linux/drivers/hwtracing/coresight/coresight-tmc-etr.c
Suzuki K Poulose cad5f8d399 coresight: tmc-etr: Relax collection of trace from sysfs mode
Since the ETR now uses mode specific buffers, we can reliably
provide the trace data captured in sysfs mode, even when the ETR
is operating in PERF mode.

Cc: Mathieu Poirier <mathieu.poirier@linaro.org>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Mathieu Poirier <mathieu.poirier@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-09-25 20:09:17 +02:00

1229 lines
33 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright(C) 2016 Linaro Limited. All rights reserved.
* Author: Mathieu Poirier <mathieu.poirier@linaro.org>
*/
#include <linux/coresight.h>
#include <linux/dma-mapping.h>
#include <linux/iommu.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include "coresight-catu.h"
#include "coresight-priv.h"
#include "coresight-tmc.h"
struct etr_flat_buf {
struct device *dev;
dma_addr_t daddr;
void *vaddr;
size_t size;
};
/*
* The TMC ETR SG has a page size of 4K. The SG table contains pointers
* to 4KB buffers. However, the OS may use a PAGE_SIZE different from
* 4K (i.e, 16KB or 64KB). This implies that a single OS page could
* contain more than one SG buffer and tables.
*
* A table entry has the following format:
*
* ---Bit31------------Bit4-------Bit1-----Bit0--
* | Address[39:12] | SBZ | Entry Type |
* ----------------------------------------------
*
* Address: Bits [39:12] of a physical page address. Bits [11:0] are
* always zero.
*
* Entry type:
* b00 - Reserved.
* b01 - Last entry in the tables, points to 4K page buffer.
* b10 - Normal entry, points to 4K page buffer.
* b11 - Link. The address points to the base of next table.
*/
typedef u32 sgte_t;
#define ETR_SG_PAGE_SHIFT 12
#define ETR_SG_PAGE_SIZE (1UL << ETR_SG_PAGE_SHIFT)
#define ETR_SG_PAGES_PER_SYSPAGE (PAGE_SIZE / ETR_SG_PAGE_SIZE)
#define ETR_SG_PTRS_PER_PAGE (ETR_SG_PAGE_SIZE / sizeof(sgte_t))
#define ETR_SG_PTRS_PER_SYSPAGE (PAGE_SIZE / sizeof(sgte_t))
#define ETR_SG_ET_MASK 0x3
#define ETR_SG_ET_LAST 0x1
#define ETR_SG_ET_NORMAL 0x2
#define ETR_SG_ET_LINK 0x3
#define ETR_SG_ADDR_SHIFT 4
#define ETR_SG_ENTRY(addr, type) \
(sgte_t)((((addr) >> ETR_SG_PAGE_SHIFT) << ETR_SG_ADDR_SHIFT) | \
(type & ETR_SG_ET_MASK))
#define ETR_SG_ADDR(entry) \
(((dma_addr_t)(entry) >> ETR_SG_ADDR_SHIFT) << ETR_SG_PAGE_SHIFT)
#define ETR_SG_ET(entry) ((entry) & ETR_SG_ET_MASK)
/*
* struct etr_sg_table : ETR SG Table
* @sg_table: Generic SG Table holding the data/table pages.
* @hwaddr: hwaddress used by the TMC, which is the base
* address of the table.
*/
struct etr_sg_table {
struct tmc_sg_table *sg_table;
dma_addr_t hwaddr;
};
/*
* tmc_etr_sg_table_entries: Total number of table entries required to map
* @nr_pages system pages.
*
* We need to map @nr_pages * ETR_SG_PAGES_PER_SYSPAGE data pages.
* Each TMC page can map (ETR_SG_PTRS_PER_PAGE - 1) buffer pointers,
* with the last entry pointing to another page of table entries.
* If we spill over to a new page for mapping 1 entry, we could as
* well replace the link entry of the previous page with the last entry.
