linux/drivers/gpu/drm/i915/intel_ddi.c
Rodrigo Vivi cf54ca8bc5 drm/i915/cnl: Implement voltage swing sequence.
This is an important part of the DDI initalization as well as
for changing the voltage during DisplayPort link training.

This new sequence for Cannonlake is more like Broxton style
but still with different registers, different table and
different steps.

v2: Do not write to DW4_GRP to avoid overwrite individual loadgen.
    Fix PORT_CL_DW5 SUS Clock Config set.
v3: As previous platforms use only eDP table if low voltage was
    requested.
v4: fix Werror:maybe uninitialized (Paulo)
v5: Rebase on top of dw2_swing_sel changes
    on previous patches.
v6: Using flexible SCALING_MODE_SEL(x).

Cc: Manasi Navare <manasi.d.navare@intel.com>
Cc: Ville Syrjälä <ville.syrjala@linux.intel.com>
Signed-off-by: Rodrigo Vivi <rodrigo.vivi@intel.com>
Reviewed-by: Manasi Navare <manasi.d.navare@intel.com>
Link: http://patchwork.freedesktop.org/patch/msgid/1497047175-27250-11-git-send-email-rodrigo.vivi@intel.com
2017-06-12 09:44:00 -07:00

2616 lines
78 KiB
C

/*
* Copyright © 2012 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Eugeni Dodonov <eugeni.dodonov@intel.com>
*
*/
#include "i915_drv.h"
#include "intel_drv.h"
struct ddi_buf_trans {
u32 trans1; /* balance leg enable, de-emph level */
u32 trans2; /* vref sel, vswing */
u8 i_boost; /* SKL: I_boost; valid: 0x0, 0x1, 0x3, 0x7 */
};
static const u8 index_to_dp_signal_levels[] = {
[0] = DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0,
[1] = DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1,
[2] = DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2,
[3] = DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_3,
[4] = DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0,
[5] = DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1,
[6] = DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2,
[7] = DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0,
[8] = DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1,
[9] = DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0,
};
/* HDMI/DVI modes ignore everything but the last 2 items. So we share
* them for both DP and FDI transports, allowing those ports to
* automatically adapt to HDMI connections as well
*/
static const struct ddi_buf_trans hsw_ddi_translations_dp[] = {
{ 0x00FFFFFF, 0x0006000E, 0x0 },
{ 0x00D75FFF, 0x0005000A, 0x0 },
{ 0x00C30FFF, 0x00040006, 0x0 },
{ 0x80AAAFFF, 0x000B0000, 0x0 },
{ 0x00FFFFFF, 0x0005000A, 0x0 },
{ 0x00D75FFF, 0x000C0004, 0x0 },
{ 0x80C30FFF, 0x000B0000, 0x0 },
{ 0x00FFFFFF, 0x00040006, 0x0 },
{ 0x80D75FFF, 0x000B0000, 0x0 },
};
static const struct ddi_buf_trans hsw_ddi_translations_fdi[] = {
{ 0x00FFFFFF, 0x0007000E, 0x0 },
{ 0x00D75FFF, 0x000F000A, 0x0 },
{ 0x00C30FFF, 0x00060006, 0x0 },
{ 0x00AAAFFF, 0x001E0000, 0x0 },
{ 0x00FFFFFF, 0x000F000A, 0x0 },
{ 0x00D75FFF, 0x00160004, 0x0 },
{ 0x00C30FFF, 0x001E0000, 0x0 },
{ 0x00FFFFFF, 0x00060006, 0x0 },
{ 0x00D75FFF, 0x001E0000, 0x0 },
};
static const struct ddi_buf_trans hsw_ddi_translations_hdmi[] = {
/* Idx NT mV d T mV d db */
{ 0x00FFFFFF, 0x0006000E, 0x0 },/* 0: 400 400 0 */
{ 0x00E79FFF, 0x000E000C, 0x0 },/* 1: 400 500 2 */
{ 0x00D75FFF, 0x0005000A, 0x0 },/* 2: 400 600 3.5 */
{ 0x00FFFFFF, 0x0005000A, 0x0 },/* 3: 600 600 0 */
{ 0x00E79FFF, 0x001D0007, 0x0 },/* 4: 600 750 2 */
{ 0x00D75FFF, 0x000C0004, 0x0 },/* 5: 600 900 3.5 */
{ 0x00FFFFFF, 0x00040006, 0x0 },/* 6: 800 800 0 */
{ 0x80E79FFF, 0x00030002, 0x0 },/* 7: 800 1000 2 */
{ 0x00FFFFFF, 0x00140005, 0x0 },/* 8: 850 850 0 */
{ 0x00FFFFFF, 0x000C0004, 0x0 },/* 9: 900 900 0 */
{ 0x00FFFFFF, 0x001C0003, 0x0 },/* 10: 950 950 0 */
{ 0x80FFFFFF, 0x00030002, 0x0 },/* 11: 1000 1000 0 */
};
static const struct ddi_buf_trans bdw_ddi_translations_edp[] = {
{ 0x00FFFFFF, 0x00000012, 0x0 },
{ 0x00EBAFFF, 0x00020011, 0x0 },
{ 0x00C71FFF, 0x0006000F, 0x0 },
{ 0x00AAAFFF, 0x000E000A, 0x0 },
{ 0x00FFFFFF, 0x00020011, 0x0 },
{ 0x00DB6FFF, 0x0005000F, 0x0 },
{ 0x00BEEFFF, 0x000A000C, 0x0 },
{ 0x00FFFFFF, 0x0005000F, 0x0 },
{ 0x00DB6FFF, 0x000A000C, 0x0 },
};
static const struct ddi_buf_trans bdw_ddi_translations_dp[] = {
{ 0x00FFFFFF, 0x0007000E, 0x0 },
{ 0x00D75FFF, 0x000E000A, 0x0 },
{ 0x00BEFFFF, 0x00140006, 0x0 },
{ 0x80B2CFFF, 0x001B0002, 0x0 },
{ 0x00FFFFFF, 0x000E000A, 0x0 },
{ 0x00DB6FFF, 0x00160005, 0x0 },
{ 0x80C71FFF, 0x001A0002, 0x0 },
{ 0x00F7DFFF, 0x00180004, 0x0 },
{ 0x80D75FFF, 0x001B0002, 0x0 },
};
static const struct ddi_buf_trans bdw_ddi_translations_fdi[] = {
{ 0x00FFFFFF, 0x0001000E, 0x0 },
{ 0x00D75FFF, 0x0004000A, 0x0 },
{ 0x00C30FFF, 0x00070006, 0x0 },
{ 0x00AAAFFF, 0x000C0000, 0x0 },
{ 0x00FFFFFF, 0x0004000A, 0x0 },
{ 0x00D75FFF, 0x00090004, 0x0 },
{ 0x00C30FFF, 0x000C0000, 0x0 },
{ 0x00FFFFFF, 0x00070006, 0x0 },
{ 0x00D75FFF, 0x000C0000, 0x0 },
};
static const struct ddi_buf_trans bdw_ddi_translations_hdmi[] = {
/* Idx NT mV d T mV df db */
{ 0x00FFFFFF, 0x0007000E, 0x0 },/* 0: 400 400 0 */
{ 0x00D75FFF, 0x000E000A, 0x0 },/* 1: 400 600 3.5 */
{ 0x00BEFFFF, 0x00140006, 0x0 },/* 2: 400 800 6 */
{ 0x00FFFFFF, 0x0009000D, 0x0 },/* 3: 450 450 0 */
{ 0x00FFFFFF, 0x000E000A, 0x0 },/* 4: 600 600 0 */
{ 0x00D7FFFF, 0x00140006, 0x0 },/* 5: 600 800 2.5 */
{ 0x80CB2FFF, 0x001B0002, 0x0 },/* 6: 600 1000 4.5 */
{ 0x00FFFFFF, 0x00140006, 0x0 },/* 7: 800 800 0 */
{ 0x80E79FFF, 0x001B0002, 0x0 },/* 8: 800 1000 2 */
{ 0x80FFFFFF, 0x001B0002, 0x0 },/* 9: 1000 1000 0 */
};
/* Skylake H and S */
static const struct ddi_buf_trans skl_ddi_translations_dp[] = {
{ 0x00002016, 0x000000A0, 0x0 },
{ 0x00005012, 0x0000009B, 0x0 },
{ 0x00007011, 0x00000088, 0x0 },
{ 0x80009010, 0x000000C0, 0x1 },
{ 0x00002016, 0x0000009B, 0x0 },
{ 0x00005012, 0x00000088, 0x0 },
{ 0x80007011, 0x000000C0, 0x1 },
{ 0x00002016, 0x000000DF, 0x0 },
{ 0x80005012, 0x000000C0, 0x1 },
};
/* Skylake U */
static const struct ddi_buf_trans skl_u_ddi_translations_dp[] = {
{ 0x0000201B, 0x000000A2, 0x0 },
{ 0x00005012, 0x00000088, 0x0 },
{ 0x80007011, 0x000000CD, 0x1 },
{ 0x80009010, 0x000000C0, 0x1 },
{ 0x0000201B, 0x0000009D, 0x0 },
{ 0x80005012, 0x000000C0, 0x1 },
{ 0x80007011, 0x000000C0, 0x1 },
{ 0x00002016, 0x00000088, 0x0 },
{ 0x80005012, 0x000000C0, 0x1 },
};
/* Skylake Y */
static const struct ddi_buf_trans skl_y_ddi_translations_dp[] = {
{ 0x00000018, 0x000000A2, 0x0 },
{ 0x00005012, 0x00000088, 0x0 },
{ 0x80007011, 0x000000CD, 0x3 },
{ 0x80009010, 0x000000C0, 0x3 },
{ 0x00000018, 0x0000009D, 0x0 },
{ 0x80005012, 0x000000C0, 0x3 },
{ 0x80007011, 0x000000C0, 0x3 },
{ 0x00000018, 0x00000088, 0x0 },
{ 0x80005012, 0x000000C0, 0x3 },
};
/* Kabylake H and S */
static const struct ddi_buf_trans kbl_ddi_translations_dp[] = {
{ 0x00002016, 0x000000A0, 0x0 },
{ 0x00005012, 0x0000009B, 0x0 },
{ 0x00007011, 0x00000088, 0x0 },
{ 0x80009010, 0x000000C0, 0x1 },
{ 0x00002016, 0x0000009B, 0x0 },
{ 0x00005012, 0x00000088, 0x0 },
{ 0x80007011, 0x000000C0, 0x1 },
{ 0x00002016, 0x00000097, 0x0 },
{ 0x80005012, 0x000000C0, 0x1 },
};
/* Kabylake U */
static const struct ddi_buf_trans kbl_u_ddi_translations_dp[] = {
{ 0x0000201B, 0x000000A1, 0x0 },
{ 0x00005012, 0x00000088, 0x0 },
{ 0x80007011, 0x000000CD, 0x3 },
{ 0x80009010, 0x000000C0, 0x3 },
{ 0x0000201B, 0x0000009D, 0x0 },
{ 0x80005012, 0x000000C0, 0x3 },
{ 0x80007011, 0x000000C0, 0x3 },
{ 0x00002016, 0x0000004F, 0x0 },
{ 0x80005012, 0x000000C0, 0x3 },
};
/* Kabylake Y */
static const struct ddi_buf_trans kbl_y_ddi_translations_dp[] = {
{ 0x00001017, 0x000000A1, 0x0 },
{ 0x00005012, 0x00000088, 0x0 },
{ 0x80007011, 0x000000CD, 0x3 },
{ 0x8000800F, 0x000000C0, 0x3 },
{ 0x00001017, 0x0000009D, 0x0 },
{ 0x80005012, 0x000000C0, 0x3 },
{ 0x80007011, 0x000000C0, 0x3 },
{ 0x00001017, 0x0000004C, 0x0 },
{ 0x80005012, 0x000000C0, 0x3 },
};
/*
* Skylake/Kabylake H and S
* eDP 1.4 low vswing translation parameters
*/
static const struct ddi_buf_trans skl_ddi_translations_edp[] = {
{ 0x00000018, 0x000000A8, 0x0 },
{ 0x00004013, 0x000000A9, 0x0 },
{ 0x00007011, 0x000000A2, 0x0 },
{ 0x00009010, 0x0000009C, 0x0 },
{ 0x00000018, 0x000000A9, 0x0 },
{ 0x00006013, 0x000000A2, 0x0 },
{ 0x00007011, 0x000000A6, 0x0 },
{ 0x00000018, 0x000000AB, 0x0 },
