linux/security/keys/process_keys.c
Linus Torvalds 75f95da078 libnvdimm for 4.21
* Add support for the security features of nvdimm devices that
   implement a security model similar to ATA hard drive security. The
   security model supports locking access to the media at
   device-power-loss, to be unlocked with a passphrase, and secure-erase
   (crypto-scramble).
 
   Unlike the ATA security case where the kernel expects device
   security to be managed in a pre-OS environment, the libnvdimm security
   implementation allows key provisioning and key-operations at OS
   runtime. Keys are managed with the kernel's encrypted-keys facility to
   provide data-at-rest security for the libnvdimm key material. The
   usage model mirrors fscrypt key management, but is driven via
   libnvdimm sysfs.
 
 * Miscellaneous updates for api usage and comment fixes.
 -----BEGIN PGP SIGNATURE-----
 
 iQIcBAABAgAGBQJcJalaAAoJEB7SkWpmfYgCmpkP/35Isou2xxbYdICt9HR4WjiE
 E4r66Ck+ivZW4oEAub3RQw/SwcZePjuHArO5MgVGFoM1dBMABE+JvKiZm1xybCil
 iuWT/V7ozlNf5LuvacvjUXe/suUIoqji9yzLEEx9mDaISehrYvvy579DFxkE8Aww
 8Vcx8E1DQkXiWY4d9nmDmAjt8GQPNmsdHfTwMcJg7XSywTkURF64vW7/94aN8QtV
 rH5ZKKOra8Lqn0S05RoH4XegZcE6TZxgE23ZXsobBJrWdbGVFmgbz6AaewJc/+QU
 ZW3dx/1NAe7Op25xewJOjdG/Kl0gzWtqCrHCu8LeaSjwtHsgMQ/FBhL9g/7GRtHt
 hcQy12Iu9YTn3FOl8yfNRKb7lE5/1nJ2MtW8Z55WKHONHzN9cgrZLOwmpTYgrR/r
 SmIzwKNFavLwwz9bj+paHhmTngLDnNbvR6FwAKwSbWinotbLEyfMhU1jJ9RmHxSV
 M+jqS1BJ9IvH+WVN5bVa7oCNpVeq6yMw0Ow2vWXMPbiwh17ShACI59paqZKRiR06
 WH8SgdTPOZuMndtQV+m8zFBiJtmgAtGSiN8c1A/1QZJHDTpXz2MdWhtx5McvFsZ9
 Jot4Vd8mFWI7oVLdb+PF/AGZnKNAnD8PdsAlFws0k7+rM6lf6gf5n/CkjjMuSapG
 Q/kf0cOpPq8wdsrnOzyc
 =7KYd
 -----END PGP SIGNATURE-----

Merge tag 'libnvdimm-for-4.21' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm

Pull libnvdimm updates from Dan Williams:
 "The vast bulk of this update is the new support for the security
  capabilities of some nvdimms.

  The userspace tooling for this capability is still a work in progress,
  but the changes survive the existing libnvdimm unit tests. The changes
  also pass manual checkout on hardware and the new nfit_test emulation
  of the security capability.

  The touches of the security/keys/ files have received the necessary
  acks from Mimi and David. Those changes were necessary to allow for a
  new generic encrypted-key type, and allow the nvdimm sub-system to
  lookup key material referenced by the libnvdimm-sysfs interface.

  Summary:

   - Add support for the security features of nvdimm devices that
     implement a security model similar to ATA hard drive security. The
     security model supports locking access to the media at
     device-power-loss, to be unlocked with a passphrase, and
     secure-erase (crypto-scramble).

     Unlike the ATA security case where the kernel expects device
     security to be managed in a pre-OS environment, the libnvdimm
     security implementation allows key provisioning and key-operations
     at OS runtime. Keys are managed with the kernel's encrypted-keys
     facility to provide data-at-rest security for the libnvdimm key
     material. The usage model mirrors fscrypt key management, but is
     driven via libnvdimm sysfs.