*/
static inline unsigned long __attribute_const__
tmc_etr_sg_table_entries(int nr_pages)
{
unsigned long nr_sgpages = nr_pages * ETR_SG_PAGES_PER_SYSPAGE;
unsigned long nr_sglinks = nr_sgpages / (ETR_SG_PTRS_PER_PAGE - 1);
/*
* If we spill over to a new page for 1 entry, we could as well
* make it the LAST entry in the previous page, skipping the Link
* address.
*/
if (nr_sglinks && (nr_sgpages % (ETR_SG_PTRS_PER_PAGE - 1) < 2))
nr_sglinks--;
return nr_sgpages + nr_sglinks;
}
/*
* tmc_pages_get_offset: Go through all the pages in the tmc_pages
* and map the device address @addr to an offset within the virtual
* contiguous buffer.
*/
static long
tmc_pages_get_offset(struct tmc_pages *tmc_pages, dma_addr_t addr)
{
int i;
dma_addr_t page_start;
for (i = 0; i < tmc_pages->nr_pages; i++) {
page_start = tmc_pages->daddrs[i];
if (addr >= page_start && addr < (page_start + PAGE_SIZE))
return i * PAGE_SIZE + (addr - page_start);
}
return -EINVAL;
}
/*
* tmc_pages_free : Unmap and free the pages used by tmc_pages.
* If the pages were not allocated in tmc_pages_alloc(), we would
* simply drop the refcount.
*/
static void tmc_pages_free(struct tmc_pages *tmc_pages,
struct device *dev, enum dma_data_direction dir)
{
int i;
for (i = 0; i < tmc_pages->nr_pages; i++) {
if (tmc_pages->daddrs && tmc_pages->daddrs[i])
dma_unmap_page(dev, tmc_pages->daddrs[i],
PAGE_SIZE, dir);
if (tmc_pages->pages && tmc_pages->pages[i])
__free_page(tmc_pages->pages[i]);
}
kfree(tmc_pages->pages);
kfree(tmc_pages->daddrs);
tmc_pages->pages = NULL;
tmc_pages->daddrs = NULL;
tmc_pages->nr_pages = 0;
}
/*
* tmc_pages_alloc : Allocate and map pages for a given @tmc_pages.
* If @pages is not NULL, the list of page virtual addresses are
* used as the data pages. The pages are then dma_map'ed for @dev
* with dma_direction @dir.
*
* Returns 0 upon success, else the error number.
*/
static int tmc_pages_alloc(struct tmc_pages *tmc_pages,
struct device *dev, int node,
enum dma_data_direction dir, void **pages)
{
int i, nr_pages;
dma_addr_t paddr;
struct page *page;
nr_pages = tmc_pages->nr_pages;
tmc_pages->daddrs = kcalloc(nr_pages, sizeof(*tmc_pages->daddrs),
GFP_KERNEL);
if (!tmc_pages->daddrs)
return -ENOMEM;
tmc_pages->pages = kcalloc(nr_pages, sizeof(*tmc_pages->pages),
GFP_KERNEL);
if (!tmc_pages->pages) {
kfree(tmc_pages->daddrs);
tmc_pages->daddrs = NULL;
return -ENOMEM;
}
for (i = 0; i < nr_pages; i++) {
if (pages && pages[i]) {
page = virt_to_page(pages[i]);
/* Hold a refcount on the page */
get_page(page);
} else {
page = alloc_pages_node(node,
GFP_KERNEL | __GFP_ZERO, 0);
}
paddr = dma_map_page(dev, page, 0, PAGE_SIZE, dir);
if (dma_mapping_error(dev, paddr))
goto err;
tmc_pages->daddrs[i] = paddr;
tmc_pages->pages[i] = page;
}
return 0;
err:
tmc_pages_free(tmc_pages, dev, dir);
return -ENOMEM;
}
static inline long
tmc_sg_get_data_page_offset(struct tmc_sg_table *sg_table, dma_addr_t addr)
{
return tmc_pages_get_offset(&sg_table->data_pages, addr);
}
static inline void tmc_free_table_pages(struct tmc_sg_table *sg_table)
{
if (sg_table->table_vaddr)
vunmap(sg_table->table_vaddr);
tmc_pages_free(&sg_table->table_pages, sg_table->dev, DMA_TO_DEVICE);
}
static void tmc_free_data_pages(struct tmc_sg_table *sg_table)
{
if (sg_table->data_vaddr)
vunmap(sg_table->data_vaddr);
tmc_pages_free(&sg_table->data_pages, sg_table->dev, DMA_FROM_DEVICE);
}
void tmc_free_sg_table(struct tmc_sg_table *sg_table)
{
tmc_free_table_pages(sg_table);
tmc_free_data_pages(sg_table);
}
/*
* Alloc pages for the table. Since this will be used by the device,
* allocate the pages closer to the device (i.e, dev_to_node(dev)
* rather than the CPU node).