{ 0x00007013, 0x0000009F, 0x0 },
{ 0x00000018, 0x000000DF, 0x0 },
};
/*
* Skylake/Kabylake U
* eDP 1.4 low vswing translation parameters
*/
static const struct ddi_buf_trans skl_u_ddi_translations_edp[] = {
{ 0x00000018, 0x000000A8, 0x0 },
{ 0x00004013, 0x000000A9, 0x0 },
{ 0x00007011, 0x000000A2, 0x0 },
{ 0x00009010, 0x0000009C, 0x0 },
{ 0x00000018, 0x000000A9, 0x0 },
{ 0x00006013, 0x000000A2, 0x0 },
{ 0x00007011, 0x000000A6, 0x0 },
{ 0x00002016, 0x000000AB, 0x0 },
{ 0x00005013, 0x0000009F, 0x0 },
{ 0x00000018, 0x000000DF, 0x0 },
};
/*
* Skylake/Kabylake Y
* eDP 1.4 low vswing translation parameters
*/
static const struct ddi_buf_trans skl_y_ddi_translations_edp[] = {
{ 0x00000018, 0x000000A8, 0x0 },
{ 0x00004013, 0x000000AB, 0x0 },
{ 0x00007011, 0x000000A4, 0x0 },
{ 0x00009010, 0x000000DF, 0x0 },
{ 0x00000018, 0x000000AA, 0x0 },
{ 0x00006013, 0x000000A4, 0x0 },
{ 0x00007011, 0x0000009D, 0x0 },
{ 0x00000018, 0x000000A0, 0x0 },
{ 0x00006012, 0x000000DF, 0x0 },
{ 0x00000018, 0x0000008A, 0x0 },
};
/* Skylake/Kabylake U, H and S */
static const struct ddi_buf_trans skl_ddi_translations_hdmi[] = {
{ 0x00000018, 0x000000AC, 0x0 },
{ 0x00005012, 0x0000009D, 0x0 },
{ 0x00007011, 0x00000088, 0x0 },
{ 0x00000018, 0x000000A1, 0x0 },
{ 0x00000018, 0x00000098, 0x0 },
{ 0x00004013, 0x00000088, 0x0 },
{ 0x80006012, 0x000000CD, 0x1 },
{ 0x00000018, 0x000000DF, 0x0 },
{ 0x80003015, 0x000000CD, 0x1 }, /* Default */
{ 0x80003015, 0x000000C0, 0x1 },
{ 0x80000018, 0x000000C0, 0x1 },
};
/* Skylake/Kabylake Y */
static const struct ddi_buf_trans skl_y_ddi_translations_hdmi[] = {
{ 0x00000018, 0x000000A1, 0x0 },
{ 0x00005012, 0x000000DF, 0x0 },
{ 0x80007011, 0x000000CB, 0x3 },
{ 0x00000018, 0x000000A4, 0x0 },
{ 0x00000018, 0x0000009D, 0x0 },
{ 0x00004013, 0x00000080, 0x0 },
{ 0x80006013, 0x000000C0, 0x3 },
{ 0x00000018, 0x0000008A, 0x0 },
{ 0x80003015, 0x000000C0, 0x3 }, /* Default */
{ 0x80003015, 0x000000C0, 0x3 },
{ 0x80000018, 0x000000C0, 0x3 },
};
struct bxt_ddi_buf_trans {
u32 margin; /* swing value */
u32 scale; /* scale value */
u32 enable; /* scale enable */
u32 deemphasis;
bool default_index; /* true if the entry represents default value */
};
static const struct bxt_ddi_buf_trans bxt_ddi_translations_dp[] = {
/* Idx NT mV diff db */
{ 52, 0x9A, 0, 128, true }, /* 0: 400 0 */
{ 78, 0x9A, 0, 85, false }, /* 1: 400 3.5 */
{ 104, 0x9A, 0, 64, false }, /* 2: 400 6 */
{ 154, 0x9A, 0, 43, false }, /* 3: 400 9.5 */
{ 77, 0x9A, 0, 128, false }, /* 4: 600 0 */
{ 116, 0x9A, 0, 85, false }, /* 5: 600 3.5 */
{ 154, 0x9A, 0, 64, false }, /* 6: 600 6 */
{ 102, 0x9A, 0, 128, false }, /* 7: 800 0 */
{ 154, 0x9A, 0, 85, false }, /* 8: 800 3.5 */
{ 154, 0x9A, 1, 128, false }, /* 9: 1200 0 */
};
static const struct bxt_ddi_buf_trans bxt_ddi_translations_edp[] = {
/* Idx NT mV diff db */
{ 26, 0, 0, 128, false }, /* 0: 200 0 */
{ 38, 0, 0, 112, false }, /* 1: 200 1.5 */
{ 48, 0, 0, 96, false }, /* 2: 200 4 */
{ 54, 0, 0, 69, false }, /* 3: 200 6 */
{ 32, 0, 0, 128, false }, /* 4: 250 0 */
{ 48, 0, 0, 104, false }, /* 5: 250 1.5 */
{ 54, 0, 0, 85, false }, /* 6: 250 4 */
{ 43, 0, 0, 128, false }, /* 7: 300 0 */
{ 54, 0, 0, 101, false }, /* 8: 300 1.5 */
{ 48, 0, 0, 128, false }, /* 9: 300 0 */
};
/* BSpec has 2 recommended values - entries 0 and 8.
* Using the entry with higher vswing.
*/
static const struct bxt_ddi_buf_trans bxt_ddi_translations_hdmi[] = {
/* Idx NT mV diff db */
{ 52, 0x9A, 0, 128, false }, /* 0: 400 0 */
{ 52, 0x9A, 0, 85, false }, /* 1: 400 3.5 */
{ 52, 0x9A, 0, 64, false }, /* 2: 400 6 */
{ 42, 0x9A, 0, 43, false }, /* 3: 400 9.5 */
{ 77, 0x9A, 0, 128, false }, /* 4: 600 0 */
{ 77, 0x9A, 0, 85, false }, /* 5: 600 3.5 */
{ 77, 0x9A, 0, 64, false }, /* 6: 600 6 */
{ 102, 0x9A, 0, 128, false }, /* 7: 800 0 */
{ 102, 0x9A, 0, 85, false }, /* 8: 800 3.5 */
{ 154, 0x9A, 1, 128, true }, /* 9: 1200 0 */
};
struct cnl_ddi_buf_trans {
u32 dw2_swing_sel;
u32 dw7_n_scalar;
u32 dw4_cursor_coeff;
u32 dw4_post_cursor_2;
u32 dw4_post_cursor_1;
};
/* Voltage Swing Programming for VccIO 0.85V for DP */
static const struct cnl_ddi_buf_trans cnl_ddi_translations_dp_0_85V[] = {
/* NT mV Trans mV db */
{ 0xA, 0x5D, 0x3F, 0x00, 0x00 }, /* 350 350 0.0 */
{ 0xA, 0x6A, 0x38, 0x00, 0x07 }, /* 350 500 3.1 */
{ 0xB, 0x7A, 0x32, 0x00, 0x0D }, /* 350 700 6.0 */
{ 0x6, 0x7C, 0x2D, 0x00, 0x12 }, /* 350 900 8.2 */
{ 0xA, 0x69, 0x3F, 0x00, 0x00 }, /* 500 500 0.0 */
{ 0xB, 0x7A, 0x36, 0x00, 0x09 }, /* 500 700 2.9 */
{ 0x6, 0x7C, 0x30, 0x00, 0x0F }, /* 500 900 5.1 */
{ 0xB, 0x7D, 0x3C, 0x00, 0x03 }, /* 650 725 0.9 */
{ 0x6, 0x7C, 0x34, 0x00, 0x0B }, /* 600 900 3.5 */
{ 0x6, 0x7B, 0x3F, 0x00, 0x00 }, /* 900 900 0.0 */
};
/* Voltage Swing Programming for VccIO 0.85V for HDMI */
static const struct cnl_ddi_buf_trans cnl_ddi_translations_hdmi_0_85V[] = {
/* NT mV Trans mV db */
{ 0xA, 0x60, 0x3F, 0x00, 0x00 }, /* 450 450 0.0 */
{ 0xB, 0x73, 0x36, 0x00, 0x09 }, /* 450 650 3.2 */
{ 0x6, 0x7F, 0x31, 0x00, 0x0E }, /* 450 850 5.5 */
{ 0xB, 0x73, 0x3F, 0x00, 0x00 }, /* 650 650 0.0 */
{ 0x6, 0x7F, 0x37, 0x00, 0x08 }, /* 650 850 2.3 */
{ 0x6, 0x7F, 0x3F, 0x00, 0x00 }, /* 850 850 0.0 */
{ 0x6, 0x7F, 0x35, 0x00, 0x0A }, /* 600 850 3.0 */
};
/* Voltage Swing Programming for VccIO 0.85V for eDP */
static const struct cnl_ddi_buf_trans cnl_ddi_translations_edp_0_85V[] = {
/* NT mV Trans mV db */
{ 0xA, 0x66, 0x3A, 0x00, 0x05 }, /* 384 500 2.3 */
{ 0x0, 0x7F, 0x38, 0x00, 0x07 }, /* 153 200 2.3 */
{ 0x8, 0x7F, 0x38, 0x00, 0x07 }, /* 192 250 2.3 */
{ 0x1, 0x7F, 0x38, 0x00, 0x07 }, /* 230 300 2.3 */
{ 0x9, 0x7F, 0x38, 0x00, 0x07 }, /* 269 350 2.3 */
{ 0xA, 0x66, 0x3C, 0x00, 0x03 }, /* 446 500 1.0 */
{ 0xB, 0x70, 0x3C, 0x00, 0x03 }, /* 460 600 2.3 */
{ 0xC, 0x75, 0x3C, 0x00, 0x03 }, /* 537 700 2.3 */
{ 0x2, 0x7F, 0x3F, 0x00, 0x00 }, /* 400 400 0.0 */
};
/* Voltage Swing Programming for VccIO 0.95V for DP */
static const struct cnl_ddi_buf_trans cnl_ddi_translations_dp_0_95V[] = {
/* NT mV Trans mV db */
{ 0xA, 0x5D, 0x3F, 0x00, 0x00 }, /* 350 350 0.0 */
{ 0xA, 0x6A, 0x38, 0x00, 0x07 }, /* 350 500 3.1 */
{ 0xB, 0x7A, 0x32, 0x00, 0x0D }, /* 350 700 6.0 */
{ 0x6, 0x7C, 0x2D, 0x00, 0x12 }, /* 350 900 8.2 */
{ 0xA, 0x69, 0x3F, 0x00, 0x00 }, /* 500 500 0.0 */
{ 0xB, 0x7A, 0x36, 0x00, 0x09 }, /* 500 700 2.9 */
{ 0x6, 0x7C, 0x30, 0x00, 0x0F }, /* 500 900 5.1 */
{ 0xB, 0x7D, 0x3C, 0x00, 0x03 }, /* 650 725 0.9 */
{ 0x6, 0x7C, 0x34, 0x00, 0x0B }, /* 600 900 3.5 */
{ 0x6, 0x7B, 0x3F, 0x00, 0x00 }, /* 900 900 0.0 */
};
/* Voltage Swing Programming for VccIO 0.95V for HDMI */
static const struct cnl_ddi_buf_trans cnl_ddi_translations_hdmi_0_95V[] = {
/* NT mV Trans mV db */
{ 0xA, 0x5C, 0x3F, 0x00, 0x00 }, /* 400 400 0.0 */
{ 0xB, 0x69, 0x37, 0x00, 0x08 }, /* 400 600 3.5 */
{ 0x5, 0x76, 0x31, 0x00, 0x0E }, /* 400 800 6.0 */
{ 0xA, 0x5E, 0x3F, 0x00, 0x00 }, /* 450 450 0.0 */
{ 0xB, 0x69, 0x3F, 0x00, 0x00 }, /* 600 600 0.0 */
{ 0xB, 0x79, 0x35, 0x00, 0x0A }, /* 600 850 3.0 */
{ 0x6, 0x7D, 0x32, 0x00, 0x0D }, /* 600 1000 4.4 */
{ 0x5, 0x76, 0x3F, 0x00, 0x00 }, /* 800 800 0.0 */
{ 0x6, 0x7D, 0x39, 0x00, 0x06 }, /* 800 1000 1.9 */
{ 0x6, 0x7F, 0x39, 0x00, 0x06 }, /* 850 1050 1.8 */
{ 0x6, 0x7F, 0x3F, 0x00, 0x00 }, /* 1050 1050 0.0 */
};
/* Voltage Swing Programming for VccIO 0.95V for eDP */
static const struct cnl_ddi_buf_trans cnl_ddi_translations_edp_0_95V[] = {
/* NT mV Trans mV db */
{ 0xA, 0x61, 0x3A, 0x00, 0x05 }, /* 384 500 2.3 */
{ 0x0, 0x7F, 0x38, 0x00, 0x07 }, /* 153 200 2.3 */
{ 0x8, 0x7F, 0x38, 0x00, 0x07 }, /* 192 250 2.3 */
{ 0x1, 0x7F, 0x38, 0x00, 0x07 }, /* 230 300 2.3 */
{ 0x9, 0x7F, 0x38, 0x00, 0x07 }, /* 269 350 2.3 */
{ 0xA, 0x61, 0x3C, 0x00, 0x03 }, /* 446 500 1.0 */
{ 0xB, 0x68, 0x39, 0x00, 0x06 }, /* 460 600 2.3 */
{ 0xC, 0x6E, 0x39, 0x00, 0x06 }, /* 537 700 2.3 */
{ 0x4, 0x7F, 0x3A, 0x00, 0x05 }, /* 460 600 2.3 */
{ 0x2, 0x7F, 0x3F, 0x00, 0x00 }, /* 400 400 0.0 */
};
/* Voltage Swing Programming for VccIO 1.05V for DP */
static const struct cnl_ddi_buf_trans cnl_ddi_translations_dp_1_05V[] = {
/* NT mV Trans mV db */
{ 0xA, 0x58, 0x3F, 0x00, 0x00 }, /* 400 400 0.0 */
{ 0xB, 0x64, 0x37, 0x00, 0x08 }, /* 400 600 3.5 */
{ 0x5, 0x70, 0x31, 0x00, 0x0E }, /* 400 800 6.0 */
