CDT_SIZE_QW);
cx_write(ch->cnt1_reg, AUDIO_CLUSTER_SIZE_QW - 1);
return 0;
}
static __le32 *cx25821_risc_field_upstream_audio(struct cx25821_dev *dev,
__le32 *rp,
dma_addr_t databuf_phys_addr,
unsigned int bpl,
int fifo_enable)
{
unsigned int line;
const struct sram_channel *sram_ch =
dev->channels[dev->_audio_upstream_channel].sram_channels;
int offset = 0;
/* scan lines */
for (line = 0; line < LINES_PER_AUDIO_BUFFER; line++) {
*(rp++) = cpu_to_le32(RISC_READ | RISC_SOL | RISC_EOL | bpl);
*(rp++) = cpu_to_le32(databuf_phys_addr + offset);
*(rp++) = cpu_to_le32(0); /* bits 63-32 */
/* Check if we need to enable the FIFO
* after the first 3 lines.
* For the upstream audio channel,
* the risc engine will enable the FIFO */
if (fifo_enable && line == 2) {
*(rp++) = RISC_WRITECR;
*(rp++) = sram_ch->dma_ctl;
*(rp++) = sram_ch->fld_aud_fifo_en;
*(rp++) = 0x00000020;
}
offset += AUDIO_LINE_SIZE;
}
return rp;
}
static int cx25821_risc_buffer_upstream_audio(struct cx25821_dev *dev,
struct pci_dev *pci,
unsigned int bpl, unsigned int lines)
{
__le32 *rp;
int fifo_enable = 0;
int frame = 0, i = 0;
int frame_size = AUDIO_DATA_BUF_SZ;
int databuf_offset = 0;
int risc_flag = RISC_CNT_INC;
dma_addr_t risc_phys_jump_addr;
/* Virtual address of Risc buffer program */
rp = dev->_risc_virt_addr;
/* sync instruction */
*(rp++) = cpu_to_le32(RISC_RESYNC | AUDIO_SYNC_LINE);
for (frame = 0; frame < NUM_AUDIO_FRAMES; frame++) {
databuf_offset = frame_size * frame;
if (frame == 0) {
fifo_enable = 1;
risc_flag = RISC_CNT_RESET;
} else {
fifo_enable = 0;
risc_flag = RISC_CNT_INC;
}
/* Calculate physical jump address */
if ((frame + 1) == NUM_AUDIO_FRAMES) {
risc_phys_jump_addr =
dev->_risc_phys_start_addr +
RISC_SYNC_INSTRUCTION_SIZE;
} else {
risc_phys_jump_addr =
dev->_risc_phys_start_addr +
RISC_SYNC_INSTRUCTION_SIZE +
AUDIO_RISC_DMA_BUF_SIZE * (frame + 1);
}
rp = cx25821_risc_field_upstream_audio(dev, rp,
dev->_audiodata_buf_phys_addr + databuf_offset,
bpl, fifo_enable);
if (USE_RISC_NOOP_AUDIO) {
for (i = 0; i < NUM_NO_OPS; i++)
*(rp++) = cpu_to_le32(RISC_NOOP);
}
/* Loop to (Nth)FrameRISC or to Start of Risc program &
* generate IRQ */
*(rp++) = cpu_to_le32(RISC_JUMP | RISC_IRQ1 | risc_flag);
*(rp++) = cpu_to_le32(risc_phys_jump_addr);
*(rp++) = cpu_to_le32(0);
/* Recalculate virtual address based on frame index */
rp = dev->_risc_virt_addr + RISC_SYNC_INSTRUCTION_SIZE / 4 +
(AUDIO_RISC_DMA_BUF_SIZE * (frame + 1) / 4);
}
return 0;
}
static void cx25821_free_memory_audio(struct cx25821_dev *dev)
{
if (dev->_risc_virt_addr) {
pci_free_consistent(dev->pci, dev->_audiorisc_size,
dev->_risc_virt_addr, dev->_risc_phys_addr);
dev->_risc_virt_addr = NULL;
}
