linux/drivers/gpu/drm/msm/msm_gpu.c
Jordan Crouse cd414f3d93 drm/msm: Move memptrs to msm_gpu
When we move to multiple ringbuffers we're going to store the data
in the memptrs on a per-ring basis. In order to prepare for that
move the current memptrs from the adreno namespace into msm_gpu.
This is way cleaner and immediately lets us kill off some sub
functions so there is much less cost later when we do move to
per-ring structs.

Signed-off-by: Jordan Crouse <jcrouse@codeaurora.org>
Signed-off-by: Rob Clark <robdclark@gmail.com>
2017-10-28 11:01:36 -04:00

751 lines
17 KiB
C

/*
* Copyright (C) 2013 Red Hat
* Author: Rob Clark <robdclark@gmail.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published by
* the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "msm_gpu.h"
#include "msm_gem.h"
#include "msm_mmu.h"
#include "msm_fence.h"
/*
* Power Management:
*/
#ifdef DOWNSTREAM_CONFIG_MSM_BUS_SCALING
#include <mach/board.h>
static void bs_init(struct msm_gpu *gpu)
{
if (gpu->bus_scale_table) {
gpu->bsc = msm_bus_scale_register_client(gpu->bus_scale_table);
DBG("bus scale client: %08x", gpu->bsc);
}
}
static void bs_fini(struct msm_gpu *gpu)
{
if (gpu->bsc) {
msm_bus_scale_unregister_client(gpu->bsc);
gpu->bsc = 0;
}
}
static void bs_set(struct msm_gpu *gpu, int idx)
{
if (gpu->bsc) {
DBG("set bus scaling: %d", idx);
msm_bus_scale_client_update_request(gpu->bsc, idx);
}
}
#else
static void bs_init(struct msm_gpu *gpu) {}
static void bs_fini(struct msm_gpu *gpu) {}
static void bs_set(struct msm_gpu *gpu, int idx) {}
#endif
static int enable_pwrrail(struct msm_gpu *gpu)
{
struct drm_device *dev = gpu->dev;
int ret = 0;
if (gpu->gpu_reg) {
ret = regulator_enable(gpu->gpu_reg);
if (ret) {
dev_err(dev->dev, "failed to enable 'gpu_reg': %d\n", ret);
return ret;
}
}
if (gpu->gpu_cx) {
ret = regulator_enable(gpu->gpu_cx);
if (ret) {
dev_err(dev->dev, "failed to enable 'gpu_cx': %d\n", ret);
return ret;
}
}
return 0;
}
static int disable_pwrrail(struct msm_gpu *gpu)
{
if (gpu->gpu_cx)
regulator_disable(gpu->gpu_cx);
if (gpu->gpu_reg)
regulator_disable(gpu->gpu_reg);
return 0;
}
static int enable_clk(struct msm_gpu *gpu)
{
int i;
if (gpu->core_clk && gpu->fast_rate)
clk_set_rate(gpu->core_clk, gpu->fast_rate);
/* Set the RBBM timer rate to 19.2Mhz */
if (gpu->rbbmtimer_clk)
clk_set_rate(gpu->rbbmtimer_clk, 19200000);
for (i = gpu->nr_clocks - 1; i >= 0; i--)
if (gpu->grp_clks[i])
clk_prepare(gpu->grp_clks[i]);
for (i = gpu->nr_clocks - 1; i >= 0; i--)
if (gpu->grp_clks[i])
clk_enable(gpu->grp_clks[i]);
return 0;
}
static int disable_clk(struct msm_gpu *gpu)
{
int i;
for (i = gpu->nr_clocks - 1; i >= 0; i--)
if (gpu->grp_clks[i])
clk_disable(gpu->grp_clks[i]);
for (i = gpu->nr_clocks - 1; i >= 0; i--)
if (gpu->grp_clks[i])
clk_unprepare(gpu->grp_clks[i]);
/*
* Set the clock to a deliberately low rate. On older targets the clock
* speed had to be non zero to avoid problems. On newer targets this
* will be rounded down to zero anyway so it all works out.