{ 0x6, 0x7F, 0x2C, 0x00, 0x13 }, /* 400 1050 8.4 */
{ 0xB, 0x64, 0x3F, 0x00, 0x00 }, /* 600 600 0.0 */
{ 0x5, 0x73, 0x35, 0x00, 0x0A }, /* 600 850 3.0 */
{ 0x6, 0x7F, 0x30, 0x00, 0x0F }, /* 550 1050 5.6 */
{ 0x5, 0x76, 0x3E, 0x00, 0x01 }, /* 850 900 0.5 */
{ 0x6, 0x7F, 0x36, 0x00, 0x09 }, /* 750 1050 2.9 */
{ 0x6, 0x7F, 0x3F, 0x00, 0x00 }, /* 1050 1050 0.0 */
};
/* Voltage Swing Programming for VccIO 1.05V for HDMI */
static const struct cnl_ddi_buf_trans cnl_ddi_translations_hdmi_1_05V[] = {
/* NT mV Trans mV db */
{ 0xA, 0x58, 0x3F, 0x00, 0x00 }, /* 400 400 0.0 */
{ 0xB, 0x64, 0x37, 0x00, 0x08 }, /* 400 600 3.5 */
{ 0x5, 0x70, 0x31, 0x00, 0x0E }, /* 400 800 6.0 */
{ 0xA, 0x5B, 0x3F, 0x00, 0x00 }, /* 450 450 0.0 */
{ 0xB, 0x64, 0x3F, 0x00, 0x00 }, /* 600 600 0.0 */
{ 0x5, 0x73, 0x35, 0x00, 0x0A }, /* 600 850 3.0 */
{ 0x6, 0x7C, 0x32, 0x00, 0x0D }, /* 600 1000 4.4 */
{ 0x5, 0x70, 0x3F, 0x00, 0x00 }, /* 800 800 0.0 */
{ 0x6, 0x7C, 0x39, 0x00, 0x06 }, /* 800 1000 1.9 */
{ 0x6, 0x7F, 0x39, 0x00, 0x06 }, /* 850 1050 1.8 */
{ 0x6, 0x7F, 0x3F, 0x00, 0x00 }, /* 1050 1050 0.0 */
};
/* Voltage Swing Programming for VccIO 1.05V for eDP */
static const struct cnl_ddi_buf_trans cnl_ddi_translations_edp_1_05V[] = {
/* NT mV Trans mV db */
{ 0xA, 0x5E, 0x3A, 0x00, 0x05 }, /* 384 500 2.3 */
{ 0x0, 0x7F, 0x38, 0x00, 0x07 }, /* 153 200 2.3 */
{ 0x8, 0x7F, 0x38, 0x00, 0x07 }, /* 192 250 2.3 */
{ 0x1, 0x7F, 0x38, 0x00, 0x07 }, /* 230 300 2.3 */
{ 0x9, 0x7F, 0x38, 0x00, 0x07 }, /* 269 350 2.3 */
{ 0xA, 0x5E, 0x3C, 0x00, 0x03 }, /* 446 500 1.0 */
{ 0xB, 0x64, 0x39, 0x00, 0x06 }, /* 460 600 2.3 */
{ 0xE, 0x6A, 0x39, 0x00, 0x06 }, /* 537 700 2.3 */
{ 0x2, 0x7F, 0x3F, 0x00, 0x00 }, /* 400 400 0.0 */
};
enum port intel_ddi_get_encoder_port(struct intel_encoder *encoder)
{
switch (encoder->type) {
case INTEL_OUTPUT_DP_MST:
return enc_to_mst(&encoder->base)->primary->port;
case INTEL_OUTPUT_DP:
case INTEL_OUTPUT_EDP:
case INTEL_OUTPUT_HDMI:
case INTEL_OUTPUT_UNKNOWN:
return enc_to_dig_port(&encoder->base)->port;
case INTEL_OUTPUT_ANALOG:
return PORT_E;
default:
MISSING_CASE(encoder->type);
return PORT_A;
}
}
static const struct ddi_buf_trans *
bdw_get_buf_trans_edp(struct drm_i915_private *dev_priv, int *n_entries)
{
if (dev_priv->vbt.edp.low_vswing) {
*n_entries = ARRAY_SIZE(bdw_ddi_translations_edp);
return bdw_ddi_translations_edp;
} else {
*n_entries = ARRAY_SIZE(bdw_ddi_translations_dp);
return bdw_ddi_translations_dp;
}
}
static const struct ddi_buf_trans *
skl_get_buf_trans_dp(struct drm_i915_private *dev_priv, int *n_entries)
{
if (IS_SKL_ULX(dev_priv)) {
*n_entries = ARRAY_SIZE(skl_y_ddi_translations_dp);
return skl_y_ddi_translations_dp;
} else if (IS_SKL_ULT(dev_priv)) {
*n_entries = ARRAY_SIZE(skl_u_ddi_translations_dp);
return skl_u_ddi_translations_dp;
} else {
*n_entries = ARRAY_SIZE(skl_ddi_translations_dp);
return skl_ddi_translations_dp;
}
}
static const struct ddi_buf_trans *
kbl_get_buf_trans_dp(struct drm_i915_private *dev_priv, int *n_entries)
{
if (IS_KBL_ULX(dev_priv)) {
*n_entries = ARRAY_SIZE(kbl_y_ddi_translations_dp);
return kbl_y_ddi_translations_dp;
} else if (IS_KBL_ULT(dev_priv)) {
*n_entries = ARRAY_SIZE(kbl_u_ddi_translations_dp);
return kbl_u_ddi_translations_dp;
} else {
*n_entries = ARRAY_SIZE(kbl_ddi_translations_dp);
return kbl_ddi_translations_dp;
}
}
static const struct ddi_buf_trans *
skl_get_buf_trans_edp(struct drm_i915_private *dev_priv, int *n_entries)
{
if (dev_priv->vbt.edp.low_vswing) {
if (IS_SKL_ULX(dev_priv) || IS_KBL_ULX(dev_priv)) {
*n_entries = ARRAY_SIZE(skl_y_ddi_translations_edp);
return skl_y_ddi_translations_edp;
} else if (IS_SKL_ULT(dev_priv) || IS_KBL_ULT(dev_priv)) {
*n_entries = ARRAY_SIZE(skl_u_ddi_translations_edp);
return skl_u_ddi_translations_edp;
} else {
*n_entries = ARRAY_SIZE(skl_ddi_translations_edp);
return skl_ddi_translations_edp;
}
}
if (IS_KABYLAKE(dev_priv))
return kbl_get_buf_trans_dp(dev_priv, n_entries);
else
return skl_get_buf_trans_dp(dev_priv, n_entries);
}
static const struct ddi_buf_trans *
skl_get_buf_trans_hdmi(struct drm_i915_private *dev_priv, int *n_entries)
{
if (IS_SKL_ULX(dev_priv) || IS_KBL_ULX(dev_priv)) {
*n_entries = ARRAY_SIZE(skl_y_ddi_translations_hdmi);
return skl_y_ddi_translations_hdmi;
} else {
*n_entries = ARRAY_SIZE(skl_ddi_translations_hdmi);
return skl_ddi_translations_hdmi;
}
}
static int intel_ddi_hdmi_level(struct drm_i915_private *dev_priv, enum port port)
{
int n_hdmi_entries;
int hdmi_level;
int hdmi_default_entry;
hdmi_level = dev_priv->vbt.ddi_port_info[port].hdmi_level_shift;
if (IS_GEN9_LP(dev_priv))
return hdmi_level;
if (IS_GEN9_BC(dev_priv)) {
skl_get_buf_trans_hdmi(dev_priv, &n_hdmi_entries);
hdmi_default_entry = 8;
} else if (IS_BROADWELL(dev_priv)) {
n_hdmi_entries = ARRAY_SIZE(bdw_ddi_translations_hdmi);
hdmi_default_entry = 7;
} else if (IS_HASWELL(dev_priv)) {
n_hdmi_entries = ARRAY_SIZE(hsw_ddi_translations_hdmi);
hdmi_default_entry = 6;
} else {
WARN(1, "ddi translation table missing\n");
n_hdmi_entries = ARRAY_SIZE(bdw_ddi_translations_hdmi);
hdmi_default_entry = 7;
}
/* Choose a good default if VBT is badly populated */
if (hdmi_level == HDMI_LEVEL_SHIFT_UNKNOWN ||
hdmi_level >= n_hdmi_entries)
hdmi_level = hdmi_default_entry;
return hdmi_level;
}
static const struct ddi_buf_trans *
intel_ddi_get_buf_trans_dp(struct drm_i915_private *dev_priv,
int *n_entries)
{
if (IS_KABYLAKE(dev_priv)) {
return kbl_get_buf_trans_dp(dev_priv, n_entries);
} else if (IS_SKYLAKE(dev_priv)) {
return skl_get_buf_trans_dp(dev_priv, n_entries);
} else if (IS_BROADWELL(dev_priv)) {
*n_entries = ARRAY_SIZE(bdw_ddi_translations_dp);
return bdw_ddi_translations_dp;
} else if (IS_HASWELL(dev_priv)) {
*n_entries = ARRAY_SIZE(hsw_ddi_translations_dp);
return hsw_ddi_translations_dp;
}
*n_entries = 0;
return NULL;
}
static const struct ddi_buf_trans *
intel_ddi_get_buf_trans_edp(struct drm_i915_private *dev_priv,
int *n_entries)
{
if (IS_KABYLAKE(dev_priv) || IS_SKYLAKE(dev_priv)) {
return skl_get_buf_trans_edp(dev_priv, n_entries);
} else if (IS_BROADWELL(dev_priv)) {
return bdw_get_buf_trans_edp(dev_priv, n_entries);
} else if (IS_HASWELL(dev_priv)) {
*n_entries = ARRAY_SIZE(hsw_ddi_translations_dp);
return hsw_ddi_translations_dp;
}
*n_entries = 0;
return NULL;
}
static const struct ddi_buf_trans *
intel_ddi_get_buf_trans_fdi(struct drm_i915_private *dev_priv,
int *n_entries)
{
if (IS_BROADWELL(dev_priv)) {
*n_entries = ARRAY_SIZE(hsw_ddi_translations_fdi);
return hsw_ddi_translations_fdi;
} else if (IS_HASWELL(dev_priv)) {
*n_entries = ARRAY_SIZE(hsw_ddi_translations_fdi);
return hsw_ddi_translations_fdi;
}
*n_entries = 0;
return NULL;
}
/*
* Starting with Haswell, DDI port buffers must be programmed with correct
* values in advance. This function programs the correct values for
* DP/eDP/FDI use cases.
*/
static void intel_prepare_dp_ddi_buffers(struct intel_encoder *encoder)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
u32 iboost_bit = 0;
int i, n_entries;
enum port port = intel_ddi_get_encoder_port(encoder);
const struct ddi_buf_trans *ddi_translations;
if (IS_GEN9_LP(dev_priv))
return;
switch (encoder->type) {
case INTEL_OUTPUT_EDP:
ddi_translations = intel_ddi_get_buf_trans_edp(dev_priv,
&n_entries);
break;
case INTEL_OUTPUT_DP:
ddi_translations = intel_ddi_get_buf_trans_dp(dev_priv,
&n_entries);
break;
case INTEL_OUTPUT_ANALOG:
ddi_translations = intel_ddi_get_buf_trans_fdi(dev_priv,
&n_entries);
break;
default:
MISSING_CASE(encoder->type);
return;
}
if (IS_GEN9_BC(dev_priv)) {
/* If we're boosting the current, set bit 31 of trans1 */
if (dev_priv->vbt.ddi_port_info[port].dp_boost_level)
iboost_bit = DDI_BUF_BALANCE_LEG_ENABLE;
if (WARN_ON(encoder->type == INTEL_OUTPUT_EDP &&
port != PORT_A && port != PORT_E &&
n_entries > 9))
n_entries = 9;
}
for (i = 0; i < n_entries; i++) {
I915_WRITE(DDI_BUF_TRANS_LO(port, i),
ddi_translations[i].trans1 | iboost_bit);
I915_WRITE(DDI_BUF_TRANS_HI(port, i),
ddi_translations[i].trans2);
}
}
/*
* Starting with Haswell, DDI port buffers must be programmed with correct
* values in advance. This function programs the correct values for
* HDMI/DVI use cases.
