linux/arch/s390/pci/pci_insn.c
Niklas Schnelle cde8833e40 s390/pci: add PCI access type and length to error records
Currently when a PCI instruction returns a non-zero condition code it
can be very hard to tell from the s390dbf logs what kind of instruction
was executed. In case of PCI memory I/O (MIO) instructions it is even
impossible to tell if we attempted a load, store or block store or how
large the access was because only the address is logged.

Improve this by adding an indicator byte for the instruction type to the
error record and also store the length of the access for MIO
instructions where this can not be deduced from the request.

We use the following indicator values:
 - 'l': PCI load
 - 's': PCI store
 - 'b': PCI store block
 - 'L': PCI load (MIO)
 - 'S': PCI store (MIO)
 - 'B': PCI store block (MIO)
 - 'M': MPCIFC
 - 'R': RPCIT

Reviewed-by: Matthew Rosato <mjrosato@linux.ibm.com>
Reviewed-by: Pierre Morel <pmorel@linux.ibm.com>
Signed-off-by: Niklas Schnelle <schnelle@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
2022-04-25 13:54:15 +02:00

402 lines
8.6 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* s390 specific pci instructions
*
* Copyright IBM Corp. 2013
*/
#include <linux/export.h>
#include <linux/errno.h>
#include <linux/delay.h>
#include <linux/jump_label.h>
#include <asm/asm-extable.h>
#include <asm/facility.h>
#include <asm/pci_insn.h>
#include <asm/pci_debug.h>
#include <asm/pci_io.h>
#include <asm/processor.h>
#define ZPCI_INSN_BUSY_DELAY 1 /* 1 microsecond */
struct zpci_err_insn_data {
u8 insn;
u8 cc;
u8 status;
union {
struct {
u64 req;
u64 offset;
};
struct {
u64 addr;
u64 len;
};
};
} __packed;
static inline void zpci_err_insn_req(u8 insn, u8 cc, u8 status,
u64 req, u64 offset)
{
struct zpci_err_insn_data data = {
.insn = insn, .cc = cc, .status = status,
.req = req, .offset = offset};
zpci_err_hex(&data, sizeof(data));
}
static inline void zpci_err_insn_addr(u8 insn, u8 cc, u8 status,
u64 addr, u64 len)
{
struct zpci_err_insn_data data = {
.insn = insn, .cc = cc, .status = status,
.addr = addr, .len = len};
zpci_err_hex(&data, sizeof(data));
}
/* Modify PCI Function Controls */
static inline u8 __mpcifc(u64 req, struct zpci_fib *fib, u8 *status)
{
u8 cc;
asm volatile (
" .insn rxy,0xe300000000d0,%[req],%[fib]\n"
" ipm %[cc]\n"
" srl %[cc],28\n"
: [cc] "=d" (cc), [req] "+d" (req), [fib] "+Q" (*fib)
: : "cc");
*status = req >> 24 & 0xff;
return cc;
}
u8 zpci_mod_fc(u64 req, struct zpci_fib *fib, u8 *status)
{
u8 cc;
do {
cc = __mpcifc(req, fib, status);
if (cc == 2)
msleep(ZPCI_INSN_BUSY_DELAY);
} while (cc == 2);
if (cc)
zpci_err_insn_req('M', cc, *status, req, 0);
return cc;
}
/* Refresh PCI Translations */
static inline u8 __rpcit(u64 fn, u64 addr, u64 range, u8 *status)
{
union register_pair addr_range = {.even = addr, .odd = range};
u8 cc;
asm volatile (
" .insn rre,0xb9d30000,%[fn],%[addr_range]\n"
" ipm %[cc]\n"
" srl %[cc],28\n"
: [cc] "=d" (cc), [fn] "+d" (fn)
: [addr_range] "d" (addr_range.pair)
: "cc");
*status = fn >> 24 & 0xff;
return cc;
}
int zpci_refresh_trans(u64 fn, u64 addr, u64 range)
{
u8 cc, status;
do {
