linux/drivers/net/ethernet/intel/e1000e/ethtool.c
Wilfried Klaebe 7ad24ea4bf net: get rid of SET_ETHTOOL_OPS
net: get rid of SET_ETHTOOL_OPS

Dave Miller mentioned he'd like to see SET_ETHTOOL_OPS gone.
This does that.

Mostly done via coccinelle script:
@@
struct ethtool_ops *ops;
struct net_device *dev;
@@
-       SET_ETHTOOL_OPS(dev, ops);
+       dev->ethtool_ops = ops;

Compile tested only, but I'd seriously wonder if this broke anything.

Suggested-by: Dave Miller <davem@davemloft.net>
Signed-off-by: Wilfried Klaebe <w-lkml@lebenslange-mailadresse.de>
Acked-by: Felipe Balbi <balbi@ti.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-13 17:43:20 -04:00

2323 lines
62 KiB
C

/* Intel PRO/1000 Linux driver
* Copyright(c) 1999 - 2014 Intel Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* The full GNU General Public License is included in this distribution in
* the file called "COPYING".
*
* Contact Information:
* Linux NICS <linux.nics@intel.com>
* e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
* Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
*/
/* ethtool support for e1000 */
#include <linux/netdevice.h>
#include <linux/interrupt.h>
#include <linux/ethtool.h>
#include <linux/pci.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/vmalloc.h>
#include <linux/pm_runtime.h>
#include "e1000.h"
enum { NETDEV_STATS, E1000_STATS };
struct e1000_stats {
char stat_string[ETH_GSTRING_LEN];
int type;
int sizeof_stat;
int stat_offset;
};
#define E1000_STAT(str, m) { \
.stat_string = str, \
.type = E1000_STATS, \
.sizeof_stat = sizeof(((struct e1000_adapter *)0)->m), \
.stat_offset = offsetof(struct e1000_adapter, m) }
#define E1000_NETDEV_STAT(str, m) { \
.stat_string = str, \
.type = NETDEV_STATS, \
.sizeof_stat = sizeof(((struct rtnl_link_stats64 *)0)->m), \
.stat_offset = offsetof(struct rtnl_link_stats64, m) }
static const struct e1000_stats e1000_gstrings_stats[] = {
E1000_STAT("rx_packets", stats.gprc),
E1000_STAT("tx_packets", stats.gptc),
E1000_STAT("rx_bytes", stats.gorc),
E1000_STAT("tx_bytes", stats.gotc),
E1000_STAT("rx_broadcast", stats.bprc),
E1000_STAT("tx_broadcast", stats.bptc),
E1000_STAT("rx_multicast", stats.mprc),
E1000_STAT("tx_multicast", stats.mptc),
E1000_NETDEV_STAT("rx_errors", rx_errors),
E1000_NETDEV_STAT("tx_errors", tx_errors),
E1000_NETDEV_STAT("tx_dropped", tx_dropped),
E1000_STAT("multicast", stats.mprc),
E1000_STAT("collisions", stats.colc),
E1000_NETDEV_STAT("rx_length_errors", rx_length_errors),
E1000_NETDEV_STAT("rx_over_errors", rx_over_errors),
E1000_STAT("rx_crc_errors", stats.crcerrs),
E1000_NETDEV_STAT("rx_frame_errors", rx_frame_errors),
E1000_STAT("rx_no_buffer_count", stats.rnbc),
E1000_STAT("rx_missed_errors", stats.mpc),
E1000_STAT("tx_aborted_errors", stats.ecol),
E1000_STAT("tx_carrier_errors", stats.tncrs),
E1000_NETDEV_STAT("tx_fifo_errors", tx_fifo_errors),
E1000_NETDEV_STAT("tx_heartbeat_errors", tx_heartbeat_errors),
E1000_STAT("tx_window_errors", stats.latecol),
E1000_STAT("tx_abort_late_coll", stats.latecol),
E1000_STAT("tx_deferred_ok", stats.dc),
E1000_STAT("tx_single_coll_ok", stats.scc),
E1000_STAT("tx_multi_coll_ok", stats.mcc),
E1000_STAT("tx_timeout_count", tx_timeout_count),
E1000_STAT("tx_restart_queue", restart_queue),
E1000_STAT("rx_long_length_errors", stats.roc),
E1000_STAT("rx_short_length_errors", stats.ruc),
E1000_STAT("rx_align_errors", stats.algnerrc),
E1000_STAT("tx_tcp_seg_good", stats.tsctc),
E1000_STAT("tx_tcp_seg_failed", stats.tsctfc),
E1000_STAT("rx_flow_control_xon", stats.xonrxc),
E1000_STAT("rx_flow_control_xoff", stats.xoffrxc),
E1000_STAT("tx_flow_control_xon", stats.xontxc),
E1000_STAT("tx_flow_control_xoff", stats.xofftxc),
E1000_STAT("rx_csum_offload_good", hw_csum_good),
E1000_STAT("rx_csum_offload_errors", hw_csum_err),
E1000_STAT("rx_header_split", rx_hdr_split),
E1000_STAT("alloc_rx_buff_failed", alloc_rx_buff_failed),
E1000_STAT("tx_smbus", stats.mgptc),
E1000_STAT("rx_smbus", stats.mgprc),
E1000_STAT("dropped_smbus", stats.mgpdc),
E1000_STAT("rx_dma_failed", rx_dma_failed),
E1000_STAT("tx_dma_failed", tx_dma_failed),
E1000_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
E1000_STAT("uncorr_ecc_errors", uncorr_errors),
E1000_STAT("corr_ecc_errors", corr_errors),
E1000_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts),
};
#define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
#define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
"Register test (offline)", "Eeprom test (offline)",
"Interrupt test (offline)", "Loopback test (offline)",
"Link test (on/offline)"
};
#define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
static int e1000_get_settings(struct net_device *netdev,
struct ethtool_cmd *ecmd)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
u32 speed;
if (hw->phy.media_type == e1000_media_type_copper) {
ecmd->supported = (SUPPORTED_10baseT_Half |
SUPPORTED_10baseT_Full |
SUPPORTED_100baseT_Half |
SUPPORTED_100baseT_Full |
SUPPORTED_1000baseT_Full |
SUPPORTED_Autoneg |
SUPPORTED_TP);
if (hw->phy.type == e1000_phy_ife)
ecmd->supported &= ~SUPPORTED_1000baseT_Full;
ecmd->advertising = ADVERTISED_TP;
if (hw->mac.autoneg == 1) {
ecmd->advertising |= ADVERTISED_Autoneg;
/* the e1000 autoneg seems to match ethtool nicely */
ecmd->advertising |= hw->phy.autoneg_advertised;
}
ecmd->port = PORT_TP;
ecmd->phy_address = hw->phy.addr;
ecmd->transceiver = XCVR_INTERNAL;
} else {
ecmd->supported = (SUPPORTED_1000baseT_Full |
SUPPORTED_FIBRE |
SUPPORTED_Autoneg);
ecmd->advertising = (ADVERTISED_1000baseT_Full |
ADVERTISED_FIBRE |
ADVERTISED_Autoneg);
ecmd->port = PORT_FIBRE;
ecmd->transceiver = XCVR_EXTERNAL;
}
speed = -1;
ecmd->duplex = -1;
if (netif_running(netdev)) {
if (netif_carrier_ok(netdev)) {
speed = adapter->link_speed;
ecmd->duplex = adapter->link_duplex - 1;
}
} else if (!pm_runtime_suspended(netdev->dev.parent)) {
u32 status = er32(STATUS);
if (status & E1000_STATUS_LU) {
if (status & E1000_STATUS_SPEED_1000)
speed = SPEED_1000;
else if (status & E1000_STATUS_SPEED_100)
speed = SPEED_100;
else
speed = SPEED_10;
if (status & E1000_STATUS_FD)
ecmd->duplex = DUPLEX_FULL;
else
ecmd->duplex = DUPLEX_HALF;
}
}
ethtool_cmd_speed_set(ecmd, speed);
ecmd->autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
/* MDI-X => 2; MDI =>1; Invalid =>0 */
if ((hw->phy.media_type == e1000_media_type_copper) &&
netif_carrier_ok(netdev))
ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X : ETH_TP_MDI;
else
ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
if (hw->phy.mdix == AUTO_ALL_MODES)
ecmd->eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
else
ecmd->eth_tp_mdix_ctrl = hw->phy.mdix;
return 0;
}
static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
{
struct e1000_mac_info *mac = &adapter->hw.mac;
mac->autoneg = 0;
/* Make sure dplx is at most 1 bit and lsb of speed is not set
* for the switch() below to work
*/
if ((spd & 1) || (dplx & ~1))
goto err_inval;
/* Fiber NICs only allow 1000 gbps Full duplex */
if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
(spd != SPEED_1000) && (dplx != DUPLEX_FULL)) {
goto err_inval;
}
switch (spd + dplx) {
case SPEED_10 + DUPLEX_HALF:
mac->forced_speed_duplex = ADVERTISE_10_HALF;
break;
case SPEED_10 + DUPLEX_FULL:
mac->forced_speed_duplex = ADVERTISE_10_FULL;
break;
case SPEED_100 + DUPLEX_HALF:
mac->forced_speed_duplex = ADVERTISE_100_HALF;
break;
case SPEED_100 + DUPLEX_FULL:
mac->forced_speed_duplex = ADVERTISE_100_FULL;
break;
case SPEED_1000 + DUPLEX_FULL:
mac->autoneg = 1;
adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
break;
case SPEED_1000 + DUPLEX_HALF: /* not supported */
default:
goto err_inval;
}
/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
adapter->hw.phy.mdix = AUTO_ALL_MODES;
return 0;
err_inval:
e_err("Unsupported Speed/Duplex configuration\n");
return -EINVAL;
}
static int e1000_set_settings(struct net_device *netdev,
struct ethtool_cmd *ecmd)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
int ret_val = 0;
pm_runtime_get_sync(netdev->dev.parent);
/* When SoL/IDER sessions are active, autoneg/speed/duplex
* cannot be changed
*/
if (hw->phy.ops.check_reset_block &&
hw->phy.ops.check_reset_block(hw)) {
e_err("Cannot change link characteristics when SoL/IDER is active.\n");
ret_val = -EINVAL;
goto out;
}
/* MDI setting is only allowed when autoneg enabled because
* some hardware doesn't allow MDI setting when speed or
* duplex is forced.