*/
if (gpu->core_clk)
clk_set_rate(gpu->core_clk, 27000000);
if (gpu->rbbmtimer_clk)
clk_set_rate(gpu->rbbmtimer_clk, 0);
return 0;
}
static int enable_axi(struct msm_gpu *gpu)
{
if (gpu->ebi1_clk)
clk_prepare_enable(gpu->ebi1_clk);
if (gpu->bus_freq)
bs_set(gpu, gpu->bus_freq);
return 0;
}
static int disable_axi(struct msm_gpu *gpu)
{
if (gpu->ebi1_clk)
clk_disable_unprepare(gpu->ebi1_clk);
if (gpu->bus_freq)
bs_set(gpu, 0);
return 0;
}
int msm_gpu_pm_resume(struct msm_gpu *gpu)
{
int ret;
DBG("%s", gpu->name);
ret = enable_pwrrail(gpu);
if (ret)
return ret;
ret = enable_clk(gpu);
if (ret)
return ret;
ret = enable_axi(gpu);
if (ret)
return ret;
gpu->needs_hw_init = true;
return 0;
}
int msm_gpu_pm_suspend(struct msm_gpu *gpu)
{
int ret;
DBG("%s", gpu->name);
ret = disable_axi(gpu);
if (ret)
return ret;
ret = disable_clk(gpu);
if (ret)
return ret;
ret = disable_pwrrail(gpu);
if (ret)
return ret;
return 0;
}
int msm_gpu_hw_init(struct msm_gpu *gpu)
{
int ret;
WARN_ON(!mutex_is_locked(&gpu->dev->struct_mutex));
if (!gpu->needs_hw_init)
return 0;
disable_irq(gpu->irq);
ret = gpu->funcs->hw_init(gpu);
if (!ret)
gpu->needs_hw_init = false;
enable_irq(gpu->irq);
return ret;
}
/*
* Hangcheck detection for locked gpu:
*/
static void retire_submits(struct msm_gpu *gpu);
static void recover_worker(struct work_struct *work)
{
struct msm_gpu *gpu = container_of(work, struct msm_gpu, recover_work);
struct drm_device *dev = gpu->dev;
struct msm_gem_submit *submit;
uint32_t fence = gpu->memptrs->fence;
msm_update_fence(gpu->fctx, fence + 1);
mutex_lock(&dev->struct_mutex);
dev_err(dev->dev, "%s: hangcheck recover!\n", gpu->name);
list_for_each_entry(submit, &gpu->submit_list, node) {
if (submit->fence->seqno == (fence + 1)) {
struct task_struct *task;
rcu_read_lock();
task = pid_task(submit->pid, PIDTYPE_PID);
if (task) {
dev_err(dev->dev, "%s: offending task: %s\n",
gpu->name, task->comm);
}
rcu_read_unlock();
break;
}
}
if (msm_gpu_active(gpu)) {
/* retire completed submits, plus the one that hung: */
retire_submits(gpu);
pm_runtime_get_sync(&gpu->pdev->dev);
gpu->funcs->recover(gpu);
pm_runtime_put_sync(&gpu->pdev->dev);
/* replay the remaining submits after the one that hung: */
list_for_each_entry(submit, &gpu->submit_list, node) {
gpu->funcs->submit(gpu, submit, NULL);
}
}
mutex_unlock(&dev->struct_mutex);
msm_gpu_retire(gpu);
}
static void hangcheck_timer_reset(struct msm_gpu *gpu)
{
DBG("%s", gpu->name);
mod_timer(&gpu->hangcheck_timer,
round_jiffies_up(jiffies + DRM_MSM_HANGCHECK_JIFFIES));
}
static void hangcheck_handler(unsigned long data)
{
struct msm_gpu *gpu = (struct msm_gpu *)data;
struct drm_device *dev = gpu->dev;
struct msm_drm_private *priv = dev->dev_private;
