linux/arch/mips/include/asm/pgtable.h
David Daney 46011e6ea3 MIPS: Make set_pte() SMP safe.
On MIPS the GLOBAL bit of the PTE must have the same value in any
aligned pair of PTEs.  These pairs of PTEs are referred to as
"buddies".  In a SMP system is is possible for two CPUs to be calling
set_pte() on adjacent PTEs at the same time.  There is a race between
setting the PTE and a different CPU setting the GLOBAL bit in its
buddy PTE.

This race can be observed when multiple CPUs are executing
vmap()/vfree() at the same time.

Make setting the buddy PTE's GLOBAL bit an atomic operation to close
the race condition.

The case of CONFIG_64BIT_PHYS_ADDR && CONFIG_CPU_MIPS32 is *not*
handled.

Signed-off-by: David Daney <david.daney@cavium.com>
Cc: <stable@vger.kernel.org>
Cc: linux-mips@linux-mips.org
Patchwork: https://patchwork.linux-mips.org/patch/10835/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
2015-08-05 11:11:10 +02:00

646 lines
16 KiB
C

/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Copyright (C) 2003 Ralf Baechle
*/
#ifndef _ASM_PGTABLE_H
#define _ASM_PGTABLE_H
#include <linux/mm_types.h>
#include <linux/mmzone.h>
#ifdef CONFIG_32BIT
#include <asm/pgtable-32.h>
#endif
#ifdef CONFIG_64BIT
#include <asm/pgtable-64.h>
#endif
#include <asm/io.h>
#include <asm/pgtable-bits.h>
struct mm_struct;
struct vm_area_struct;
#define PAGE_NONE __pgprot(_PAGE_PRESENT | _CACHE_CACHABLE_NONCOHERENT)
#define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_WRITE | _PAGE_READ | \
_page_cachable_default)
#define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_NO_EXEC | \
_page_cachable_default)
#define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_READ | \
_page_cachable_default)
#define PAGE_KERNEL __pgprot(_PAGE_PRESENT | __READABLE | __WRITEABLE | \
_PAGE_GLOBAL | _page_cachable_default)
#define PAGE_KERNEL_NC __pgprot(_PAGE_PRESENT | __READABLE | __WRITEABLE | \
_PAGE_GLOBAL | _CACHE_CACHABLE_NONCOHERENT)
#define PAGE_USERIO __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
_page_cachable_default)
#define PAGE_KERNEL_UNCACHED __pgprot(_PAGE_PRESENT | __READABLE | \
__WRITEABLE | _PAGE_GLOBAL | _CACHE_UNCACHED)
/*
* If _PAGE_NO_EXEC is not defined, we can't do page protection for
* execute, and consider it to be the same as read. Also, write
* permissions imply read permissions. This is the closest we can get
* by reasonable means..
*/
/*
* Dummy values to fill the table in mmap.c
* The real values will be generated at runtime
*/
#define __P000 __pgprot(0)
#define __P001 __pgprot(0)
#define __P010 __pgprot(0)
#define __P011 __pgprot(0)
#define __P100 __pgprot(0)
#define __P101 __pgprot(0)
#define __P110 __pgprot(0)
#define __P111 __pgprot(0)
#define __S000 __pgprot(0)
#define __S001 __pgprot(0)
#define __S010 __pgprot(0)
#define __S011 __pgprot(0)
#define __S100 __pgprot(0)
#define __S101 __pgprot(0)
#define __S110 __pgprot(0)
#define __S111 __pgprot(0)
extern unsigned long _page_cachable_default;
/*
* ZERO_PAGE is a global shared page that is always zero; used
* for zero-mapped memory areas etc..
*/
extern unsigned long empty_zero_page;
extern unsigned long zero_page_mask;
#define ZERO_PAGE(vaddr) \
(virt_to_page((void *)(empty_zero_page + (((unsigned long)(vaddr)) & zero_page_mask))))
#define __HAVE_COLOR_ZERO_PAGE
extern void paging_init(void);
/*
* Conversion functions: convert a page and protection to a page entry,
* and a page entry and page directory to the page they refer to.