*/
if (ecmd->eth_tp_mdix_ctrl) {
if (hw->phy.media_type != e1000_media_type_copper) {
ret_val = -EOPNOTSUPP;
goto out;
}
if ((ecmd->eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
(ecmd->autoneg != AUTONEG_ENABLE)) {
e_err("forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
ret_val = -EINVAL;
goto out;
}
}
while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
usleep_range(1000, 2000);
if (ecmd->autoneg == AUTONEG_ENABLE) {
hw->mac.autoneg = 1;
if (hw->phy.media_type == e1000_media_type_fiber)
hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
ADVERTISED_FIBRE | ADVERTISED_Autoneg;
else
hw->phy.autoneg_advertised = ecmd->advertising |
ADVERTISED_TP | ADVERTISED_Autoneg;
ecmd->advertising = hw->phy.autoneg_advertised;
if (adapter->fc_autoneg)
hw->fc.requested_mode = e1000_fc_default;
} else {
u32 speed = ethtool_cmd_speed(ecmd);
/* calling this overrides forced MDI setting */
if (e1000_set_spd_dplx(adapter, speed, ecmd->duplex)) {
ret_val = -EINVAL;
goto out;
}
}
/* MDI-X => 2; MDI => 1; Auto => 3 */
if (ecmd->eth_tp_mdix_ctrl) {
/* fix up the value for auto (3 => 0) as zero is mapped
* internally to auto
*/
if (ecmd->eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
hw->phy.mdix = AUTO_ALL_MODES;
else
hw->phy.mdix = ecmd->eth_tp_mdix_ctrl;
}
/* reset the link */
if (netif_running(adapter->netdev)) {
e1000e_down(adapter, true);
e1000e_up(adapter);
} else {
e1000e_reset(adapter);
}
out:
pm_runtime_put_sync(netdev->dev.parent);
clear_bit(__E1000_RESETTING, &adapter->state);
return ret_val;
}
static void e1000_get_pauseparam(struct net_device *netdev,
struct ethtool_pauseparam *pause)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
pause->autoneg =
(adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
if (hw->fc.current_mode == e1000_fc_rx_pause) {
pause->rx_pause = 1;
} else if (hw->fc.current_mode == e1000_fc_tx_pause) {
pause->tx_pause = 1;
} else if (hw->fc.current_mode == e1000_fc_full) {
pause->rx_pause = 1;
pause->tx_pause = 1;
}
}
static int e1000_set_pauseparam(struct net_device *netdev,
struct ethtool_pauseparam *pause)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
int retval = 0;
adapter->fc_autoneg = pause->autoneg;
while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
usleep_range(1000, 2000);
pm_runtime_get_sync(netdev->dev.parent);
if (adapter->fc_autoneg == AUTONEG_ENABLE) {
hw->fc.requested_mode = e1000_fc_default;
if (netif_running(adapter->netdev)) {
e1000e_down(adapter, true);
e1000e_up(adapter);
} else {
e1000e_reset(adapter);
}
} else {
if (pause->rx_pause && pause->tx_pause)
hw->fc.requested_mode = e1000_fc_full;
else if (pause->rx_pause && !pause->tx_pause)
hw->fc.requested_mode = e1000_fc_rx_pause;
else if (!pause->rx_pause && pause->tx_pause)
hw->fc.requested_mode = e1000_fc_tx_pause;
else if (!pause->rx_pause && !pause->tx_pause)
hw->fc.requested_mode = e1000_fc_none;
hw->fc.current_mode = hw->fc.requested_mode;
if (hw->phy.media_type == e1000_media_type_fiber) {
retval = hw->mac.ops.setup_link(hw);
/* implicit goto out */
} else {
retval = e1000e_force_mac_fc(hw);
if (retval)
goto out;
e1000e_set_fc_watermarks(hw);
}
}
out:
pm_runtime_put_sync(netdev->dev.parent);
clear_bit(__E1000_RESETTING, &adapter->state);
return retval;
}
static u32 e1000_get_msglevel(struct net_device *netdev)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
return adapter->msg_enable;
}
static void e1000_set_msglevel(struct net_device *netdev, u32 data)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
adapter->msg_enable = data;
}
static int e1000_get_regs_len(struct net_device __always_unused *netdev)
{
#define E1000_REGS_LEN 32 /* overestimate */
return E1000_REGS_LEN * sizeof(u32);
}
static void e1000_get_regs(struct net_device *netdev,
struct ethtool_regs *regs, void *p)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
u32 *regs_buff = p;
u16 phy_data;
pm_runtime_get_sync(netdev->dev.parent);
memset(p, 0, E1000_REGS_LEN * sizeof(u32));
regs->version = (1 << 24) | (adapter->pdev->revision << 16) |
adapter->pdev->device;
regs_buff[0] = er32(CTRL);
regs_buff[1] = er32(STATUS);
regs_buff[2] = er32(RCTL);
regs_buff[3] = er32(RDLEN(0));
regs_buff[4] = er32(RDH(0));
regs_buff[5] = er32(RDT(0));
regs_buff[6] = er32(RDTR);
regs_buff[7] = er32(TCTL);
regs_buff[8] = er32(TDLEN(0));
regs_buff[9] = er32(TDH(0));
regs_buff[10] = er32(TDT(0));
regs_buff[11] = er32(TIDV);
regs_buff[12] = adapter->hw.phy.type; /* PHY type (IGP=1, M88=0) */
/* ethtool doesn't use anything past this point, so all this
* code is likely legacy junk for apps that may or may not exist
*/
if (hw->phy.type == e1000_phy_m88) {
e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
regs_buff[13] = (u32)phy_data; /* cable length */
regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */
regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */
regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */
e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
regs_buff[18] = regs_buff[13]; /* cable polarity */
regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */
regs_buff[20] = regs_buff[17]; /* polarity correction */
/* phy receive errors */
regs_buff[22] = adapter->phy_stats.receive_errors;
regs_buff[23] = regs_buff[13]; /* mdix mode */
}
regs_buff[21] = 0; /* was idle_errors */
e1e_rphy(hw, MII_STAT1000, &phy_data);
regs_buff[24] = (u32)phy_data; /* phy local receiver status */
regs_buff[25] = regs_buff[24]; /* phy remote receiver status */
pm_runtime_put_sync(netdev->dev.parent);
}
static int e1000_get_eeprom_len(struct net_device *netdev)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
return adapter->hw.nvm.word_size * 2;
}
static int e1000_get_eeprom(struct net_device *netdev,
struct ethtool_eeprom *eeprom, u8 *bytes)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
u16 *eeprom_buff;
int first_word;
int last_word;
int ret_val = 0;
u16 i;
if (eeprom->len == 0)
return -EINVAL;
eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
first_word = eeprom->offset >> 1;
last_word = (eeprom->offset + eeprom->len - 1) >> 1;
eeprom_buff = kmalloc(sizeof(u16) * (last_word - first_word + 1),
GFP_KERNEL);
if (!eeprom_buff)
return -ENOMEM;
pm_runtime_get_sync(netdev->dev.parent);
if (hw->nvm.type == e1000_nvm_eeprom_spi) {
ret_val = e1000_read_nvm(hw, first_word,
last_word - first_word + 1,
eeprom_buff);
} else {
for (i = 0; i < last_word - first_word + 1; i++) {
ret_val = e1000_read_nvm(hw, first_word + i, 1,
&eeprom_buff[i]);
if (ret_val)
break;
}
}
pm_runtime_put_sync(netdev->dev.parent);
if (ret_val) {
/* a read error occurred, throw away the result */
memset(eeprom_buff, 0xff, sizeof(u16) *
(last_word - first_word + 1));
} else {
/* Device's eeprom is always little-endian, word addressable */
for (i = 0; i < last_word - first_word + 1; i++)
le16_to_cpus(&eeprom_buff[i]);
}
memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
kfree(eeprom_buff);
return ret_val;
}
static int e1000_set_eeprom(struct net_device *netdev,
struct ethtool_eeprom *eeprom, u8 *bytes)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
u16 *eeprom_buff;
void *ptr;