   - Miscellaneous updates for api usage and comment fixes"

* tag 'libnvdimm-for-4.21' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm: (21 commits)
  libnvdimm/security: Quiet security operations
  libnvdimm/security: Add documentation for nvdimm security support
  tools/testing/nvdimm: add Intel DSM 1.8 support for nfit_test
  tools/testing/nvdimm: Add overwrite support for nfit_test
  tools/testing/nvdimm: Add test support for Intel nvdimm security DSMs
  acpi/nfit, libnvdimm/security: add Intel DSM 1.8 master passphrase support
  acpi/nfit, libnvdimm/security: Add security DSM overwrite support
  acpi/nfit, libnvdimm: Add support for issue secure erase DSM to Intel nvdimm
  acpi/nfit, libnvdimm: Add enable/update passphrase support for Intel nvdimms
  acpi/nfit, libnvdimm: Add disable passphrase support to Intel nvdimm.
  acpi/nfit, libnvdimm: Add unlock of nvdimm support for Intel DIMMs
  acpi/nfit, libnvdimm: Add freeze security support to Intel nvdimm
  acpi/nfit, libnvdimm: Introduce nvdimm_security_ops
  keys-encrypted: add nvdimm key format type to encrypted keys
  keys: Export lookup_user_key to external users
  acpi/nfit, libnvdimm: Store dimm id as a member to struct nvdimm
  libnvdimm, namespace: Replace kmemdup() with kstrndup()
  libnvdimm, label: Switch to bitmap_zalloc()
  ACPI/nfit: Adjust annotation for why return 0 if fail to find NFIT at start
  libnvdimm, bus: Check id immediately following ida_simple_get
  ...
2018-12-28 15:05:13 -08:00