uint32_t fence = gpu->memptrs->fence;
if (fence != gpu->hangcheck_fence) {
/* some progress has been made.. ya! */
gpu->hangcheck_fence = fence;
} else if (fence < gpu->fctx->last_fence) {
/* no progress and not done.. hung! */
gpu->hangcheck_fence = fence;
dev_err(dev->dev, "%s: hangcheck detected gpu lockup!\n",
gpu->name);
dev_err(dev->dev, "%s: completed fence: %u\n",
gpu->name, fence);
dev_err(dev->dev, "%s: submitted fence: %u\n",
gpu->name, gpu->fctx->last_fence);
queue_work(priv->wq, &gpu->recover_work);
}
/* if still more pending work, reset the hangcheck timer: */
if (gpu->fctx->last_fence > gpu->hangcheck_fence)
hangcheck_timer_reset(gpu);
/* workaround for missing irq: */
queue_work(priv->wq, &gpu->retire_work);
}
/*
* Performance Counters:
*/
/* called under perf_lock */
static int update_hw_cntrs(struct msm_gpu *gpu, uint32_t ncntrs, uint32_t *cntrs)
{
uint32_t current_cntrs[ARRAY_SIZE(gpu->last_cntrs)];
int i, n = min(ncntrs, gpu->num_perfcntrs);
/* read current values: */
for (i = 0; i < gpu->num_perfcntrs; i++)
current_cntrs[i] = gpu_read(gpu, gpu->perfcntrs[i].sample_reg);
/* update cntrs: */
for (i = 0; i < n; i++)
cntrs[i] = current_cntrs[i] - gpu->last_cntrs[i];
/* save current values: */
for (i = 0; i < gpu->num_perfcntrs; i++)
gpu->last_cntrs[i] = current_cntrs[i];
return n;
}
static void update_sw_cntrs(struct msm_gpu *gpu)
{
ktime_t time;
uint32_t elapsed;
unsigned long flags;
spin_lock_irqsave(&gpu->perf_lock, flags);
if (!gpu->perfcntr_active)
goto out;
time = ktime_get();
elapsed = ktime_to_us(ktime_sub(time, gpu->last_sample.time));
gpu->totaltime += elapsed;
if (gpu->last_sample.active)
gpu->activetime += elapsed;
gpu->last_sample.active = msm_gpu_active(gpu);
gpu->last_sample.time = time;
out:
spin_unlock_irqrestore(&gpu->perf_lock, flags);
}
void msm_gpu_perfcntr_start(struct msm_gpu *gpu)
{
unsigned long flags;
pm_runtime_get_sync(&gpu->pdev->dev);
spin_lock_irqsave(&gpu->perf_lock, flags);
/* we could dynamically enable/disable perfcntr registers too.. */
gpu->last_sample.active = msm_gpu_active(gpu);
gpu->last_sample.time = ktime_get();
gpu->activetime = gpu->totaltime = 0;
gpu->perfcntr_active = true;
update_hw_cntrs(gpu, 0, NULL);
spin_unlock_irqrestore(&gpu->perf_lock, flags);
}
void msm_gpu_perfcntr_stop(struct msm_gpu *gpu)
{
gpu->perfcntr_active = false;
pm_runtime_put_sync(&gpu->pdev->dev);
}
/* returns -errno or # of cntrs sampled */
int msm_gpu_perfcntr_sample(struct msm_gpu *gpu, uint32_t *activetime,
uint32_t *totaltime, uint32_t ncntrs, uint32_t *cntrs)
{
unsigned long flags;
int ret;
spin_lock_irqsave(&gpu->perf_lock, flags);
if (!gpu->perfcntr_active) {
ret = -EINVAL;
goto out;
}
*activetime = gpu->activetime;
*totaltime = gpu->totaltime;
