linux/drivers/gpu/drm/nouveau/nvkm/subdev/clk/gt215.c
Ben Skeggs 3eca809b3c drm/nouveau/clk: cosmetic changes
This is purely preparation for upcoming commits, there should be no
code changes here.

Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
2015-08-28 12:40:07 +10:00

534 lines
13 KiB
C

/*
* Copyright 2012 Red Hat Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: Ben Skeggs
* Roy Spliet
*/
#include "gt215.h"
#include "pll.h"
#include <engine/fifo.h>
#include <subdev/bios.h>
#include <subdev/bios/pll.h>
#include <subdev/timer.h>
struct gt215_clk {
struct nvkm_clk base;
struct gt215_clk_info eng[nv_clk_src_max];
};
static u32 read_clk(struct gt215_clk *, int, bool);
static u32 read_pll(struct gt215_clk *, int, u32);
static u32
read_vco(struct gt215_clk *clk, int idx)
{
u32 sctl = nv_rd32(clk, 0x4120 + (idx * 4));
switch (sctl & 0x00000030) {
case 0x00000000:
return nv_device(clk)->crystal;
case 0x00000020:
return read_pll(clk, 0x41, 0x00e820);
case 0x00000030:
return read_pll(clk, 0x42, 0x00e8a0);
default:
return 0;
}
}
static u32
read_clk(struct gt215_clk *clk, int idx, bool ignore_en)
{
u32 sctl, sdiv, sclk;
/* refclk for the 0xe8xx plls is a fixed frequency */
if (idx >= 0x40) {
if (nv_device(clk)->chipset == 0xaf) {
/* no joke.. seriously.. sigh.. */
return nv_rd32(clk, 0x00471c) * 1000;
}
return nv_device(clk)->crystal;
}
sctl = nv_rd32(clk, 0x4120 + (idx * 4));
if (!ignore_en && !(sctl & 0x00000100))
return 0;
/* out_alt */
if (sctl & 0x00000400)
return 108000;
/* vco_out */
switch (sctl & 0x00003000) {
case 0x00000000:
if (!(sctl & 0x00000200))
return nv_device(clk)->crystal;
return 0;
case 0x00002000:
if (sctl & 0x00000040)
return 108000;
return 100000;
case 0x00003000:
/* vco_enable */
if (!(sctl & 0x00000001))
return 0;
sclk = read_vco(clk, idx);
sdiv = ((sctl & 0x003f0000) >> 16) + 2;
return (sclk * 2) / sdiv;
default:
return 0;
}
}
static u32
read_pll(struct gt215_clk *clk, int idx, u32 pll)
{
u32 ctrl = nv_rd32(clk, pll + 0);
u32 sclk = 0, P = 1, N = 1, M = 1;
if (!(ctrl & 0x00000008)) {
if (ctrl & 0x00000001) {
u32 coef = nv_rd32(clk, pll + 4);
M = (coef & 0x000000ff) >> 0;
N = (coef & 0x0000ff00) >> 8;
P = (coef & 0x003f0000) >> 16;
/* no post-divider on these..