*/
static int tmc_alloc_table_pages(struct tmc_sg_table *sg_table)
{
int rc;
struct tmc_pages *table_pages = &sg_table->table_pages;
rc = tmc_pages_alloc(table_pages, sg_table->dev,
dev_to_node(sg_table->dev),
DMA_TO_DEVICE, NULL);
if (rc)
return rc;
sg_table->table_vaddr = vmap(table_pages->pages,
table_pages->nr_pages,
VM_MAP,
PAGE_KERNEL);
if (!sg_table->table_vaddr)
rc = -ENOMEM;
else
sg_table->table_daddr = table_pages->daddrs[0];
return rc;
}
static int tmc_alloc_data_pages(struct tmc_sg_table *sg_table, void **pages)
{
int rc;
/* Allocate data pages on the node requested by the caller */
rc = tmc_pages_alloc(&sg_table->data_pages,
sg_table->dev, sg_table->node,
DMA_FROM_DEVICE, pages);
if (!rc) {
sg_table->data_vaddr = vmap(sg_table->data_pages.pages,
sg_table->data_pages.nr_pages,
VM_MAP,
PAGE_KERNEL);
if (!sg_table->data_vaddr)
rc = -ENOMEM;
}
return rc;
}
/*
* tmc_alloc_sg_table: Allocate and setup dma pages for the TMC SG table
* and data buffers. TMC writes to the data buffers and reads from the SG
* Table pages.
*
* @dev - Device to which page should be DMA mapped.
* @node - Numa node for mem allocations
* @nr_tpages - Number of pages for the table entries.
* @nr_dpages - Number of pages for Data buffer.
* @pages - Optional list of virtual address of pages.
*/
struct tmc_sg_table *tmc_alloc_sg_table(struct device *dev,
int node,
int nr_tpages,
int nr_dpages,
void **pages)
{
long rc;
struct tmc_sg_table *sg_table;
sg_table = kzalloc(sizeof(*sg_table), GFP_KERNEL);
if (!sg_table)
return ERR_PTR(-ENOMEM);
sg_table->data_pages.nr_pages = nr_dpages;
sg_table->table_pages.nr_pages = nr_tpages;
sg_table->node = node;
sg_table->dev = dev;
rc = tmc_alloc_data_pages(sg_table, pages);
if (!rc)
rc = tmc_alloc_table_pages(sg_table);
if (rc) {
tmc_free_sg_table(sg_table);
kfree(sg_table);
return ERR_PTR(rc);
}
return sg_table;
}
/*
* tmc_sg_table_sync_data_range: Sync the data buffer written
* by the device from @offset upto a @size bytes.
*/
void tmc_sg_table_sync_data_range(struct tmc_sg_table *table,
u64 offset, u64 size)
{
int i, index, start;
int npages = DIV_ROUND_UP(size, PAGE_SIZE);
struct device *dev = table->dev;
struct tmc_pages *data = &table->data_pages;
start = offset >> PAGE_SHIFT;
for (i = start; i < (start + npages); i++) {
index = i % data->nr_pages;
dma_sync_single_for_cpu(dev, data->daddrs[index],
PAGE_SIZE, DMA_FROM_DEVICE);
}
}
/* tmc_sg_sync_table: Sync the page table */
void tmc_sg_table_sync_table(struct tmc_sg_table *sg_table)
{
int i;
struct device *dev = sg_table->dev;
struct tmc_pages *table_pages = &sg_table->table_pages;
for (i = 0; i < table_pages->nr_pages; i++)
dma_sync_single_for_device(dev, table_pages->daddrs[i],
PAGE_SIZE, DMA_TO_DEVICE);
}
/*
* tmc_sg_table_get_data: Get the buffer pointer for data @offset
* in the SG buffer. The @bufpp is updated to point to the buffer.