gpu->activetime = gpu->totaltime = 0;
ret = update_hw_cntrs(gpu, ncntrs, cntrs);
out:
spin_unlock_irqrestore(&gpu->perf_lock, flags);
return ret;
}
/*
* Cmdstream submission/retirement:
*/
static void retire_submit(struct msm_gpu *gpu, struct msm_gem_submit *submit)
{
int i;
for (i = 0; i < submit->nr_bos; i++) {
struct msm_gem_object *msm_obj = submit->bos[i].obj;
/* move to inactive: */
msm_gem_move_to_inactive(&msm_obj->base);
msm_gem_put_iova(&msm_obj->base, gpu->aspace);
drm_gem_object_unreference(&msm_obj->base);
}
pm_runtime_mark_last_busy(&gpu->pdev->dev);
pm_runtime_put_autosuspend(&gpu->pdev->dev);
msm_gem_submit_free(submit);
}
static void retire_submits(struct msm_gpu *gpu)
{
struct drm_device *dev = gpu->dev;
WARN_ON(!mutex_is_locked(&dev->struct_mutex));
while (!list_empty(&gpu->submit_list)) {
struct msm_gem_submit *submit;
submit = list_first_entry(&gpu->submit_list,
struct msm_gem_submit, node);
if (dma_fence_is_signaled(submit->fence)) {
retire_submit(gpu, submit);
} else {
break;
}
}
}
static void retire_worker(struct work_struct *work)
{
struct msm_gpu *gpu = container_of(work, struct msm_gpu, retire_work);
struct drm_device *dev = gpu->dev;
uint32_t fence = gpu->memptrs->fence;
msm_update_fence(gpu->fctx, fence);
mutex_lock(&dev->struct_mutex);
retire_submits(gpu);
mutex_unlock(&dev->struct_mutex);
}
/* call from irq handler to schedule work to retire bo's */
void msm_gpu_retire(struct msm_gpu *gpu)
{
struct msm_drm_private *priv = gpu->dev->dev_private;
queue_work(priv->wq, &gpu->retire_work);
update_sw_cntrs(gpu);
}
/* add bo's to gpu's ring, and kick gpu: */
void msm_gpu_submit(struct msm_gpu *gpu, struct msm_gem_submit *submit,
struct msm_file_private *ctx)
{
struct drm_device *dev = gpu->dev;
struct msm_drm_private *priv = dev->dev_private;
int i;
WARN_ON(!mutex_is_locked(&dev->struct_mutex));
pm_runtime_get_sync(&gpu->pdev->dev);
msm_gpu_hw_init(gpu);
list_add_tail(&submit->node, &gpu->submit_list);
msm_rd_dump_submit(submit);
update_sw_cntrs(gpu);
for (i = 0; i < submit->nr_bos; i++) {
struct msm_gem_object *msm_obj = submit->bos[i].obj;
uint64_t iova;
/* can't happen yet.. but when we add 2d support we'll have
* to deal w/ cross-ring synchronization:
*/
WARN_ON(is_active(msm_obj) && (msm_obj->gpu != gpu));
/* submit takes a reference to the bo and iova until retired: */
drm_gem_object_reference(&msm_obj->base);
msm_gem_get_iova(&msm_obj->base,
submit->gpu->aspace, &iova);
if (submit->bos[i].flags & MSM_SUBMIT_BO_WRITE)
msm_gem_move_to_active(&msm_obj->base, gpu, true, submit->fence);
else if (submit->bos[i].flags & MSM_SUBMIT_BO_READ)
msm_gem_move_to_active(&msm_obj->base, gpu, false, submit->fence);
}
gpu->funcs->submit(gpu, submit, ctx);
