linux/drivers/dma-buf/dma-resv.c
Daniel Vetter d0b9a9aef0 dma-fence: prime lockdep annotations
Two in one go:
- it is allowed to call dma_fence_wait() while holding a
  dma_resv_lock(). This is fundamental to how eviction works with ttm,
  so required.

- it is allowed to call dma_fence_wait() from memory reclaim contexts,
  specifically from shrinker callbacks (which i915 does), and from mmu
  notifier callbacks (which amdgpu does, and which i915 sometimes also
  does, and probably always should, but that's kinda a debate). Also
  for stuff like HMM we really need to be able to do this, or things
  get real dicey.

Consequence is that any critical path necessary to get to a
dma_fence_signal for a fence must never a) call dma_resv_lock nor b)
allocate memory with GFP_KERNEL. Also by implication of
dma_resv_lock(), no userspace faulting allowed. That's some supremely
obnoxious limitations, which is why we need to sprinkle the right
annotations to all relevant paths.

The one big locking context we're leaving out here is mmu notifiers,
added in

commit 23b68395c7
Author: Daniel Vetter <daniel.vetter@ffwll.ch>
Date:   Mon Aug 26 22:14:21 2019 +0200

    mm/mmu_notifiers: add a lockdep map for invalidate_range_start/end

that one covers a lot of other callsites, and it's also allowed to
wait on dma-fences from mmu notifiers. But there's no ready-made
functions exposed to prime this, so I've left it out for now.

v2: Also track against mmu notifier context.

v3: kerneldoc to spec the cross-driver contract. Note that currently
i915 throws in a hard-coded 10s timeout on foreign fences (not sure
why that was done, but it's there), which is why that rule is worded
with SHOULD instead of MUST.

Also some of the mmu_notifier/shrinker rules might surprise SoC
drivers, I haven't fully audited them all. Which is infeasible anyway,
we'll need to run them with lockdep and dma-fence annotations and see
what goes boom.

v4: A spelling fix from Mika

v5: #ifdef for CONFIG_MMU_NOTIFIER. Reported by 0day. Unfortunately
this means lockdep enforcement is slightly inconsistent, it won't spot
GFP_NOIO and GFP_NOFS allocations in the wrong spot if
CONFIG_MMU_NOTIFIER is disabled in the kernel config. Oh well.

v5: Note that only drivers/gpu has a reasonable (or at least
historical) excuse to use dma_fence_wait() from shrinker and mmu
notifier callbacks. Everyone else should either have a better memory
manager model, or better hardware. This reflects discussions with
Jason Gunthorpe.

Cc: Jason Gunthorpe <jgg@mellanox.com>
Cc: Felix Kuehling <Felix.Kuehling@amd.com>
Cc: kernel test robot <lkp@intel.com>
Acked-by: Christian König <christian.koenig@amd.com>
Acked-by: Dave Airlie <airlied@redhat.com>
Reviewed-by: Maarten Lankhorst <maarten.lankhorst@linux.intel.com>
Reviewed-by: Thomas Hellström <thomas.hellstrom@intel.com> (v4)
Cc: Mika Kuoppala <mika.kuoppala@intel.com>
Cc: Thomas Hellstrom <thomas.hellstrom@intel.com>
Cc: linux-media@vger.kernel.org
Cc: linaro-mm-sig@lists.linaro.org
Cc: linux-rdma@vger.kernel.org
Cc: amd-gfx@lists.freedesktop.org
Cc: intel-gfx@lists.freedesktop.org
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Maarten Lankhorst <maarten.lankhorst@linux.intel.com>
Cc: Christian König <christian.koenig@amd.com>
Signed-off-by: Daniel Vetter <daniel.vetter@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20200707201229.472834-3-daniel.vetter@ffwll.ch
2020-07-21 09:42:19 +02:00