* Returns :
* the length of linear data available at @offset.
* or
* <= 0 if no data is available.
*/
ssize_t tmc_sg_table_get_data(struct tmc_sg_table *sg_table,
u64 offset, size_t len, char **bufpp)
{
size_t size;
int pg_idx = offset >> PAGE_SHIFT;
int pg_offset = offset & (PAGE_SIZE - 1);
struct tmc_pages *data_pages = &sg_table->data_pages;
size = tmc_sg_table_buf_size(sg_table);
if (offset >= size)
return -EINVAL;
/* Make sure we don't go beyond the end */
len = (len < (size - offset)) ? len : size - offset;
/* Respect the page boundaries */
len = (len < (PAGE_SIZE - pg_offset)) ? len : (PAGE_SIZE - pg_offset);
if (len > 0)
*bufpp = page_address(data_pages->pages[pg_idx]) + pg_offset;
return len;
}
#ifdef ETR_SG_DEBUG
/* Map a dma address to virtual address */
static unsigned long
tmc_sg_daddr_to_vaddr(struct tmc_sg_table *sg_table,
dma_addr_t addr, bool table)
{
long offset;
unsigned long base;
struct tmc_pages *tmc_pages;
if (table) {
tmc_pages = &sg_table->table_pages;
base = (unsigned long)sg_table->table_vaddr;
} else {
tmc_pages = &sg_table->data_pages;
base = (unsigned long)sg_table->data_vaddr;
}
offset = tmc_pages_get_offset(tmc_pages, addr);
if (offset < 0)
return 0;
return base + offset;
}
/* Dump the given sg_table */
static void tmc_etr_sg_table_dump(struct etr_sg_table *etr_table)
{
sgte_t *ptr;
int i = 0;
dma_addr_t addr;
struct tmc_sg_table *sg_table = etr_table->sg_table;
ptr = (sgte_t *)tmc_sg_daddr_to_vaddr(sg_table,
etr_table->hwaddr, true);
while (ptr) {
addr = ETR_SG_ADDR(*ptr);
switch (ETR_SG_ET(*ptr)) {
case ETR_SG_ET_NORMAL:
dev_dbg(sg_table->dev,
"%05d: %p\t:[N] 0x%llx\n", i, ptr, addr);
ptr++;
break;
case ETR_SG_ET_LINK:
dev_dbg(sg_table->dev,
"%05d: *** %p\t:{L} 0x%llx ***\n",
i, ptr, addr);
ptr = (sgte_t *)tmc_sg_daddr_to_vaddr(sg_table,
addr, true);
break;
case ETR_SG_ET_LAST:
dev_dbg(sg_table->dev,
"%05d: ### %p\t:[L] 0x%llx ###\n",
i, ptr, addr);
return;
default:
dev_dbg(sg_table->dev,
"%05d: xxx %p\t:[INVALID] 0x%llx xxx\n",
i, ptr, addr);
return;
}
i++;
}
dev_dbg(sg_table->dev, "******* End of Table *****\n");
}
#else
static inline void tmc_etr_sg_table_dump(struct etr_sg_table *etr_table) {}
#endif
/*
* Populate the SG Table page table entries from table/data
* pages allocated. Each Data page has ETR_SG_PAGES_PER_SYSPAGE SG pages.
* So does a Table page. So we keep track of indices of the tables
* in each system page and move the pointers accordingly.