int max_len;
int first_word;
int last_word;
int ret_val = 0;
u16 i;
if (eeprom->len == 0)
return -EOPNOTSUPP;
if (eeprom->magic !=
(adapter->pdev->vendor | (adapter->pdev->device << 16)))
return -EFAULT;
if (adapter->flags & FLAG_READ_ONLY_NVM)
return -EINVAL;
max_len = hw->nvm.word_size * 2;
first_word = eeprom->offset >> 1;
last_word = (eeprom->offset + eeprom->len - 1) >> 1;
eeprom_buff = kmalloc(max_len, GFP_KERNEL);
if (!eeprom_buff)
return -ENOMEM;
ptr = (void *)eeprom_buff;
pm_runtime_get_sync(netdev->dev.parent);
if (eeprom->offset & 1) {
/* need read/modify/write of first changed EEPROM word */
/* only the second byte of the word is being modified */
ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
ptr++;
}
if (((eeprom->offset + eeprom->len) & 1) && (!ret_val))
/* need read/modify/write of last changed EEPROM word */
/* only the first byte of the word is being modified */
ret_val = e1000_read_nvm(hw, last_word, 1,
&eeprom_buff[last_word - first_word]);
if (ret_val)
goto out;
/* Device's eeprom is always little-endian, word addressable */
for (i = 0; i < last_word - first_word + 1; i++)
le16_to_cpus(&eeprom_buff[i]);
memcpy(ptr, bytes, eeprom->len);
for (i = 0; i < last_word - first_word + 1; i++)
cpu_to_le16s(&eeprom_buff[i]);
ret_val = e1000_write_nvm(hw, first_word,
last_word - first_word + 1, eeprom_buff);
if (ret_val)
goto out;
/* Update the checksum over the first part of the EEPROM if needed
* and flush shadow RAM for applicable controllers
*/
if ((first_word <= NVM_CHECKSUM_REG) ||
(hw->mac.type == e1000_82583) ||
(hw->mac.type == e1000_82574) ||
(hw->mac.type == e1000_82573))
ret_val = e1000e_update_nvm_checksum(hw);
out:
pm_runtime_put_sync(netdev->dev.parent);
kfree(eeprom_buff);
return ret_val;
}
static void e1000_get_drvinfo(struct net_device *netdev,
struct ethtool_drvinfo *drvinfo)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
strlcpy(drvinfo->driver, e1000e_driver_name, sizeof(drvinfo->driver));
strlcpy(drvinfo->version, e1000e_driver_version,
sizeof(drvinfo->version));
/* EEPROM image version # is reported as firmware version # for
* PCI-E controllers
*/
snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
"%d.%d-%d",
(adapter->eeprom_vers & 0xF000) >> 12,
(adapter->eeprom_vers & 0x0FF0) >> 4,
(adapter->eeprom_vers & 0x000F));
strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
sizeof(drvinfo->bus_info));
drvinfo->regdump_len = e1000_get_regs_len(netdev);
drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
}
static void e1000_get_ringparam(struct net_device *netdev,
struct ethtool_ringparam *ring)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
ring->rx_max_pending = E1000_MAX_RXD;
ring->tx_max_pending = E1000_MAX_TXD;
ring->rx_pending = adapter->rx_ring_count;
ring->tx_pending = adapter->tx_ring_count;
}
static int e1000_set_ringparam(struct net_device *netdev,
struct ethtool_ringparam *ring)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_ring *temp_tx = NULL, *temp_rx = NULL;
int err = 0, size = sizeof(struct e1000_ring);
bool set_tx = false, set_rx = false;
u16 new_rx_count, new_tx_count;
if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
return -EINVAL;
new_rx_count = clamp_t(u32, ring->rx_pending, E1000_MIN_RXD,
E1000_MAX_RXD);
new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
new_tx_count = clamp_t(u32, ring->tx_pending, E1000_MIN_TXD,
E1000_MAX_TXD);
new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
if ((new_tx_count == adapter->tx_ring_count) &&
(new_rx_count == adapter->rx_ring_count))
/* nothing to do */
return 0;
while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
usleep_range(1000, 2000);
if (!netif_running(adapter->netdev)) {
/* Set counts now and allocate resources during open() */
adapter->tx_ring->count = new_tx_count;
adapter->rx_ring->count = new_rx_count;
adapter->tx_ring_count = new_tx_count;
adapter->rx_ring_count = new_rx_count;
goto clear_reset;
}
set_tx = (new_tx_count != adapter->tx_ring_count);
set_rx = (new_rx_count != adapter->rx_ring_count);
/* Allocate temporary storage for ring updates */
if (set_tx) {
temp_tx = vmalloc(size);
if (!temp_tx) {
err = -ENOMEM;
goto free_temp;
}
}
if (set_rx) {
temp_rx = vmalloc(size);
if (!temp_rx) {
err = -ENOMEM;
goto free_temp;
}
}
pm_runtime_get_sync(netdev->dev.parent);
e1000e_down(adapter, true);
/* We can't just free everything and then setup again, because the
* ISRs in MSI-X mode get passed pointers to the Tx and Rx ring
* structs. First, attempt to allocate new resources...
*/
if (set_tx) {
memcpy(temp_tx, adapter->tx_ring, size);
temp_tx->count = new_tx_count;
err = e1000e_setup_tx_resources(temp_tx);
if (err)
goto err_setup;
}
if (set_rx) {
memcpy(temp_rx, adapter->rx_ring, size);
temp_rx->count = new_rx_count;
err = e1000e_setup_rx_resources(temp_rx);
if (err)
goto err_setup_rx;
}
/* ...then free the old resources and copy back any new ring data */
if (set_tx) {
e1000e_free_tx_resources(adapter->tx_ring);
memcpy(adapter->tx_ring, temp_tx, size);
adapter->tx_ring_count = new_tx_count;
}
if (set_rx) {
e1000e_free_rx_resources(adapter->rx_ring);
memcpy(adapter->rx_ring, temp_rx, size);
adapter->rx_ring_count = new_rx_count;
}
err_setup_rx:
if (err && set_tx)
e1000e_free_tx_resources(temp_tx);
err_setup:
e1000e_up(adapter);
pm_runtime_put_sync(netdev->dev.parent);
free_temp:
vfree(temp_tx);
vfree(temp_rx);
clear_reset:
clear_bit(__E1000_RESETTING, &adapter->state);
return err;
}
static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data,
int reg, int offset, u32 mask, u32 write)
{
u32 pat, val;
static const u32 test[] = {
0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF
};
for (pat = 0; pat < ARRAY_SIZE(test); pat++) {
E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset,
(test[pat] & write));
val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset);
if (val != (test[pat] & write & mask)) {
e_err("pattern test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n",
reg + (offset << 2), val,
(test[pat] & write & mask));
*data = reg;
return true;
}
}
return false;
}
static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data,
int reg, u32 mask, u32 write)
{
u32 val;
__ew32(&adapter->hw, reg, write & mask);
val = __er32(&adapter->hw, reg);
if ((write & mask) != (val & mask)) {
e_err("set/check test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n",
reg, (val & mask), (write & mask));
*data = reg;
return true;
}
return false;
}
#define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write) \
do { \
if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
return 1; \
} while (0)
#define REG_PATTERN_TEST(reg, mask, write) \
REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
#define REG_SET_AND_CHECK(reg, mask, write) \
do { \
if (reg_set_and_check(adapter, data, reg, mask, write)) \
return 1; \
} while (0)
static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
{
struct e1000_hw *hw = &adapter->hw;
struct e1000_mac_info *mac = &adapter->hw.mac;
u32 value;
u32 before;
u32 after;
u32 i;
u32 toggle;
u32 mask;
u32 wlock_mac = 0;
/* The status register is Read Only, so a write should fail.