if (dev->_audiodata_buf_virt_addr) {
pci_free_consistent(dev->pci, dev->_audiodata_buf_size,
dev->_audiodata_buf_virt_addr,
dev->_audiodata_buf_phys_addr);
dev->_audiodata_buf_virt_addr = NULL;
}
}
void cx25821_stop_upstream_audio(struct cx25821_dev *dev)
{
const struct sram_channel *sram_ch =
dev->channels[AUDIO_UPSTREAM_SRAM_CHANNEL_B].sram_channels;
u32 tmp = 0;
if (!dev->_audio_is_running) {
printk(KERN_DEBUG
pr_fmt("No audio file is currently running so return!\n"));
return;
}
/* Disable RISC interrupts */
cx_write(sram_ch->int_msk, 0);
/* Turn OFF risc and fifo enable in AUD_DMA_CNTRL */
tmp = cx_read(sram_ch->dma_ctl);
cx_write(sram_ch->dma_ctl,
tmp & ~(sram_ch->fld_aud_fifo_en | sram_ch->fld_aud_risc_en));
/* Clear data buffer memory */
if (dev->_audiodata_buf_virt_addr)
memset(dev->_audiodata_buf_virt_addr, 0,
dev->_audiodata_buf_size);
dev->_audio_is_running = 0;
dev->_is_first_audio_frame = 0;
dev->_audioframe_count = 0;
dev->_audiofile_status = END_OF_FILE;
flush_work(&dev->_audio_work_entry);
kfree(dev->_audiofilename);
}
void cx25821_free_mem_upstream_audio(struct cx25821_dev *dev)
{
if (dev->_audio_is_running)
cx25821_stop_upstream_audio(dev);
cx25821_free_memory_audio(dev);
}
static int cx25821_get_audio_data(struct cx25821_dev *dev,
const struct sram_channel *sram_ch)
{
struct file *file;
int frame_index_temp = dev->_audioframe_index;
int i = 0;
int frame_size = AUDIO_DATA_BUF_SZ;
int frame_offset = frame_size * frame_index_temp;
char mybuf[AUDIO_LINE_SIZE];
loff_t file_offset = dev->_audioframe_count * frame_size;
char *p = NULL;
if (dev->_audiofile_status == END_OF_FILE)
return 0;
file = filp_open(dev->_audiofilename, O_RDONLY | O_LARGEFILE, 0);
if (IS_ERR(file)) {
pr_err("%s(): ERROR opening file(%s) with errno = %ld!\n",
__func__, dev->_audiofilename, -PTR_ERR(file));
return PTR_ERR(file);
}
if (dev->_audiodata_buf_virt_addr)
p = (char *)dev->_audiodata_buf_virt_addr + frame_offset;
for (i = 0; i < dev->_audio_lines_count; i++) {
int n = kernel_read(file, file_offset, mybuf, AUDIO_LINE_SIZE);
if (n < AUDIO_LINE_SIZE) {
pr_info("Done: exit %s() since no more bytes to read from Audio file\n",
__func__);
dev->_audiofile_status = END_OF_FILE;
fput(file);
return 0;
}
dev->_audiofile_status = IN_PROGRESS;
if (p) {
memcpy(p, mybuf, n);
p += n;
}
file_offset += n;
}
dev->_audioframe_count++;
fput(file);
return 0;
}
static void cx25821_audioups_handler(struct work_struct *work)
{
struct cx25821_dev *dev = container_of(work, struct cx25821_dev,
_audio_work_entry);
if (!dev) {
pr_err("ERROR %s(): since container_of(work_struct) FAILED!\n",
__func__);
return;
}
cx25821_get_audio_data(dev, dev->channels[dev->_audio_upstream_channel].