*/
static void intel_prepare_hdmi_ddi_buffers(struct intel_encoder *encoder)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
u32 iboost_bit = 0;
int n_hdmi_entries, hdmi_level;
enum port port = intel_ddi_get_encoder_port(encoder);
const struct ddi_buf_trans *ddi_translations_hdmi;
if (IS_GEN9_LP(dev_priv))
return;
hdmi_level = intel_ddi_hdmi_level(dev_priv, port);
if (IS_GEN9_BC(dev_priv)) {
ddi_translations_hdmi = skl_get_buf_trans_hdmi(dev_priv, &n_hdmi_entries);
/* If we're boosting the current, set bit 31 of trans1 */
if (dev_priv->vbt.ddi_port_info[port].hdmi_boost_level)
iboost_bit = DDI_BUF_BALANCE_LEG_ENABLE;
} else if (IS_BROADWELL(dev_priv)) {
ddi_translations_hdmi = bdw_ddi_translations_hdmi;
n_hdmi_entries = ARRAY_SIZE(bdw_ddi_translations_hdmi);
} else if (IS_HASWELL(dev_priv)) {
ddi_translations_hdmi = hsw_ddi_translations_hdmi;
n_hdmi_entries = ARRAY_SIZE(hsw_ddi_translations_hdmi);
} else {
WARN(1, "ddi translation table missing\n");
ddi_translations_hdmi = bdw_ddi_translations_hdmi;
n_hdmi_entries = ARRAY_SIZE(bdw_ddi_translations_hdmi);
}
/* Entry 9 is for HDMI: */
I915_WRITE(DDI_BUF_TRANS_LO(port, 9),
ddi_translations_hdmi[hdmi_level].trans1 | iboost_bit);
I915_WRITE(DDI_BUF_TRANS_HI(port, 9),
ddi_translations_hdmi[hdmi_level].trans2);
}
static void intel_wait_ddi_buf_idle(struct drm_i915_private *dev_priv,
enum port port)
{
i915_reg_t reg = DDI_BUF_CTL(port);
int i;
for (i = 0; i < 16; i++) {
udelay(1);
if (I915_READ(reg) & DDI_BUF_IS_IDLE)
return;
}
DRM_ERROR("Timeout waiting for DDI BUF %c idle bit\n", port_name(port));
}
static uint32_t hsw_pll_to_ddi_pll_sel(struct intel_shared_dpll *pll)
{
switch (pll->id) {
case DPLL_ID_WRPLL1:
return PORT_CLK_SEL_WRPLL1;
case DPLL_ID_WRPLL2:
return PORT_CLK_SEL_WRPLL2;
case DPLL_ID_SPLL:
return PORT_CLK_SEL_SPLL;
case DPLL_ID_LCPLL_810:
return PORT_CLK_SEL_LCPLL_810;
case DPLL_ID_LCPLL_1350:
return PORT_CLK_SEL_LCPLL_1350;
case DPLL_ID_LCPLL_2700:
return PORT_CLK_SEL_LCPLL_2700;
default:
MISSING_CASE(pll->id);
return PORT_CLK_SEL_NONE;
}
}
/* Starting with Haswell, different DDI ports can work in FDI mode for
* connection to the PCH-located connectors. For this, it is necessary to train
* both the DDI port and PCH receiver for the desired DDI buffer settings.
*
* The recommended port to work in FDI mode is DDI E, which we use here. Also,
* please note that when FDI mode is active on DDI E, it shares 2 lines with
* DDI A (which is used for eDP)
*/
void hsw_fdi_link_train(struct intel_crtc *crtc,
const struct intel_crtc_state *crtc_state)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct intel_encoder *encoder;
u32 temp, i, rx_ctl_val, ddi_pll_sel;
for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
WARN_ON(encoder->type != INTEL_OUTPUT_ANALOG);
intel_prepare_dp_ddi_buffers(encoder);
}
/* Set the FDI_RX_MISC pwrdn lanes and the 2 workarounds listed at the
* mode set "sequence for CRT port" document:
* - TP1 to TP2 time with the default value
* - FDI delay to 90h
*
* WaFDIAutoLinkSetTimingOverrride:hsw
*/
I915_WRITE(FDI_RX_MISC(PIPE_A), FDI_RX_PWRDN_LANE1_VAL(2) |
FDI_RX_PWRDN_LANE0_VAL(2) |
FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
/* Enable the PCH Receiver FDI PLL */
rx_ctl_val = dev_priv->fdi_rx_config | FDI_RX_ENHANCE_FRAME_ENABLE |
FDI_RX_PLL_ENABLE |
FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes);
I915_WRITE(FDI_RX_CTL(PIPE_A), rx_ctl_val);
POSTING_READ(FDI_RX_CTL(PIPE_A));
udelay(220);
/* Switch from Rawclk to PCDclk */
rx_ctl_val |= FDI_PCDCLK;
I915_WRITE(FDI_RX_CTL(PIPE_A), rx_ctl_val);
/* Configure Port Clock Select */
ddi_pll_sel = hsw_pll_to_ddi_pll_sel(crtc_state->shared_dpll);
I915_WRITE(PORT_CLK_SEL(PORT_E), ddi_pll_sel);
WARN_ON(ddi_pll_sel != PORT_CLK_SEL_SPLL);
/* Start the training iterating through available voltages and emphasis,
* testing each value twice. */
for (i = 0; i < ARRAY_SIZE(hsw_ddi_translations_fdi) * 2; i++) {
/* Configure DP_TP_CTL with auto-training */
I915_WRITE(DP_TP_CTL(PORT_E),
DP_TP_CTL_FDI_AUTOTRAIN |
DP_TP_CTL_ENHANCED_FRAME_ENABLE |
DP_TP_CTL_LINK_TRAIN_PAT1 |
DP_TP_CTL_ENABLE);
/* Configure and enable DDI_BUF_CTL for DDI E with next voltage.
* DDI E does not support port reversal, the functionality is
* achieved on the PCH side in FDI_RX_CTL, so no need to set the
* port reversal bit */
I915_WRITE(DDI_BUF_CTL(PORT_E),
DDI_BUF_CTL_ENABLE |
((crtc_state->fdi_lanes - 1) << 1) |
DDI_BUF_TRANS_SELECT(i / 2));
POSTING_READ(DDI_BUF_CTL(PORT_E));
udelay(600);
/* Program PCH FDI Receiver TU */
I915_WRITE(FDI_RX_TUSIZE1(PIPE_A), TU_SIZE(64));
/* Enable PCH FDI Receiver with auto-training */
rx_ctl_val |= FDI_RX_ENABLE | FDI_LINK_TRAIN_AUTO;
I915_WRITE(FDI_RX_CTL(PIPE_A), rx_ctl_val);
POSTING_READ(FDI_RX_CTL(PIPE_A));
/* Wait for FDI receiver lane calibration */
udelay(30);
/* Unset FDI_RX_MISC pwrdn lanes */
temp = I915_READ(FDI_RX_MISC(PIPE_A));
temp &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
I915_WRITE(FDI_RX_MISC(PIPE_A), temp);
POSTING_READ(FDI_RX_MISC(PIPE_A));
/* Wait for FDI auto training time */
udelay(5);
temp = I915_READ(DP_TP_STATUS(PORT_E));
if (temp & DP_TP_STATUS_AUTOTRAIN_DONE) {
DRM_DEBUG_KMS("FDI link training done on step %d\n", i);
break;
}
/*
* Leave things enabled even if we failed to train FDI.
* Results in less fireworks from the state checker.
*/
if (i == ARRAY_SIZE(hsw_ddi_translations_fdi) * 2 - 1) {
DRM_ERROR("FDI link training failed!\n");
break;
}
rx_ctl_val &= ~FDI_RX_ENABLE;
I915_WRITE(FDI_RX_CTL(PIPE_A), rx_ctl_val);
POSTING_READ(FDI_RX_CTL(PIPE_A));
temp = I915_READ(DDI_BUF_CTL(PORT_E));
temp &= ~DDI_BUF_CTL_ENABLE;
I915_WRITE(DDI_BUF_CTL(PORT_E), temp);
POSTING_READ(DDI_BUF_CTL(PORT_E));
/* Disable DP_TP_CTL and FDI_RX_CTL and retry */
temp = I915_READ(DP_TP_CTL(PORT_E));
temp &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
I915_WRITE(DP_TP_CTL(PORT_E), temp);
POSTING_READ(DP_TP_CTL(PORT_E));
intel_wait_ddi_buf_idle(dev_priv, PORT_E);
/* Reset FDI_RX_MISC pwrdn lanes */
temp = I915_READ(FDI_RX_MISC(PIPE_A));
temp &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
temp |= FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2);
I915_WRITE(FDI_RX_MISC(PIPE_A), temp);
POSTING_READ(FDI_RX_MISC(PIPE_A));
}
/* Enable normal pixel sending for FDI */
I915_WRITE(DP_TP_CTL(PORT_E),
DP_TP_CTL_FDI_AUTOTRAIN |
DP_TP_CTL_LINK_TRAIN_NORMAL |
DP_TP_CTL_ENHANCED_FRAME_ENABLE |
DP_TP_CTL_ENABLE);
}
static void intel_ddi_init_dp_buf_reg(struct intel_encoder *encoder)
{
struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
struct intel_digital_port *intel_dig_port =
enc_to_dig_port(&encoder->base);
intel_dp->DP = intel_dig_port->saved_port_bits |
DDI_BUF_CTL_ENABLE | DDI_BUF_TRANS_SELECT(0);
intel_dp->DP |= DDI_PORT_WIDTH(intel_dp->lane_count);
}
static struct intel_encoder *
intel_ddi_get_crtc_encoder(struct intel_crtc *crtc)
{
struct drm_device *dev = crtc->base.dev;
struct intel_encoder *encoder, *ret = NULL;
int num_encoders = 0;
for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
ret = encoder;
num_encoders++;
}
if (num_encoders != 1)
WARN(1, "%d encoders on crtc for pipe %c\n", num_encoders,
pipe_name(crtc->pipe));
BUG_ON(ret == NULL);
return ret;
}
/* Finds the only possible encoder associated with the given CRTC. */
struct intel_encoder *
intel_ddi_get_crtc_new_encoder(struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
struct intel_encoder *ret = NULL;
struct drm_atomic_state *state;
struct drm_connector *connector;
struct drm_connector_state *connector_state;
int num_encoders = 0;
int i;
state = crtc_state->base.state;
for_each_new_connector_in_state(state, connector, connector_state, i) {
if (connector_state->crtc != crtc_state->base.crtc)
continue;
ret = to_intel_encoder(connector_state->best_encoder);
num_encoders++;
}
WARN(num_encoders != 1, "%d encoders on crtc for pipe %c\n", num_encoders,
pipe_name(crtc->pipe));
BUG_ON(ret == NULL);
return ret;
}
#define LC_FREQ 2700
static int hsw_ddi_calc_wrpll_link(struct drm_i915_private *dev_priv,
i915_reg_t reg)
{
int refclk = LC_FREQ;
int n, p, r;
u32 wrpll;
wrpll = I915_READ(reg);
switch (wrpll & WRPLL_PLL_REF_MASK) {
case WRPLL_PLL_SSC:
case WRPLL_PLL_NON_SSC:
/*
* We could calculate spread here, but our checking
* code only cares about 5% accuracy, and spread is a max of
* 0.5% downspread.