692 lines
16 KiB
C

/*
* Copyright (C) 2012-2014 Canonical Ltd (Maarten Lankhorst)
*
* Based on bo.c which bears the following copyright notice,
* but is dual licensed:
*
* Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*
**************************************************************************/
/*
* Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
*/
#include <linux/dma-resv.h>
#include <linux/export.h>
#include <linux/mm.h>
#include <linux/sched/mm.h>
#include <linux/mmu_notifier.h>
/**
* DOC: Reservation Object Overview
*
* The reservation object provides a mechanism to manage shared and
* exclusive fences associated with a buffer. A reservation object
* can have attached one exclusive fence (normally associated with
* write operations) or N shared fences (read operations). The RCU
* mechanism is used to protect read access to fences from locked
* write-side updates.
*/
DEFINE_WD_CLASS(reservation_ww_class);
EXPORT_SYMBOL(reservation_ww_class);
struct lock_class_key reservation_seqcount_class;
EXPORT_SYMBOL(reservation_seqcount_class);
const char reservation_seqcount_string[] = "reservation_seqcount";
EXPORT_SYMBOL(reservation_seqcount_string);
/**
* dma_resv_list_alloc - allocate fence list
* @shared_max: number of fences we need space for
*
* Allocate a new dma_resv_list and make sure to correctly initialize
* shared_max.
*/
static struct dma_resv_list *dma_resv_list_alloc(unsigned int shared_max)
{
struct dma_resv_list *list;
list = kmalloc(offsetof(typeof(*list), shared[shared_max]), GFP_KERNEL);
if (!list)
return NULL;
list->shared_max = (ksize(list) - offsetof(typeof(*list), shared)) /
sizeof(*list->shared);
return list;
}
/**
* dma_resv_list_free - free fence list
* @list: list to free
*
* Free a dma_resv_list and make sure to drop all references.
*/
static void dma_resv_list_free(struct dma_resv_list *list)
{
unsigned int i;
if (!list)
return;
for (i = 0; i < list->shared_count; ++i)
dma_fence_put(rcu_dereference_protected(list->shared[i], true));
kfree_rcu(list, rcu);
}
#if IS_ENABLED(CONFIG_LOCKDEP)
static int __init dma_resv_lockdep(void)
{
struct mm_struct *mm = mm_alloc();
struct ww_acquire_ctx ctx;
struct dma_resv obj;
int ret;
if (!mm)
return -ENOMEM;
dma_resv_init(&obj);
mmap_read_lock(mm);
ww_acquire_init(&ctx, &reservation_ww_class);
ret = dma_resv_lock(&obj, &ctx);
if (ret == -EDEADLK)
dma_resv_lock_slow(&obj, &ctx);
fs_reclaim_acquire(GFP_KERNEL);
#ifdef CONFIG_MMU_NOTIFIER
lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
__dma_fence_might_wait();
lock_map_release(&__mmu_notifier_invalidate_range_start_map);
#else
__dma_fence_might_wait();
#endif
fs_reclaim_release(GFP_KERNEL);
ww_mutex_unlock(&obj.lock);
ww_acquire_fini(&ctx);
mmap_read_unlock(mm);
mmput(mm);
return 0;
}
subsys_initcall(dma_resv_lockdep);
#endif
/**
* dma_resv_init - initialize a reservation object
* @obj: the reservation object
*/
void dma_resv_init(struct dma_resv *obj)
{
ww_mutex_init(&obj->lock, &reservation_ww_class);
__seqcount_init(&obj->seq, reservation_seqcount_string,
&reservation_seqcount_class);
RCU_INIT_POINTER(obj->fence, NULL);
RCU_INIT_POINTER(obj->fence_excl, NULL);
}
EXPORT_SYMBOL(dma_resv_init);
/**
* dma_resv_fini - destroys a reservation object
* @obj: the reservation object
*/
void dma_resv_fini(struct dma_resv *obj)
{
struct dma_resv_list *fobj;
struct dma_fence *excl;
/*
* This object should be dead and all references must have
* been released to it, so no need to be protected with rcu.
*/
excl = rcu_dereference_protected(obj->fence_excl, 1);
if (excl)
dma_fence_put(excl);
fobj = rcu_dereference_protected(obj->fence, 1);
dma_resv_list_free(fobj);
ww_mutex_destroy(&obj->lock);
}
EXPORT_SYMBOL(dma_resv_fini);