*/
#define INC_IDX_ROUND(idx, size) ((idx) = ((idx) + 1) % (size))
static void tmc_etr_sg_table_populate(struct etr_sg_table *etr_table)
{
dma_addr_t paddr;
int i, type, nr_entries;
int tpidx = 0; /* index to the current system table_page */
int sgtidx = 0; /* index to the sg_table within the current syspage */
int sgtentry = 0; /* the entry within the sg_table */
int dpidx = 0; /* index to the current system data_page */
int spidx = 0; /* index to the SG page within the current data page */
sgte_t *ptr; /* pointer to the table entry to fill */
struct tmc_sg_table *sg_table = etr_table->sg_table;
dma_addr_t *table_daddrs = sg_table->table_pages.daddrs;
dma_addr_t *data_daddrs = sg_table->data_pages.daddrs;
nr_entries = tmc_etr_sg_table_entries(sg_table->data_pages.nr_pages);
/*
* Use the contiguous virtual address of the table to update entries.
*/
ptr = sg_table->table_vaddr;
/*
* Fill all the entries, except the last entry to avoid special
* checks within the loop.
*/
for (i = 0; i < nr_entries - 1; i++) {
if (sgtentry == ETR_SG_PTRS_PER_PAGE - 1) {
/*
* Last entry in a sg_table page is a link address to
* the next table page. If this sg_table is the last
* one in the system page, it links to the first
* sg_table in the next system page. Otherwise, it
* links to the next sg_table page within the system
* page.
*/
if (sgtidx == ETR_SG_PAGES_PER_SYSPAGE - 1) {
paddr = table_daddrs[tpidx + 1];
} else {
paddr = table_daddrs[tpidx] +
(ETR_SG_PAGE_SIZE * (sgtidx + 1));
}
type = ETR_SG_ET_LINK;
} else {
/*
* Update the indices to the data_pages to point to the
* next sg_page in the data buffer.
*/
type = ETR_SG_ET_NORMAL;
paddr = data_daddrs[dpidx] + spidx * ETR_SG_PAGE_SIZE;
if (!INC_IDX_ROUND(spidx, ETR_SG_PAGES_PER_SYSPAGE))
dpidx++;
}
*ptr++ = ETR_SG_ENTRY(paddr, type);
/*
* Move to the next table pointer, moving the table page index
* if necessary
*/
if (!INC_IDX_ROUND(sgtentry, ETR_SG_PTRS_PER_PAGE)) {
if (!INC_IDX_ROUND(sgtidx, ETR_SG_PAGES_PER_SYSPAGE))
tpidx++;
}
}
/* Set up the last entry, which is always a data pointer */
paddr = data_daddrs[dpidx] + spidx * ETR_SG_PAGE_SIZE;
*ptr++ = ETR_SG_ENTRY(paddr, ETR_SG_ET_LAST);
}
/*
* tmc_init_etr_sg_table: Allocate a TMC ETR SG table, data buffer of @size and
* populate the table.
*
* @dev - Device pointer for the TMC
* @node - NUMA node where the memory should be allocated
* @size - Total size of the data buffer
* @pages - Optional list of page virtual address
*/
static struct etr_sg_table *
tmc_init_etr_sg_table(struct device *dev, int node,
unsigned long size, void **pages)
{
int nr_entries, nr_tpages;
int nr_dpages = size >> PAGE_SHIFT;
struct tmc_sg_table *sg_table;
struct etr_sg_table *etr_table;
etr_table = kzalloc(sizeof(*etr_table), GFP_KERNEL);
if (!etr_table)
return ERR_PTR(-ENOMEM);
nr_entries = tmc_etr_sg_table_entries(nr_dpages);
nr_tpages = DIV_ROUND_UP(nr_entries, ETR_SG_PTRS_PER_SYSPAGE);
sg_table = tmc_alloc_sg_table(dev, node, nr_tpages, nr_dpages, pages);
if (IS_ERR(sg_table)) {
kfree(etr_table);
return ERR_CAST(sg_table);
}
etr_table->sg_table = sg_table;
/* TMC should use table base address for DBA */
etr_table->hwaddr = sg_table->table_daddr;
tmc_etr_sg_table_populate(etr_table);
/* Sync the table pages for the HW */
tmc_sg_table_sync_table(sg_table);
tmc_etr_sg_table_dump(etr_table);
return etr_table;
}
/*
* tmc_etr_alloc_flat_buf: Allocate a contiguous DMA buffer.