*/
refclk = 135;
break;
case WRPLL_PLL_LCPLL:
refclk = LC_FREQ;
break;
default:
WARN(1, "bad wrpll refclk\n");
return 0;
}
r = wrpll & WRPLL_DIVIDER_REF_MASK;
p = (wrpll & WRPLL_DIVIDER_POST_MASK) >> WRPLL_DIVIDER_POST_SHIFT;
n = (wrpll & WRPLL_DIVIDER_FB_MASK) >> WRPLL_DIVIDER_FB_SHIFT;
/* Convert to KHz, p & r have a fixed point portion */
return (refclk * n * 100) / (p * r);
}
static int skl_calc_wrpll_link(struct drm_i915_private *dev_priv,
uint32_t dpll)
{
i915_reg_t cfgcr1_reg, cfgcr2_reg;
uint32_t cfgcr1_val, cfgcr2_val;
uint32_t p0, p1, p2, dco_freq;
cfgcr1_reg = DPLL_CFGCR1(dpll);
cfgcr2_reg = DPLL_CFGCR2(dpll);
cfgcr1_val = I915_READ(cfgcr1_reg);
cfgcr2_val = I915_READ(cfgcr2_reg);
p0 = cfgcr2_val & DPLL_CFGCR2_PDIV_MASK;
p2 = cfgcr2_val & DPLL_CFGCR2_KDIV_MASK;
if (cfgcr2_val & DPLL_CFGCR2_QDIV_MODE(1))
p1 = (cfgcr2_val & DPLL_CFGCR2_QDIV_RATIO_MASK) >> 8;
else
p1 = 1;
switch (p0) {
case DPLL_CFGCR2_PDIV_1:
p0 = 1;
break;
case DPLL_CFGCR2_PDIV_2:
p0 = 2;
break;
case DPLL_CFGCR2_PDIV_3:
p0 = 3;
break;
case DPLL_CFGCR2_PDIV_7:
p0 = 7;
break;
}
switch (p2) {
case DPLL_CFGCR2_KDIV_5:
p2 = 5;
break;
case DPLL_CFGCR2_KDIV_2:
p2 = 2;
break;
case DPLL_CFGCR2_KDIV_3:
p2 = 3;
break;
case DPLL_CFGCR2_KDIV_1:
p2 = 1;
break;
}
dco_freq = (cfgcr1_val & DPLL_CFGCR1_DCO_INTEGER_MASK) * 24 * 1000;
dco_freq += (((cfgcr1_val & DPLL_CFGCR1_DCO_FRACTION_MASK) >> 9) * 24 *
1000) / 0x8000;
return dco_freq / (p0 * p1 * p2 * 5);
}
static void ddi_dotclock_get(struct intel_crtc_state *pipe_config)
{
int dotclock;
if (pipe_config->has_pch_encoder)
dotclock = intel_dotclock_calculate(pipe_config->port_clock,
&pipe_config->fdi_m_n);
else if (intel_crtc_has_dp_encoder(pipe_config))
dotclock = intel_dotclock_calculate(pipe_config->port_clock,
&pipe_config->dp_m_n);
else if (pipe_config->has_hdmi_sink && pipe_config->pipe_bpp == 36)
dotclock = pipe_config->port_clock * 2 / 3;
else
dotclock = pipe_config->port_clock;
if (pipe_config->pixel_multiplier)
dotclock /= pipe_config->pixel_multiplier;
pipe_config->base.adjusted_mode.crtc_clock = dotclock;
}
static void skl_ddi_clock_get(struct intel_encoder *encoder,
struct intel_crtc_state *pipe_config)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
int link_clock = 0;
uint32_t dpll_ctl1, dpll;
dpll = intel_get_shared_dpll_id(dev_priv, pipe_config->shared_dpll);
dpll_ctl1 = I915_READ(DPLL_CTRL1);
if (dpll_ctl1 & DPLL_CTRL1_HDMI_MODE(dpll)) {
link_clock = skl_calc_wrpll_link(dev_priv, dpll);
} else {
link_clock = dpll_ctl1 & DPLL_CTRL1_LINK_RATE_MASK(dpll);
link_clock >>= DPLL_CTRL1_LINK_RATE_SHIFT(dpll);
switch (link_clock) {
case DPLL_CTRL1_LINK_RATE_810:
link_clock = 81000;
break;
case DPLL_CTRL1_LINK_RATE_1080:
link_clock = 108000;
break;
case DPLL_CTRL1_LINK_RATE_1350:
link_clock = 135000;
break;
case DPLL_CTRL1_LINK_RATE_1620:
link_clock = 162000;
break;
case DPLL_CTRL1_LINK_RATE_2160:
link_clock = 216000;
break;
case DPLL_CTRL1_LINK_RATE_2700:
link_clock = 270000;
break;
default:
WARN(1, "Unsupported link rate\n");
break;
}
link_clock *= 2;
}
pipe_config->port_clock = link_clock;
ddi_dotclock_get(pipe_config);
}
static void hsw_ddi_clock_get(struct intel_encoder *encoder,
struct intel_crtc_state *pipe_config)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
int link_clock = 0;
u32 val, pll;
val = hsw_pll_to_ddi_pll_sel(pipe_config->shared_dpll);
switch (val & PORT_CLK_SEL_MASK) {
case PORT_CLK_SEL_LCPLL_810:
link_clock = 81000;
break;
case PORT_CLK_SEL_LCPLL_1350:
link_clock = 135000;
break;
case PORT_CLK_SEL_LCPLL_2700:
link_clock = 270000;
break;
case PORT_CLK_SEL_WRPLL1:
link_clock = hsw_ddi_calc_wrpll_link(dev_priv, WRPLL_CTL(0));
break;
case PORT_CLK_SEL_WRPLL2:
link_clock = hsw_ddi_calc_wrpll_link(dev_priv, WRPLL_CTL(1));
break;
case PORT_CLK_SEL_SPLL:
pll = I915_READ(SPLL_CTL) & SPLL_PLL_FREQ_MASK;
if (pll == SPLL_PLL_FREQ_810MHz)
link_clock = 81000;
else if (pll == SPLL_PLL_FREQ_1350MHz)
link_clock = 135000;
else if (pll == SPLL_PLL_FREQ_2700MHz)
link_clock = 270000;
else {
WARN(1, "bad spll freq\n");
return;
}
break;
default:
WARN(1, "bad port clock sel\n");
return;
}
pipe_config->port_clock = link_clock * 2;
ddi_dotclock_get(pipe_config);
}
static int bxt_calc_pll_link(struct drm_i915_private *dev_priv,
enum intel_dpll_id dpll)
{
struct intel_shared_dpll *pll;
struct intel_dpll_hw_state *state;
struct dpll clock;
/* For DDI ports we always use a shared PLL. */
if (WARN_ON(dpll == DPLL_ID_PRIVATE))
return 0;
pll = &dev_priv->shared_dplls[dpll];
state = &pll->state.hw_state;
clock.m1 = 2;
clock.m2 = (state->pll0 & PORT_PLL_M2_MASK) << 22;
if (state->pll3 & PORT_PLL_M2_FRAC_ENABLE)
clock.m2 |= state->pll2 & PORT_PLL_M2_FRAC_MASK;
clock.n = (state->pll1 & PORT_PLL_N_MASK) >> PORT_PLL_N_SHIFT;
clock.p1 = (state->ebb0 & PORT_PLL_P1_MASK) >> PORT_PLL_P1_SHIFT;
clock.p2 = (state->ebb0 & PORT_PLL_P2_MASK) >> PORT_PLL_P2_SHIFT;
return chv_calc_dpll_params(100000, &clock);
}
static void bxt_ddi_clock_get(struct intel_encoder *encoder,
struct intel_crtc_state *pipe_config)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
enum port port = intel_ddi_get_encoder_port(encoder);
uint32_t dpll = port;
pipe_config->port_clock = bxt_calc_pll_link(dev_priv, dpll);
ddi_dotclock_get(pipe_config);
}
void intel_ddi_clock_get(struct intel_encoder *encoder,
struct intel_crtc_state *pipe_config)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
if (INTEL_GEN(dev_priv) <= 8)
hsw_ddi_clock_get(encoder, pipe_config);
else if (IS_GEN9_BC(dev_priv))
skl_ddi_clock_get(encoder, pipe_config);
else if (IS_GEN9_LP(dev_priv))
bxt_ddi_clock_get(encoder, pipe_config);
}
void intel_ddi_set_pipe_settings(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
struct intel_encoder *encoder = intel_ddi_get_crtc_encoder(crtc);
enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
int type = encoder->type;
uint32_t temp;
if (type == INTEL_OUTPUT_DP || type == INTEL_OUTPUT_EDP || type == INTEL_OUTPUT_DP_MST) {
WARN_ON(transcoder_is_dsi(cpu_transcoder));
temp = TRANS_MSA_SYNC_CLK;
switch (crtc_state->pipe_bpp) {
case 18:
temp |= TRANS_MSA_6_BPC;
break;
case 24:
temp |= TRANS_MSA_8_BPC;
break;
case 30:
temp |= TRANS_MSA_10_BPC;
break;
case 36:
temp |= TRANS_MSA_12_BPC;
break;
default:
BUG();
}
I915_WRITE(TRANS_MSA_MISC(cpu_transcoder), temp);
}
}
void intel_ddi_set_vc_payload_alloc(const struct intel_crtc_state *crtc_state,
bool state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
uint32_t temp;
temp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
if (state == true)
temp |= TRANS_DDI_DP_VC_PAYLOAD_ALLOC;
else
temp &= ~TRANS_DDI_DP_VC_PAYLOAD_ALLOC;
I915_WRITE(TRANS_DDI_FUNC_CTL(cpu_transcoder), temp);
}
void intel_ddi_enable_transcoder_func(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
struct intel_encoder *encoder = intel_ddi_get_crtc_encoder(crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum pipe pipe = crtc->pipe;
enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
enum port port = intel_ddi_get_encoder_port(encoder);
int type = encoder->type;
uint32_t temp;
/* Enable TRANS_DDI_FUNC_CTL for the pipe to work in HDMI mode */
temp = TRANS_DDI_FUNC_ENABLE;
temp |= TRANS_DDI_SELECT_PORT(port);
switch (crtc_state->pipe_bpp) {
case 18:
temp |= TRANS_DDI_BPC_6;
break;
case 24:
temp |= TRANS_DDI_BPC_8;
break;
case 30:
temp |= TRANS_DDI_BPC_10;
break;
case 36:
temp |= TRANS_DDI_BPC_12;
break;
default:
BUG();
}
if (crtc_state->base.adjusted_mode.flags & DRM_MODE_FLAG_PVSYNC)
temp |= TRANS_DDI_PVSYNC;
if (crtc_state->base.adjusted_mode.flags & DRM_MODE_FLAG_PHSYNC)
temp |= TRANS_DDI_PHSYNC;
if (cpu_transcoder == TRANSCODER_EDP) {
switch (pipe) {
case PIPE_A:
/* On Haswell, can only use the always-on power well for
* eDP when not using the panel fitter, and when not
* using motion blur mitigation (which we don't
* support). */
if (IS_HASWELL(dev_priv) &&
(crtc_state->pch_pfit.enabled ||
crtc_state->pch_pfit.force_thru))
temp |= TRANS_DDI_EDP_INPUT_A_ONOFF;
else
temp |= TRANS_DDI_EDP_INPUT_A_ON;
break;
case PIPE_B:
temp |= TRANS_DDI_EDP_INPUT_B_ONOFF;
break;
case PIPE_C:
temp |= TRANS_DDI_EDP_INPUT_C_ONOFF;
break;
default:
BUG();
break;
}
}
if (type == INTEL_OUTPUT_HDMI) {
if (crtc_state->has_hdmi_sink)
temp |= TRANS_DDI_MODE_SELECT_HDMI;
else
temp |= TRANS_DDI_MODE_SELECT_DVI;
if (crtc_state->hdmi_scrambling)
temp |= TRANS_DDI_HDMI_SCRAMBLING_MASK;
if (crtc_state->hdmi_high_tmds_clock_ratio)
temp |= TRANS_DDI_HIGH_TMDS_CHAR_RATE;
} else if (type == INTEL_OUTPUT_ANALOG) {
temp |= TRANS_DDI_MODE_SELECT_FDI;
temp |= (crtc_state->fdi_lanes - 1) << 1;
} else if (type == INTEL_OUTPUT_DP ||
type == INTEL_OUTPUT_EDP) {
temp |= TRANS_DDI_MODE_SELECT_DP_SST;
temp |= DDI_PORT_WIDTH(crtc_state->lane_count);
} else if (type == INTEL_OUTPUT_DP_MST) {
temp |= TRANS_DDI_MODE_SELECT_DP_MST;
temp |= DDI_PORT_WIDTH(crtc_state->lane_count);
} else {
WARN(1, "Invalid encoder type %d for pipe %c\n",
encoder->type, pipe_name(pipe));
}
I915_WRITE(TRANS_DDI_FUNC_CTL(cpu_transcoder), temp);
}
void intel_ddi_disable_transcoder_func(struct drm_i915_private *dev_priv,
enum transcoder cpu_transcoder)
{
i915_reg_t reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
uint32_t val = I915_READ(reg);
val &= ~(TRANS_DDI_FUNC_ENABLE | TRANS_DDI_PORT_MASK | TRANS_DDI_DP_VC_PAYLOAD_ALLOC);
val |= TRANS_DDI_PORT_NONE;
I915_WRITE(reg, val);
}
bool intel_ddi_connector_get_hw_state(struct intel_connector *intel_connector)
{
struct drm_device *dev = intel_connector->base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct intel_encoder *encoder = intel_connector->encoder;
int type = intel_connector->base.connector_type;
enum port port = intel_ddi_get_encoder_port(encoder);
enum pipe pipe = 0;
enum transcoder cpu_transcoder;
uint32_t tmp;
bool ret;
if (!intel_display_power_get_if_enabled(dev_priv,
encoder->power_domain))
return false;
if (!encoder->get_hw_state(encoder, &pipe)) {
ret = false;
goto out;
}
if (port == PORT_A)
cpu_transcoder = TRANSCODER_EDP;
else
cpu_transcoder = (enum transcoder) pipe;
tmp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
switch (tmp & TRANS_DDI_MODE_SELECT_MASK) {
case TRANS_DDI_MODE_SELECT_HDMI:
case TRANS_DDI_MODE_SELECT_DVI:
ret = type == DRM_MODE_CONNECTOR_HDMIA;
break;
case TRANS_DDI_MODE_SELECT_DP_SST:
ret = type == DRM_MODE_CONNECTOR_eDP ||
type == DRM_MODE_CONNECTOR_DisplayPort;
break;
case TRANS_DDI_MODE_SELECT_DP_MST:
/* if the transcoder is in MST state then
* connector isn't connected */
ret = false;
break;
case TRANS_DDI_MODE_SELECT_FDI:
ret = type == DRM_MODE_CONNECTOR_VGA;
break;
default:
ret = false;
break;
}
out:
intel_display_power_put(dev_priv, encoder->power_domain);
return ret;
}
bool intel_ddi_get_hw_state(struct intel_encoder *encoder,
enum pipe *pipe)
{
struct drm_device *dev = encoder->base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
enum port port = intel_ddi_get_encoder_port(encoder);
u32 tmp;
int i;
bool ret;
if (!intel_display_power_get_if_enabled(dev_priv,
encoder->power_domain))
return false;
ret = false;
tmp = I915_READ(DDI_BUF_CTL(port));
if (!(tmp & DDI_BUF_CTL_ENABLE))
goto out;
if (port == PORT_A) {
tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
case TRANS_DDI_EDP_INPUT_A_ON:
case TRANS_DDI_EDP_INPUT_A_ONOFF:
*pipe = PIPE_A;
break;
case TRANS_DDI_EDP_INPUT_B_ONOFF:
*pipe = PIPE_B;
break;
case TRANS_DDI_EDP_INPUT_C_ONOFF:
*pipe = PIPE_C;
break;
}
ret = true;
goto out;
}
for (i = TRANSCODER_A; i <= TRANSCODER_C; i++) {
tmp = I915_READ(TRANS_DDI_FUNC_CTL(i));
if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(port)) {
if ((tmp & TRANS_DDI_MODE_SELECT_MASK) ==
TRANS_DDI_MODE_SELECT_DP_MST)
goto out;
*pipe = i;
ret = true;
goto out;
}
}
DRM_DEBUG_KMS("No pipe for ddi port %c found\n", port_name(port));
out:
if (ret && IS_GEN9_LP(dev_priv)) {
tmp = I915_READ(BXT_PHY_CTL(port));
if ((tmp & (BXT_PHY_LANE_POWERDOWN_ACK |
BXT_PHY_LANE_ENABLED)) != BXT_PHY_LANE_ENABLED)
DRM_ERROR("Port %c enabled but PHY powered down? "
"(PHY_CTL %08x)\n", port_name(port), tmp);
}
intel_display_power_put(dev_priv, encoder->power_domain);
return ret;
}
static u64 intel_ddi_get_power_domains(struct intel_encoder *encoder)
{
struct intel_digital_port *dig_port = enc_to_dig_port(&encoder->base);
enum pipe pipe;
if (intel_ddi_get_hw_state(encoder, &pipe))
return BIT_ULL(dig_port->ddi_io_power_domain);
return 0;
}
void intel_ddi_enable_pipe_clock(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
struct intel_encoder *encoder = intel_ddi_get_crtc_encoder(crtc);
enum port port = intel_ddi_get_encoder_port(encoder);
enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
if (cpu_transcoder != TRANSCODER_EDP)
I915_WRITE(TRANS_CLK_SEL(cpu_transcoder),
TRANS_CLK_SEL_PORT(port));
}
void intel_ddi_disable_pipe_clock(const struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
if (cpu_transcoder != TRANSCODER_EDP)
I915_WRITE(TRANS_CLK_SEL(cpu_transcoder),
TRANS_CLK_SEL_DISABLED);
}
static void _skl_ddi_set_iboost(struct drm_i915_private *dev_priv,
enum port port, uint8_t iboost)
{
u32 tmp;
tmp = I915_READ(DISPIO_CR_TX_BMU_CR0);
tmp &= ~(BALANCE_LEG_MASK(port) | BALANCE_LEG_DISABLE(port));
if (iboost)
tmp |= iboost << BALANCE_LEG_SHIFT(port);
else
tmp |= BALANCE_LEG_DISABLE(port);
I915_WRITE(DISPIO_CR_TX_BMU_CR0, tmp);
}
static void skl_ddi_set_iboost(struct intel_encoder *encoder, u32 level)
{
struct intel_digital_port *intel_dig_port = enc_to_dig_port(&encoder->base);
struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
enum port port = intel_dig_port->port;
int type = encoder->type;
const struct ddi_buf_trans *ddi_translations;
uint8_t iboost;
uint8_t dp_iboost, hdmi_iboost;
int n_entries;
/* VBT may override standard boost values */
dp_iboost = dev_priv->vbt.ddi_port_info[port].dp_boost_level;
hdmi_iboost = dev_priv->vbt.ddi_port_info[port].hdmi_boost_level;
if (type == INTEL_OUTPUT_DP) {
if (dp_iboost) {
iboost = dp_iboost;
} else {
if (IS_KABYLAKE(dev_priv))
ddi_translations = kbl_get_buf_trans_dp(dev_priv,
&n_entries);
else
ddi_translations = skl_get_buf_trans_dp(dev_priv,
&n_entries);
iboost = ddi_translations[level].i_boost;
}
} else if (type == INTEL_OUTPUT_EDP) {
if (dp_iboost) {
iboost = dp_iboost;
} else {
ddi_translations = skl_get_buf_trans_edp(dev_priv, &n_entries);
if (WARN_ON(port != PORT_A &&
port != PORT_E && n_entries > 9))
n_entries = 9;
iboost = ddi_translations[level].i_boost;
}
} else if (type == INTEL_OUTPUT_HDMI) {
if (hdmi_iboost) {
iboost = hdmi_iboost;
} else {
ddi_translations = skl_get_buf_trans_hdmi(dev_priv, &n_entries);
iboost = ddi_translations[level].i_boost;
}
} else {
return;
}
/* Make sure that the requested I_boost is valid */
if (iboost && iboost != 0x1 && iboost != 0x3 && iboost != 0x7) {
DRM_ERROR("Invalid I_boost value %u\n", iboost);
return;
}
_skl_ddi_set_iboost(dev_priv, port, iboost);
if (port == PORT_A && intel_dig_port->max_lanes == 4)
_skl_ddi_set_iboost(dev_priv, PORT_E, iboost);
}
static void bxt_ddi_vswing_sequence(struct drm_i915_private *dev_priv,
u32 level, enum port port, int type)
{
const struct bxt_ddi_buf_trans *ddi_translations;
u32 n_entries, i;
if (type == INTEL_OUTPUT_EDP && dev_priv->vbt.edp.low_vswing) {
n_entries = ARRAY_SIZE(bxt_ddi_translations_edp);
ddi_translations = bxt_ddi_translations_edp;
} else if (type == INTEL_OUTPUT_DP
|| type == INTEL_OUTPUT_EDP) {
n_entries = ARRAY_SIZE(bxt_ddi_translations_dp);
ddi_translations = bxt_ddi_translations_dp;
} else if (type == INTEL_OUTPUT_HDMI) {
n_entries = ARRAY_SIZE(bxt_ddi_translations_hdmi);
ddi_translations = bxt_ddi_translations_hdmi;
} else {
DRM_DEBUG_KMS("Vswing programming not done for encoder %d\n",
type);
return;
}
/* Check if default value has to be used */
if (level >= n_entries ||
(type == INTEL_OUTPUT_HDMI && level == HDMI_LEVEL_SHIFT_UNKNOWN)) {
for (i = 0; i < n_entries; i++) {
if (ddi_translations[i].default_index) {
level = i;
break;
}
}
}
bxt_ddi_phy_set_signal_level(dev_priv, port,
ddi_translations[level].margin,
ddi_translations[level].scale,
ddi_translations[level].enable,
ddi_translations[level].deemphasis);
}
u8 intel_ddi_dp_voltage_max(struct intel_encoder *encoder)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
int n_entries;
if (encoder->type == INTEL_OUTPUT_EDP)
intel_ddi_get_buf_trans_edp(dev_priv, &n_entries);
else
intel_ddi_get_buf_trans_dp(dev_priv, &n_entries);
if (WARN_ON(n_entries < 1))
n_entries = 1;
if (WARN_ON(n_entries > ARRAY_SIZE(index_to_dp_signal_levels)))
n_entries = ARRAY_SIZE(index_to_dp_signal_levels);
return index_to_dp_signal_levels[n_entries - 1] &
DP_TRAIN_VOLTAGE_SWING_MASK;
}
static const struct cnl_ddi_buf_trans *
cnl_get_buf_trans_hdmi(struct drm_i915_private *dev_priv,
u32 voltage, int *n_entries)
{
if (voltage == VOLTAGE_INFO_0_85V) {
*n_entries = ARRAY_SIZE(cnl_ddi_translations_hdmi_0_85V);
return cnl_ddi_translations_hdmi_0_85V;
} else if (voltage == VOLTAGE_INFO_0_95V) {
*n_entries = ARRAY_SIZE(cnl_ddi_translations_hdmi_0_95V);
return cnl_ddi_translations_hdmi_0_95V;
} else if (voltage == VOLTAGE_INFO_1_05V) {
*n_entries = ARRAY_SIZE(cnl_ddi_translations_hdmi_1_05V);
return cnl_ddi_translations_hdmi_1_05V;
}
return NULL;
}
static const struct cnl_ddi_buf_trans *
cnl_get_buf_trans_dp(struct drm_i915_private *dev_priv,
u32 voltage, int *n_entries)
{
if (voltage == VOLTAGE_INFO_0_85V) {
*n_entries = ARRAY_SIZE(cnl_ddi_translations_dp_0_85V);
return cnl_ddi_translations_dp_0_85V;
} else if (voltage == VOLTAGE_INFO_0_95V) {
*n_entries = ARRAY_SIZE(cnl_ddi_translations_dp_0_95V);
return cnl_ddi_translations_dp_0_95V;
} else if (voltage == VOLTAGE_INFO_1_05V) {
*n_entries = ARRAY_SIZE(cnl_ddi_translations_dp_1_05V);
return cnl_ddi_translations_dp_1_05V;
}
return NULL;
}
static const struct cnl_ddi_buf_trans *
cnl_get_buf_trans_edp(struct drm_i915_private *dev_priv,
u32 voltage, int *n_entries)
{
if (dev_priv->vbt.edp.low_vswing) {
if (voltage == VOLTAGE_INFO_0_85V) {
*n_entries = ARRAY_SIZE(cnl_ddi_translations_edp_0_85V);
return cnl_ddi_translations_dp_0_85V;
} else if (voltage == VOLTAGE_INFO_0_95V) {
*n_entries = ARRAY_SIZE(cnl_ddi_translations_edp_0_95V);
return cnl_ddi_translations_edp_0_95V;
} else if (voltage == VOLTAGE_INFO_1_05V) {
*n_entries = ARRAY_SIZE(cnl_ddi_translations_edp_1_05V);
return cnl_ddi_translations_edp_1_05V;
}
return NULL;
} else {
return cnl_get_buf_trans_dp(dev_priv, voltage, n_entries);
}
}
static void cnl_ddi_vswing_program(struct drm_i915_private *dev_priv,
u32 level, enum port port, int type)
{
const struct cnl_ddi_buf_trans *ddi_translations = NULL;
u32 n_entries, val, voltage;
int ln;
/*
* Values for each port type are listed in
* voltage swing programming tables.
* Vccio voltage found in PORT_COMP_DW3.
*/
voltage = I915_READ(CNL_PORT_COMP_DW3) & VOLTAGE_INFO_MASK;
if (type == INTEL_OUTPUT_HDMI) {
ddi_translations = cnl_get_buf_trans_hdmi(dev_priv,
voltage, &n_entries);
} else if (type == INTEL_OUTPUT_DP) {
ddi_translations = cnl_get_buf_trans_dp(dev_priv,
voltage, &n_entries);
} else if (type == INTEL_OUTPUT_EDP) {
ddi_translations = cnl_get_buf_trans_edp(dev_priv,
voltage, &n_entries);
}
if (ddi_translations == NULL) {
MISSING_CASE(voltage);
return;
}
if (level >= n_entries) {
DRM_DEBUG_KMS("DDI translation not found for level %d. Using %d instead.", level, n_entries - 1);
level = n_entries - 1;
}
/* Set PORT_TX_DW5 Scaling Mode Sel to 010b. */
val = I915_READ(CNL_PORT_TX_DW5_LN0(port));
val |= SCALING_MODE_SEL(2);
I915_WRITE(CNL_PORT_TX_DW5_GRP(port), val);
/* Program PORT_TX_DW2 */
val = I915_READ(CNL_PORT_TX_DW2_LN0(port));
val |= SWING_SEL_UPPER(ddi_translations[level].dw2_swing_sel);
val |= SWING_SEL_LOWER(ddi_translations[level].dw2_swing_sel);
/* Rcomp scalar is fixed as 0x98 for every table entry */
val |= RCOMP_SCALAR(0x98);
I915_WRITE(CNL_PORT_TX_DW2_GRP(port), val);
/* Program PORT_TX_DW4 */
/* We cannot write to GRP. It would overrite individual loadgen */
for (ln = 0; ln < 4; ln++) {
val = I915_READ(CNL_PORT_TX_DW4_LN(port, ln));
val |= POST_CURSOR_1(ddi_translations[level].dw4_post_cursor_1);
val |= POST_CURSOR_2(ddi_translations[level].dw4_post_cursor_2);
val |= CURSOR_COEFF(ddi_translations[level].dw4_cursor_coeff);
I915_WRITE(CNL_PORT_TX_DW4_LN(port, ln), val);
}
/* Program PORT_TX_DW5 */
/* All DW5 values are fixed for every table entry */
val = I915_READ(CNL_PORT_TX_DW5_LN0(port));
val |= RTERM_SELECT(6);
val |= TAP3_DISABLE;
I915_WRITE(CNL_PORT_TX_DW5_GRP(port), val);
/* Program PORT_TX_DW7 */
val = I915_READ(CNL_PORT_TX_DW7_LN0(port));
val |= N_SCALAR(ddi_translations[level].dw7_n_scalar);
I915_WRITE(CNL_PORT_TX_DW7_GRP(port), val);
}
static void cnl_ddi_vswing_sequence(struct drm_i915_private *dev_priv,
u32 level, enum port port, int type)
{
u32 val;
/*
* 1. If port type is eDP or DP,
* set PORT_PCS_DW1 cmnkeeper_enable to 1b,
* else clear to 0b.
