forked from Minki/linux
a79017660e
Silences WARN_ONs in rcu_enter_nohz() and rcu_exit_nohz(), which appeared before caused by (repeated) calls to: $ echo 0 > /sys/devices/system/cpu/cpu1/online $ echo 1 > /sys/devices/system/cpu/cpu1/online Signed-off-by: Karsten Wiese <fzu@wemgehoertderstaat.de> Cc: johnstul@us.ibm.com Cc: Rafael Wysocki <rjw@sisk.pl> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Ingo Molnar <mingo@elte.hu> Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
696 lines
17 KiB
C
696 lines
17 KiB
C
/*
|
|
* linux/kernel/time/tick-sched.c
|
|
*
|
|
* Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
|
|
* Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
|
|
* Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
|
|
*
|
|
* No idle tick implementation for low and high resolution timers
|
|
*
|
|
* Started by: Thomas Gleixner and Ingo Molnar
|
|
*
|
|
* Distribute under GPLv2.
|
|
*/
|
|
#include <linux/cpu.h>
|
|
#include <linux/err.h>
|
|
#include <linux/hrtimer.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/kernel_stat.h>
|
|
#include <linux/percpu.h>
|
|
#include <linux/profile.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/tick.h>
|
|
|
|
#include <asm/irq_regs.h>
|
|
|
|
#include "tick-internal.h"
|
|
|
|
/*
|
|
* Per cpu nohz control structure
|
|
*/
|
|
static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
|
|
|
|
/*
|
|
* The time, when the last jiffy update happened. Protected by xtime_lock.
|
|
*/
|
|
static ktime_t last_jiffies_update;
|
|
|
|
struct tick_sched *tick_get_tick_sched(int cpu)
|
|
{
|
|
return &per_cpu(tick_cpu_sched, cpu);
|
|
}
|
|
|
|
/*
|
|
* Must be called with interrupts disabled !
|
|
*/
|
|
static void tick_do_update_jiffies64(ktime_t now)
|
|
{
|
|
unsigned long ticks = 0;
|
|
ktime_t delta;
|
|
|
|
/* Reevalute with xtime_lock held */
|
|
write_seqlock(&xtime_lock);
|
|
|
|
delta = ktime_sub(now, last_jiffies_update);
|
|
if (delta.tv64 >= tick_period.tv64) {
|
|
|
|
delta = ktime_sub(delta, tick_period);
|
|
last_jiffies_update = ktime_add(last_jiffies_update,
|
|
tick_period);
|
|
|
|
/* Slow path for long timeouts */
|
|
if (unlikely(delta.tv64 >= tick_period.tv64)) {
|
|
s64 incr = ktime_to_ns(tick_period);
|
|
|
|
ticks = ktime_divns(delta, incr);
|
|
|
|
last_jiffies_update = ktime_add_ns(last_jiffies_update,
|
|
incr * ticks);
|
|
}
|
|
do_timer(++ticks);
|
|
}
|
|
write_sequnlock(&xtime_lock);
|
|
}
|
|
|
|
/*
|
|
* Initialize and return retrieve the jiffies update.
|
|
*/
|
|
static ktime_t tick_init_jiffy_update(void)
|
|
{
|
|
ktime_t period;
|
|
|
|
write_seqlock(&xtime_lock);
|
|
/* Did we start the jiffies update yet ? */
|
|
if (last_jiffies_update.tv64 == 0)
|
|
last_jiffies_update = tick_next_period;
|
|
period = last_jiffies_update;
|
|
write_sequnlock(&xtime_lock);
|
|
return period;
|
|
}
|
|
|
|
/*
|
|
* NOHZ - aka dynamic tick functionality
|
|
*/
|
|
#ifdef CONFIG_NO_HZ
|
|
/*
|
|
* NO HZ enabled ?