cc = __rpcit(fn, addr, range, &status);
if (cc == 2)
udelay(ZPCI_INSN_BUSY_DELAY);
} while (cc == 2);
if (cc)
zpci_err_insn_addr('R', cc, status, addr, range);
if (cc == 1 && (status == 4 || status == 16))
return -ENOMEM;
return (cc) ? -EIO : 0;
}
/* Set Interruption Controls */
int __zpci_set_irq_ctrl(u16 ctl, u8 isc, union zpci_sic_iib *iib)
{
if (!test_facility(72))
return -EIO;
asm volatile(
".insn rsy,0xeb00000000d1,%[ctl],%[isc],%[iib]\n"
: : [ctl] "d" (ctl), [isc] "d" (isc << 27), [iib] "Q" (*iib));
return 0;
}
/* PCI Load */
static inline int ____pcilg(u64 *data, u64 req, u64 offset, u8 *status)
{
union register_pair req_off = {.even = req, .odd = offset};
int cc = -ENXIO;
u64 __data;
asm volatile (
" .insn rre,0xb9d20000,%[data],%[req_off]\n"
"0: ipm %[cc]\n"
" srl %[cc],28\n"
"1:\n"
EX_TABLE(0b, 1b)
: [cc] "+d" (cc), [data] "=d" (__data),
[req_off] "+&d" (req_off.pair) :: "cc");
*status = req_off.even >> 24 & 0xff;
*data = __data;
return cc;
}
static inline int __pcilg(u64 *data, u64 req, u64 offset, u8 *status)
{
u64 __data;
int cc;
cc = ____pcilg(&__data, req, offset, status);
if (!cc)
*data = __data;
return cc;
}
int __zpci_load(u64 *data, u64 req, u64 offset)
{
u8 status;
int cc;
do {
cc = __pcilg(data, req, offset, &status);
if (cc == 2)
udelay(ZPCI_INSN_BUSY_DELAY);
} while (cc == 2);
if (cc)
zpci_err_insn_req('l', cc, status, req, offset);
return (cc > 0) ? -EIO : cc;
}
EXPORT_SYMBOL_GPL(__zpci_load);
static inline int zpci_load_fh(u64 *data, const volatile void __iomem *addr,
unsigned long len)
{
struct zpci_iomap_entry *entry = &zpci_iomap_start[ZPCI_IDX(addr)];
u64 req = ZPCI_CREATE_REQ(READ_ONCE(entry->fh), entry->bar, len);
return __zpci_load(data, req, ZPCI_OFFSET(addr));
}
static inline int __pcilg_mio(u64 *data, u64 ioaddr, u64 len, u8 *status)
{
union register_pair ioaddr_len = {.even = ioaddr, .odd = len};
int cc = -ENXIO;
u64 __data;
asm volatile (
" .insn rre,0xb9d60000,%[data],%[ioaddr_len]\n"
"0: ipm %[cc]\n"
" srl %[cc],28\n"
"1:\n"
EX_TABLE(0b, 1b)
: [cc] "+d" (cc), [data] "=d" (__data),
[ioaddr_len] "+&d" (ioaddr_len.pair) :: "cc");
*status = ioaddr_len.odd >> 24 & 0xff;
*data = __data;
return cc;
}
int zpci_load(u64 *data, const volatile void __iomem *addr, unsigned long len)
{
u8 status;
int cc;
if (!static_branch_unlikely(&have_mio))
return zpci_load_fh(data, addr, len);
cc = __pcilg_mio(data, (__force u64) addr, len, &status);
if (cc)
zpci_err_insn_addr('L', cc, status, (__force u64) addr, len);
return (cc > 0) ? -EIO : cc;
}
EXPORT_SYMBOL_GPL(zpci_load);
/* PCI Store */
static inline int __pcistg(u64 data, u64 req, u64 offset, u8 *status)
{
union register_pair req_off = {.even = req, .odd = offset};
int cc = -ENXIO;
asm volatile (
" .insn rre,0xb9d00000,%[data],%[req_off]\n"
"0: ipm %[cc]\n"
" srl %[cc],28\n"
"1:\n"
EX_TABLE(0b, 1b)
: [cc] "+d" (cc), [req_off] "+&d" (req_off.pair)
: [data] "d" (data)
: "cc");
*status = req_off.even >> 24 & 0xff;
return cc;
}
int __zpci_store(u64 data, u64 req, u64 offset)
{
u8 status;
int cc;
do {
cc = __pcistg(data, req, offset, &status);
if (cc == 2)
udelay(ZPCI_INSN_BUSY_DELAY);
} while (cc == 2);
if (cc)