* XXX: it looks more like two post-"dividers" that
* cross each other out in the default RPLL config */
if ((pll & 0x00ff00) == 0x00e800)
P = 1;
sclk = read_clk(clk, 0x00 + idx, false);
}
} else {
sclk = read_clk(clk, 0x10 + idx, false);
}
if (M * P)
return sclk * N / (M * P);
return 0;
}
static int
gt215_clk_read(struct nvkm_clk *obj, enum nv_clk_src src)
{
struct gt215_clk *clk = container_of(obj, typeof(*clk), base);
u32 hsrc;
switch (src) {
case nv_clk_src_crystal:
return nv_device(clk)->crystal;
case nv_clk_src_core:
case nv_clk_src_core_intm:
return read_pll(clk, 0x00, 0x4200);
case nv_clk_src_shader:
return read_pll(clk, 0x01, 0x4220);
case nv_clk_src_mem:
return read_pll(clk, 0x02, 0x4000);
case nv_clk_src_disp:
return read_clk(clk, 0x20, false);
case nv_clk_src_vdec:
return read_clk(clk, 0x21, false);
case nv_clk_src_daemon:
return read_clk(clk, 0x25, false);
case nv_clk_src_host:
hsrc = (nv_rd32(clk, 0xc040) & 0x30000000) >> 28;
switch (hsrc) {
case 0:
return read_clk(clk, 0x1d, false);
case 2:
case 3:
return 277000;
default:
nv_error(clk, "unknown HOST clock source %d\n", hsrc);
return -EINVAL;
}
default:
nv_error(clk, "invalid clock source %d\n", src);
return -EINVAL;
}
return 0;
}
int
gt215_clk_info(struct nvkm_clk *obj, int idx, u32 khz,
struct gt215_clk_info *info)
{
struct gt215_clk *clk = container_of(obj, typeof(*clk), base);
u32 oclk, sclk, sdiv;
s32 diff;
info->clk = 0;
switch (khz) {
case 27000:
info->clk = 0x00000100;
return khz;
case 100000:
info->clk = 0x00002100;
return khz;
case 108000:
info->clk = 0x00002140;
return khz;
default:
sclk = read_vco(clk, idx);
sdiv = min((sclk * 2) / khz, (u32)65);
oclk = (sclk * 2) / sdiv;
diff = ((khz + 3000) - oclk);
/* When imprecise, play it safe and aim for a clock lower than
* desired rather than higher */
if (diff < 0) {
sdiv++;
oclk = (sclk * 2) / sdiv;
}
/* divider can go as low as 2, limited here because NVIDIA
* and the VBIOS on my NVA8 seem to prefer using the PLL
* for 810MHz - is there a good reason?
* XXX: PLLs with refclk 810MHz? */
if (sdiv > 4) {
info->clk = (((sdiv - 2) << 16) | 0x00003100);
return oclk;
}
break;
}
return -ERANGE;
}
int
gt215_pll_info(struct nvkm_clk *clock, int idx, u32 pll, u32 khz,
struct gt215_clk_info *info)
{
struct nvkm_bios *bios = nvkm_bios(clock);
struct gt215_clk *clk = (void *)clock;
struct nvbios_pll limits;
int P, N, M, diff;
int ret;
info->pll = 0;
/* If we can get a within [-2, 3) MHz of a divider, we'll disable the
* PLL and use the divider instead. */
ret = gt215_clk_info(clock, idx, khz, info);
diff = khz - ret;
if (!pll || (diff >= -2000 && diff < 3000)) {
goto out;
}
/* Try with PLL */
ret = nvbios_pll_parse(bios, pll, &limits);
if (ret)
return ret;
ret = gt215_clk_info(clock, idx - 0x10, limits.refclk, info);
if (ret != limits.refclk)
return -EINVAL;
ret = gt215_pll_calc(nv_subdev(clk), &limits, khz, &N, NULL, &M, &P);
if (ret >= 0) {
info->pll = (P << 16) | (N << 8) | M;
}
out:
info->fb_delay = max(((khz + 7566) / 15133), (u32) 18);
return ret ? ret : -ERANGE;
}
static int
calc_clk(struct gt215_clk *clk, struct nvkm_cstate *cstate,