sram_channels);
}
static int cx25821_openfile_audio(struct cx25821_dev *dev,
const struct sram_channel *sram_ch)
{
char *p = (void *)dev->_audiodata_buf_virt_addr;
struct file *file;
loff_t offset;
int i, j;
file = filp_open(dev->_audiofilename, O_RDONLY | O_LARGEFILE, 0);
if (IS_ERR(file)) {
pr_err("%s(): ERROR opening file(%s) with errno = %ld!\n",
__func__, dev->_audiofilename, PTR_ERR(file));
return PTR_ERR(file);
}
for (j = 0, offset = 0; j < NUM_AUDIO_FRAMES; j++) {
for (i = 0; i < dev->_audio_lines_count; i++) {
char buf[AUDIO_LINE_SIZE];
int n = kernel_read(file, offset, buf,
AUDIO_LINE_SIZE);
if (n < AUDIO_LINE_SIZE) {
pr_info("Done: exit %s() since no more bytes to read from Audio file\n",
__func__);
dev->_audiofile_status = END_OF_FILE;
fput(file);
return 0;
}
if (p)
memcpy(p + offset, buf, n);
offset += n;
}
dev->_audioframe_count++;
}
dev->_audiofile_status = IN_PROGRESS;
fput(file);
return 0;
}
static int cx25821_audio_upstream_buffer_prepare(struct cx25821_dev *dev,
const struct sram_channel *sram_ch,
int bpl)
{
int ret = 0;
dma_addr_t dma_addr;
dma_addr_t data_dma_addr;
cx25821_free_memory_audio(dev);
dev->_risc_virt_addr = pci_alloc_consistent(dev->pci,
dev->audio_upstream_riscbuf_size, &dma_addr);
dev->_risc_virt_start_addr = dev->_risc_virt_addr;
dev->_risc_phys_start_addr = dma_addr;
dev->_risc_phys_addr = dma_addr;
dev->_audiorisc_size = dev->audio_upstream_riscbuf_size;
if (!dev->_risc_virt_addr) {
printk(KERN_DEBUG
pr_fmt("ERROR: pci_alloc_consistent() FAILED to allocate memory for RISC program! Returning\n"));
return -ENOMEM;
}
/* Clear out memory at address */
memset(dev->_risc_virt_addr, 0, dev->_audiorisc_size);
/* For Audio Data buffer allocation */
dev->_audiodata_buf_virt_addr = pci_alloc_consistent(dev->pci,
dev->audio_upstream_databuf_size, &data_dma_addr);
dev->_audiodata_buf_phys_addr = data_dma_addr;
dev->_audiodata_buf_size = dev->audio_upstream_databuf_size;
if (!dev->_audiodata_buf_virt_addr) {
printk(KERN_DEBUG
pr_fmt("ERROR: pci_alloc_consistent() FAILED to allocate memory for data buffer! Returning\n"));
return -ENOMEM;
}
/* Clear out memory at address */
memset(dev->_audiodata_buf_virt_addr, 0, dev->_audiodata_buf_size);
ret = cx25821_openfile_audio(dev, sram_ch);
if (ret < 0)
return ret;
/* Creating RISC programs */
ret = cx25821_risc_buffer_upstream_audio(dev, dev->pci, bpl,
dev->_audio_lines_count);
if (ret < 0) {
printk(KERN_DEBUG
pr_fmt("ERROR creating audio upstream RISC programs!\n"));
goto error;
}
return 0;
error:
return ret;
}
static int cx25821_audio_upstream_irq(struct cx25821_dev *dev, int chan_num,
u32 status)
{
int i = 0;
u32 int_msk_tmp;
const struct sram_channel *channel = dev->channels[chan_num].sram_channels;
dma_addr_t risc_phys_jump_addr;
__le32 *rp;
if (status & FLD_AUD_SRC_RISCI1) {
/* Get interrupt_index of the program that interrupted */
u32 prog_cnt = cx_read(channel->gpcnt);
/* Since we've identified our IRQ, clear our bits from the
* interrupt mask and interrupt status registers */