|
|
*/
|
|
static int tick_nohz_enabled __read_mostly = 1;
|
|
|
|
/*
|
|
* Enable / Disable tickless mode
|
|
*/
|
|
static int __init setup_tick_nohz(char *str)
|
|
{
|
|
if (!strcmp(str, "off"))
|
|
tick_nohz_enabled = 0;
|
|
else if (!strcmp(str, "on"))
|
|
tick_nohz_enabled = 1;
|
|
else
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
__setup("nohz=", setup_tick_nohz);
|
|
|
|
/**
|
|
* tick_nohz_update_jiffies - update jiffies when idle was interrupted
|
|
*
|
|
* Called from interrupt entry when the CPU was idle
|
|
*
|
|
* In case the sched_tick was stopped on this CPU, we have to check if jiffies
|
|
* must be updated. Otherwise an interrupt handler could use a stale jiffy
|
|
* value. We do this unconditionally on any cpu, as we don't know whether the
|
|
* cpu, which has the update task assigned is in a long sleep.
|
|
*/
|
|
void tick_nohz_update_jiffies(void)
|
|
{
|
|
int cpu = smp_processor_id();
|
|
struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
|
|
unsigned long flags;
|
|
ktime_t now;
|
|
|
|
if (!ts->tick_stopped)
|
|
return;
|
|
|
|
touch_softlockup_watchdog();
|
|
|
|
cpu_clear(cpu, nohz_cpu_mask);
|
|
now = ktime_get();
|
|
ts->idle_waketime = now;
|
|
|
|
local_irq_save(flags);
|
|
tick_do_update_jiffies64(now);
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
void tick_nohz_stop_idle(int cpu)
|
|
{
|
|
struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
|
|
|
|
if (ts->idle_active) {
|
|
ktime_t now, delta;
|
|
now = ktime_get();
|
|
delta = ktime_sub(now, ts->idle_entrytime);
|
|
ts->idle_lastupdate = now;
|
|
ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
|
|
ts->idle_active = 0;
|
|
}
|
|
}
|
|
|
|
static ktime_t tick_nohz_start_idle(int cpu)
|
|
{
|
|
struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
|
|
ktime_t now, delta;
|
|
|
|
now = ktime_get();
|
|
if (ts->idle_active) {
|
|
delta = ktime_sub(now, ts->idle_entrytime);
|
|
ts->idle_lastupdate = now;
|
|
ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
|
|
}
|
|
ts->idle_entrytime = now;
|
|
ts->idle_active = 1;
|
|
return now;
|
|
}
|
|
|
|
u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
|
|
{
|
|
struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
|
|
|
|
*last_update_time = ktime_to_us(ts->idle_lastupdate);
|
|
return ktime_to_us(ts->idle_sleeptime);
|
|
}
|
|
|
|
/**
|
|
* tick_nohz_stop_sched_tick - stop the idle tick from the idle task
|
|
*
|
|
* When the next event is more than a tick into the future, stop the idle tick
|
|
* Called either from the idle loop or from irq_exit() when an idle period was
|
|
* just interrupted by an interrupt which did not cause a reschedule.
|
|
*/
|
|
void tick_nohz_stop_sched_tick(void)
|
|
{
|
|
unsigned long seq, last_jiffies, next_jiffies, delta_jiffies, flags;
|
|
unsigned long rt_jiffies;
|
|
struct tick_sched *ts;
|
|
ktime_t last_update, expires, now;
|
|
struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev;
|
|
int cpu;
|
|
|
|
local_irq_save(flags);
|
|
|
|
cpu = smp_processor_id();
|
|
now = tick_nohz_start_idle(cpu);
|
|
ts = &per_cpu(tick_cpu_sched, cpu);
|
|
|
|
/*
|
|
* If this cpu is offline and it is the one which updates
|
|
* jiffies, then give up the assignment and let it be taken by
|
|
* the cpu which runs the tick timer next. If we don't drop
|
|
* this here the jiffies might be stale and do_timer() never
|
|
* invoked.