int idx, u32 pll, int dom)
{
int ret = gt215_pll_info(&clk->base, idx, pll, cstate->domain[dom],
&clk->eng[dom]);
if (ret >= 0)
return 0;
return ret;
}
static int
calc_host(struct gt215_clk *clk, struct nvkm_cstate *cstate)
{
int ret = 0;
u32 kHz = cstate->domain[nv_clk_src_host];
struct gt215_clk_info *info = &clk->eng[nv_clk_src_host];
if (kHz == 277000) {
info->clk = 0;
info->host_out = NVA3_HOST_277;
return 0;
}
info->host_out = NVA3_HOST_CLK;
ret = gt215_clk_info(&clk->base, 0x1d, kHz, info);
if (ret >= 0)
return 0;
return ret;
}
int
gt215_clk_pre(struct nvkm_clk *clk, unsigned long *flags)
{
struct nvkm_fifo *pfifo = nvkm_fifo(clk);
/* halt and idle execution engines */
nv_mask(clk, 0x020060, 0x00070000, 0x00000000);
nv_mask(clk, 0x002504, 0x00000001, 0x00000001);
/* Wait until the interrupt handler is finished */
if (!nv_wait(clk, 0x000100, 0xffffffff, 0x00000000))
return -EBUSY;
if (pfifo)
pfifo->pause(pfifo, flags);
if (!nv_wait(clk, 0x002504, 0x00000010, 0x00000010))
return -EIO;
if (!nv_wait(clk, 0x00251c, 0x0000003f, 0x0000003f))
return -EIO;
return 0;
}
void
gt215_clk_post(struct nvkm_clk *clk, unsigned long *flags)
{
struct nvkm_fifo *pfifo = nvkm_fifo(clk);
if (pfifo && flags)
pfifo->start(pfifo, flags);
nv_mask(clk, 0x002504, 0x00000001, 0x00000000);
nv_mask(clk, 0x020060, 0x00070000, 0x00040000);
}
static void
disable_clk_src(struct gt215_clk *clk, u32 src)
{
nv_mask(clk, src, 0x00000100, 0x00000000);
nv_mask(clk, src, 0x00000001, 0x00000000);
}
static void
prog_pll(struct gt215_clk *clk, int idx, u32 pll, int dom)
{
struct gt215_clk_info *info = &clk->eng[dom];
const u32 src0 = 0x004120 + (idx * 4);
const u32 src1 = 0x004160 + (idx * 4);
const u32 ctrl = pll + 0;
const u32 coef = pll + 4;
u32 bypass;
if (info->pll) {
/* Always start from a non-PLL clock */
bypass = nv_rd32(clk, ctrl) & 0x00000008;
if (!bypass) {
nv_mask(clk, src1, 0x00000101, 0x00000101);
nv_mask(clk, ctrl, 0x00000008, 0x00000008);
udelay(20);
}
nv_mask(clk, src0, 0x003f3141, 0x00000101 | info->clk);
nv_wr32(clk, coef, info->pll);
nv_mask(clk, ctrl, 0x00000015, 0x00000015);
nv_mask(clk, ctrl, 0x00000010, 0x00000000);
if (!nv_wait(clk, ctrl, 0x00020000, 0x00020000)) {
nv_mask(clk, ctrl, 0x00000010, 0x00000010);
nv_mask(clk, src0, 0x00000101, 0x00000000);
return;
}
nv_mask(clk, ctrl, 0x00000010, 0x00000010);
nv_mask(clk, ctrl, 0x00000008, 0x00000000);
disable_clk_src(clk, src1);
} else {
nv_mask(clk, src1, 0x003f3141, 0x00000101 | info->clk);
nv_mask(clk, ctrl, 0x00000018, 0x00000018);
udelay(20);
nv_mask(clk, ctrl, 0x00000001, 0x00000000);
disable_clk_src(clk, src0);
}
}
static void
prog_clk(struct gt215_clk *clk, int idx, int dom)
{
struct gt215_clk_info *info = &clk->eng[dom];
nv_mask(clk, 0x004120 + (idx * 4), 0x003f3141, 0x00000101 | info->clk);
}
static void
prog_host(struct gt215_clk *clk)
{
struct gt215_clk_info *info = &clk->eng[nv_clk_src_host];
u32 hsrc = (nv_rd32(clk, 0xc040));
switch (info->host_out) {
case NVA3_HOST_277:
if ((hsrc & 0x30000000) == 0) {
nv_wr32(clk, 0xc040, hsrc | 0x20000000);
disable_clk_src(clk, 0x4194);
}
break;