/**
* dma_resv_reserve_shared - Reserve space to add shared fences to
* a dma_resv.
* @obj: reservation object
* @num_fences: number of fences we want to add
*
* Should be called before dma_resv_add_shared_fence(). Must
* be called with obj->lock held.
*
* RETURNS
* Zero for success, or -errno
*/
int dma_resv_reserve_shared(struct dma_resv *obj, unsigned int num_fences)
{
struct dma_resv_list *old, *new;
unsigned int i, j, k, max;
dma_resv_assert_held(obj);
old = dma_resv_get_list(obj);
if (old && old->shared_max) {
if ((old->shared_count + num_fences) <= old->shared_max)
return 0;
else
max = max(old->shared_count + num_fences,
old->shared_max * 2);
} else {
max = 4;
}
new = dma_resv_list_alloc(max);
if (!new)
return -ENOMEM;
/*
* no need to bump fence refcounts, rcu_read access
* requires the use of kref_get_unless_zero, and the
* references from the old struct are carried over to
* the new.
*/
for (i = 0, j = 0, k = max; i < (old ? old->shared_count : 0); ++i) {
struct dma_fence *fence;
fence = rcu_dereference_protected(old->shared[i],
dma_resv_held(obj));
if (dma_fence_is_signaled(fence))
RCU_INIT_POINTER(new->shared[--k], fence);
else
RCU_INIT_POINTER(new->shared[j++], fence);
}
new->shared_count = j;
/*
* We are not changing the effective set of fences here so can
* merely update the pointer to the new array; both existing
* readers and new readers will see exactly the same set of
* active (unsignaled) shared fences. Individual fences and the
* old array are protected by RCU and so will not vanish under
* the gaze of the rcu_read_lock() readers.
*/
rcu_assign_pointer(obj->fence, new);
if (!old)
return 0;
/* Drop the references to the signaled fences */
for (i = k; i < max; ++i) {
struct dma_fence *fence;
fence = rcu_dereference_protected(new->shared[i],
dma_resv_held(obj));
dma_fence_put(fence);
}
kfree_rcu(old, rcu);
return 0;
}
EXPORT_SYMBOL(dma_resv_reserve_shared);
/**
* dma_resv_add_shared_fence - Add a fence to a shared slot
* @obj: the reservation object
* @fence: the shared fence to add
*
* Add a fence to a shared slot, obj->lock must be held, and
* dma_resv_reserve_shared() has been called.
*/
void dma_resv_add_shared_fence(struct dma_resv *obj, struct dma_fence *fence)
{
struct dma_resv_list *fobj;
struct dma_fence *old;
unsigned int i, count;
dma_fence_get(fence);
dma_resv_assert_held(obj);
fobj = dma_resv_get_list(obj);
count = fobj->shared_count;
preempt_disable();
write_seqcount_begin(&obj->seq);
for (i = 0; i < count; ++i) {
old = rcu_dereference_protected(fobj->shared[i],
dma_resv_held(obj));
if (old->context == fence->context ||
dma_fence_is_signaled(old))
goto replace;
}
BUG_ON(fobj->shared_count >= fobj->shared_max);
old = NULL;
count++;
replace:
RCU_INIT_POINTER(fobj->shared[i], fence);
/* pointer update must be visible before we extend the shared_count */
smp_store_mb(fobj->shared_count, count);
write_seqcount_end(&obj->seq);
preempt_enable();
dma_fence_put(old);
}
EXPORT_SYMBOL(dma_resv_add_shared_fence);
/**
* dma_resv_add_excl_fence - Add an exclusive fence.
* @obj: the reservation object
* @fence: the shared fence to add
*
* Add a fence to the exclusive slot. The obj->lock must be held.
*/
void dma_resv_add_excl_fence(struct dma_resv *obj, struct dma_fence *fence)
{
struct dma_fence *old_fence = dma_resv_get_excl(obj);
struct dma_resv_list *old;
u32 i = 0;
dma_resv_assert_held(obj);
old = dma_resv_get_list(obj);
if (old)
i = old->shared_count;
if (fence)
dma_fence_get(fence);
preempt_disable();
write_seqcount_begin(&obj->seq);
/* write_seqcount_begin provides the necessary memory barrier */
RCU_INIT_POINTER(obj->fence_excl, fence);
if (old)
old->shared_count = 0;
write_seqcount_end(&obj->seq);
preempt_enable();