|
|
*/
|
|
if (unlikely(!cpu_online(cpu))) {
|
|
if (cpu == tick_do_timer_cpu)
|
|
tick_do_timer_cpu = -1;
|
|
}
|
|
|
|
if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
|
|
goto end;
|
|
|
|
if (need_resched())
|
|
goto end;
|
|
|
|
cpu = smp_processor_id();
|
|
if (unlikely(local_softirq_pending())) {
|
|
static int ratelimit;
|
|
|
|
if (ratelimit < 10) {
|
|
printk(KERN_ERR "NOHZ: local_softirq_pending %02x\n",
|
|
local_softirq_pending());
|
|
ratelimit++;
|
|
}
|
|
}
|
|
|
|
ts->idle_calls++;
|
|
/* Read jiffies and the time when jiffies were updated last */
|
|
do {
|
|
seq = read_seqbegin(&xtime_lock);
|
|
last_update = last_jiffies_update;
|
|
last_jiffies = jiffies;
|
|
} while (read_seqretry(&xtime_lock, seq));
|
|
|
|
/* Get the next timer wheel timer */
|
|
next_jiffies = get_next_timer_interrupt(last_jiffies);
|
|
delta_jiffies = next_jiffies - last_jiffies;
|
|
|
|
rt_jiffies = rt_needs_cpu(cpu);
|
|
if (rt_jiffies && rt_jiffies < delta_jiffies)
|
|
delta_jiffies = rt_jiffies;
|
|
|
|
if (rcu_needs_cpu(cpu))
|
|
delta_jiffies = 1;
|
|
/*
|
|
* Do not stop the tick, if we are only one off
|
|
* or if the cpu is required for rcu
|
|
*/
|
|
if (!ts->tick_stopped && delta_jiffies == 1)
|
|
goto out;
|
|
|
|
/* Schedule the tick, if we are at least one jiffie off */
|
|
if ((long)delta_jiffies >= 1) {
|
|
|
|
if (delta_jiffies > 1)
|
|
cpu_set(cpu, nohz_cpu_mask);
|
|
/*
|
|
* nohz_stop_sched_tick can be called several times before
|
|
* the nohz_restart_sched_tick is called. This happens when
|
|
* interrupts arrive which do not cause a reschedule. In the
|
|
* first call we save the current tick time, so we can restart
|
|
* the scheduler tick in nohz_restart_sched_tick.
|
|
*/
|
|
if (!ts->tick_stopped) {
|
|
if (select_nohz_load_balancer(1)) {
|
|
/*
|
|
* sched tick not stopped!
|
|
*/
|
|
cpu_clear(cpu, nohz_cpu_mask);
|
|
goto out;
|
|
}
|
|
|
|
ts->idle_tick = ts->sched_timer.expires;
|
|
ts->tick_stopped = 1;
|
|
ts->idle_jiffies = last_jiffies;
|
|
rcu_enter_nohz();
|
|
}
|
|
|
|
/*
|
|
* If this cpu is the one which updates jiffies, then
|
|
* give up the assignment and let it be taken by the
|
|
* cpu which runs the tick timer next, which might be
|
|
* this cpu as well. If we don't drop this here the
|
|
* jiffies might be stale and do_timer() never
|
|
* invoked.
|
|
*/
|
|
if (cpu == tick_do_timer_cpu)
|
|
tick_do_timer_cpu = -1;
|
|
|
|
ts->idle_sleeps++;
|
|
|
|
/*
|
|
* delta_jiffies >= NEXT_TIMER_MAX_DELTA signals that
|
|
* there is no timer pending or at least extremly far
|
|
* into the future (12 days for HZ=1000). In this case
|
|
* we simply stop the tick timer:
|
|
*/
|
|
if (unlikely(delta_jiffies >= NEXT_TIMER_MAX_DELTA)) {
|
|
ts->idle_expires.tv64 = KTIME_MAX;
|
|
if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
|
|
hrtimer_cancel(&ts->sched_timer);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* calculate the expiry time for the next timer wheel
|
|
* timer
|
|
*/
|
|
expires = ktime_add_ns(last_update, tick_period.tv64 *
|
|
delta_jiffies);
|
|
ts->idle_expires = expires;
|
|
|
|
if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
|
|
hrtimer_start(&ts->sched_timer, expires,
|
|
HRTIMER_MODE_ABS);
|
|
/* Check, if the timer was already in the past */
|
|
if (hrtimer_active(&ts->sched_timer))
|
|
goto out;
|
|
} else if (!tick_program_event(expires, 0))
|
|
goto out;
|
|
/*
|
|
* We are past the event already. So we crossed a
|
|
* jiffie boundary. Update jiffies and raise the
|
|
* softirq.