*/
#define pmd_phys(pmd) virt_to_phys((void *)pmd_val(pmd))
#define __pmd_page(pmd) (pfn_to_page(pmd_phys(pmd) >> PAGE_SHIFT))
#ifndef CONFIG_TRANSPARENT_HUGEPAGE
#define pmd_page(pmd) __pmd_page(pmd)
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
#define pmd_page_vaddr(pmd) pmd_val(pmd)
#define htw_stop() \
do { \
unsigned long flags; \
\
if (cpu_has_htw) { \
local_irq_save(flags); \
if(!raw_current_cpu_data.htw_seq++) { \
write_c0_pwctl(read_c0_pwctl() & \
~(1 << MIPS_PWCTL_PWEN_SHIFT)); \
back_to_back_c0_hazard(); \
} \
local_irq_restore(flags); \
} \
} while(0)
#define htw_start() \
do { \
unsigned long flags; \
\
if (cpu_has_htw) { \
local_irq_save(flags); \
if (!--raw_current_cpu_data.htw_seq) { \
write_c0_pwctl(read_c0_pwctl() | \
(1 << MIPS_PWCTL_PWEN_SHIFT)); \
back_to_back_c0_hazard(); \
} \
local_irq_restore(flags); \
} \
} while(0)
#if defined(CONFIG_PHYS_ADDR_T_64BIT) && defined(CONFIG_CPU_MIPS32)
#define pte_none(pte) (!(((pte).pte_high) & ~_PAGE_GLOBAL))
#define pte_present(pte) ((pte).pte_low & _PAGE_PRESENT)
static inline void set_pte(pte_t *ptep, pte_t pte)
{
ptep->pte_high = pte.pte_high;
smp_wmb();
ptep->pte_low = pte.pte_low;
if (pte.pte_high & _PAGE_GLOBAL) {
pte_t *buddy = ptep_buddy(ptep);
/*
* Make sure the buddy is global too (if it's !none,
* it better already be global)
*/
if (pte_none(*buddy))
buddy->pte_high |= _PAGE_GLOBAL;
}
}
#define set_pte_at(mm, addr, ptep, pteval) set_pte(ptep, pteval)
static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
{
pte_t null = __pte(0);
htw_stop();
/* Preserve global status for the pair */
if (ptep_buddy(ptep)->pte_high & _PAGE_GLOBAL)
null.pte_high = _PAGE_GLOBAL;
set_pte_at(mm, addr, ptep, null);
htw_start();
}
#else
#define pte_none(pte) (!(pte_val(pte) & ~_PAGE_GLOBAL))
#define pte_present(pte) (pte_val(pte) & _PAGE_PRESENT)
/*
* Certain architectures need to do special things when pte's
* within a page table are directly modified. Thus, the following
* hook is made available.
*/
static inline void set_pte(pte_t *ptep, pte_t pteval)
{
*ptep = pteval;
#if !defined(CONFIG_CPU_R3000) && !defined(CONFIG_CPU_TX39XX)
if (pte_val(pteval) & _PAGE_GLOBAL) {
pte_t *buddy = ptep_buddy(ptep);
/*
* Make sure the buddy is global too (if it's !none,
* it better already be global)
*/
#ifdef CONFIG_SMP
/*
* For SMP, multiple CPUs can race, so we need to do
* this atomically.
*/
#ifdef CONFIG_64BIT
#define LL_INSN "lld"
#define SC_INSN "scd"
#else /* CONFIG_32BIT */
#define LL_INSN "ll"
#define SC_INSN "sc"
#endif
unsigned long page_global = _PAGE_GLOBAL;
unsigned long tmp;
__asm__ __volatile__ (
" .set push\n"
" .set noreorder\n"
"1: " LL_INSN " %[tmp], %[buddy]\n"
" bnez %[tmp], 2f\n"
" or %[tmp], %[tmp], %[global]\n"
" " SC_INSN " %[tmp], %[buddy]\n"
" beqz %[tmp], 1b\n"
" nop\n"
"2:\n"
" .set pop"
: [buddy] "+m" (buddy->pte),
[tmp] "=&r" (tmp)
: [global] "r" (page_global));
#else /* !CONFIG_SMP */
if (pte_none(*buddy))
pte_val(*buddy) = pte_val(*buddy) | _PAGE_GLOBAL;
#endif /* CONFIG_SMP */
}
#endif
}
#define set_pte_at(mm, addr, ptep, pteval) set_pte(ptep, pteval)
static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
{
htw_stop();
#if !defined(CONFIG_CPU_R3000) && !defined(CONFIG_CPU_TX39XX)
/* Preserve global status for the pair */
if (pte_val(*ptep_buddy(ptep)) & _PAGE_GLOBAL)
set_pte_at(mm, addr, ptep, __pte(_PAGE_GLOBAL));
else
#endif
set_pte_at(mm, addr, ptep, __pte(0));
htw_start();
}
#endif
/*
* (pmds are folded into puds so this doesn't get actually called,
* but the define is needed for a generic inline function.)