891 lines
21 KiB
C

/* Manage a process's keyrings
*
* Copyright (C) 2004-2005, 2008 Red Hat, Inc. All Rights Reserved.
* Written by David Howells (dhowells@redhat.com)
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#include <linux/init.h>
#include <linux/sched.h>
#include <linux/sched/user.h>
#include <linux/keyctl.h>
#include <linux/fs.h>
#include <linux/err.h>
#include <linux/mutex.h>
#include <linux/security.h>
#include <linux/user_namespace.h>
#include <linux/uaccess.h>
#include "internal.h"
/* Session keyring create vs join semaphore */
static DEFINE_MUTEX(key_session_mutex);
/* User keyring creation semaphore */
static DEFINE_MUTEX(key_user_keyring_mutex);
/* The root user's tracking struct */
struct key_user root_key_user = {
.usage = REFCOUNT_INIT(3),
.cons_lock = __MUTEX_INITIALIZER(root_key_user.cons_lock),
.lock = __SPIN_LOCK_UNLOCKED(root_key_user.lock),
.nkeys = ATOMIC_INIT(2),
.nikeys = ATOMIC_INIT(2),
.uid = GLOBAL_ROOT_UID,
};
/*
* Install the user and user session keyrings for the current process's UID.
*/
int install_user_keyrings(void)
{
struct user_struct *user;
const struct cred *cred;
struct key *uid_keyring, *session_keyring;
key_perm_t user_keyring_perm;
char buf[20];
int ret;
uid_t uid;
user_keyring_perm = (KEY_POS_ALL & ~KEY_POS_SETATTR) | KEY_USR_ALL;
cred = current_cred();
user = cred->user;
uid = from_kuid(cred->user_ns, user->uid);
kenter("%p{%u}", user, uid);
if (user->uid_keyring && user->session_keyring) {
kleave(" = 0 [exist]");
return 0;
}
mutex_lock(&key_user_keyring_mutex);
ret = 0;
if (!user->uid_keyring) {
/* get the UID-specific keyring
* - there may be one in existence already as it may have been
* pinned by a session, but the user_struct pointing to it
* may have been destroyed by setuid */
sprintf(buf, "_uid.%u", uid);
uid_keyring = find_keyring_by_name(buf, true);
if (IS_ERR(uid_keyring)) {
uid_keyring = keyring_alloc(buf, user->uid, INVALID_GID,
cred, user_keyring_perm,
KEY_ALLOC_UID_KEYRING |
KEY_ALLOC_IN_QUOTA,
NULL, NULL);
if (IS_ERR(uid_keyring)) {
ret = PTR_ERR(uid_keyring);
goto error;
}
}
/* get a default session keyring (which might also exist
* already) */
sprintf(buf, "_uid_ses.%u", uid);
session_keyring = find_keyring_by_name(buf, true);
if (IS_ERR(session_keyring)) {
session_keyring =
keyring_alloc(buf, user->uid, INVALID_GID,
cred, user_keyring_perm,
KEY_ALLOC_UID_KEYRING |
KEY_ALLOC_IN_QUOTA,
NULL, NULL);
if (IS_ERR(session_keyring)) {
ret = PTR_ERR(session_keyring);
goto error_release;
}
/* we install a link from the user session keyring to
* the user keyring */
ret = key_link(session_keyring, uid_keyring);
if (ret < 0)
goto error_release_both;
}
/* install the keyrings */
user->uid_keyring = uid_keyring;
user->session_keyring = session_keyring;
}
mutex_unlock(&key_user_keyring_mutex);
kleave(" = 0");
return 0;
error_release_both:
key_put(session_keyring);
error_release:
key_put(uid_keyring);
error:
mutex_unlock(&key_user_keyring_mutex);
kleave(" = %d", ret);
return ret;
}
/*
* Install a thread keyring to the given credentials struct if it didn't have
* one already. This is allowed to overrun the quota.
*
* Return: 0 if a thread keyring is now present; -errno on failure.
*/
int install_thread_keyring_to_cred(struct cred *new)
{
struct key *keyring;
if (new->thread_keyring)
return 0;
keyring = keyring_alloc("_tid", new->uid, new->gid, new,
KEY_POS_ALL | KEY_USR_VIEW,
KEY_ALLOC_QUOTA_OVERRUN,
NULL, NULL);
if (IS_ERR(keyring))
return PTR_ERR(keyring);
new->thread_keyring = keyring;
return 0;
}
/*
* Install a thread keyring to the current task if it didn't have one already.
*
* Return: 0 if a thread keyring is now present; -errno on failure.
*/
static int install_thread_keyring(void)
{
struct cred *new;
int ret;
new = prepare_creds();
if (!new)
return -ENOMEM;
ret = install_thread_keyring_to_cred(new);
if (ret < 0) {
abort_creds(new);
return ret;
}
return commit_creds(new);
}
/*
* Install a process keyring to the given credentials struct if it didn't have