|
|
*/
|
|
tick_do_update_jiffies64(ktime_get());
|
|
cpu_clear(cpu, nohz_cpu_mask);
|
|
}
|
|
raise_softirq_irqoff(TIMER_SOFTIRQ);
|
|
out:
|
|
ts->next_jiffies = next_jiffies;
|
|
ts->last_jiffies = last_jiffies;
|
|
ts->sleep_length = ktime_sub(dev->next_event, now);
|
|
end:
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
/**
|
|
* tick_nohz_get_sleep_length - return the length of the current sleep
|
|
*
|
|
* Called from power state control code with interrupts disabled
|
|
*/
|
|
ktime_t tick_nohz_get_sleep_length(void)
|
|
{
|
|
struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
|
|
|
|
return ts->sleep_length;
|
|
}
|
|
|
|
/**
|
|
* tick_nohz_restart_sched_tick - restart the idle tick from the idle task
|
|
*
|
|
* Restart the idle tick when the CPU is woken up from idle
|
|
*/
|
|
void tick_nohz_restart_sched_tick(void)
|
|
{
|
|
int cpu = smp_processor_id();
|
|
struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
|
|
unsigned long ticks;
|
|
ktime_t now;
|
|
|
|
local_irq_disable();
|
|
tick_nohz_stop_idle(cpu);
|
|
|
|
if (!ts->tick_stopped) {
|
|
local_irq_enable();
|
|
return;
|
|
}
|
|
|
|
rcu_exit_nohz();
|
|
|
|
/* Update jiffies first */
|
|
select_nohz_load_balancer(0);
|
|
now = ktime_get();
|
|
tick_do_update_jiffies64(now);
|
|
cpu_clear(cpu, nohz_cpu_mask);
|
|
|
|
/*
|
|
* We stopped the tick in idle. Update process times would miss the
|
|
* time we slept as update_process_times does only a 1 tick
|
|
* accounting. Enforce that this is accounted to idle !
|
|
*/
|
|
ticks = jiffies - ts->idle_jiffies;
|
|
/*
|
|
* We might be one off. Do not randomly account a huge number of ticks!
|
|
*/
|
|
if (ticks && ticks < LONG_MAX) {
|
|
add_preempt_count(HARDIRQ_OFFSET);
|
|
account_system_time(current, HARDIRQ_OFFSET,
|
|
jiffies_to_cputime(ticks));
|
|
sub_preempt_count(HARDIRQ_OFFSET);
|
|
}
|
|
|
|
/*
|
|
* Cancel the scheduled timer and restore the tick
|
|
*/
|
|
ts->tick_stopped = 0;
|
|
ts->idle_exittime = now;
|
|
hrtimer_cancel(&ts->sched_timer);
|
|
ts->sched_timer.expires = ts->idle_tick;
|
|
|
|
while (1) {
|
|
/* Forward the time to expire in the future */
|
|
hrtimer_forward(&ts->sched_timer, now, tick_period);
|
|
|
|
if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
|
|
hrtimer_start(&ts->sched_timer,
|
|
ts->sched_timer.expires,
|
|
HRTIMER_MODE_ABS);
|
|
/* Check, if the timer was already in the past */
|
|
if (hrtimer_active(&ts->sched_timer))
|
|
break;
|
|
} else {
|
|
if (!tick_program_event(ts->sched_timer.expires, 0))
|
|
break;
|
|
}
|
|
/* Update jiffies and reread time */
|
|
tick_do_update_jiffies64(now);
|
|
now = ktime_get();
|
|
}
|
|
local_irq_enable();
|
|
}
|
|
|
|
static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now)
|
|
{
|
|
hrtimer_forward(&ts->sched_timer, now, tick_period);
|
|
return tick_program_event(ts->sched_timer.expires, 0);
|
|
}
|
|
|
|
/*
|
|
* The nohz low res interrupt handler
|
|
*/
|
|
static void tick_nohz_handler(struct clock_event_device *dev)
|
|
{
|
|
struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
|
|
struct pt_regs *regs = get_irq_regs();
|
|
int cpu = smp_processor_id();
|
|
ktime_t now = ktime_get();
|
|
|
|
dev->next_event.tv64 = KTIME_MAX;
|
|
|
|
/*
|
|
* Check if the do_timer duty was dropped. We don't care about
|
|
* concurrency: This happens only when the cpu in charge went
|
|
* into a long sleep. If two cpus happen to assign themself to
|
|
* this duty, then the jiffies update is still serialized by
|
|
* xtime_lock.