priv->lastctx = ctx;
hangcheck_timer_reset(gpu);
}
/*
* Init/Cleanup:
*/
static irqreturn_t irq_handler(int irq, void *data)
{
struct msm_gpu *gpu = data;
return gpu->funcs->irq(gpu);
}
static struct clk *get_clock(struct device *dev, const char *name)
{
struct clk *clk = devm_clk_get(dev, name);
return IS_ERR(clk) ? NULL : clk;
}
static int get_clocks(struct platform_device *pdev, struct msm_gpu *gpu)
{
struct device *dev = &pdev->dev;
struct property *prop;
const char *name;
int i = 0;
gpu->nr_clocks = of_property_count_strings(dev->of_node, "clock-names");
if (gpu->nr_clocks < 1) {
gpu->nr_clocks = 0;
return 0;
}
gpu->grp_clks = devm_kcalloc(dev, sizeof(struct clk *), gpu->nr_clocks,
GFP_KERNEL);
if (!gpu->grp_clks)
return -ENOMEM;
of_property_for_each_string(dev->of_node, "clock-names", prop, name) {
gpu->grp_clks[i] = get_clock(dev, name);
/* Remember the key clocks that we need to control later */
if (!strcmp(name, "core") || !strcmp(name, "core_clk"))
gpu->core_clk = gpu->grp_clks[i];
else if (!strcmp(name, "rbbmtimer") || !strcmp(name, "rbbmtimer_clk"))
gpu->rbbmtimer_clk = gpu->grp_clks[i];
++i;
}
return 0;
}
static struct msm_gem_address_space *
msm_gpu_create_address_space(struct msm_gpu *gpu, struct platform_device *pdev,
uint64_t va_start, uint64_t va_end)
{
struct iommu_domain *iommu;
struct msm_gem_address_space *aspace;
int ret;
/*
* Setup IOMMU.. eventually we will (I think) do this once per context
* and have separate page tables per context. For now, to keep things
* simple and to get something working, just use a single address space:
*/
iommu = iommu_domain_alloc(&platform_bus_type);
if (!iommu)
return NULL;
iommu->geometry.aperture_start = va_start;
iommu->geometry.aperture_end = va_end;
dev_info(gpu->dev->dev, "%s: using IOMMU\n", gpu->name);
aspace = msm_gem_address_space_create(&pdev->dev, iommu, "gpu");
if (IS_ERR(aspace)) {
dev_err(gpu->dev->dev, "failed to init iommu: %ld\n",
PTR_ERR(aspace));
iommu_domain_free(iommu);
return ERR_CAST(aspace);
}
ret = aspace->mmu->funcs->attach(aspace->mmu, NULL, 0);
if (ret) {
msm_gem_address_space_put(aspace);
return ERR_PTR(ret);
}
return aspace;
}
int msm_gpu_init(struct drm_device *drm, struct platform_device *pdev,
struct msm_gpu *gpu, const struct msm_gpu_funcs *funcs,
const char *name, struct msm_gpu_config *config)
{
int ret;
if (WARN_ON(gpu->num_perfcntrs > ARRAY_SIZE(gpu->last_cntrs)))
gpu->num_perfcntrs = ARRAY_SIZE(gpu->last_cntrs);
gpu->dev = drm;
gpu->funcs = funcs;
gpu->name = name;
gpu->fctx = msm_fence_context_alloc(drm, name);
if (IS_ERR(gpu->fctx)) {
ret = PTR_ERR(gpu->fctx);
gpu->fctx = NULL;
goto fail;
}
INIT_LIST_HEAD(&gpu->active_list);
INIT_WORK(&gpu->retire_work, retire_worker);