/* inplace update, no shared fences */
while (i--)
dma_fence_put(rcu_dereference_protected(old->shared[i],
dma_resv_held(obj)));
dma_fence_put(old_fence);
}
EXPORT_SYMBOL(dma_resv_add_excl_fence);
/**
* dma_resv_copy_fences - Copy all fences from src to dst.
* @dst: the destination reservation object
* @src: the source reservation object
*
* Copy all fences from src to dst. dst-lock must be held.
*/
int dma_resv_copy_fences(struct dma_resv *dst, struct dma_resv *src)
{
struct dma_resv_list *src_list, *dst_list;
struct dma_fence *old, *new;
unsigned i;
dma_resv_assert_held(dst);
rcu_read_lock();
src_list = rcu_dereference(src->fence);
retry:
if (src_list) {
unsigned shared_count = src_list->shared_count;
rcu_read_unlock();
dst_list = dma_resv_list_alloc(shared_count);
if (!dst_list)
return -ENOMEM;
rcu_read_lock();
src_list = rcu_dereference(src->fence);
if (!src_list || src_list->shared_count > shared_count) {
kfree(dst_list);
goto retry;
}
dst_list->shared_count = 0;
for (i = 0; i < src_list->shared_count; ++i) {
struct dma_fence *fence;
fence = rcu_dereference(src_list->shared[i]);
if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
&fence->flags))
continue;
if (!dma_fence_get_rcu(fence)) {
dma_resv_list_free(dst_list);
src_list = rcu_dereference(src->fence);
goto retry;
}
if (dma_fence_is_signaled(fence)) {
dma_fence_put(fence);
continue;
}
rcu_assign_pointer(dst_list->shared[dst_list->shared_count++], fence);
}
} else {
dst_list = NULL;
}
new = dma_fence_get_rcu_safe(&src->fence_excl);
rcu_read_unlock();
src_list = dma_resv_get_list(dst);
old = dma_resv_get_excl(dst);
preempt_disable();
write_seqcount_begin(&dst->seq);
/* write_seqcount_begin provides the necessary memory barrier */
RCU_INIT_POINTER(dst->fence_excl, new);
RCU_INIT_POINTER(dst->fence, dst_list);
write_seqcount_end(&dst->seq);
preempt_enable();
dma_resv_list_free(src_list);
dma_fence_put(old);
return 0;
}
EXPORT_SYMBOL(dma_resv_copy_fences);
/**
* dma_resv_get_fences_rcu - Get an object's shared and exclusive
* fences without update side lock held
* @obj: the reservation object
* @pfence_excl: the returned exclusive fence (or NULL)
* @pshared_count: the number of shared fences returned
* @pshared: the array of shared fence ptrs returned (array is krealloc'd to
* the required size, and must be freed by caller)
*
* Retrieve all fences from the reservation object. If the pointer for the
* exclusive fence is not specified the fence is put into the array of the
* shared fences as well. Returns either zero or -ENOMEM.
*/
int dma_resv_get_fences_rcu(struct dma_resv *obj,
struct dma_fence **pfence_excl,
unsigned *pshared_count,
struct dma_fence ***pshared)
{
struct dma_fence **shared = NULL;
struct dma_fence *fence_excl;
unsigned int shared_count;
int ret = 1;
do {
struct dma_resv_list *fobj;
unsigned int i, seq;
size_t sz = 0;
shared_count = i = 0;
rcu_read_lock();
seq = read_seqcount_begin(&obj->seq);
fence_excl = rcu_dereference(obj->fence_excl);
if (fence_excl && !dma_fence_get_rcu(fence_excl))
goto unlock;
fobj = rcu_dereference(obj->fence);
if (fobj)
sz += sizeof(*shared) * fobj->shared_max;
if (!pfence_excl && fence_excl)
sz += sizeof(*shared);
if (sz) {
struct dma_fence **nshared;
nshared = krealloc(shared, sz,
GFP_NOWAIT | __GFP_NOWARN);
if (!nshared) {
rcu_read_unlock();
dma_fence_put(fence_excl);
fence_excl = NULL;
nshared = krealloc(shared, sz, GFP_KERNEL);
if (nshared) {
shared = nshared;
continue;
}
ret = -ENOMEM;
break;
}
shared = nshared;
shared_count = fobj ? fobj->shared_count : 0;
for (i = 0; i < shared_count; ++i) {
shared[i] = rcu_dereference(fobj->shared[i]);
if (!dma_fence_get_rcu(shared[i]))
break;
}
}
if (i != shared_count || read_seqcount_retry(&obj->seq, seq)) {
