966291f634
The macros efi_call_early and efi_call_runtime are used to call EFI boot services and runtime services, respectively. However, the naming is confusing, given that the early vs runtime distinction may suggest that these are used for calling the same set of services either early or late (== at runtime), while in reality, the sets of services they can be used with are completely disjoint, and efi_call_runtime is also only usable in 'early' code. So do a global sweep to replace all occurrences with efi_bs_call or efi_rt_call, respectively, where BS and RT match the idiom used by the UEFI spec to refer to boot time or runtime services. While at it, use 'func' as the macro parameter name for the function pointers, which is less likely to collide and cause weird build errors. Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Cc: Arvind Sankar <nivedita@alum.mit.edu> Cc: Borislav Petkov <bp@alien8.de> Cc: James Morse <james.morse@arm.com> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-efi@vger.kernel.org Link: https://lkml.kernel.org/r/20191224151025.32482-24-ardb@kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
199 lines
5.3 KiB
C
199 lines
5.3 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (C) 2016 Linaro Ltd; <ard.biesheuvel@linaro.org>
|
|
*/
|
|
|
|
#include <linux/efi.h>
|
|
#include <linux/log2.h>
|
|
#include <asm/efi.h>
|
|
|
|
#include "efistub.h"
|
|
|
|
typedef union efi_rng_protocol efi_rng_protocol_t;
|
|
|
|
union efi_rng_protocol {
|
|
struct {
|
|
efi_status_t (__efiapi *get_info)(efi_rng_protocol_t *,
|
|
unsigned long *,
|
|
efi_guid_t *);
|
|
efi_status_t (__efiapi *get_rng)(efi_rng_protocol_t *,
|
|
efi_guid_t *, unsigned long,
|
|
u8 *out);
|
|
};
|
|
struct {
|
|
u32 get_info;
|
|
u32 get_rng;
|
|
} mixed_mode;
|
|
};
|
|
|
|
efi_status_t efi_get_random_bytes(unsigned long size, u8 *out)
|
|
{
|
|
efi_guid_t rng_proto = EFI_RNG_PROTOCOL_GUID;
|
|
efi_status_t status;
|
|
efi_rng_protocol_t *rng = NULL;
|
|
|
|
status = efi_bs_call(locate_protocol, &rng_proto, NULL, (void **)&rng);
|
|
if (status != EFI_SUCCESS)
|
|
return status;
|
|
|
|
return efi_call_proto(rng, get_rng, NULL, size, out);
|
|
}
|
|
|
|
/*
|
|
* Return the number of slots covered by this entry, i.e., the number of
|
|
* addresses it covers that are suitably aligned and supply enough room
|
|
* for the allocation.
|
|
*/
|
|
static unsigned long get_entry_num_slots(efi_memory_desc_t *md,
|
|
unsigned long size,
|
|
unsigned long align_shift)
|
|
{
|
|
unsigned long align = 1UL << align_shift;
|
|
u64 first_slot, last_slot, region_end;
|
|
|
|
if (md->type != EFI_CONVENTIONAL_MEMORY)
|
|
return 0;
|
|
|
|
if (efi_soft_reserve_enabled() &&
|
|
(md->attribute & EFI_MEMORY_SP))
|
|
return 0;
|
|
|
|
region_end = min((u64)ULONG_MAX, md->phys_addr + md->num_pages*EFI_PAGE_SIZE - 1);
|
|
|
|
first_slot = round_up(md->phys_addr, align);
|
|
last_slot = round_down(region_end - size + 1, align);
|
|
|
|
if (first_slot > last_slot)
|
|
return 0;
|
|
|
|
return ((unsigned long)(last_slot - first_slot) >> align_shift) + 1;
|
|
}
|
|
|
|
/*
|
|
* The UEFI memory descriptors have a virtual address field that is only used
|
|
* when installing the virtual mapping using SetVirtualAddressMap(). Since it
|
|
* is unused here, we can reuse it to keep track of each descriptor's slot
|
|
* count.