* Some bits that get toggled are ignored. There are several bits
* on newer hardware that are r/w.
*/
switch (mac->type) {
case e1000_82571:
case e1000_82572:
case e1000_80003es2lan:
toggle = 0x7FFFF3FF;
break;
default:
toggle = 0x7FFFF033;
break;
}
before = er32(STATUS);
value = (er32(STATUS) & toggle);
ew32(STATUS, toggle);
after = er32(STATUS) & toggle;
if (value != after) {
e_err("failed STATUS register test got: 0x%08X expected: 0x%08X\n",
after, value);
*data = 1;
return 1;
}
/* restore previous status */
ew32(STATUS, before);
if (!(adapter->flags & FLAG_IS_ICH)) {
REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
}
REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
REG_PATTERN_TEST(E1000_RDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
REG_PATTERN_TEST(E1000_RDLEN(0), 0x000FFF80, 0x000FFFFF);
REG_PATTERN_TEST(E1000_RDH(0), 0x0000FFFF, 0x0000FFFF);
REG_PATTERN_TEST(E1000_RDT(0), 0x0000FFFF, 0x0000FFFF);
REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
REG_PATTERN_TEST(E1000_TDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
REG_PATTERN_TEST(E1000_TDLEN(0), 0x000FFF80, 0x000FFFFF);
REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE);
REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
REG_PATTERN_TEST(E1000_RDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
if (!(adapter->flags & FLAG_IS_ICH))
REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
REG_PATTERN_TEST(E1000_TDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
mask = 0x8003FFFF;
switch (mac->type) {
case e1000_ich10lan:
case e1000_pchlan:
case e1000_pch2lan:
case e1000_pch_lpt:
mask |= (1 << 18);
break;
default:
break;
}
if (mac->type == e1000_pch_lpt)
wlock_mac = (er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK) >>
E1000_FWSM_WLOCK_MAC_SHIFT;
for (i = 0; i < mac->rar_entry_count; i++) {
if (mac->type == e1000_pch_lpt) {
/* Cannot test write-protected SHRAL[n] registers */
if ((wlock_mac == 1) || (wlock_mac && (i > wlock_mac)))
continue;
/* SHRAH[9] different than the others */
if (i == 10)
mask |= (1 << 30);
else
mask &= ~(1 << 30);
}
if (mac->type == e1000_pch2lan) {
/* SHRAH[0,1,2] different than previous */
if (i == 1)
mask &= 0xFFF4FFFF;
/* SHRAH[3] different than SHRAH[0,1,2] */
if (i == 4)
mask |= (1 << 30);
/* RAR[1-6] owned by management engine - skipping */
if (i > 0)
i += 6;
}
REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1), mask,
0xFFFFFFFF);
/* reset index to actual value */
if ((mac->type == e1000_pch2lan) && (i > 6))
i -= 6;
}
for (i = 0; i < mac->mta_reg_count; i++)
REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
*data = 0;
return 0;
}
static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
{
u16 temp;
u16 checksum = 0;
u16 i;
*data = 0;
/* Read and add up the contents of the EEPROM */
for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
*data = 1;
return *data;
}
checksum += temp;
}
/* If Checksum is not Correct return error else test passed */
if ((checksum != (u16)NVM_SUM) && !(*data))
*data = 2;
return *data;
}
static irqreturn_t e1000_test_intr(int __always_unused irq, void *data)
{
struct net_device *netdev = (struct net_device *)data;
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
adapter->test_icr |= er32(ICR);
return IRQ_HANDLED;
}
static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
{
struct net_device *netdev = adapter->netdev;
struct e1000_hw *hw = &adapter->hw;
u32 mask;
u32 shared_int = 1;
u32 irq = adapter->pdev->irq;
int i;
int ret_val = 0;
int int_mode = E1000E_INT_MODE_LEGACY;
*data = 0;
/* NOTE: we don't test MSI/MSI-X interrupts here, yet */
if (adapter->int_mode == E1000E_INT_MODE_MSIX) {
int_mode = adapter->int_mode;
e1000e_reset_interrupt_capability(adapter);
adapter->int_mode = E1000E_INT_MODE_LEGACY;
e1000e_set_interrupt_capability(adapter);
}
/* Hook up test interrupt handler just for this test */
if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
netdev)) {
shared_int = 0;
} else if (request_irq(irq, e1000_test_intr, IRQF_SHARED, netdev->name,
netdev)) {
*data = 1;
ret_val = -1;
goto out;
}
e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared"));
/* Disable all the interrupts */
ew32(IMC, 0xFFFFFFFF);
e1e_flush();
usleep_range(10000, 20000);
/* Test each interrupt */
for (i = 0; i < 10; i++) {
/* Interrupt to test */
mask = 1 << i;
if (adapter->flags & FLAG_IS_ICH) {
switch (mask) {
case E1000_ICR_RXSEQ:
continue;
case 0x00000100:
if (adapter->hw.mac.type == e1000_ich8lan ||
adapter->hw.mac.type == e1000_ich9lan)
continue;
break;
default:
break;
}
}
if (!shared_int) {
/* Disable the interrupt to be reported in
* the cause register and then force the same
* interrupt and see if one gets posted. If
* an interrupt was posted to the bus, the
* test failed.
*/
adapter->test_icr = 0;
ew32(IMC, mask);
ew32(ICS, mask);
e1e_flush();
usleep_range(10000, 20000);
if (adapter->test_icr & mask) {
*data = 3;
break;
}
}
/* Enable the interrupt to be reported in
* the cause register and then force the same
* interrupt and see if one gets posted. If
* an interrupt was not posted to the bus, the
* test failed.
*/
adapter->test_icr = 0;
ew32(IMS, mask);
ew32(ICS, mask);
e1e_flush();
usleep_range(10000, 20000);
if (!(adapter->test_icr & mask)) {
*data = 4;
break;
}
if (!shared_int) {
/* Disable the other interrupts to be reported in
* the cause register and then force the other
* interrupts and see if any get posted. If
* an interrupt was posted to the bus, the
* test failed.