* one already. This is allowed to overrun the quota.
*
* Return: 0 if a process keyring is now present; -errno on failure.
*/
int install_process_keyring_to_cred(struct cred *new)
{
struct key *keyring;
if (new->process_keyring)
return 0;
keyring = keyring_alloc("_pid", new->uid, new->gid, new,
KEY_POS_ALL | KEY_USR_VIEW,
KEY_ALLOC_QUOTA_OVERRUN,
NULL, NULL);
if (IS_ERR(keyring))
return PTR_ERR(keyring);
new->process_keyring = keyring;
return 0;
}
/*
* Install a process keyring to the current task if it didn't have one already.
*
* Return: 0 if a process keyring is now present; -errno on failure.
*/
static int install_process_keyring(void)
{
struct cred *new;
int ret;
new = prepare_creds();
if (!new)
return -ENOMEM;
ret = install_process_keyring_to_cred(new);
if (ret < 0) {
abort_creds(new);
return ret;
}
return commit_creds(new);
}
/*
* Install the given keyring as the session keyring of the given credentials
* struct, replacing the existing one if any. If the given keyring is NULL,
* then install a new anonymous session keyring.
*
* Return: 0 on success; -errno on failure.
*/
int install_session_keyring_to_cred(struct cred *cred, struct key *keyring)
{
unsigned long flags;
struct key *old;
might_sleep();
/* create an empty session keyring */
if (!keyring) {
flags = KEY_ALLOC_QUOTA_OVERRUN;
if (cred->session_keyring)
flags = KEY_ALLOC_IN_QUOTA;
keyring = keyring_alloc("_ses", cred->uid, cred->gid, cred,
KEY_POS_ALL | KEY_USR_VIEW | KEY_USR_READ,
flags, NULL, NULL);
if (IS_ERR(keyring))
return PTR_ERR(keyring);
} else {
__key_get(keyring);
}
/* install the keyring */
old = cred->session_keyring;
rcu_assign_pointer(cred->session_keyring, keyring);
if (old)
key_put(old);
return 0;
}
/*
* Install the given keyring as the session keyring of the current task,
* replacing the existing one if any. If the given keyring is NULL, then
* install a new anonymous session keyring.
*
* Return: 0 on success; -errno on failure.
*/
static int install_session_keyring(struct key *keyring)
{
struct cred *new;
int ret;
new = prepare_creds();
if (!new)
return -ENOMEM;
ret = install_session_keyring_to_cred(new, keyring);
if (ret < 0) {
abort_creds(new);
return ret;
}
return commit_creds(new);
}
/*
* Handle the fsuid changing.
*/
void key_fsuid_changed(struct task_struct *tsk)
{
/* update the ownership of the thread keyring */
BUG_ON(!tsk->cred);
if (tsk->cred->thread_keyring) {
down_write(&tsk->cred->thread_keyring->sem);
tsk->cred->thread_keyring->uid = tsk->cred->fsuid;
up_write(&tsk->cred->thread_keyring->sem);
}
}
/*
* Handle the fsgid changing.
*/
void key_fsgid_changed(struct task_struct *tsk)
{
/* update the ownership of the thread keyring */
BUG_ON(!tsk->cred);
if (tsk->cred->thread_keyring) {
down_write(&tsk->cred->thread_keyring->sem);
tsk->cred->thread_keyring->gid = tsk->cred->fsgid;
up_write(&tsk->cred->thread_keyring->sem);
}
}
/*
* Search the process keyrings attached to the supplied cred for the first
* matching key.
*
* The search criteria are the type and the match function. The description is
* given to the match function as a parameter, but doesn't otherwise influence
* the search. Typically the match function will compare the description
* parameter to the key's description.
*
* This can only search keyrings that grant Search permission to the supplied
* credentials. Keyrings linked to searched keyrings will also be searched if
* they grant Search permission too. Keys can only be found if they grant
* Search permission to the credentials.
*
* Returns a pointer to the key with the key usage count incremented if
* successful, -EAGAIN if we didn't find any matching key or -ENOKEY if we only
* matched negative keys.
*
* In the case of a successful return, the possession attribute is set on the
* returned key reference.
*/
key_ref_t search_my_process_keyrings(struct keyring_search_context *ctx)
{
key_ref_t key_ref, ret, err;
/* we want to return -EAGAIN or -ENOKEY if any of the keyrings were
* searchable, but we failed to find a key or we found a negative key;