*/
#define set_pmd(pmdptr, pmdval) do { *(pmdptr) = (pmdval); } while(0)
#ifndef __PAGETABLE_PMD_FOLDED
/*
* (puds are folded into pgds so this doesn't get actually called,
* but the define is needed for a generic inline function.)
*/
#define set_pud(pudptr, pudval) do { *(pudptr) = (pudval); } while(0)
#endif
#define PGD_T_LOG2 (__builtin_ffs(sizeof(pgd_t)) - 1)
#define PMD_T_LOG2 (__builtin_ffs(sizeof(pmd_t)) - 1)
#define PTE_T_LOG2 (__builtin_ffs(sizeof(pte_t)) - 1)
/*
* We used to declare this array with size but gcc 3.3 and older are not able
* to find that this expression is a constant, so the size is dropped.
*/
extern pgd_t swapper_pg_dir[];
/*
* The following only work if pte_present() is true.
* Undefined behaviour if not..
*/
#if defined(CONFIG_PHYS_ADDR_T_64BIT) && defined(CONFIG_CPU_MIPS32)
static inline int pte_write(pte_t pte) { return pte.pte_low & _PAGE_WRITE; }
static inline int pte_dirty(pte_t pte) { return pte.pte_low & _PAGE_MODIFIED; }
static inline int pte_young(pte_t pte) { return pte.pte_low & _PAGE_ACCESSED; }
static inline pte_t pte_wrprotect(pte_t pte)
{
pte.pte_low &= ~_PAGE_WRITE;
pte.pte_high &= ~_PAGE_SILENT_WRITE;
return pte;
}
static inline pte_t pte_mkclean(pte_t pte)
{
pte.pte_low &= ~_PAGE_MODIFIED;
pte.pte_high &= ~_PAGE_SILENT_WRITE;
return pte;
}
static inline pte_t pte_mkold(pte_t pte)
{
pte.pte_low &= ~_PAGE_ACCESSED;
pte.pte_high &= ~_PAGE_SILENT_READ;
return pte;
}
static inline pte_t pte_mkwrite(pte_t pte)
{
pte.pte_low |= _PAGE_WRITE;
if (pte.pte_low & _PAGE_MODIFIED)
pte.pte_high |= _PAGE_SILENT_WRITE;
return pte;
}
static inline pte_t pte_mkdirty(pte_t pte)
{
pte.pte_low |= _PAGE_MODIFIED;
if (pte.pte_low & _PAGE_WRITE)
pte.pte_high |= _PAGE_SILENT_WRITE;
return pte;
}
static inline pte_t pte_mkyoung(pte_t pte)
{
pte.pte_low |= _PAGE_ACCESSED;
if (pte.pte_low & _PAGE_READ)
pte.pte_high |= _PAGE_SILENT_READ;
return pte;
}
#else
static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_WRITE; }
static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_MODIFIED; }
static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; }
static inline pte_t pte_wrprotect(pte_t pte)
{
pte_val(pte) &= ~(_PAGE_WRITE | _PAGE_SILENT_WRITE);
return pte;
}
static inline pte_t pte_mkclean(pte_t pte)
{
pte_val(pte) &= ~(_PAGE_MODIFIED | _PAGE_SILENT_WRITE);
return pte;
}
static inline pte_t pte_mkold(pte_t pte)
{
pte_val(pte) &= ~(_PAGE_ACCESSED | _PAGE_SILENT_READ);
return pte;
}
static inline pte_t pte_mkwrite(pte_t pte)
{
pte_val(pte) |= _PAGE_WRITE;
if (pte_val(pte) & _PAGE_MODIFIED)
pte_val(pte) |= _PAGE_SILENT_WRITE;
return pte;
}
static inline pte_t pte_mkdirty(pte_t pte)
{
pte_val(pte) |= _PAGE_MODIFIED;
if (pte_val(pte) & _PAGE_WRITE)
pte_val(pte) |= _PAGE_SILENT_WRITE;
return pte;
}
static inline pte_t pte_mkyoung(pte_t pte)
{
pte_val(pte) |= _PAGE_ACCESSED;
#ifdef CONFIG_CPU_MIPSR2
if (!(pte_val(pte) & _PAGE_NO_READ))
pte_val(pte) |= _PAGE_SILENT_READ;
else
#endif
if (pte_val(pte) & _PAGE_READ)
pte_val(pte) |= _PAGE_SILENT_READ;
return pte;
}
#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
static inline int pte_huge(pte_t pte) { return pte_val(pte) & _PAGE_HUGE; }
static inline pte_t pte_mkhuge(pte_t pte)
{
pte_val(pte) |= _PAGE_HUGE;
return pte;
}
#endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */
#endif
static inline int pte_special(pte_t pte) { return 0; }
static inline pte_t pte_mkspecial(pte_t pte) { return pte; }
/*
* Macro to make mark a page protection value as "uncacheable". Note
* that "protection" is really a misnomer here as the protection value
* contains the memory attribute bits, dirty bits, and various other
* bits as well.