case NVA3_HOST_CLK:
prog_clk(clk, 0x1d, nv_clk_src_host);
if ((hsrc & 0x30000000) >= 0x20000000) {
nv_wr32(clk, 0xc040, hsrc & ~0x30000000);
}
break;
default:
break;
}
/* This seems to be a clock gating factor on idle, always set to 64 */
nv_wr32(clk, 0xc044, 0x3e);
}
static void
prog_core(struct gt215_clk *clk, int dom)
{
struct gt215_clk_info *info = &clk->eng[dom];
u32 fb_delay = nv_rd32(clk, 0x10002c);
if (fb_delay < info->fb_delay)
nv_wr32(clk, 0x10002c, info->fb_delay);
prog_pll(clk, 0x00, 0x004200, dom);
if (fb_delay > info->fb_delay)
nv_wr32(clk, 0x10002c, info->fb_delay);
}
static int
gt215_clk_calc(struct nvkm_clk *obj, struct nvkm_cstate *cstate)
{
struct gt215_clk *clk = container_of(obj, typeof(*clk), base);
struct gt215_clk_info *core = &clk->eng[nv_clk_src_core];
int ret;
if ((ret = calc_clk(clk, cstate, 0x10, 0x4200, nv_clk_src_core)) ||
(ret = calc_clk(clk, cstate, 0x11, 0x4220, nv_clk_src_shader)) ||
(ret = calc_clk(clk, cstate, 0x20, 0x0000, nv_clk_src_disp)) ||
(ret = calc_clk(clk, cstate, 0x21, 0x0000, nv_clk_src_vdec)) ||
(ret = calc_host(clk, cstate)))
return ret;
/* XXX: Should be reading the highest bit in the VBIOS clock to decide
* whether to use a PLL or not... but using a PLL defeats the purpose */
if (core->pll) {
ret = gt215_clk_info(&clk->base, 0x10,
cstate->domain[nv_clk_src_core_intm],
&clk->eng[nv_clk_src_core_intm]);
if (ret < 0)
return ret;
}
return 0;
}
static int
gt215_clk_prog(struct nvkm_clk *obj)
{
struct gt215_clk *clk = container_of(obj, typeof(*clk), base);
struct gt215_clk_info *core = &clk->eng[nv_clk_src_core];
int ret = 0;
unsigned long flags;
unsigned long *f = &flags;
ret = gt215_clk_pre(&clk->base, f);
if (ret)
goto out;
if (core->pll)
prog_core(clk, nv_clk_src_core_intm);
prog_core(clk, nv_clk_src_core);
prog_pll(clk, 0x01, 0x004220, nv_clk_src_shader);
prog_clk(clk, 0x20, nv_clk_src_disp);
prog_clk(clk, 0x21, nv_clk_src_vdec);
prog_host(clk);
out:
if (ret == -EBUSY)
f = NULL;
gt215_clk_post(&clk->base, f);
return ret;
}
static void
gt215_clk_tidy(struct nvkm_clk *obj)
{
}
static struct nvkm_domain
gt215_domain[] = {
{ nv_clk_src_crystal , 0xff },
{ nv_clk_src_core , 0x00, 0, "core", 1000 },
{ nv_clk_src_shader , 0x01, 0, "shader", 1000 },
{ nv_clk_src_mem , 0x02, 0, "memory", 1000 },
{ nv_clk_src_vdec , 0x03 },
{ nv_clk_src_disp , 0x04 },
{ nv_clk_src_host , 0x05 },
{ nv_clk_src_core_intm, 0x06 },
{ nv_clk_src_max }
};
static int
gt215_clk_ctor(struct nvkm_object *parent, struct nvkm_object *engine,
struct nvkm_oclass *oclass, void *data, u32 size,
struct nvkm_object **pobject)
{
struct gt215_clk *clk;
int ret;
ret = nvkm_clk_create(parent, engine, oclass, gt215_domain,
NULL, 0, true, &clk);
*pobject = nv_object(clk);
if (ret)
return ret;
clk->base.read = gt215_clk_read;
clk->base.calc = gt215_clk_calc;
clk->base.prog = gt215_clk_prog;
clk->base.tidy = gt215_clk_tidy;
return 0;
}
struct nvkm_oclass
gt215_clk_oclass = {
.handle = NV_SUBDEV(CLK, 0xa3),
.ofuncs = &(struct nvkm_ofuncs) {
.ctor = gt215_clk_ctor,
.dtor = _nvkm_clk_dtor,
.init = _nvkm_clk_init,
.fini = _nvkm_clk_fini,
},
};