while (i--)
dma_fence_put(shared[i]);
dma_fence_put(fence_excl);
goto unlock;
}
ret = 0;
unlock:
rcu_read_unlock();
} while (ret);
if (pfence_excl)
*pfence_excl = fence_excl;
else if (fence_excl)
shared[shared_count++] = fence_excl;
if (!shared_count) {
kfree(shared);
shared = NULL;
}
*pshared_count = shared_count;
*pshared = shared;
return ret;
}
EXPORT_SYMBOL_GPL(dma_resv_get_fences_rcu);
/**
* dma_resv_wait_timeout_rcu - Wait on reservation's objects
* shared and/or exclusive fences.
* @obj: the reservation object
* @wait_all: if true, wait on all fences, else wait on just exclusive fence
* @intr: if true, do interruptible wait
* @timeout: timeout value in jiffies or zero to return immediately
*
* RETURNS
* Returns -ERESTARTSYS if interrupted, 0 if the wait timed out, or
* greater than zer on success.
*/
long dma_resv_wait_timeout_rcu(struct dma_resv *obj,
bool wait_all, bool intr,
unsigned long timeout)
{
struct dma_fence *fence;
unsigned seq, shared_count;
long ret = timeout ? timeout : 1;
int i;
retry:
shared_count = 0;
seq = read_seqcount_begin(&obj->seq);
rcu_read_lock();
i = -1;
fence = rcu_dereference(obj->fence_excl);
if (fence && !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
if (!dma_fence_get_rcu(fence))
goto unlock_retry;
if (dma_fence_is_signaled(fence)) {
dma_fence_put(fence);
fence = NULL;
}
} else {
fence = NULL;
}
if (wait_all) {
struct dma_resv_list *fobj = rcu_dereference(obj->fence);
if (fobj)
shared_count = fobj->shared_count;
for (i = 0; !fence && i < shared_count; ++i) {
struct dma_fence *lfence = rcu_dereference(fobj->shared[i]);
if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
&lfence->flags))
continue;
if (!dma_fence_get_rcu(lfence))
goto unlock_retry;
if (dma_fence_is_signaled(lfence)) {
dma_fence_put(lfence);
continue;
}
fence = lfence;
break;
}
}
rcu_read_unlock();
if (fence) {
if (read_seqcount_retry(&obj->seq, seq)) {
dma_fence_put(fence);
goto retry;
}
ret = dma_fence_wait_timeout(fence, intr, ret);
dma_fence_put(fence);
if (ret > 0 && wait_all && (i + 1 < shared_count))
goto retry;
}
return ret;
unlock_retry:
rcu_read_unlock();
goto retry;
}
EXPORT_SYMBOL_GPL(dma_resv_wait_timeout_rcu);
static inline int dma_resv_test_signaled_single(struct dma_fence *passed_fence)
{
struct dma_fence *fence, *lfence = passed_fence;
int ret = 1;
if (!test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &lfence->flags)) {
fence = dma_fence_get_rcu(lfence);
if (!fence)
return -1;
ret = !!dma_fence_is_signaled(fence);
dma_fence_put(fence);
}
return ret;
}
/**
* dma_resv_test_signaled_rcu - Test if a reservation object's
* fences have been signaled.
* @obj: the reservation object
* @test_all: if true, test all fences, otherwise only test the exclusive
* fence
*
* RETURNS
* true if all fences signaled, else false
*/
bool dma_resv_test_signaled_rcu(struct dma_resv *obj, bool test_all)
{
unsigned seq, shared_count;
int ret;
rcu_read_lock();
retry:
ret = true;
shared_count = 0;
seq = read_seqcount_begin(&obj->seq);
if (test_all) {
unsigned i;
struct dma_resv_list *fobj = rcu_dereference(obj->fence);
if (fobj)
shared_count = fobj->shared_count;
for (i = 0; i < shared_count; ++i) {
struct dma_fence *fence = rcu_dereference(fobj->shared[i]);
ret = dma_resv_test_signaled_single(fence);
if (ret < 0)
goto retry;
else if (!ret)
break;
}
if (read_seqcount_retry(&obj->seq, seq))
goto retry;
}
if (!shared_count) {
struct dma_fence *fence_excl = rcu_dereference(obj->fence_excl);
if (fence_excl) {
ret = dma_resv_test_signaled_single(fence_excl);
if (ret < 0)
goto retry;
if (read_seqcount_retry(&obj->seq, seq))
goto retry;
}
}
rcu_read_unlock();
return ret;
}
EXPORT_SYMBOL_GPL(dma_resv_test_signaled_rcu);