*/
val = I915_READ(CNL_PORT_PCS_DW1_LN0(port));
if (type == INTEL_OUTPUT_EDP || type == INTEL_OUTPUT_DP)
val |= COMMON_KEEPER_EN;
else
val &= ~COMMON_KEEPER_EN;
I915_WRITE(CNL_PORT_PCS_DW1_GRP(port), val);
/* 2. Program loadgen select */
/*
* FIXME: Program PORT_TX_DW4_LN depending on Bit rate and used lanes
*/
/* 3. Set PORT_CL_DW5 SUS Clock Config to 11b */
val = I915_READ(CNL_PORT_CL1CM_DW5);
val |= SUS_CLOCK_CONFIG;
I915_WRITE(CNL_PORT_CL1CM_DW5, val);
/* 4. Clear training enable to change swing values */
val = I915_READ(CNL_PORT_TX_DW5_LN0(port));
val &= ~TX_TRAINING_EN;
I915_WRITE(CNL_PORT_TX_DW5_GRP(port), val);
/* 5. Program swing and de-emphasis */
cnl_ddi_vswing_program(dev_priv, level, port, type);
/* 6. Set training enable to trigger update */
val = I915_READ(CNL_PORT_TX_DW5_LN0(port));
val |= TX_TRAINING_EN;
I915_WRITE(CNL_PORT_TX_DW5_GRP(port), val);
}
static uint32_t translate_signal_level(int signal_levels)
{
int i;
for (i = 0; i < ARRAY_SIZE(index_to_dp_signal_levels); i++) {
if (index_to_dp_signal_levels[i] == signal_levels)
return i;
}
WARN(1, "Unsupported voltage swing/pre-emphasis level: 0x%x\n",
signal_levels);
return 0;
}
uint32_t ddi_signal_levels(struct intel_dp *intel_dp)
{
struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
struct drm_i915_private *dev_priv = to_i915(dport->base.base.dev);
struct intel_encoder *encoder = &dport->base;
uint8_t train_set = intel_dp->train_set[0];
int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
DP_TRAIN_PRE_EMPHASIS_MASK);
enum port port = dport->port;
uint32_t level;
level = translate_signal_level(signal_levels);
if (IS_GEN9_BC(dev_priv))
skl_ddi_set_iboost(encoder, level);
else if (IS_GEN9_LP(dev_priv))
bxt_ddi_vswing_sequence(dev_priv, level, port, encoder->type);
else if (IS_CANNONLAKE(dev_priv)) {
cnl_ddi_vswing_sequence(dev_priv, level, port, encoder->type);
/* DDI_BUF_CTL bits 27:24 are reserved on CNL */
return 0;
}
return DDI_BUF_TRANS_SELECT(level);
}
static void intel_ddi_clk_select(struct intel_encoder *encoder,
struct intel_shared_dpll *pll)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
enum port port = intel_ddi_get_encoder_port(encoder);
uint32_t val;
if (WARN_ON(!pll))
return;
if (IS_CANNONLAKE(dev_priv)) {
/* Configure DPCLKA_CFGCR0 to map the DPLL to the DDI. */
val = I915_READ(DPCLKA_CFGCR0);
val |= DPCLKA_CFGCR0_DDI_CLK_SEL(pll->id, port);
I915_WRITE(DPCLKA_CFGCR0, val);
/*
* Configure DPCLKA_CFGCR0 to turn on the clock for the DDI.
* This step and the step before must be done with separate
* register writes.
*/
val = I915_READ(DPCLKA_CFGCR0);
val &= ~(DPCLKA_CFGCR0_DDI_CLK_OFF(port) |
DPCLKA_CFGCR0_DDI_CLK_SEL_MASK(port));
I915_WRITE(DPCLKA_CFGCR0, val);
} else if (IS_GEN9_BC(dev_priv)) {
/* DDI -> PLL mapping */
val = I915_READ(DPLL_CTRL2);
val &= ~(DPLL_CTRL2_DDI_CLK_OFF(port) |
DPLL_CTRL2_DDI_CLK_SEL_MASK(port));
val |= (DPLL_CTRL2_DDI_CLK_SEL(pll->id, port) |
DPLL_CTRL2_DDI_SEL_OVERRIDE(port));
I915_WRITE(DPLL_CTRL2, val);
} else if (INTEL_INFO(dev_priv)->gen < 9) {
I915_WRITE(PORT_CLK_SEL(port), hsw_pll_to_ddi_pll_sel(pll));
}
}
static void intel_ddi_pre_enable_dp(struct intel_encoder *encoder,
int link_rate, uint32_t lane_count,
struct intel_shared_dpll *pll,
bool link_mst)
{
struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
enum port port = intel_ddi_get_encoder_port(encoder);
struct intel_digital_port *dig_port = enc_to_dig_port(&encoder->base);
WARN_ON(link_mst && (port == PORT_A || port == PORT_E));
intel_dp_set_link_params(intel_dp, link_rate, lane_count,
link_mst);
if (encoder->type == INTEL_OUTPUT_EDP)
intel_edp_panel_on(intel_dp);
intel_ddi_clk_select(encoder, pll);
intel_display_power_get(dev_priv, dig_port->ddi_io_power_domain);
intel_prepare_dp_ddi_buffers(encoder);
intel_ddi_init_dp_buf_reg(encoder);
intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
intel_dp_start_link_train(intel_dp);
if (port != PORT_A || INTEL_GEN(dev_priv) >= 9)
intel_dp_stop_link_train(intel_dp);
}
static void intel_ddi_pre_enable_hdmi(struct intel_encoder *encoder,
bool has_hdmi_sink,
const struct intel_crtc_state *crtc_state,
const struct drm_connector_state *conn_state,
struct intel_shared_dpll *pll)
{
struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct drm_encoder *drm_encoder = &encoder->base;
enum port port = intel_ddi_get_encoder_port(encoder);
int level = intel_ddi_hdmi_level(dev_priv, port);
struct intel_digital_port *dig_port = enc_to_dig_port(&encoder->base);
intel_dp_dual_mode_set_tmds_output(intel_hdmi, true);
intel_ddi_clk_select(encoder, pll);
intel_display_power_get(dev_priv, dig_port->ddi_io_power_domain);
intel_prepare_hdmi_ddi_buffers(encoder);
if (IS_GEN9_BC(dev_priv))
skl_ddi_set_iboost(encoder, level);
else if (IS_GEN9_LP(dev_priv))
bxt_ddi_vswing_sequence(dev_priv, level, port,
INTEL_OUTPUT_HDMI);
else if (IS_CANNONLAKE(dev_priv))
cnl_ddi_vswing_sequence(dev_priv, level, port,
INTEL_OUTPUT_HDMI);
intel_hdmi->set_infoframes(drm_encoder,
has_hdmi_sink,
crtc_state, conn_state);
}
static void intel_ddi_pre_enable(struct intel_encoder *encoder,
struct intel_crtc_state *pipe_config,
struct drm_connector_state *conn_state)
{
int type = encoder->type;
if (type == INTEL_OUTPUT_DP || type == INTEL_OUTPUT_EDP) {
intel_ddi_pre_enable_dp(encoder,
pipe_config->port_clock,
pipe_config->lane_count,
pipe_config->shared_dpll,
intel_crtc_has_type(pipe_config,
INTEL_OUTPUT_DP_MST));
}
if (type == INTEL_OUTPUT_HDMI) {
intel_ddi_pre_enable_hdmi(encoder,
pipe_config->has_hdmi_sink,
pipe_config, conn_state,
pipe_config->shared_dpll);
}
}
static void intel_ddi_post_disable(struct intel_encoder *intel_encoder,
struct intel_crtc_state *old_crtc_state,
struct drm_connector_state *old_conn_state)
{
struct drm_encoder *encoder = &intel_encoder->base;
struct drm_i915_private *dev_priv = to_i915(encoder->dev);
enum port port = intel_ddi_get_encoder_port(intel_encoder);
struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
struct intel_dp *intel_dp = NULL;
int type = intel_encoder->type;
uint32_t val;
bool wait = false;
/* old_crtc_state and old_conn_state are NULL when called from DP_MST */
if (type == INTEL_OUTPUT_DP || type == INTEL_OUTPUT_EDP) {
intel_dp = enc_to_intel_dp(encoder);
intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
}
val = I915_READ(DDI_BUF_CTL(port));
if (val & DDI_BUF_CTL_ENABLE) {
val &= ~DDI_BUF_CTL_ENABLE;
I915_WRITE(DDI_BUF_CTL(port), val);
wait = true;
}
val = I915_READ(DP_TP_CTL(port));
val &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
val |= DP_TP_CTL_LINK_TRAIN_PAT1;
I915_WRITE(DP_TP_CTL(port), val);
if (wait)
intel_wait_ddi_buf_idle(dev_priv, port);
if (intel_dp) {
intel_edp_panel_vdd_on(intel_dp);
intel_edp_panel_off(intel_dp);
}
if (dig_port)
intel_display_power_put(dev_priv, dig_port->ddi_io_power_domain);
if (IS_CANNONLAKE(dev_priv))
I915_WRITE(DPCLKA_CFGCR0, I915_READ(DPCLKA_CFGCR0) |
DPCLKA_CFGCR0_DDI_CLK_OFF(port));
else if (IS_GEN9_BC(dev_priv))
I915_WRITE(DPLL_CTRL2, (I915_READ(DPLL_CTRL2) |
DPLL_CTRL2_DDI_CLK_OFF(port)));
else if (INTEL_GEN(dev_priv) < 9)
I915_WRITE(PORT_CLK_SEL(port), PORT_CLK_SEL_NONE);
if (type == INTEL_OUTPUT_HDMI) {
struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
intel_dp_dual_mode_set_tmds_output(intel_hdmi, false);
}
}
void intel_ddi_fdi_post_disable(struct intel_encoder *encoder,
struct intel_crtc_state *old_crtc_state,
struct drm_connector_state *old_conn_state)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
uint32_t val;
/*
* Bspec lists this as both step 13 (before DDI_BUF_CTL disable)
* and step 18 (after clearing PORT_CLK_SEL). Based on a BUN,
* step 13 is the correct place for it. Step 18 is where it was
* originally before the BUN.
*/
val = I915_READ(FDI_RX_CTL(PIPE_A));
val &= ~FDI_RX_ENABLE;
I915_WRITE(FDI_RX_CTL(PIPE_A), val);
intel_ddi_post_disable(encoder, old_crtc_state, old_conn_state);
val = I915_READ(FDI_RX_MISC(PIPE_A));
val &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
val |= FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2);
I915_WRITE(FDI_RX_MISC(PIPE_A), val);
val = I915_READ(FDI_RX_CTL(PIPE_A));
val &= ~FDI_PCDCLK;
I915_WRITE(FDI_RX_CTL(PIPE_A), val);
val = I915_READ(FDI_RX_CTL(PIPE_A));
val &= ~FDI_RX_PLL_ENABLE;
I915_WRITE(FDI_RX_CTL(PIPE_A), val);
}
static void intel_enable_ddi(struct intel_encoder *intel_encoder,
struct intel_crtc_state *pipe_config,
struct drm_connector_state *conn_state)
{
struct drm_encoder *encoder = &intel_encoder->base;
struct drm_i915_private *dev_priv = to_i915(encoder->dev);
enum port port = intel_ddi_get_encoder_port(intel_encoder);
int type = intel_encoder->type;
if (type == INTEL_OUTPUT_HDMI) {
struct intel_digital_port *intel_dig_port =
enc_to_dig_port(encoder);
bool clock_ratio = pipe_config->hdmi_high_tmds_clock_ratio;
bool scrambling = pipe_config->hdmi_scrambling;
intel_hdmi_handle_sink_scrambling(intel_encoder,
conn_state->connector,
clock_ratio, scrambling);
/* In HDMI/DVI mode, the port width, and swing/emphasis values
* are ignored so nothing special needs to be done besides
* enabling the port.