|
|
*/
|
|
if (unlikely(tick_do_timer_cpu == -1))
|
|
tick_do_timer_cpu = cpu;
|
|
|
|
/* Check, if the jiffies need an update */
|
|
if (tick_do_timer_cpu == cpu)
|
|
tick_do_update_jiffies64(now);
|
|
|
|
/*
|
|
* When we are idle and the tick is stopped, we have to touch
|
|
* the watchdog as we might not schedule for a really long
|
|
* time. This happens on complete idle SMP systems while
|
|
* waiting on the login prompt. We also increment the "start
|
|
* of idle" jiffy stamp so the idle accounting adjustment we
|
|
* do when we go busy again does not account too much ticks.
|
|
*/
|
|
if (ts->tick_stopped) {
|
|
touch_softlockup_watchdog();
|
|
ts->idle_jiffies++;
|
|
}
|
|
|
|
update_process_times(user_mode(regs));
|
|
profile_tick(CPU_PROFILING);
|
|
|
|
/* Do not restart, when we are in the idle loop */
|
|
if (ts->tick_stopped)
|
|
return;
|
|
|
|
while (tick_nohz_reprogram(ts, now)) {
|
|
now = ktime_get();
|
|
tick_do_update_jiffies64(now);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* tick_nohz_switch_to_nohz - switch to nohz mode
|
|
*/
|
|
static void tick_nohz_switch_to_nohz(void)
|
|
{
|
|
struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
|
|
ktime_t next;
|
|
|
|
if (!tick_nohz_enabled)
|
|
return;
|
|
|
|
local_irq_disable();
|
|
if (tick_switch_to_oneshot(tick_nohz_handler)) {
|
|
local_irq_enable();
|
|
return;
|
|
}
|
|
|
|
ts->nohz_mode = NOHZ_MODE_LOWRES;
|
|
|
|
/*
|
|
* Recycle the hrtimer in ts, so we can share the
|
|
* hrtimer_forward with the highres code.
|
|
*/
|
|
hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
|
|
/* Get the next period */
|
|
next = tick_init_jiffy_update();
|
|
|
|
for (;;) {
|
|
ts->sched_timer.expires = next;
|
|
if (!tick_program_event(next, 0))
|
|
break;
|
|
next = ktime_add(next, tick_period);
|
|
}
|
|
local_irq_enable();
|
|
|
|
printk(KERN_INFO "Switched to NOHz mode on CPU #%d\n",
|
|
smp_processor_id());
|
|
}
|
|
|
|
#else
|
|
|
|
static inline void tick_nohz_switch_to_nohz(void) { }
|
|
|
|
#endif /* NO_HZ */
|
|
|
|
/*
|
|
* High resolution timer specific code
|
|
*/
|
|
#ifdef CONFIG_HIGH_RES_TIMERS
|
|
/*
|
|
* We rearm the timer until we get disabled by the idle code.
|
|
* Called with interrupts disabled and timer->base->cpu_base->lock held.
|
|
*/
|
|
static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
|
|
{
|
|
struct tick_sched *ts =
|
|
container_of(timer, struct tick_sched, sched_timer);
|
|
struct pt_regs *regs = get_irq_regs();
|
|
ktime_t now = ktime_get();
|
|
int cpu = smp_processor_id();
|
|
|
|
#ifdef CONFIG_NO_HZ
|
|
/*
|
|
* Check if the do_timer duty was dropped. We don't care about
|
|
* concurrency: This happens only when the cpu in charge went
|
|
* into a long sleep. If two cpus happen to assign themself to
|
|
* this duty, then the jiffies update is still serialized by
|
|
* xtime_lock.
|
|
*/
|
|
if (unlikely(tick_do_timer_cpu == -1))
|
|
tick_do_timer_cpu = cpu;
|
|
#endif
|
|
|
|
/* Check, if the jiffies need an update */
|
|
if (tick_do_timer_cpu == cpu)
|
|
tick_do_update_jiffies64(now);
|
|
|
|
/*
|
|
* Do not call, when we are not in irq context and have
|
|
* no valid regs pointer
|
|
*/
|
|
if (regs) {
|
|
/*
|
|
* When we are idle and the tick is stopped, we have to touch
|
|
* the watchdog as we might not schedule for a really long
|
|
* time. This happens on complete idle SMP systems while
|
|
* waiting on the login prompt. We also increment the "start of
|
|
* idle" jiffy stamp so the idle accounting adjustment we do
|
|
* when we go busy again does not account too much ticks.