*/
adapter->test_icr = 0;
ew32(IMC, ~mask & 0x00007FFF);
ew32(ICS, ~mask & 0x00007FFF);
e1e_flush();
usleep_range(10000, 20000);
if (adapter->test_icr) {
*data = 5;
break;
}
}
}
/* Disable all the interrupts */
ew32(IMC, 0xFFFFFFFF);
e1e_flush();
usleep_range(10000, 20000);
/* Unhook test interrupt handler */
free_irq(irq, netdev);
out:
if (int_mode == E1000E_INT_MODE_MSIX) {
e1000e_reset_interrupt_capability(adapter);
adapter->int_mode = int_mode;
e1000e_set_interrupt_capability(adapter);
}
return ret_val;
}
static void e1000_free_desc_rings(struct e1000_adapter *adapter)
{
struct e1000_ring *tx_ring = &adapter->test_tx_ring;
struct e1000_ring *rx_ring = &adapter->test_rx_ring;
struct pci_dev *pdev = adapter->pdev;
struct e1000_buffer *buffer_info;
int i;
if (tx_ring->desc && tx_ring->buffer_info) {
for (i = 0; i < tx_ring->count; i++) {
buffer_info = &tx_ring->buffer_info[i];
if (buffer_info->dma)
dma_unmap_single(&pdev->dev,
buffer_info->dma,
buffer_info->length,
DMA_TO_DEVICE);
if (buffer_info->skb)
dev_kfree_skb(buffer_info->skb);
}
}
if (rx_ring->desc && rx_ring->buffer_info) {
for (i = 0; i < rx_ring->count; i++) {
buffer_info = &rx_ring->buffer_info[i];
if (buffer_info->dma)
dma_unmap_single(&pdev->dev,
buffer_info->dma,
2048, DMA_FROM_DEVICE);
if (buffer_info->skb)
dev_kfree_skb(buffer_info->skb);
}
}
if (tx_ring->desc) {
dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
tx_ring->dma);
tx_ring->desc = NULL;
}
if (rx_ring->desc) {
dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
rx_ring->dma);
rx_ring->desc = NULL;
}
kfree(tx_ring->buffer_info);
tx_ring->buffer_info = NULL;
kfree(rx_ring->buffer_info);
rx_ring->buffer_info = NULL;
}
static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
{
struct e1000_ring *tx_ring = &adapter->test_tx_ring;
struct e1000_ring *rx_ring = &adapter->test_rx_ring;
struct pci_dev *pdev = adapter->pdev;
struct e1000_hw *hw = &adapter->hw;
u32 rctl;
int i;
int ret_val;
/* Setup Tx descriptor ring and Tx buffers */
if (!tx_ring->count)
tx_ring->count = E1000_DEFAULT_TXD;
tx_ring->buffer_info = kcalloc(tx_ring->count,
sizeof(struct e1000_buffer), GFP_KERNEL);
if (!tx_ring->buffer_info) {
ret_val = 1;
goto err_nomem;
}
tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
tx_ring->size = ALIGN(tx_ring->size, 4096);
tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
&tx_ring->dma, GFP_KERNEL);
if (!tx_ring->desc) {
ret_val = 2;
goto err_nomem;
}
tx_ring->next_to_use = 0;
tx_ring->next_to_clean = 0;
ew32(TDBAL(0), ((u64)tx_ring->dma & 0x00000000FFFFFFFF));
ew32(TDBAH(0), ((u64)tx_ring->dma >> 32));
ew32(TDLEN(0), tx_ring->count * sizeof(struct e1000_tx_desc));
ew32(TDH(0), 0);
ew32(TDT(0), 0);
ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR |
E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
for (i = 0; i < tx_ring->count; i++) {
struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
struct sk_buff *skb;
unsigned int skb_size = 1024;
skb = alloc_skb(skb_size, GFP_KERNEL);
if (!skb) {
ret_val = 3;
goto err_nomem;
}
skb_put(skb, skb_size);
tx_ring->buffer_info[i].skb = skb;
tx_ring->buffer_info[i].length = skb->len;
tx_ring->buffer_info[i].dma =
dma_map_single(&pdev->dev, skb->data, skb->len,
DMA_TO_DEVICE);
if (dma_mapping_error(&pdev->dev,
tx_ring->buffer_info[i].dma)) {
ret_val = 4;
goto err_nomem;
}
tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
tx_desc->lower.data = cpu_to_le32(skb->len);
tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
E1000_TXD_CMD_IFCS |
E1000_TXD_CMD_RS);
tx_desc->upper.data = 0;
}
/* Setup Rx descriptor ring and Rx buffers */
if (!rx_ring->count)
rx_ring->count = E1000_DEFAULT_RXD;
rx_ring->buffer_info = kcalloc(rx_ring->count,
sizeof(struct e1000_buffer), GFP_KERNEL);
if (!rx_ring->buffer_info) {
ret_val = 5;
goto err_nomem;
}
rx_ring->size = rx_ring->count * sizeof(union e1000_rx_desc_extended);
rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
&rx_ring->dma, GFP_KERNEL);
if (!rx_ring->desc) {
ret_val = 6;
goto err_nomem;
}
rx_ring->next_to_use = 0;
rx_ring->next_to_clean = 0;
rctl = er32(RCTL);
if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
ew32(RCTL, rctl & ~E1000_RCTL_EN);
ew32(RDBAL(0), ((u64)rx_ring->dma & 0xFFFFFFFF));
ew32(RDBAH(0), ((u64)rx_ring->dma >> 32));
ew32(RDLEN(0), rx_ring->size);
ew32(RDH(0), 0);
ew32(RDT(0), 0);
rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE |
E1000_RCTL_SBP | E1000_RCTL_SECRC |
E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
(adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
ew32(RCTL, rctl);
for (i = 0; i < rx_ring->count; i++) {
union e1000_rx_desc_extended *rx_desc;
struct sk_buff *skb;
skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
if (!skb) {
ret_val = 7;
goto err_nomem;
}
skb_reserve(skb, NET_IP_ALIGN);
rx_ring->buffer_info[i].skb = skb;
rx_ring->buffer_info[i].dma =
dma_map_single(&pdev->dev, skb->data, 2048,
DMA_FROM_DEVICE);
if (dma_mapping_error(&pdev->dev,
rx_ring->buffer_info[i].dma)) {
ret_val = 8;
goto err_nomem;
}
rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
rx_desc->read.buffer_addr =
cpu_to_le64(rx_ring->buffer_info[i].dma);
memset(skb->data, 0x00, skb->len);
}
return 0;
err_nomem:
e1000_free_desc_rings(adapter);
return ret_val;
}
static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
{
/* Write out to PHY registers 29 and 30 to disable the Receiver. */
e1e_wphy(&adapter->hw, 29, 0x001F);
e1e_wphy(&adapter->hw, 30, 0x8FFC);
e1e_wphy(&adapter->hw, 29, 0x001A);
e1e_wphy(&adapter->hw, 30, 0x8FF0);
}
static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u32 ctrl_reg = 0;
u16 phy_reg = 0;
s32 ret_val = 0;
hw->mac.autoneg = 0;
if (hw->phy.type == e1000_phy_ife) {
/* force 100, set loopback */
e1e_wphy(hw, MII_BMCR, 0x6100);
/* Now set up the MAC to the same speed/duplex as the PHY. */
ctrl_reg = er32(CTRL);
ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
E1000_CTRL_SPD_100 |/* Force Speed to 100 */
E1000_CTRL_FD); /* Force Duplex to FULL */
ew32(CTRL, ctrl_reg);
e1e_flush();
usleep_range(500, 1000);
return 0;
}
/* Specific PHY configuration for loopback */
switch (hw->phy.type) {
case e1000_phy_m88:
/* Auto-MDI/MDIX Off */
e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
/* reset to update Auto-MDI/MDIX */
e1e_wphy(hw, MII_BMCR, 0x9140);
/* autoneg off */
e1e_wphy(hw, MII_BMCR, 0x8140);
break;
case e1000_phy_gg82563:
e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
break;
case e1000_phy_bm:
/* Set Default MAC Interface speed to 1GB */
e1e_rphy(hw, PHY_REG(2, 21), &phy_reg);
phy_reg &= ~0x0007;
phy_reg |= 0x006;
e1e_wphy(hw, PHY_REG(2, 21), phy_reg);
/* Assert SW reset for above settings to take effect */
hw->phy.ops.commit(hw);
usleep_range(1000, 2000);
/* Force Full Duplex */
e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C);
/* Set Link Up (in force link) */
e1e_rphy(hw, PHY_REG(776, 16), &phy_reg);
e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040);
/* Force Link */
e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040);
/* Set Early Link Enable */
e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400);
break;
case e1000_phy_82577:
case e1000_phy_82578:
/* Workaround: K1 must be disabled for stable 1Gbps operation */
ret_val = hw->phy.ops.acquire(hw);
if (ret_val) {
e_err("Cannot setup 1Gbps loopback.\n");
return ret_val;
}
e1000_configure_k1_ich8lan(hw, false);
hw->phy.ops.release(hw);
break;
case e1000_phy_82579:
/* Disable PHY energy detect power down */
e1e_rphy(hw, PHY_REG(0, 21), &phy_reg);
e1e_wphy(hw, PHY_REG(0, 21), phy_reg & ~(1 << 3));
/* Disable full chip energy detect */
e1e_rphy(hw, PHY_REG(776, 18), &phy_reg);
e1e_wphy(hw, PHY_REG(776, 18), phy_reg | 1);
/* Enable loopback on the PHY */
e1e_wphy(hw, I82577_PHY_LBK_CTRL, 0x8001);
break;
default:
break;
}
/* force 1000, set loopback */
e1e_wphy(hw, MII_BMCR, 0x4140);
msleep(250);
/* Now set up the MAC to the same speed/duplex as the PHY. */
ctrl_reg = er32(CTRL);
ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
E1000_CTRL_FD); /* Force Duplex to FULL */
if (adapter->flags & FLAG_IS_ICH)
ctrl_reg |= E1000_CTRL_SLU; /* Set Link Up */
if (hw->phy.media_type == e1000_media_type_copper &&
hw->phy.type == e1000_phy_m88) {
ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
} else {
/* Set the ILOS bit on the fiber Nic if half duplex link is
* detected.