cx_write(channel->int_msk, 0);
cx_write(channel->int_stat, cx_read(channel->int_stat));
spin_lock(&dev->slock);
while (prog_cnt != dev->_last_index_irq) {
/* Update _last_index_irq */
if (dev->_last_index_irq < (NUMBER_OF_PROGRAMS - 1))
dev->_last_index_irq++;
else
dev->_last_index_irq = 0;
dev->_audioframe_index = dev->_last_index_irq;
schedule_work(&dev->_audio_work_entry);
}
if (dev->_is_first_audio_frame) {
dev->_is_first_audio_frame = 0;
if (dev->_risc_virt_start_addr != NULL) {
risc_phys_jump_addr =
dev->_risc_phys_start_addr +
RISC_SYNC_INSTRUCTION_SIZE +
AUDIO_RISC_DMA_BUF_SIZE;
rp = cx25821_risc_field_upstream_audio(dev,
dev->_risc_virt_start_addr + 1,
dev->_audiodata_buf_phys_addr,
AUDIO_LINE_SIZE, FIFO_DISABLE);
if (USE_RISC_NOOP_AUDIO) {
for (i = 0; i < NUM_NO_OPS; i++) {
*(rp++) =
cpu_to_le32(RISC_NOOP);
}
}
/* Jump to 2nd Audio Frame */
*(rp++) = cpu_to_le32(RISC_JUMP | RISC_IRQ1 |
RISC_CNT_RESET);
*(rp++) = cpu_to_le32(risc_phys_jump_addr);
*(rp++) = cpu_to_le32(0);
}
}
spin_unlock(&dev->slock);
} else {
if (status & FLD_AUD_SRC_OF)
pr_warn("%s(): Audio Received Overflow Error Interrupt!\n",
__func__);
if (status & FLD_AUD_SRC_SYNC)
pr_warn("%s(): Audio Received Sync Error Interrupt!\n",
__func__);
if (status & FLD_AUD_SRC_OPC_ERR)
pr_warn("%s(): Audio Received OpCode Error Interrupt!\n",
__func__);
/* Read and write back the interrupt status register to clear
* our bits */
cx_write(channel->int_stat, cx_read(channel->int_stat));
}
if (dev->_audiofile_status == END_OF_FILE) {
pr_warn("EOF Channel Audio Framecount = %d\n",
dev->_audioframe_count);
return -1;
}
/* ElSE, set the interrupt mask register, re-enable irq. */
int_msk_tmp = cx_read(channel->int_msk);
cx_write(channel->int_msk, int_msk_tmp |= _intr_msk);
return 0;
}
static irqreturn_t cx25821_upstream_irq_audio(int irq, void *dev_id)
{
struct cx25821_dev *dev = dev_id;
u32 audio_status;
int handled = 0;
const struct sram_channel *sram_ch;
if (!dev)
return -1;
sram_ch = dev->channels[dev->_audio_upstream_channel].sram_channels;
audio_status = cx_read(sram_ch->int_stat);
/* Only deal with our interrupt */
if (audio_status) {
handled = cx25821_audio_upstream_irq(dev,
dev->_audio_upstream_channel, audio_status);
}
if (handled < 0)
cx25821_stop_upstream_audio(dev);
else
handled += handled;
return IRQ_RETVAL(handled);
}
static void cx25821_wait_fifo_enable(struct cx25821_dev *dev,
const struct sram_channel *sram_ch)
{
int count = 0;
u32 tmp;
do {
/* Wait 10 microsecond before checking to see if the FIFO is
* turned ON. */
udelay(10);
tmp = cx_read(sram_ch->dma_ctl);
/* 10 millisecond timeout */
if (count++ > 1000) {
pr_err("ERROR: %s() fifo is NOT turned on. Timeout!\n",
__func__);
return;
}
} while (!(tmp & sram_ch->fld_aud_fifo_en));
}
static int cx25821_start_audio_dma_upstream(struct cx25821_dev *dev,
const struct sram_channel *sram_ch)
{
u32 tmp = 0;
int err = 0;
/* Set the physical start address of the RISC program in the initial
* program counter(IPC) member of the CMDS. */