*/
#define pgprot_noncached pgprot_noncached
static inline pgprot_t pgprot_noncached(pgprot_t _prot)
{
unsigned long prot = pgprot_val(_prot);
prot = (prot & ~_CACHE_MASK) | _CACHE_UNCACHED;
return __pgprot(prot);
}
static inline pgprot_t pgprot_writecombine(pgprot_t _prot)
{
unsigned long prot = pgprot_val(_prot);
/* cpu_data[0].writecombine is already shifted by _CACHE_SHIFT */
prot = (prot & ~_CACHE_MASK) | cpu_data[0].writecombine;
return __pgprot(prot);
}
/*
* Conversion functions: convert a page and protection to a page entry,
* and a page entry and page directory to the page they refer to.
*/
#define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot))
#if defined(CONFIG_PHYS_ADDR_T_64BIT) && defined(CONFIG_CPU_MIPS32)
static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
{
pte.pte_low &= (_PAGE_MODIFIED | _PAGE_ACCESSED | _PFNX_MASK);
pte.pte_high &= (_PFN_MASK | _CACHE_MASK);
pte.pte_low |= pgprot_val(newprot) & ~_PFNX_MASK;
pte.pte_high |= pgprot_val(newprot) & ~_PFN_MASK;
return pte;
}
#else
static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
{
return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot));
}
#endif
extern void __update_tlb(struct vm_area_struct *vma, unsigned long address,
pte_t pte);
extern void __update_cache(struct vm_area_struct *vma, unsigned long address,
pte_t pte);
static inline void update_mmu_cache(struct vm_area_struct *vma,
unsigned long address, pte_t *ptep)
{
pte_t pte = *ptep;
__update_tlb(vma, address, pte);
__update_cache(vma, address, pte);
}
static inline void update_mmu_cache_pmd(struct vm_area_struct *vma,
unsigned long address, pmd_t *pmdp)
{
pte_t pte = *(pte_t *)pmdp;
__update_tlb(vma, address, pte);
}
#define kern_addr_valid(addr) (1)
#ifdef CONFIG_PHYS_ADDR_T_64BIT
extern int remap_pfn_range(struct vm_area_struct *vma, unsigned long from, unsigned long pfn, unsigned long size, pgprot_t prot);
static inline int io_remap_pfn_range(struct vm_area_struct *vma,
unsigned long vaddr,
unsigned long pfn,
unsigned long size,
pgprot_t prot)
{
phys_addr_t phys_addr_high = fixup_bigphys_addr(pfn << PAGE_SHIFT, size);
return remap_pfn_range(vma, vaddr, phys_addr_high >> PAGE_SHIFT, size, prot);
}
#define io_remap_pfn_range io_remap_pfn_range
#endif
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
extern int has_transparent_hugepage(void);
static inline int pmd_trans_huge(pmd_t pmd)
{
return !!(pmd_val(pmd) & _PAGE_HUGE);
}
static inline pmd_t pmd_mkhuge(pmd_t pmd)
{
pmd_val(pmd) |= _PAGE_HUGE;
return pmd;
}
static inline int pmd_trans_splitting(pmd_t pmd)
{
return !!(pmd_val(pmd) & _PAGE_SPLITTING);
}
static inline pmd_t pmd_mksplitting(pmd_t pmd)
{
pmd_val(pmd) |= _PAGE_SPLITTING;
return pmd;
}
extern void set_pmd_at(struct mm_struct *mm, unsigned long addr,
pmd_t *pmdp, pmd_t pmd);
#define __HAVE_ARCH_PMDP_SPLITTING_FLUSH
/* Extern to avoid header file madness */
extern void pmdp_splitting_flush(struct vm_area_struct *vma,