|
|
*/
|
|
#define MD_NUM_SLOTS(md) ((md)->virt_addr)
|
|
|
|
efi_status_t efi_random_alloc(unsigned long size,
|
|
unsigned long align,
|
|
unsigned long *addr,
|
|
unsigned long random_seed)
|
|
{
|
|
unsigned long map_size, desc_size, total_slots = 0, target_slot;
|
|
unsigned long buff_size;
|
|
efi_status_t status;
|
|
efi_memory_desc_t *memory_map;
|
|
int map_offset;
|
|
struct efi_boot_memmap map;
|
|
|
|
map.map = &memory_map;
|
|
map.map_size = &map_size;
|
|
map.desc_size = &desc_size;
|
|
map.desc_ver = NULL;
|
|
map.key_ptr = NULL;
|
|
map.buff_size = &buff_size;
|
|
|
|
status = efi_get_memory_map(&map);
|
|
if (status != EFI_SUCCESS)
|
|
return status;
|
|
|
|
if (align < EFI_ALLOC_ALIGN)
|
|
align = EFI_ALLOC_ALIGN;
|
|
|
|
/* count the suitable slots in each memory map entry */
|
|
for (map_offset = 0; map_offset < map_size; map_offset += desc_size) {
|
|
efi_memory_desc_t *md = (void *)memory_map + map_offset;
|
|
unsigned long slots;
|
|
|
|
slots = get_entry_num_slots(md, size, ilog2(align));
|
|
MD_NUM_SLOTS(md) = slots;
|
|
total_slots += slots;
|
|
}
|
|
|
|
/* find a random number between 0 and total_slots */
|
|
target_slot = (total_slots * (u16)random_seed) >> 16;
|
|
|
|
/*
|
|
* target_slot is now a value in the range [0, total_slots), and so
|
|
* it corresponds with exactly one of the suitable slots we recorded
|
|
* when iterating over the memory map the first time around.
|
|
*
|
|
* So iterate over the memory map again, subtracting the number of
|
|
* slots of each entry at each iteration, until we have found the entry
|
|
* that covers our chosen slot. Use the residual value of target_slot
|
|
* to calculate the randomly chosen address, and allocate it directly
|
|
* using EFI_ALLOCATE_ADDRESS.
|
|
*/
|
|
for (map_offset = 0; map_offset < map_size; map_offset += desc_size) {
|
|
efi_memory_desc_t *md = (void *)memory_map + map_offset;
|
|
efi_physical_addr_t target;
|
|
unsigned long pages;
|
|
|
|
if (target_slot >= MD_NUM_SLOTS(md)) {
|
|
target_slot -= MD_NUM_SLOTS(md);
|
|
continue;
|
|
}
|
|
|
|
target = round_up(md->phys_addr, align) + target_slot * align;
|
|
pages = round_up(size, EFI_PAGE_SIZE) / EFI_PAGE_SIZE;
|
|
|
|
status = efi_bs_call(allocate_pages, EFI_ALLOCATE_ADDRESS,
|
|
EFI_LOADER_DATA, pages, &target);
|
|
if (status == EFI_SUCCESS)
|
|
*addr = target;
|
|
break;
|
|
}
|
|
|
|
efi_bs_call(free_pool, memory_map);
|
|
|
|
return status;
|
|
}
|
|
|
|
efi_status_t efi_random_get_seed(void)
|
|
{
|
|
efi_guid_t rng_proto = EFI_RNG_PROTOCOL_GUID;
|
|
efi_guid_t rng_algo_raw = EFI_RNG_ALGORITHM_RAW;
|
|
efi_guid_t rng_table_guid = LINUX_EFI_RANDOM_SEED_TABLE_GUID;
|
|
efi_rng_protocol_t *rng = NULL;
|
|
struct linux_efi_random_seed *seed = NULL;
|
|
efi_status_t status;
|
|
|
|
status = efi_bs_call(locate_protocol, &rng_proto, NULL, (void **)&rng);
|
|
if (status != EFI_SUCCESS)
|
|
return status;
|
|
|
|
status = efi_bs_call(allocate_pool, EFI_RUNTIME_SERVICES_DATA,
|
|
sizeof(*seed) + EFI_RANDOM_SEED_SIZE,
|
|
(void **)&seed);
|
|
if (status != EFI_SUCCESS)
|
|
return status;
|
|
|
|
status = efi_call_proto(rng, get_rng, &rng_algo_raw,
|
|
EFI_RANDOM_SEED_SIZE, seed->bits);
|
|
|
|
if (status == EFI_UNSUPPORTED)
|
|
/*
|
|
* Use whatever algorithm we have available if the raw algorithm
|
|
* is not implemented.
|
|
*/
|
|
status = efi_call_proto(rng, get_rng, NULL,
|
|
EFI_RANDOM_SEED_SIZE, seed->bits);
|
|
|
|
if (status != EFI_SUCCESS)
|
|
goto err_freepool;
|
|
|
|
seed->size = EFI_RANDOM_SEED_SIZE;
|
|
status = efi_bs_call(install_configuration_table, &rng_table_guid, seed);
|
|
if (status != EFI_SUCCESS)
|
|
goto err_freepool;
|
|
|
|
return EFI_SUCCESS;
|
|
|
|
err_freepool:
|
|
efi_bs_call(free_pool, seed);
|
|
return status;
|
|
}
|