*/
static int tmc_etr_alloc_flat_buf(struct tmc_drvdata *drvdata,
struct etr_buf *etr_buf, int node,
void **pages)
{
struct etr_flat_buf *flat_buf;
/* We cannot reuse existing pages for flat buf */
if (pages)
return -EINVAL;
flat_buf = kzalloc(sizeof(*flat_buf), GFP_KERNEL);
if (!flat_buf)
return -ENOMEM;
flat_buf->vaddr = dma_alloc_coherent(drvdata->dev, etr_buf->size,
&flat_buf->daddr, GFP_KERNEL);
if (!flat_buf->vaddr) {
kfree(flat_buf);
return -ENOMEM;
}
flat_buf->size = etr_buf->size;
flat_buf->dev = drvdata->dev;
etr_buf->hwaddr = flat_buf->daddr;
etr_buf->mode = ETR_MODE_FLAT;
etr_buf->private = flat_buf;
return 0;
}
static void tmc_etr_free_flat_buf(struct etr_buf *etr_buf)
{
struct etr_flat_buf *flat_buf = etr_buf->private;
if (flat_buf && flat_buf->daddr)
dma_free_coherent(flat_buf->dev, flat_buf->size,
flat_buf->vaddr, flat_buf->daddr);
kfree(flat_buf);
}
static void tmc_etr_sync_flat_buf(struct etr_buf *etr_buf, u64 rrp, u64 rwp)
{
/*
* Adjust the buffer to point to the beginning of the trace data
* and update the available trace data.
*/
etr_buf->offset = rrp - etr_buf->hwaddr;
if (etr_buf->full)
etr_buf->len = etr_buf->size;
else
etr_buf->len = rwp - rrp;
}
static ssize_t tmc_etr_get_data_flat_buf(struct etr_buf *etr_buf,
u64 offset, size_t len, char **bufpp)
{
struct etr_flat_buf *flat_buf = etr_buf->private;
*bufpp = (char *)flat_buf->vaddr + offset;
/*
* tmc_etr_buf_get_data already adjusts the length to handle
* buffer wrapping around.
*/
return len;
}
static const struct etr_buf_operations etr_flat_buf_ops = {
.alloc = tmc_etr_alloc_flat_buf,
.free = tmc_etr_free_flat_buf,
.sync = tmc_etr_sync_flat_buf,
.get_data = tmc_etr_get_data_flat_buf,
};
/*
* tmc_etr_alloc_sg_buf: Allocate an SG buf @etr_buf. Setup the parameters
* appropriately.
*/
static int tmc_etr_alloc_sg_buf(struct tmc_drvdata *drvdata,
struct etr_buf *etr_buf, int node,
void **pages)
{
struct etr_sg_table *etr_table;
etr_table = tmc_init_etr_sg_table(drvdata->dev, node,
etr_buf->size, pages);
if (IS_ERR(etr_table))
return -ENOMEM;
etr_buf->hwaddr = etr_table->hwaddr;
etr_buf->mode = ETR_MODE_ETR_SG;
etr_buf->private = etr_table;
return 0;
}
static void tmc_etr_free_sg_buf(struct etr_buf *etr_buf)
{
struct etr_sg_table *etr_table = etr_buf->private;
if (etr_table) {
tmc_free_sg_table(etr_table->sg_table);
kfree(etr_table);
}
}
static ssize_t tmc_etr_get_data_sg_buf(struct etr_buf *etr_buf, u64 offset,
size_t len, char **bufpp)
{
struct etr_sg_table *etr_table = etr_buf->private;
return tmc_sg_table_get_data(etr_table->sg_table, offset, len, bufpp);
}
static void tmc_etr_sync_sg_buf(struct etr_buf *etr_buf, u64 rrp, u64 rwp)
{
long r_offset, w_offset;
struct etr_sg_table *etr_table = etr_buf->private;
struct tmc_sg_table *table = etr_table->sg_table;
/* Convert hw address to offset in the buffer */
r_offset = tmc_sg_get_data_page_offset(table, rrp);
if (r_offset < 0) {
dev_warn(table->dev,
"Unable to map RRP %llx to offset\n", rrp);
etr_buf->len = 0;
return;
}
w_offset = tmc_sg_get_data_page_offset(table, rwp);
if (w_offset < 0) {
dev_warn(table->dev,
"Unable to map RWP %llx to offset\n", rwp);
etr_buf->len = 0;
return;
}
etr_buf->offset = r_offset;
if (etr_buf->full)
etr_buf->len = etr_buf->size;
else
etr_buf->len = ((w_offset < r_offset) ? etr_buf->size : 0) +
w_offset - r_offset;
tmc_sg_table_sync_data_range(table, r_offset, etr_buf->len);
}
static const struct etr_buf_operations etr_sg_buf_ops = {
.alloc = tmc_etr_alloc_sg_buf,
.free = tmc_etr_free_sg_buf,
.sync = tmc_etr_sync_sg_buf,
.get_data = tmc_etr_get_data_sg_buf,
};
/*
* TMC ETR could be connected to a CATU device, which can provide address
* translation service. This is represented by the Output port of the TMC
* (ETR) connected to the input port of the CATU.