cx_write(sram_ch->cmds_start + 0, dev->_risc_phys_addr);
/* Risc IPC High 64 bits 63-32 */
cx_write(sram_ch->cmds_start + 4, 0);
/* reset counter */
cx_write(sram_ch->gpcnt_ctl, 3);
/* Set the line length (It looks like we do not need to set the
* line length) */
cx_write(sram_ch->aud_length, AUDIO_LINE_SIZE & FLD_AUD_DST_LN_LNGTH);
/* Set the input mode to 16-bit */
tmp = cx_read(sram_ch->aud_cfg);
tmp |= FLD_AUD_SRC_ENABLE | FLD_AUD_DST_PK_MODE | FLD_AUD_CLK_ENABLE |
FLD_AUD_MASTER_MODE | FLD_AUD_CLK_SELECT_PLL_D |
FLD_AUD_SONY_MODE;
cx_write(sram_ch->aud_cfg, tmp);
/* Read and write back the interrupt status register to clear it */
tmp = cx_read(sram_ch->int_stat);
cx_write(sram_ch->int_stat, tmp);
/* Clear our bits from the interrupt status register. */
cx_write(sram_ch->int_stat, _intr_msk);
/* Set the interrupt mask register, enable irq. */
cx_set(PCI_INT_MSK, cx_read(PCI_INT_MSK) | (1 << sram_ch->irq_bit));
tmp = cx_read(sram_ch->int_msk);
cx_write(sram_ch->int_msk, tmp |= _intr_msk);
err = request_irq(dev->pci->irq, cx25821_upstream_irq_audio,
IRQF_SHARED, dev->name, dev);
if (err < 0) {
pr_err("%s: can't get upstream IRQ %d\n", dev->name,
dev->pci->irq);
goto fail_irq;
}
/* Start the DMA engine */
tmp = cx_read(sram_ch->dma_ctl);
cx_set(sram_ch->dma_ctl, tmp | sram_ch->fld_aud_risc_en);
dev->_audio_is_running = 1;
dev->_is_first_audio_frame = 1;
/* The fifo_en bit turns on by the first Risc program */
cx25821_wait_fifo_enable(dev, sram_ch);
return 0;
fail_irq:
cx25821_dev_unregister(dev);
return err;
}
int cx25821_audio_upstream_init(struct cx25821_dev *dev, int channel_select)
{
const struct sram_channel *sram_ch;
int err = 0;
if (dev->_audio_is_running) {
pr_warn("Audio Channel is still running so return!\n");
return 0;
}
dev->_audio_upstream_channel = channel_select;
sram_ch = dev->channels[channel_select].sram_channels;
/* Work queue */
INIT_WORK(&dev->_audio_work_entry, cx25821_audioups_handler);
dev->_last_index_irq = 0;
dev->_audio_is_running = 0;
dev->_audioframe_count = 0;
dev->_audiofile_status = RESET_STATUS;
dev->_audio_lines_count = LINES_PER_AUDIO_BUFFER;
_line_size = AUDIO_LINE_SIZE;
if ((dev->input_audiofilename) &&
(strcmp(dev->input_audiofilename, "") != 0))
dev->_audiofilename = kstrdup(dev->input_audiofilename,
GFP_KERNEL);
else
dev->_audiofilename = kstrdup(_defaultAudioName,
GFP_KERNEL);
if (!dev->_audiofilename) {
err = -ENOMEM;
goto error;
}
cx25821_sram_channel_setup_upstream_audio(dev, sram_ch,
_line_size, 0);
dev->audio_upstream_riscbuf_size =
AUDIO_RISC_DMA_BUF_SIZE * NUM_AUDIO_PROGS +
RISC_SYNC_INSTRUCTION_SIZE;
dev->audio_upstream_databuf_size = AUDIO_DATA_BUF_SZ * NUM_AUDIO_PROGS;
/* Allocating buffers and prepare RISC program */
err = cx25821_audio_upstream_buffer_prepare(dev, sram_ch,
_line_size);
if (err < 0) {
pr_err("%s: Failed to set up Audio upstream buffers!\n",
dev->name);
goto error;
}
/* Start RISC engine */
cx25821_start_audio_dma_upstream(dev, sram_ch);
return 0;
error:
cx25821_dev_unregister(dev);
return err;
}