*/
if ((er32(STATUS) & E1000_STATUS_FD) == 0)
ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
}
ew32(CTRL, ctrl_reg);
/* Disable the receiver on the PHY so when a cable is plugged in, the
* PHY does not begin to autoneg when a cable is reconnected to the NIC.
*/
if (hw->phy.type == e1000_phy_m88)
e1000_phy_disable_receiver(adapter);
usleep_range(500, 1000);
return 0;
}
static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u32 ctrl = er32(CTRL);
int link;
/* special requirements for 82571/82572 fiber adapters */
/* jump through hoops to make sure link is up because serdes
* link is hardwired up
*/
ctrl |= E1000_CTRL_SLU;
ew32(CTRL, ctrl);
/* disable autoneg */
ctrl = er32(TXCW);
ctrl &= ~(1 << 31);
ew32(TXCW, ctrl);
link = (er32(STATUS) & E1000_STATUS_LU);
if (!link) {
/* set invert loss of signal */
ctrl = er32(CTRL);
ctrl |= E1000_CTRL_ILOS;
ew32(CTRL, ctrl);
}
/* special write to serdes control register to enable SerDes analog
* loopback
*/
ew32(SCTL, E1000_SCTL_ENABLE_SERDES_LOOPBACK);
e1e_flush();
usleep_range(10000, 20000);
return 0;
}
/* only call this for fiber/serdes connections to es2lan */
static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u32 ctrlext = er32(CTRL_EXT);
u32 ctrl = er32(CTRL);
/* save CTRL_EXT to restore later, reuse an empty variable (unused
* on mac_type 80003es2lan)
*/
adapter->tx_fifo_head = ctrlext;
/* clear the serdes mode bits, putting the device into mac loopback */
ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
ew32(CTRL_EXT, ctrlext);
/* force speed to 1000/FD, link up */
ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
ew32(CTRL, ctrl);
/* set mac loopback */
ctrl = er32(RCTL);
ctrl |= E1000_RCTL_LBM_MAC;
ew32(RCTL, ctrl);
/* set testing mode parameters (no need to reset later) */
#define KMRNCTRLSTA_OPMODE (0x1F << 16)
#define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
ew32(KMRNCTRLSTA,
(KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
return 0;
}
static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u32 rctl;
if (hw->phy.media_type == e1000_media_type_fiber ||
hw->phy.media_type == e1000_media_type_internal_serdes) {
switch (hw->mac.type) {
case e1000_80003es2lan:
return e1000_set_es2lan_mac_loopback(adapter);
break;
case e1000_82571:
case e1000_82572:
return e1000_set_82571_fiber_loopback(adapter);
break;
default:
rctl = er32(RCTL);
rctl |= E1000_RCTL_LBM_TCVR;
ew32(RCTL, rctl);
return 0;
}
} else if (hw->phy.media_type == e1000_media_type_copper) {
return e1000_integrated_phy_loopback(adapter);
}
return 7;
}
static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u32 rctl;
u16 phy_reg;
rctl = er32(RCTL);
rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
ew32(RCTL, rctl);
switch (hw->mac.type) {
case e1000_80003es2lan:
if (hw->phy.media_type == e1000_media_type_fiber ||
hw->phy.media_type == e1000_media_type_internal_serdes) {
/* restore CTRL_EXT, stealing space from tx_fifo_head */
ew32(CTRL_EXT, adapter->tx_fifo_head);
adapter->tx_fifo_head = 0;
}
/* fall through */
case e1000_82571:
case e1000_82572:
if (hw->phy.media_type == e1000_media_type_fiber ||
hw->phy.media_type == e1000_media_type_internal_serdes) {
ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
e1e_flush();
usleep_range(10000, 20000);
break;
}
/* Fall Through */
default:
hw->mac.autoneg = 1;
if (hw->phy.type == e1000_phy_gg82563)
e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
e1e_rphy(hw, MII_BMCR, &phy_reg);
if (phy_reg & BMCR_LOOPBACK) {
phy_reg &= ~BMCR_LOOPBACK;
e1e_wphy(hw, MII_BMCR, phy_reg);
if (hw->phy.ops.commit)
hw->phy.ops.commit(hw);
}
break;
}
}
static void e1000_create_lbtest_frame(struct sk_buff *skb,
unsigned int frame_size)
{
memset(skb->data, 0xFF, frame_size);
frame_size &= ~1;
memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
}
static int e1000_check_lbtest_frame(struct sk_buff *skb,
unsigned int frame_size)
{
frame_size &= ~1;
if (*(skb->data + 3) == 0xFF)
if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
(*(skb->data + frame_size / 2 + 12) == 0xAF))
return 0;
return 13;
}
static int e1000_run_loopback_test(struct e1000_adapter *adapter)
{
struct e1000_ring *tx_ring = &adapter->test_tx_ring;
struct e1000_ring *rx_ring = &adapter->test_rx_ring;
struct pci_dev *pdev = adapter->pdev;
struct e1000_hw *hw = &adapter->hw;
struct e1000_buffer *buffer_info;
int i, j, k, l;
int lc;
int good_cnt;
int ret_val = 0;
unsigned long time;
ew32(RDT(0), rx_ring->count - 1);
/* Calculate the loop count based on the largest descriptor ring
* The idea is to wrap the largest ring a number of times using 64
* send/receive pairs during each loop
*/
if (rx_ring->count <= tx_ring->count)
lc = ((tx_ring->count / 64) * 2) + 1;
else
lc = ((rx_ring->count / 64) * 2) + 1;
k = 0;
l = 0;
/* loop count loop */
for (j = 0; j <= lc; j++) {
/* send the packets */
for (i = 0; i < 64; i++) {
buffer_info = &tx_ring->buffer_info[k];
e1000_create_lbtest_frame(buffer_info->skb, 1024);
dma_sync_single_for_device(&pdev->dev,
buffer_info->dma,
buffer_info->length,
DMA_TO_DEVICE);
k++;
if (k == tx_ring->count)
k = 0;
}
ew32(TDT(0), k);
e1e_flush();
msleep(200);
time = jiffies; /* set the start time for the receive */
good_cnt = 0;
/* receive the sent packets */
do {
buffer_info = &rx_ring->buffer_info[l];
dma_sync_single_for_cpu(&pdev->dev,
buffer_info->dma, 2048,
DMA_FROM_DEVICE);
ret_val = e1000_check_lbtest_frame(buffer_info->skb,
1024);
if (!ret_val)
good_cnt++;
l++;
if (l == rx_ring->count)
l = 0;
/* time + 20 msecs (200 msecs on 2.4) is more than
* enough time to complete the receives, if it's
* exceeded, break and error off
*/
} while ((good_cnt < 64) && !time_after(jiffies, time + 20));
if (good_cnt != 64) {
ret_val = 13; /* ret_val is the same as mis-compare */
break;
}
if (time_after(jiffies, time + 20)) {
ret_val = 14; /* error code for time out error */
break;
}
}
return ret_val;
}
static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
{
struct e1000_hw *hw = &adapter->hw;
/* PHY loopback cannot be performed if SoL/IDER sessions are active */
if (hw->phy.ops.check_reset_block &&
hw->phy.ops.check_reset_block(hw)) {
e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
*data = 0;
goto out;
}
*data = e1000_setup_desc_rings(adapter);
if (*data)
goto out;
*data = e1000_setup_loopback_test(adapter);
if (*data)
goto err_loopback;
*data = e1000_run_loopback_test(adapter);
e1000_loopback_cleanup(adapter);
err_loopback:
e1000_free_desc_rings(adapter);
out:
return *data;
}
static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
{
struct e1000_hw *hw = &adapter->hw;
*data = 0;
if (hw->phy.media_type == e1000_media_type_internal_serdes) {
int i = 0;
hw->mac.serdes_has_link = false;
/* On some blade server designs, link establishment
* could take as long as 2-3 minutes
*/
do {
hw->mac.ops.check_for_link(hw);
if (hw->mac.serdes_has_link)
return *data;
msleep(20);
} while (i++ < 3750);
*data = 1;
} else {
hw->mac.ops.check_for_link(hw);
if (hw->mac.autoneg)
/* On some Phy/switch combinations, link establishment
* can take a few seconds more than expected.