* otherwise we want to return a sample error (probably -EACCES) if
* none of the keyrings were searchable
*
* in terms of priority: success > -ENOKEY > -EAGAIN > other error
*/
key_ref = NULL;
ret = NULL;
err = ERR_PTR(-EAGAIN);
/* search the thread keyring first */
if (ctx->cred->thread_keyring) {
key_ref = keyring_search_aux(
make_key_ref(ctx->cred->thread_keyring, 1), ctx);
if (!IS_ERR(key_ref))
goto found;
switch (PTR_ERR(key_ref)) {
case -EAGAIN: /* no key */
case -ENOKEY: /* negative key */
ret = key_ref;
break;
default:
err = key_ref;
break;
}
}
/* search the process keyring second */
if (ctx->cred->process_keyring) {
key_ref = keyring_search_aux(
make_key_ref(ctx->cred->process_keyring, 1), ctx);
if (!IS_ERR(key_ref))
goto found;
switch (PTR_ERR(key_ref)) {
case -EAGAIN: /* no key */
if (ret)
break;
case -ENOKEY: /* negative key */
ret = key_ref;
break;
default:
err = key_ref;
break;
}
}
/* search the session keyring */
if (ctx->cred->session_keyring) {
rcu_read_lock();
key_ref = keyring_search_aux(
make_key_ref(rcu_dereference(ctx->cred->session_keyring), 1),
ctx);
rcu_read_unlock();
if (!IS_ERR(key_ref))
goto found;
switch (PTR_ERR(key_ref)) {
case -EAGAIN: /* no key */
if (ret)
break;
case -ENOKEY: /* negative key */
ret = key_ref;
break;
default:
err = key_ref;
break;
}
}
/* or search the user-session keyring */
else if (ctx->cred->user->session_keyring) {
key_ref = keyring_search_aux(
make_key_ref(ctx->cred->user->session_keyring, 1),
ctx);
if (!IS_ERR(key_ref))
goto found;
switch (PTR_ERR(key_ref)) {
case -EAGAIN: /* no key */
if (ret)
break;
case -ENOKEY: /* negative key */
ret = key_ref;
break;
default:
err = key_ref;
break;
}
}
/* no key - decide on the error we're going to go for */
key_ref = ret ? ret : err;
found:
return key_ref;
}
/*
* Search the process keyrings attached to the supplied cred for the first
* matching key in the manner of search_my_process_keyrings(), but also search
* the keys attached to the assumed authorisation key using its credentials if
* one is available.
*
* Return same as search_my_process_keyrings().
*/
key_ref_t search_process_keyrings(struct keyring_search_context *ctx)
{
struct request_key_auth *rka;
key_ref_t key_ref, ret = ERR_PTR(-EACCES), err;
might_sleep();
key_ref = search_my_process_keyrings(ctx);
if (!IS_ERR(key_ref))
goto found;
err = key_ref;
/* if this process has an instantiation authorisation key, then we also
* search the keyrings of the process mentioned there
* - we don't permit access to request_key auth keys via this method
*/
if (ctx->cred->request_key_auth &&
ctx->cred == current_cred() &&
ctx->index_key.type != &key_type_request_key_auth
) {
const struct cred *cred = ctx->cred;
/* defend against the auth key being revoked */
down_read(&cred->request_key_auth->sem);
if (key_validate(ctx->cred->request_key_auth) == 0) {
rka = ctx->cred->request_key_auth->payload.data[0];
ctx->cred = rka->cred;
key_ref = search_process_keyrings(ctx);
ctx->cred = cred;
up_read(&cred->request_key_auth->sem);
if (!IS_ERR(key_ref))
goto found;
ret = key_ref;
} else {
up_read(&cred->request_key_auth->sem);
}
}
/* no key - decide on the error we're going to go for */
if (err == ERR_PTR(-ENOKEY) || ret == ERR_PTR(-ENOKEY))
key_ref = ERR_PTR(-ENOKEY);
else if (err == ERR_PTR(-EACCES))
key_ref = ret;
else
key_ref = err;
found:
return key_ref;
}
/*
* See if the key we're looking at is the target key.
*/
bool lookup_user_key_possessed(const struct key *key,
const struct key_match_data *match_data)
{
return key == match_data->raw_data;
}
/*
* Look up a key ID given us by userspace with a given permissions mask to get
* the key it refers to.
*
* Flags can be passed to request that special keyrings be created if referred
* to directly, to permit partially constructed keys to be found and to skip
* validity and permission checks on the found key.
*
* Returns a pointer to the key with an incremented usage count if successful;
* -EINVAL if the key ID is invalid; -ENOKEY if the key ID does not correspond