unsigned long address,
pmd_t *pmdp);
#define __HAVE_ARCH_PMD_WRITE
static inline int pmd_write(pmd_t pmd)
{
return !!(pmd_val(pmd) & _PAGE_WRITE);
}
static inline pmd_t pmd_wrprotect(pmd_t pmd)
{
pmd_val(pmd) &= ~(_PAGE_WRITE | _PAGE_SILENT_WRITE);
return pmd;
}
static inline pmd_t pmd_mkwrite(pmd_t pmd)
{
pmd_val(pmd) |= _PAGE_WRITE;
if (pmd_val(pmd) & _PAGE_MODIFIED)
pmd_val(pmd) |= _PAGE_SILENT_WRITE;
return pmd;
}
static inline int pmd_dirty(pmd_t pmd)
{
return !!(pmd_val(pmd) & _PAGE_MODIFIED);
}
static inline pmd_t pmd_mkclean(pmd_t pmd)
{
pmd_val(pmd) &= ~(_PAGE_MODIFIED | _PAGE_SILENT_WRITE);
return pmd;
}
static inline pmd_t pmd_mkdirty(pmd_t pmd)
{
pmd_val(pmd) |= _PAGE_MODIFIED;
if (pmd_val(pmd) & _PAGE_WRITE)
pmd_val(pmd) |= _PAGE_SILENT_WRITE;
return pmd;
}
static inline int pmd_young(pmd_t pmd)
{
return !!(pmd_val(pmd) & _PAGE_ACCESSED);
}
static inline pmd_t pmd_mkold(pmd_t pmd)
{
pmd_val(pmd) &= ~(_PAGE_ACCESSED|_PAGE_SILENT_READ);
return pmd;
}
static inline pmd_t pmd_mkyoung(pmd_t pmd)
{
pmd_val(pmd) |= _PAGE_ACCESSED;
#ifdef CONFIG_CPU_MIPSR2
if (!(pmd_val(pmd) & _PAGE_NO_READ))
pmd_val(pmd) |= _PAGE_SILENT_READ;
else
#endif
if (pmd_val(pmd) & _PAGE_READ)
pmd_val(pmd) |= _PAGE_SILENT_READ;
return pmd;
}
/* Extern to avoid header file madness */
extern pmd_t mk_pmd(struct page *page, pgprot_t prot);
static inline unsigned long pmd_pfn(pmd_t pmd)
{
return pmd_val(pmd) >> _PFN_SHIFT;
}
static inline struct page *pmd_page(pmd_t pmd)
{
if (pmd_trans_huge(pmd))
return pfn_to_page(pmd_pfn(pmd));
return pfn_to_page(pmd_phys(pmd) >> PAGE_SHIFT);
}
static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
{
pmd_val(pmd) = (pmd_val(pmd) & _PAGE_CHG_MASK) | pgprot_val(newprot);
return pmd;
}
static inline pmd_t pmd_mknotpresent(pmd_t pmd)
{
pmd_val(pmd) &= ~(_PAGE_PRESENT | _PAGE_VALID | _PAGE_DIRTY);
return pmd;
}
/*
* The generic version pmdp_huge_get_and_clear uses a version of pmd_clear() with a
* different prototype.
*/
#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
unsigned long address, pmd_t *pmdp)
{
pmd_t old = *pmdp;
pmd_clear(pmdp);
return old;
}
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
#include <asm-generic/pgtable.h>
/*
* uncached accelerated TLB map for video memory access
*/
#ifdef CONFIG_CPU_SUPPORTS_UNCACHED_ACCELERATED
#define __HAVE_PHYS_MEM_ACCESS_PROT
struct file;
pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
unsigned long size, pgprot_t vma_prot);
int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
unsigned long size, pgprot_t *vma_prot);
#endif
/*
* We provide our own get_unmapped area to cope with the virtual aliasing
* constraints placed on us by the cache architecture.
*/
#define HAVE_ARCH_UNMAPPED_AREA
#define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
/*
* No page table caches to initialise
*/
#define pgtable_cache_init() do { } while (0)
#endif /* _ASM_PGTABLE_H */