zpci_err_insn_req('s', cc, status, req, offset);
return (cc > 0) ? -EIO : cc;
}
EXPORT_SYMBOL_GPL(__zpci_store);
static inline int zpci_store_fh(const volatile void __iomem *addr, u64 data,
unsigned long len)
{
struct zpci_iomap_entry *entry = &zpci_iomap_start[ZPCI_IDX(addr)];
u64 req = ZPCI_CREATE_REQ(READ_ONCE(entry->fh), entry->bar, len);
return __zpci_store(data, req, ZPCI_OFFSET(addr));
}
static inline int __pcistg_mio(u64 data, u64 ioaddr, u64 len, u8 *status)
{
union register_pair ioaddr_len = {.even = ioaddr, .odd = len};
int cc = -ENXIO;
asm volatile (
" .insn rre,0xb9d40000,%[data],%[ioaddr_len]\n"
"0: ipm %[cc]\n"
" srl %[cc],28\n"
"1:\n"
EX_TABLE(0b, 1b)
: [cc] "+d" (cc), [ioaddr_len] "+&d" (ioaddr_len.pair)
: [data] "d" (data)
: "cc", "memory");
*status = ioaddr_len.odd >> 24 & 0xff;
return cc;
}
int zpci_store(const volatile void __iomem *addr, u64 data, unsigned long len)
{
u8 status;
int cc;
if (!static_branch_unlikely(&have_mio))
return zpci_store_fh(addr, data, len);
cc = __pcistg_mio(data, (__force u64) addr, len, &status);
if (cc)
zpci_err_insn_addr('S', cc, status, (__force u64) addr, len);
return (cc > 0) ? -EIO : cc;
}
EXPORT_SYMBOL_GPL(zpci_store);
/* PCI Store Block */
static inline int __pcistb(const u64 *data, u64 req, u64 offset, u8 *status)
{
int cc = -ENXIO;
asm volatile (
" .insn rsy,0xeb00000000d0,%[req],%[offset],%[data]\n"
"0: ipm %[cc]\n"
" srl %[cc],28\n"
"1:\n"
EX_TABLE(0b, 1b)
: [cc] "+d" (cc), [req] "+d" (req)
: [offset] "d" (offset), [data] "Q" (*data)
: "cc");
*status = req >> 24 & 0xff;
return cc;
}
int __zpci_store_block(const u64 *data, u64 req, u64 offset)
{
u8 status;
int cc;
do {
cc = __pcistb(data, req, offset, &status);
if (cc == 2)
udelay(ZPCI_INSN_BUSY_DELAY);
} while (cc == 2);
if (cc)
zpci_err_insn_req('b', cc, status, req, offset);
return (cc > 0) ? -EIO : cc;
}
EXPORT_SYMBOL_GPL(__zpci_store_block);
static inline int zpci_write_block_fh(volatile void __iomem *dst,
const void *src, unsigned long len)
{
struct zpci_iomap_entry *entry = &zpci_iomap_start[ZPCI_IDX(dst)];
u64 req = ZPCI_CREATE_REQ(entry->fh, entry->bar, len);
u64 offset = ZPCI_OFFSET(dst);
return __zpci_store_block(src, req, offset);
}
static inline int __pcistb_mio(const u64 *data, u64 ioaddr, u64 len, u8 *status)
{
int cc = -ENXIO;
asm volatile (
" .insn rsy,0xeb00000000d4,%[len],%[ioaddr],%[data]\n"
"0: ipm %[cc]\n"
" srl %[cc],28\n"
"1:\n"
EX_TABLE(0b, 1b)
: [cc] "+d" (cc), [len] "+d" (len)
: [ioaddr] "d" (ioaddr), [data] "Q" (*data)
: "cc");
*status = len >> 24 & 0xff;
return cc;
}
int zpci_write_block(volatile void __iomem *dst,
const void *src, unsigned long len)
{
u8 status;
int cc;
if (!static_branch_unlikely(&have_mio))
return zpci_write_block_fh(dst, src, len);
cc = __pcistb_mio(src, (__force u64) dst, len, &status);
if (cc)
zpci_err_insn_addr('B', cc, status, (__force u64) dst, len);
return (cc > 0) ? -EIO : cc;
}
EXPORT_SYMBOL_GPL(zpci_write_block);
static inline void __pciwb_mio(void)
{
asm volatile (".insn rre,0xb9d50000,0,0\n");
}
void zpci_barrier(void)
{
if (static_branch_likely(&have_mio))
__pciwb_mio();
}
EXPORT_SYMBOL_GPL(zpci_barrier);