*
* Returns : coresight_device ptr for the CATU device if a CATU is found.
* : NULL otherwise.
*/
struct coresight_device *
tmc_etr_get_catu_device(struct tmc_drvdata *drvdata)
{
int i;
struct coresight_device *tmp, *etr = drvdata->csdev;
if (!IS_ENABLED(CONFIG_CORESIGHT_CATU))
return NULL;
for (i = 0; i < etr->nr_outport; i++) {
tmp = etr->conns[i].child_dev;
if (tmp && coresight_is_catu_device(tmp))
return tmp;
}
return NULL;
}
static inline void tmc_etr_enable_catu(struct tmc_drvdata *drvdata)
{
struct coresight_device *catu = tmc_etr_get_catu_device(drvdata);
if (catu && helper_ops(catu)->enable)
helper_ops(catu)->enable(catu, drvdata->etr_buf);
}
static inline void tmc_etr_disable_catu(struct tmc_drvdata *drvdata)
{
struct coresight_device *catu = tmc_etr_get_catu_device(drvdata);
if (catu && helper_ops(catu)->disable)
helper_ops(catu)->disable(catu, drvdata->etr_buf);
}
static const struct etr_buf_operations *etr_buf_ops[] = {
[ETR_MODE_FLAT] = &etr_flat_buf_ops,
[ETR_MODE_ETR_SG] = &etr_sg_buf_ops,
[ETR_MODE_CATU] = &etr_catu_buf_ops,
};
static inline int tmc_etr_mode_alloc_buf(int mode,
struct tmc_drvdata *drvdata,
struct etr_buf *etr_buf, int node,
void **pages)
{
int rc = -EINVAL;
switch (mode) {
case ETR_MODE_FLAT:
case ETR_MODE_ETR_SG:
case ETR_MODE_CATU:
if (etr_buf_ops[mode]->alloc)
rc = etr_buf_ops[mode]->alloc(drvdata, etr_buf,
node, pages);
if (!rc)
etr_buf->ops = etr_buf_ops[mode];
return rc;
default:
return -EINVAL;
}
}
/*
* tmc_alloc_etr_buf: Allocate a buffer use by ETR.
* @drvdata : ETR device details.
* @size : size of the requested buffer.
* @flags : Required properties for the buffer.
* @node : Node for memory allocations.
* @pages : An optional list of pages.
*/
static struct etr_buf *tmc_alloc_etr_buf(struct tmc_drvdata *drvdata,
ssize_t size, int flags,
int node, void **pages)
{
int rc = -ENOMEM;
bool has_etr_sg, has_iommu;
bool has_sg, has_catu;
struct etr_buf *etr_buf;
has_etr_sg = tmc_etr_has_cap(drvdata, TMC_ETR_SG);
has_iommu = iommu_get_domain_for_dev(drvdata->dev);
has_catu = !!tmc_etr_get_catu_device(drvdata);
has_sg = has_catu || has_etr_sg;
etr_buf = kzalloc(sizeof(*etr_buf), GFP_KERNEL);
if (!etr_buf)
return ERR_PTR(-ENOMEM);
etr_buf->size = size;
/*
* If we have to use an existing list of pages, we cannot reliably
* use a contiguous DMA memory (even if we have an IOMMU). Otherwise,
* we use the contiguous DMA memory if at least one of the following
* conditions is true:
* a) The ETR cannot use Scatter-Gather.