*/
msleep_interruptible(5000);
if (!(er32(STATUS) & E1000_STATUS_LU))
*data = 1;
}
return *data;
}
static int e1000e_get_sset_count(struct net_device __always_unused *netdev,
int sset)
{
switch (sset) {
case ETH_SS_TEST:
return E1000_TEST_LEN;
case ETH_SS_STATS:
return E1000_STATS_LEN;
default:
return -EOPNOTSUPP;
}
}
static void e1000_diag_test(struct net_device *netdev,
struct ethtool_test *eth_test, u64 *data)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
u16 autoneg_advertised;
u8 forced_speed_duplex;
u8 autoneg;
bool if_running = netif_running(netdev);
pm_runtime_get_sync(netdev->dev.parent);
set_bit(__E1000_TESTING, &adapter->state);
if (!if_running) {
/* Get control of and reset hardware */
if (adapter->flags & FLAG_HAS_AMT)
e1000e_get_hw_control(adapter);
e1000e_power_up_phy(adapter);
adapter->hw.phy.autoneg_wait_to_complete = 1;
e1000e_reset(adapter);
adapter->hw.phy.autoneg_wait_to_complete = 0;
}
if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
/* Offline tests */
/* save speed, duplex, autoneg settings */
autoneg_advertised = adapter->hw.phy.autoneg_advertised;
forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
autoneg = adapter->hw.mac.autoneg;
e_info("offline testing starting\n");
if (if_running)
/* indicate we're in test mode */
dev_close(netdev);
if (e1000_reg_test(adapter, &data[0]))
eth_test->flags |= ETH_TEST_FL_FAILED;
e1000e_reset(adapter);
if (e1000_eeprom_test(adapter, &data[1]))
eth_test->flags |= ETH_TEST_FL_FAILED;
e1000e_reset(adapter);
if (e1000_intr_test(adapter, &data[2]))
eth_test->flags |= ETH_TEST_FL_FAILED;
e1000e_reset(adapter);
if (e1000_loopback_test(adapter, &data[3]))
eth_test->flags |= ETH_TEST_FL_FAILED;
/* force this routine to wait until autoneg complete/timeout */
adapter->hw.phy.autoneg_wait_to_complete = 1;
e1000e_reset(adapter);
adapter->hw.phy.autoneg_wait_to_complete = 0;
if (e1000_link_test(adapter, &data[4]))
eth_test->flags |= ETH_TEST_FL_FAILED;
/* restore speed, duplex, autoneg settings */
adapter->hw.phy.autoneg_advertised = autoneg_advertised;
adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
adapter->hw.mac.autoneg = autoneg;
e1000e_reset(adapter);
clear_bit(__E1000_TESTING, &adapter->state);
if (if_running)
dev_open(netdev);
} else {
/* Online tests */
e_info("online testing starting\n");
/* register, eeprom, intr and loopback tests not run online */
data[0] = 0;
data[1] = 0;
data[2] = 0;
data[3] = 0;
if (e1000_link_test(adapter, &data[4]))
eth_test->flags |= ETH_TEST_FL_FAILED;
clear_bit(__E1000_TESTING, &adapter->state);
}
if (!if_running) {
e1000e_reset(adapter);
if (adapter->flags & FLAG_HAS_AMT)
e1000e_release_hw_control(adapter);
}
msleep_interruptible(4 * 1000);
pm_runtime_put_sync(netdev->dev.parent);
}
static void e1000_get_wol(struct net_device *netdev,
struct ethtool_wolinfo *wol)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
wol->supported = 0;
wol->wolopts = 0;
if (!(adapter->flags & FLAG_HAS_WOL) ||
!device_can_wakeup(&adapter->pdev->dev))
return;
wol->supported = WAKE_UCAST | WAKE_MCAST |
WAKE_BCAST | WAKE_MAGIC | WAKE_PHY;
/* apply any specific unsupported masks here */
if (adapter->flags & FLAG_NO_WAKE_UCAST) {
wol->supported &= ~WAKE_UCAST;
if (adapter->wol & E1000_WUFC_EX)
e_err("Interface does not support directed (unicast) frame wake-up packets\n");
}
if (adapter->wol & E1000_WUFC_EX)
wol->wolopts |= WAKE_UCAST;
if (adapter->wol & E1000_WUFC_MC)
wol->wolopts |= WAKE_MCAST;
if (adapter->wol & E1000_WUFC_BC)
wol->wolopts |= WAKE_BCAST;
if (adapter->wol & E1000_WUFC_MAG)
wol->wolopts |= WAKE_MAGIC;
if (adapter->wol & E1000_WUFC_LNKC)
wol->wolopts |= WAKE_PHY;
}
static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
if (!(adapter->flags & FLAG_HAS_WOL) ||
!device_can_wakeup(&adapter->pdev->dev) ||
(wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
WAKE_MAGIC | WAKE_PHY)))
return -EOPNOTSUPP;
/* these settings will always override what we currently have */
adapter->wol = 0;
if (wol->wolopts & WAKE_UCAST)
adapter->wol |= E1000_WUFC_EX;
if (wol->wolopts & WAKE_MCAST)
adapter->wol |= E1000_WUFC_MC;
if (wol->wolopts & WAKE_BCAST)
adapter->wol |= E1000_WUFC_BC;
if (wol->wolopts & WAKE_MAGIC)
adapter->wol |= E1000_WUFC_MAG;
if (wol->wolopts & WAKE_PHY)
adapter->wol |= E1000_WUFC_LNKC;
device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
return 0;
}
static int e1000_set_phys_id(struct net_device *netdev,
enum ethtool_phys_id_state state)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
switch (state) {
case ETHTOOL_ID_ACTIVE:
pm_runtime_get_sync(netdev->dev.parent);
if (!hw->mac.ops.blink_led)
return 2; /* cycle on/off twice per second */
hw->mac.ops.blink_led(hw);
break;
case ETHTOOL_ID_INACTIVE:
if (hw->phy.type == e1000_phy_ife)
e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
hw->mac.ops.led_off(hw);
hw->mac.ops.cleanup_led(hw);
pm_runtime_put_sync(netdev->dev.parent);
break;
case ETHTOOL_ID_ON:
hw->mac.ops.led_on(hw);
break;
case ETHTOOL_ID_OFF:
hw->mac.ops.led_off(hw);
break;
}
return 0;
}
static int e1000_get_coalesce(struct net_device *netdev,
struct ethtool_coalesce *ec)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
if (adapter->itr_setting <= 4)
ec->rx_coalesce_usecs = adapter->itr_setting;
else
ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
return 0;
}
static int e1000_set_coalesce(struct net_device *netdev,
struct ethtool_coalesce *ec)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
((ec->rx_coalesce_usecs > 4) &&
(ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
(ec->rx_coalesce_usecs == 2))
return -EINVAL;
if (ec->rx_coalesce_usecs == 4) {
adapter->itr_setting = 4;
adapter->itr = adapter->itr_setting;
} else if (ec->rx_coalesce_usecs <= 3) {
adapter->itr = 20000;
adapter->itr_setting = ec->rx_coalesce_usecs;
} else {
adapter->itr = (1000000 / ec->rx_coalesce_usecs);
adapter->itr_setting = adapter->itr & ~3;
}
pm_runtime_get_sync(netdev->dev.parent);
if (adapter->itr_setting != 0)
e1000e_write_itr(adapter, adapter->itr);
else
e1000e_write_itr(adapter, 0);
pm_runtime_put_sync(netdev->dev.parent);
return 0;
}
static int e1000_nway_reset(struct net_device *netdev)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
if (!netif_running(netdev))
return -EAGAIN;
if (!adapter->hw.mac.autoneg)
return -EINVAL;
pm_runtime_get_sync(netdev->dev.parent);
e1000e_reinit_locked(adapter);
pm_runtime_put_sync(netdev->dev.parent);
return 0;
}
static void e1000_get_ethtool_stats(struct net_device *netdev,
struct ethtool_stats __always_unused *stats,
u64 *data)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
struct rtnl_link_stats64 net_stats;
int i;
char *p = NULL;
pm_runtime_get_sync(netdev->dev.parent);
e1000e_get_stats64(netdev, &net_stats);
pm_runtime_put_sync(netdev->dev.parent);
for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
switch (e1000_gstrings_stats[i].type) {