INIT_WORK(&gpu->recover_work, recover_worker);
INIT_LIST_HEAD(&gpu->submit_list);
setup_timer(&gpu->hangcheck_timer, hangcheck_handler,
(unsigned long)gpu);
spin_lock_init(&gpu->perf_lock);
/* Map registers: */
gpu->mmio = msm_ioremap(pdev, config->ioname, name);
if (IS_ERR(gpu->mmio)) {
ret = PTR_ERR(gpu->mmio);
goto fail;
}
/* Get Interrupt: */
gpu->irq = platform_get_irq_byname(pdev, config->irqname);
if (gpu->irq < 0) {
ret = gpu->irq;
dev_err(drm->dev, "failed to get irq: %d\n", ret);
goto fail;
}
ret = devm_request_irq(&pdev->dev, gpu->irq, irq_handler,
IRQF_TRIGGER_HIGH, gpu->name, gpu);
if (ret) {
dev_err(drm->dev, "failed to request IRQ%u: %d\n", gpu->irq, ret);
goto fail;
}
ret = get_clocks(pdev, gpu);
if (ret)
goto fail;
gpu->ebi1_clk = msm_clk_get(pdev, "bus");
DBG("ebi1_clk: %p", gpu->ebi1_clk);
if (IS_ERR(gpu->ebi1_clk))
gpu->ebi1_clk = NULL;
/* Acquire regulators: */
gpu->gpu_reg = devm_regulator_get(&pdev->dev, "vdd");
DBG("gpu_reg: %p", gpu->gpu_reg);
if (IS_ERR(gpu->gpu_reg))
gpu->gpu_reg = NULL;
gpu->gpu_cx = devm_regulator_get(&pdev->dev, "vddcx");
DBG("gpu_cx: %p", gpu->gpu_cx);
if (IS_ERR(gpu->gpu_cx))
gpu->gpu_cx = NULL;
gpu->pdev = pdev;
platform_set_drvdata(pdev, gpu);
bs_init(gpu);
gpu->aspace = msm_gpu_create_address_space(gpu, pdev,
config->va_start, config->va_end);
if (gpu->aspace == NULL)
dev_info(drm->dev, "%s: no IOMMU, fallback to VRAM carveout!\n", name);
else if (IS_ERR(gpu->aspace)) {
ret = PTR_ERR(gpu->aspace);
goto fail;
}
gpu->memptrs = msm_gem_kernel_new(drm, sizeof(*gpu->memptrs_bo),
MSM_BO_UNCACHED, gpu->aspace, &gpu->memptrs_bo,
&gpu->memptrs_iova);
if (IS_ERR(gpu->memptrs)) {
ret = PTR_ERR(gpu->memptrs);
gpu->memptrs = NULL;
dev_err(drm->dev, "could not allocate memptrs: %d\n", ret);
goto fail;
}
/* Create ringbuffer: */
gpu->rb = msm_ringbuffer_new(gpu, config->ringsz);
if (IS_ERR(gpu->rb)) {
ret = PTR_ERR(gpu->rb);
gpu->rb = NULL;
dev_err(drm->dev, "could not create ringbuffer: %d\n", ret);
goto fail;
}
return 0;
fail:
if (gpu->memptrs_bo) {
msm_gem_put_vaddr(gpu->memptrs_bo);
msm_gem_put_iova(gpu->memptrs_bo, gpu->aspace);
drm_gem_object_unreference_unlocked(gpu->memptrs_bo);
}
platform_set_drvdata(pdev, NULL);
return ret;
}
void msm_gpu_cleanup(struct msm_gpu *gpu)
{
DBG("%s", gpu->name);
WARN_ON(!list_empty(&gpu->active_list));
bs_fini(gpu);
if (gpu->rb) {
if (gpu->rb_iova)
msm_gem_put_iova(gpu->rb->bo, gpu->aspace);
msm_ringbuffer_destroy(gpu->rb);
}
if (gpu->memptrs_bo) {
msm_gem_put_vaddr(gpu->memptrs_bo);
msm_gem_put_iova(gpu->memptrs_bo, gpu->aspace);
drm_gem_object_unreference_unlocked(gpu->memptrs_bo);
}
if (!IS_ERR_OR_NULL(gpu->aspace)) {
gpu->aspace->mmu->funcs->detach(gpu->aspace->mmu,
NULL, 0);
msm_gem_address_space_put(gpu->aspace);
}
}