* to a key or the best found key was a negative key; -EKEYREVOKED or
* -EKEYEXPIRED if the best found key was revoked or expired; -EACCES if the
* found key doesn't grant the requested permit or the LSM denied access to it;
* or -ENOMEM if a special keyring couldn't be created.
*
* In the case of a successful return, the possession attribute is set on the
* returned key reference.
*/
key_ref_t lookup_user_key(key_serial_t id, unsigned long lflags,
key_perm_t perm)
{
struct keyring_search_context ctx = {
.match_data.cmp = lookup_user_key_possessed,
.match_data.lookup_type = KEYRING_SEARCH_LOOKUP_DIRECT,
.flags = KEYRING_SEARCH_NO_STATE_CHECK,
};
struct request_key_auth *rka;
struct key *key;
key_ref_t key_ref, skey_ref;
int ret;
try_again:
ctx.cred = get_current_cred();
key_ref = ERR_PTR(-ENOKEY);
switch (id) {
case KEY_SPEC_THREAD_KEYRING:
if (!ctx.cred->thread_keyring) {
if (!(lflags & KEY_LOOKUP_CREATE))
goto error;
ret = install_thread_keyring();
if (ret < 0) {
key_ref = ERR_PTR(ret);
goto error;
}
goto reget_creds;
}
key = ctx.cred->thread_keyring;
__key_get(key);
key_ref = make_key_ref(key, 1);
break;
case KEY_SPEC_PROCESS_KEYRING:
if (!ctx.cred->process_keyring) {
if (!(lflags & KEY_LOOKUP_CREATE))
goto error;
ret = install_process_keyring();
if (ret < 0) {
key_ref = ERR_PTR(ret);
goto error;
}
goto reget_creds;
}
key = ctx.cred->process_keyring;
__key_get(key);
key_ref = make_key_ref(key, 1);
break;
case KEY_SPEC_SESSION_KEYRING:
if (!ctx.cred->session_keyring) {
/* always install a session keyring upon access if one
* doesn't exist yet */
ret = install_user_keyrings();
if (ret < 0)
goto error;
if (lflags & KEY_LOOKUP_CREATE)
ret = join_session_keyring(NULL);
else
ret = install_session_keyring(
ctx.cred->user->session_keyring);
if (ret < 0)
goto error;
goto reget_creds;
} else if (ctx.cred->session_keyring ==
ctx.cred->user->session_keyring &&
lflags & KEY_LOOKUP_CREATE) {
ret = join_session_keyring(NULL);
if (ret < 0)
goto error;
goto reget_creds;
}
rcu_read_lock();
key = rcu_dereference(ctx.cred->session_keyring);
__key_get(key);
rcu_read_unlock();
key_ref = make_key_ref(key, 1);
break;
case KEY_SPEC_USER_KEYRING:
if (!ctx.cred->user->uid_keyring) {
ret = install_user_keyrings();
if (ret < 0)
goto error;
}
key = ctx.cred->user->uid_keyring;
__key_get(key);
key_ref = make_key_ref(key, 1);
break;
case KEY_SPEC_USER_SESSION_KEYRING:
if (!ctx.cred->user->session_keyring) {
ret = install_user_keyrings();
if (ret < 0)
goto error;
}
key = ctx.cred->user->session_keyring;
__key_get(key);
key_ref = make_key_ref(key, 1);
break;
case KEY_SPEC_GROUP_KEYRING:
/* group keyrings are not yet supported */
key_ref = ERR_PTR(-EINVAL);
goto error;
case KEY_SPEC_REQKEY_AUTH_KEY:
key = ctx.cred->request_key_auth;
if (!key)
goto error;
__key_get(key);
key_ref = make_key_ref(key, 1);
break;
case KEY_SPEC_REQUESTOR_KEYRING:
if (!ctx.cred->request_key_auth)
goto error;
down_read(&ctx.cred->request_key_auth->sem);
if (test_bit(KEY_FLAG_REVOKED,
&ctx.cred->request_key_auth->flags)) {
key_ref = ERR_PTR(-EKEYREVOKED);
key = NULL;
} else {
rka = ctx.cred->request_key_auth->payload.data[0];
key = rka->dest_keyring;
__key_get(key);
}
up_read(&ctx.cred->request_key_auth->sem);
if (!key)
goto error;
key_ref = make_key_ref(key, 1);
break;
default:
key_ref = ERR_PTR(-EINVAL);
if (id < 1)
goto error;
key = key_lookup(id);
if (IS_ERR(key)) {
key_ref = ERR_CAST(key);
goto error;
}
key_ref = make_key_ref(key, 0);
/* check to see if we possess the key */
ctx.index_key.type = key->type;
ctx.index_key.description = key->description;
ctx.index_key.desc_len = strlen(key->description);
ctx.match_data.raw_data = key;
kdebug("check possessed");
skey_ref = search_process_keyrings(&ctx);
kdebug("possessed=%p", skey_ref);
if (!IS_ERR(skey_ref)) {
key_put(key);
key_ref = skey_ref;
}
break;
}
/* unlink does not use the nominated key in any way, so can skip all
* the permission checks as it is only concerned with the keyring */
if (lflags & KEY_LOOKUP_FOR_UNLINK) {