*/
I915_WRITE(DDI_BUF_CTL(port),
intel_dig_port->saved_port_bits |
DDI_BUF_CTL_ENABLE);
} else if (type == INTEL_OUTPUT_EDP) {
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
if (port == PORT_A && INTEL_GEN(dev_priv) < 9)
intel_dp_stop_link_train(intel_dp);
intel_edp_backlight_on(pipe_config, conn_state);
intel_psr_enable(intel_dp);
intel_edp_drrs_enable(intel_dp, pipe_config);
}
if (pipe_config->has_audio)
intel_audio_codec_enable(intel_encoder, pipe_config, conn_state);
}
static void intel_disable_ddi(struct intel_encoder *intel_encoder,
struct intel_crtc_state *old_crtc_state,
struct drm_connector_state *old_conn_state)
{
struct drm_encoder *encoder = &intel_encoder->base;
int type = intel_encoder->type;
if (old_crtc_state->has_audio)
intel_audio_codec_disable(intel_encoder);
if (type == INTEL_OUTPUT_HDMI) {
intel_hdmi_handle_sink_scrambling(intel_encoder,
old_conn_state->connector,
false, false);
}
if (type == INTEL_OUTPUT_EDP) {
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
intel_edp_drrs_disable(intel_dp, old_crtc_state);
intel_psr_disable(intel_dp);
intel_edp_backlight_off(old_conn_state);
}
}
static void bxt_ddi_pre_pll_enable(struct intel_encoder *encoder,
struct intel_crtc_state *pipe_config,
struct drm_connector_state *conn_state)
{
uint8_t mask = pipe_config->lane_lat_optim_mask;
bxt_ddi_phy_set_lane_optim_mask(encoder, mask);
}
void intel_ddi_prepare_link_retrain(struct intel_dp *intel_dp)
{
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
struct drm_i915_private *dev_priv =
to_i915(intel_dig_port->base.base.dev);
enum port port = intel_dig_port->port;
uint32_t val;
bool wait = false;
if (I915_READ(DP_TP_CTL(port)) & DP_TP_CTL_ENABLE) {
val = I915_READ(DDI_BUF_CTL(port));
if (val & DDI_BUF_CTL_ENABLE) {
val &= ~DDI_BUF_CTL_ENABLE;
I915_WRITE(DDI_BUF_CTL(port), val);
wait = true;
}
val = I915_READ(DP_TP_CTL(port));
val &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
val |= DP_TP_CTL_LINK_TRAIN_PAT1;
I915_WRITE(DP_TP_CTL(port), val);
POSTING_READ(DP_TP_CTL(port));
if (wait)
intel_wait_ddi_buf_idle(dev_priv, port);
}
val = DP_TP_CTL_ENABLE |
DP_TP_CTL_LINK_TRAIN_PAT1 | DP_TP_CTL_SCRAMBLE_DISABLE;
if (intel_dp->link_mst)
val |= DP_TP_CTL_MODE_MST;
else {
val |= DP_TP_CTL_MODE_SST;
if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
val |= DP_TP_CTL_ENHANCED_FRAME_ENABLE;
}
I915_WRITE(DP_TP_CTL(port), val);
POSTING_READ(DP_TP_CTL(port));
intel_dp->DP |= DDI_BUF_CTL_ENABLE;
I915_WRITE(DDI_BUF_CTL(port), intel_dp->DP);
POSTING_READ(DDI_BUF_CTL(port));
udelay(600);
}
bool intel_ddi_is_audio_enabled(struct drm_i915_private *dev_priv,
struct intel_crtc *intel_crtc)
{
u32 temp;
if (intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_AUDIO)) {
temp = I915_READ(HSW_AUD_PIN_ELD_CP_VLD);
if (temp & AUDIO_OUTPUT_ENABLE(intel_crtc->pipe))
return true;
}
return false;
}
void intel_ddi_get_config(struct intel_encoder *encoder,
struct intel_crtc_state *pipe_config)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
struct intel_hdmi *intel_hdmi;
u32 temp, flags = 0;
/* XXX: DSI transcoder paranoia */
if (WARN_ON(transcoder_is_dsi(cpu_transcoder)))
return;
temp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
if (temp & TRANS_DDI_PHSYNC)
flags |= DRM_MODE_FLAG_PHSYNC;
else
flags |= DRM_MODE_FLAG_NHSYNC;
if (temp & TRANS_DDI_PVSYNC)
flags |= DRM_MODE_FLAG_PVSYNC;
else
flags |= DRM_MODE_FLAG_NVSYNC;
pipe_config->base.adjusted_mode.flags |= flags;
switch (temp & TRANS_DDI_BPC_MASK) {
case TRANS_DDI_BPC_6:
pipe_config->pipe_bpp = 18;
break;
case TRANS_DDI_BPC_8:
pipe_config->pipe_bpp = 24;
break;
case TRANS_DDI_BPC_10:
pipe_config->pipe_bpp = 30;
break;
case TRANS_DDI_BPC_12:
pipe_config->pipe_bpp = 36;
break;
default:
break;
}
switch (temp & TRANS_DDI_MODE_SELECT_MASK) {
case TRANS_DDI_MODE_SELECT_HDMI:
pipe_config->has_hdmi_sink = true;
intel_hdmi = enc_to_intel_hdmi(&encoder->base);
if (intel_hdmi->infoframe_enabled(&encoder->base, pipe_config))
pipe_config->has_infoframe = true;
if ((temp & TRANS_DDI_HDMI_SCRAMBLING_MASK) ==
TRANS_DDI_HDMI_SCRAMBLING_MASK)
pipe_config->hdmi_scrambling = true;
if (temp & TRANS_DDI_HIGH_TMDS_CHAR_RATE)
pipe_config->hdmi_high_tmds_clock_ratio = true;
/* fall through */
case TRANS_DDI_MODE_SELECT_DVI:
pipe_config->lane_count = 4;
break;
case TRANS_DDI_MODE_SELECT_FDI:
break;
case TRANS_DDI_MODE_SELECT_DP_SST:
case TRANS_DDI_MODE_SELECT_DP_MST:
pipe_config->lane_count =
((temp & DDI_PORT_WIDTH_MASK) >> DDI_PORT_WIDTH_SHIFT) + 1;
intel_dp_get_m_n(intel_crtc, pipe_config);
break;
default:
break;
}
pipe_config->has_audio =
intel_ddi_is_audio_enabled(dev_priv, intel_crtc);
if (encoder->type == INTEL_OUTPUT_EDP && dev_priv->vbt.edp.bpp &&
pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) {
/*
* This is a big fat ugly hack.
*
* Some machines in UEFI boot mode provide us a VBT that has 18
* bpp and 1.62 GHz link bandwidth for eDP, which for reasons
* unknown we fail to light up. Yet the same BIOS boots up with
* 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
* max, not what it tells us to use.
*
* Note: This will still be broken if the eDP panel is not lit
* up by the BIOS, and thus we can't get the mode at module
* load.
*/
DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp);
dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp;
}
intel_ddi_clock_get(encoder, pipe_config);
if (IS_GEN9_LP(dev_priv))
pipe_config->lane_lat_optim_mask =
bxt_ddi_phy_get_lane_lat_optim_mask(encoder);
}
static bool intel_ddi_compute_config(struct intel_encoder *encoder,
struct intel_crtc_state *pipe_config,
struct drm_connector_state *conn_state)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
int type = encoder->type;
int port = intel_ddi_get_encoder_port(encoder);
int ret;
WARN(type == INTEL_OUTPUT_UNKNOWN, "compute_config() on unknown output!\n");
if (port == PORT_A)
pipe_config->cpu_transcoder = TRANSCODER_EDP;
if (type == INTEL_OUTPUT_HDMI)
ret = intel_hdmi_compute_config(encoder, pipe_config, conn_state);
else
ret = intel_dp_compute_config(encoder, pipe_config, conn_state);
if (IS_GEN9_LP(dev_priv) && ret)
pipe_config->lane_lat_optim_mask =
bxt_ddi_phy_calc_lane_lat_optim_mask(encoder,
pipe_config->lane_count);
return ret;
}
static const struct drm_encoder_funcs intel_ddi_funcs = {
.reset = intel_dp_encoder_reset,
.destroy = intel_dp_encoder_destroy,
};
static struct intel_connector *
intel_ddi_init_dp_connector(struct intel_digital_port *intel_dig_port)
{
struct intel_connector *connector;
enum port port = intel_dig_port->port;
connector = intel_connector_alloc();
if (!connector)
return NULL;
intel_dig_port->dp.output_reg = DDI_BUF_CTL(port);
if (!intel_dp_init_connector(intel_dig_port, connector)) {
kfree(connector);
return NULL;
}
return connector;
}
static struct intel_connector *
intel_ddi_init_hdmi_connector(struct intel_digital_port *intel_dig_port)
{
struct intel_connector *connector;
enum port port = intel_dig_port->port;
connector = intel_connector_alloc();
if (!connector)
return NULL;
intel_dig_port->hdmi.hdmi_reg = DDI_BUF_CTL(port);
intel_hdmi_init_connector(intel_dig_port, connector);
return connector;
}
void intel_ddi_init(struct drm_i915_private *dev_priv, enum port port)
{
struct intel_digital_port *intel_dig_port;
struct intel_encoder *intel_encoder;
struct drm_encoder *encoder;
bool init_hdmi, init_dp, init_lspcon = false;
int max_lanes;
if (I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES) {
switch (port) {
case PORT_A:
max_lanes = 4;
break;
case PORT_E:
max_lanes = 0;
break;
default:
max_lanes = 4;
break;
}
} else {
switch (port) {
case PORT_A:
max_lanes = 2;
break;
case PORT_E:
max_lanes = 2;
break;
default:
max_lanes = 4;
break;
}
}
init_hdmi = (dev_priv->vbt.ddi_port_info[port].supports_dvi ||
dev_priv->vbt.ddi_port_info[port].supports_hdmi);
init_dp = dev_priv->vbt.ddi_port_info[port].supports_dp;
if (intel_bios_is_lspcon_present(dev_priv, port)) {
/*
* Lspcon device needs to be driven with DP connector
* with special detection sequence. So make sure DP
* is initialized before lspcon.
*/
init_dp = true;
init_lspcon = true;
init_hdmi = false;
DRM_DEBUG_KMS("VBT says port %c has lspcon\n", port_name(port));
}
if (!init_dp && !init_hdmi) {
DRM_DEBUG_KMS("VBT says port %c is not DVI/HDMI/DP compatible, respect it\n",
port_name(port));
return;
}
intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
if (!intel_dig_port)
return;
intel_encoder = &intel_dig_port->base;
encoder = &intel_encoder->base;
drm_encoder_init(&dev_priv->drm, encoder, &intel_ddi_funcs,
DRM_MODE_ENCODER_TMDS, "DDI %c", port_name(port));
intel_encoder->compute_config = intel_ddi_compute_config;
intel_encoder->enable = intel_enable_ddi;
if (IS_GEN9_LP(dev_priv))
intel_encoder->pre_pll_enable = bxt_ddi_pre_pll_enable;
intel_encoder->pre_enable = intel_ddi_pre_enable;
intel_encoder->disable = intel_disable_ddi;
intel_encoder->post_disable = intel_ddi_post_disable;
intel_encoder->get_hw_state = intel_ddi_get_hw_state;
intel_encoder->get_config = intel_ddi_get_config;
intel_encoder->suspend = intel_dp_encoder_suspend;
intel_encoder->get_power_domains = intel_ddi_get_power_domains;
intel_dig_port->port = port;
intel_dig_port->saved_port_bits = I915_READ(DDI_BUF_CTL(port)) &
(DDI_BUF_PORT_REVERSAL |
DDI_A_4_LANES);
switch (port) {
case PORT_A:
intel_dig_port->ddi_io_power_domain =
POWER_DOMAIN_PORT_DDI_A_IO;
break;
case PORT_B:
intel_dig_port->ddi_io_power_domain =
POWER_DOMAIN_PORT_DDI_B_IO;
break;
case PORT_C:
intel_dig_port->ddi_io_power_domain =
POWER_DOMAIN_PORT_DDI_C_IO;
break;
case PORT_D:
intel_dig_port->ddi_io_power_domain =
POWER_DOMAIN_PORT_DDI_D_IO;
break;
case PORT_E:
intel_dig_port->ddi_io_power_domain =
POWER_DOMAIN_PORT_DDI_E_IO;
break;
default:
MISSING_CASE(port);
}
/*
* Bspec says that DDI_A_4_LANES is the only supported configuration
* for Broxton. Yet some BIOS fail to set this bit on port A if eDP
* wasn't lit up at boot. Force this bit on in our internal
* configuration so that we use the proper lane count for our
* calculations.
*/
if (IS_GEN9_LP(dev_priv) && port == PORT_A) {
if (!(intel_dig_port->saved_port_bits & DDI_A_4_LANES)) {
DRM_DEBUG_KMS("BXT BIOS forgot to set DDI_A_4_LANES for port A; fixing\n");
intel_dig_port->saved_port_bits |= DDI_A_4_LANES;
max_lanes = 4;
}
}
intel_dig_port->max_lanes = max_lanes;
intel_encoder->type = INTEL_OUTPUT_UNKNOWN;
intel_encoder->power_domain = intel_port_to_power_domain(port);
intel_encoder->port = port;
intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
intel_encoder->cloneable = 0;
if (init_dp) {
if (!intel_ddi_init_dp_connector(intel_dig_port))
goto err;
intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
dev_priv->hotplug.irq_port[port] = intel_dig_port;
}
/* In theory we don't need the encoder->type check, but leave it just in
* case we have some really bad VBTs... */
if (intel_encoder->type != INTEL_OUTPUT_EDP && init_hdmi) {
if (!intel_ddi_init_hdmi_connector(intel_dig_port))
goto err;
}
if (init_lspcon) {
if (lspcon_init(intel_dig_port))
/* TODO: handle hdmi info frame part */
DRM_DEBUG_KMS("LSPCON init success on port %c\n",
port_name(port));
else
/*
* LSPCON init faied, but DP init was success, so
* lets try to drive as DP++ port.
*/
DRM_ERROR("LSPCON init failed on port %c\n",
port_name(port));
}
return;
err:
drm_encoder_cleanup(encoder);
kfree(intel_dig_port);
}