case NETDEV_STATS:
p = (char *)&net_stats +
e1000_gstrings_stats[i].stat_offset;
break;
case E1000_STATS:
p = (char *)adapter +
e1000_gstrings_stats[i].stat_offset;
break;
default:
data[i] = 0;
continue;
}
data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
}
}
static void e1000_get_strings(struct net_device __always_unused *netdev,
u32 stringset, u8 *data)
{
u8 *p = data;
int i;
switch (stringset) {
case ETH_SS_TEST:
memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test));
break;
case ETH_SS_STATS:
for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
memcpy(p, e1000_gstrings_stats[i].stat_string,
ETH_GSTRING_LEN);
p += ETH_GSTRING_LEN;
}
break;
}
}
static int e1000_get_rxnfc(struct net_device *netdev,
struct ethtool_rxnfc *info,
u32 __always_unused *rule_locs)
{
info->data = 0;
switch (info->cmd) {
case ETHTOOL_GRXFH: {
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
u32 mrqc;
pm_runtime_get_sync(netdev->dev.parent);
mrqc = er32(MRQC);
pm_runtime_put_sync(netdev->dev.parent);
if (!(mrqc & E1000_MRQC_RSS_FIELD_MASK))
return 0;
switch (info->flow_type) {
case TCP_V4_FLOW:
if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_TCP)
info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
/* fall through */
case UDP_V4_FLOW:
case SCTP_V4_FLOW:
case AH_ESP_V4_FLOW:
case IPV4_FLOW:
if (mrqc & E1000_MRQC_RSS_FIELD_IPV4)
info->data |= RXH_IP_SRC | RXH_IP_DST;
break;
case TCP_V6_FLOW:
if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP)
info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
/* fall through */
case UDP_V6_FLOW:
case SCTP_V6_FLOW:
case AH_ESP_V6_FLOW:
case IPV6_FLOW:
if (mrqc & E1000_MRQC_RSS_FIELD_IPV6)
info->data |= RXH_IP_SRC | RXH_IP_DST;
break;
default:
break;
}
return 0;
}
default:
return -EOPNOTSUPP;
}
}
static int e1000e_get_eee(struct net_device *netdev, struct ethtool_eee *edata)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
u16 cap_addr, lpa_addr, pcs_stat_addr, phy_data;
u32 ret_val;
if (!(adapter->flags2 & FLAG2_HAS_EEE))
return -EOPNOTSUPP;
switch (hw->phy.type) {
case e1000_phy_82579:
cap_addr = I82579_EEE_CAPABILITY;
lpa_addr = I82579_EEE_LP_ABILITY;
pcs_stat_addr = I82579_EEE_PCS_STATUS;
break;
case e1000_phy_i217:
cap_addr = I217_EEE_CAPABILITY;
lpa_addr = I217_EEE_LP_ABILITY;
pcs_stat_addr = I217_EEE_PCS_STATUS;
break;
default:
return -EOPNOTSUPP;
}
pm_runtime_get_sync(netdev->dev.parent);
ret_val = hw->phy.ops.acquire(hw);
if (ret_val) {
pm_runtime_put_sync(netdev->dev.parent);
return -EBUSY;
}
/* EEE Capability */
ret_val = e1000_read_emi_reg_locked(hw, cap_addr, &phy_data);
if (ret_val)
goto release;
edata->supported = mmd_eee_cap_to_ethtool_sup_t(phy_data);
/* EEE Advertised */
edata->advertised = mmd_eee_adv_to_ethtool_adv_t(adapter->eee_advert);
/* EEE Link Partner Advertised */
ret_val = e1000_read_emi_reg_locked(hw, lpa_addr, &phy_data);
if (ret_val)
goto release;
edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
/* EEE PCS Status */
ret_val = e1000_read_emi_reg_locked(hw, pcs_stat_addr, &phy_data);
if (ret_val)
goto release;
if (hw->phy.type == e1000_phy_82579)
phy_data <<= 8;
/* Result of the EEE auto negotiation - there is no register that
* has the status of the EEE negotiation so do a best-guess based
* on whether Tx or Rx LPI indications have been received.
*/
if (phy_data & (E1000_EEE_TX_LPI_RCVD | E1000_EEE_RX_LPI_RCVD))
edata->eee_active = true;
edata->eee_enabled = !hw->dev_spec.ich8lan.eee_disable;
edata->tx_lpi_enabled = true;
edata->tx_lpi_timer = er32(LPIC) >> E1000_LPIC_LPIET_SHIFT;
release:
hw->phy.ops.release(hw);
if (ret_val)
ret_val = -ENODATA;
pm_runtime_put_sync(netdev->dev.parent);
return ret_val;
}
static int e1000e_set_eee(struct net_device *netdev, struct ethtool_eee *edata)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
struct ethtool_eee eee_curr;
s32 ret_val;
ret_val = e1000e_get_eee(netdev, &eee_curr);
if (ret_val)
return ret_val;
if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
e_err("Setting EEE tx-lpi is not supported\n");
return -EINVAL;
}
if (eee_curr.tx_lpi_timer != edata->tx_lpi_timer) {
e_err("Setting EEE Tx LPI timer is not supported\n");
return -EINVAL;
}
if (edata->advertised & ~(ADVERTISE_100_FULL | ADVERTISE_1000_FULL)) {
e_err("EEE advertisement supports only 100TX and/or 1000T full-duplex\n");
return -EINVAL;
}
adapter->eee_advert = ethtool_adv_to_mmd_eee_adv_t(edata->advertised);
hw->dev_spec.ich8lan.eee_disable = !edata->eee_enabled;
pm_runtime_get_sync(netdev->dev.parent);
/* reset the link */
if (netif_running(netdev))
e1000e_reinit_locked(adapter);
else
e1000e_reset(adapter);
pm_runtime_put_sync(netdev->dev.parent);
return 0;
}
static int e1000e_get_ts_info(struct net_device *netdev,
struct ethtool_ts_info *info)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
ethtool_op_get_ts_info(netdev, info);
if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
return 0;
info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE |
SOF_TIMESTAMPING_RX_HARDWARE |
SOF_TIMESTAMPING_RAW_HARDWARE);
info->tx_types = (1 << HWTSTAMP_TX_OFF) | (1 << HWTSTAMP_TX_ON);
info->rx_filters = ((1 << HWTSTAMP_FILTER_NONE) |
(1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
(1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
(1 << HWTSTAMP_FILTER_PTP_V2_L4_SYNC) |
(1 << HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) |
(1 << HWTSTAMP_FILTER_PTP_V2_L2_SYNC) |
(1 << HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) |
(1 << HWTSTAMP_FILTER_PTP_V2_EVENT) |
(1 << HWTSTAMP_FILTER_PTP_V2_SYNC) |
(1 << HWTSTAMP_FILTER_PTP_V2_DELAY_REQ) |
(1 << HWTSTAMP_FILTER_ALL));
if (adapter->ptp_clock)
info->phc_index = ptp_clock_index(adapter->ptp_clock);
return 0;
}
static const struct ethtool_ops e1000_ethtool_ops = {
.get_settings = e1000_get_settings,
.set_settings = e1000_set_settings,
.get_drvinfo = e1000_get_drvinfo,
.get_regs_len = e1000_get_regs_len,
.get_regs = e1000_get_regs,
.get_wol = e1000_get_wol,
.set_wol = e1000_set_wol,
.get_msglevel = e1000_get_msglevel,
.set_msglevel = e1000_set_msglevel,
.nway_reset = e1000_nway_reset,
.get_link = ethtool_op_get_link,
.get_eeprom_len = e1000_get_eeprom_len,
.get_eeprom = e1000_get_eeprom,
.set_eeprom = e1000_set_eeprom,
.get_ringparam = e1000_get_ringparam,
.set_ringparam = e1000_set_ringparam,
.get_pauseparam = e1000_get_pauseparam,
.set_pauseparam = e1000_set_pauseparam,
.self_test = e1000_diag_test,
.get_strings = e1000_get_strings,
.set_phys_id = e1000_set_phys_id,
.get_ethtool_stats = e1000_get_ethtool_stats,
.get_sset_count = e1000e_get_sset_count,
.get_coalesce = e1000_get_coalesce,
.set_coalesce = e1000_set_coalesce,
.get_rxnfc = e1000_get_rxnfc,
.get_ts_info = e1000e_get_ts_info,
.get_eee = e1000e_get_eee,
.set_eee = e1000e_set_eee,
};
void e1000e_set_ethtool_ops(struct net_device *netdev)
{
netdev->ethtool_ops = &e1000_ethtool_ops;
}