|
|
*/
|
|
if (ts->tick_stopped) {
|
|
touch_softlockup_watchdog();
|
|
ts->idle_jiffies++;
|
|
}
|
|
update_process_times(user_mode(regs));
|
|
profile_tick(CPU_PROFILING);
|
|
}
|
|
|
|
/* Do not restart, when we are in the idle loop */
|
|
if (ts->tick_stopped)
|
|
return HRTIMER_NORESTART;
|
|
|
|
hrtimer_forward(timer, now, tick_period);
|
|
|
|
return HRTIMER_RESTART;
|
|
}
|
|
|
|
/**
|
|
* tick_setup_sched_timer - setup the tick emulation timer
|
|
*/
|
|
void tick_setup_sched_timer(void)
|
|
{
|
|
struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
|
|
ktime_t now = ktime_get();
|
|
u64 offset;
|
|
|
|
/*
|
|
* Emulate tick processing via per-CPU hrtimers:
|
|
*/
|
|
hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
|
|
ts->sched_timer.function = tick_sched_timer;
|
|
ts->sched_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
|
|
|
|
/* Get the next period (per cpu) */
|
|
ts->sched_timer.expires = tick_init_jiffy_update();
|
|
offset = ktime_to_ns(tick_period) >> 1;
|
|
do_div(offset, num_possible_cpus());
|
|
offset *= smp_processor_id();
|
|
ts->sched_timer.expires = ktime_add_ns(ts->sched_timer.expires, offset);
|
|
|
|
for (;;) {
|
|
hrtimer_forward(&ts->sched_timer, now, tick_period);
|
|
hrtimer_start(&ts->sched_timer, ts->sched_timer.expires,
|
|
HRTIMER_MODE_ABS);
|
|
/* Check, if the timer was already in the past */
|
|
if (hrtimer_active(&ts->sched_timer))
|
|
break;
|
|
now = ktime_get();
|
|
}
|
|
|
|
#ifdef CONFIG_NO_HZ
|
|
if (tick_nohz_enabled)
|
|
ts->nohz_mode = NOHZ_MODE_HIGHRES;
|
|
#endif
|
|
}
|
|
|
|
void tick_cancel_sched_timer(int cpu)
|
|
{
|
|
struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
|
|
|
|
if (ts->sched_timer.base)
|
|
hrtimer_cancel(&ts->sched_timer);
|
|
|
|
ts->nohz_mode = NOHZ_MODE_INACTIVE;
|
|
}
|
|
#endif /* HIGH_RES_TIMERS */
|
|
|
|
/**
|
|
* Async notification about clocksource changes
|
|
*/
|
|
void tick_clock_notify(void)
|
|
{
|
|
int cpu;
|
|
|
|
for_each_possible_cpu(cpu)
|
|
set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
|
|
}
|
|
|
|
/*
|
|
* Async notification about clock event changes
|
|
*/
|
|
void tick_oneshot_notify(void)
|
|
{
|
|
struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
|
|
|
|
set_bit(0, &ts->check_clocks);
|
|
}
|
|
|
|
/**
|
|
* Check, if a change happened, which makes oneshot possible.
|
|
*
|
|
* Called cyclic from the hrtimer softirq (driven by the timer
|
|
* softirq) allow_nohz signals, that we can switch into low-res nohz
|
|
* mode, because high resolution timers are disabled (either compile
|
|
* or runtime).
|
|
*/
|
|
int tick_check_oneshot_change(int allow_nohz)
|
|
{
|
|
struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
|
|
|
|
if (!test_and_clear_bit(0, &ts->check_clocks))
|
|
return 0;
|
|
|
|
if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
|
|
return 0;
|
|
|
|
if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
|
|
return 0;
|
|
|
|
if (!allow_nohz)
|
|
return 1;
|
|
|
|
tick_nohz_switch_to_nohz();
|
|
return 0;
|
|
}
|