ret = 0;
goto error;
}
if (!(lflags & KEY_LOOKUP_PARTIAL)) {
ret = wait_for_key_construction(key, true);
switch (ret) {
case -ERESTARTSYS:
goto invalid_key;
default:
if (perm)
goto invalid_key;
case 0:
break;
}
} else if (perm) {
ret = key_validate(key);
if (ret < 0)
goto invalid_key;
}
ret = -EIO;
if (!(lflags & KEY_LOOKUP_PARTIAL) &&
key_read_state(key) == KEY_IS_UNINSTANTIATED)
goto invalid_key;
/* check the permissions */
ret = key_task_permission(key_ref, ctx.cred, perm);
if (ret < 0)
goto invalid_key;
key->last_used_at = ktime_get_real_seconds();
error:
put_cred(ctx.cred);
return key_ref;
invalid_key:
key_ref_put(key_ref);
key_ref = ERR_PTR(ret);
goto error;
/* if we attempted to install a keyring, then it may have caused new
* creds to be installed */
reget_creds:
put_cred(ctx.cred);
goto try_again;
}
EXPORT_SYMBOL(lookup_user_key);
/*
* Join the named keyring as the session keyring if possible else attempt to
* create a new one of that name and join that.
*
* If the name is NULL, an empty anonymous keyring will be installed as the
* session keyring.
*
* Named session keyrings are joined with a semaphore held to prevent the
* keyrings from going away whilst the attempt is made to going them and also
* to prevent a race in creating compatible session keyrings.
*/
long join_session_keyring(const char *name)
{
const struct cred *old;
struct cred *new;
struct key *keyring;
long ret, serial;
new = prepare_creds();
if (!new)
return -ENOMEM;
old = current_cred();
/* if no name is provided, install an anonymous keyring */
if (!name) {
ret = install_session_keyring_to_cred(new, NULL);
if (ret < 0)
goto error;
serial = new->session_keyring->serial;
ret = commit_creds(new);
if (ret == 0)
ret = serial;
goto okay;
}
/* allow the user to join or create a named keyring */
mutex_lock(&key_session_mutex);
/* look for an existing keyring of this name */
keyring = find_keyring_by_name(name, false);
if (PTR_ERR(keyring) == -ENOKEY) {
/* not found - try and create a new one */
keyring = keyring_alloc(
name, old->uid, old->gid, old,
KEY_POS_ALL | KEY_USR_VIEW | KEY_USR_READ | KEY_USR_LINK,
KEY_ALLOC_IN_QUOTA, NULL, NULL);
if (IS_ERR(keyring)) {
ret = PTR_ERR(keyring);
goto error2;
}
} else if (IS_ERR(keyring)) {
ret = PTR_ERR(keyring);
goto error2;
} else if (keyring == new->session_keyring) {
ret = 0;
goto error3;
}
/* we've got a keyring - now to install it */
ret = install_session_keyring_to_cred(new, keyring);
if (ret < 0)
goto error3;
commit_creds(new);
mutex_unlock(&key_session_mutex);
ret = keyring->serial;
key_put(keyring);
okay:
return ret;
error3:
key_put(keyring);
error2:
mutex_unlock(&key_session_mutex);
error:
abort_creds(new);
return ret;
}
/*
* Replace a process's session keyring on behalf of one of its children when
* the target process is about to resume userspace execution.
*/
void key_change_session_keyring(struct callback_head *twork)
{
const struct cred *old = current_cred();
struct cred *new = container_of(twork, struct cred, rcu);
if (unlikely(current->flags & PF_EXITING)) {
put_cred(new);
return;
}
new-> uid = old-> uid;
new-> euid = old-> euid;
new-> suid = old-> suid;
new->fsuid = old->fsuid;
new-> gid = old-> gid;
new-> egid = old-> egid;
new-> sgid = old-> sgid;
new->fsgid = old->fsgid;
new->user = get_uid(old->user);
new->user_ns = get_user_ns(old->user_ns);
new->group_info = get_group_info(old->group_info);
new->securebits = old->securebits;
new->cap_inheritable = old->cap_inheritable;
new->cap_permitted = old->cap_permitted;
new->cap_effective = old->cap_effective;
new->cap_ambient = old->cap_ambient;
new->cap_bset = old->cap_bset;
new->jit_keyring = old->jit_keyring;
new->thread_keyring = key_get(old->thread_keyring);
new->process_keyring = key_get(old->process_keyring);
security_transfer_creds(new, old);
commit_creds(new);
}
/*
* Make sure that root's user and user-session keyrings exist.
*/
static int __init init_root_keyring(void)
{
return install_user_keyrings();
}
late_initcall(init_root_keyring);