* b) we have a backing IOMMU
* c) The requested memory size is smaller (< 1M).
*
* Fallback to available mechanisms.
*
*/
if (!pages &&
(!has_sg || has_iommu || size < SZ_1M))
rc = tmc_etr_mode_alloc_buf(ETR_MODE_FLAT, drvdata,
etr_buf, node, pages);
if (rc && has_etr_sg)
rc = tmc_etr_mode_alloc_buf(ETR_MODE_ETR_SG, drvdata,
etr_buf, node, pages);
if (rc && has_catu)
rc = tmc_etr_mode_alloc_buf(ETR_MODE_CATU, drvdata,
etr_buf, node, pages);
if (rc) {
kfree(etr_buf);
return ERR_PTR(rc);
}
dev_dbg(drvdata->dev, "allocated buffer of size %ldKB in mode %d\n",
(unsigned long)size >> 10, etr_buf->mode);
return etr_buf;
}
static void tmc_free_etr_buf(struct etr_buf *etr_buf)
{
WARN_ON(!etr_buf->ops || !etr_buf->ops->free);
etr_buf->ops->free(etr_buf);
kfree(etr_buf);
}
/*
* tmc_etr_buf_get_data: Get the pointer the trace data at @offset
* with a maximum of @len bytes.
* Returns: The size of the linear data available @pos, with *bufpp
* updated to point to the buffer.
*/
static ssize_t tmc_etr_buf_get_data(struct etr_buf *etr_buf,
u64 offset, size_t len, char **bufpp)
{
/* Adjust the length to limit this transaction to end of buffer */
len = (len < (etr_buf->size - offset)) ? len : etr_buf->size - offset;
return etr_buf->ops->get_data(etr_buf, (u64)offset, len, bufpp);
}
static inline s64
tmc_etr_buf_insert_barrier_packet(struct etr_buf *etr_buf, u64 offset)
{
ssize_t len;
char *bufp;
len = tmc_etr_buf_get_data(etr_buf, offset,
CORESIGHT_BARRIER_PKT_SIZE, &bufp);
if (WARN_ON(len < CORESIGHT_BARRIER_PKT_SIZE))
return -EINVAL;
coresight_insert_barrier_packet(bufp);
return offset + CORESIGHT_BARRIER_PKT_SIZE;
}
/*
* tmc_sync_etr_buf: Sync the trace buffer availability with drvdata.
* Makes sure the trace data is synced to the memory for consumption.
* @etr_buf->offset will hold the offset to the beginning of the trace data
* within the buffer, with @etr_buf->len bytes to consume.
*/
static void tmc_sync_etr_buf(struct tmc_drvdata *drvdata)
{
struct etr_buf *etr_buf = drvdata->etr_buf;
u64 rrp, rwp;
u32 status;
rrp = tmc_read_rrp(drvdata);
rwp = tmc_read_rwp(drvdata);
status = readl_relaxed(drvdata->base + TMC_STS);
etr_buf->full = status & TMC_STS_FULL;
WARN_ON(!etr_buf->ops || !etr_buf->ops->sync);
etr_buf->ops->sync(etr_buf, rrp, rwp);
/* Insert barrier packets at the beginning, if there was an overflow */
if (etr_buf->full)
tmc_etr_buf_insert_barrier_packet(etr_buf, etr_buf->offset);
}
static void tmc_etr_enable_hw(struct tmc_drvdata *drvdata,
struct etr_buf *etr_buf)
{
u32 axictl, sts;
/* Callers should provide an appropriate buffer for use */
if (WARN_ON(!etr_buf || drvdata->etr_buf))
return;
drvdata->etr_buf = etr_buf;
/*
* If this ETR is connected to a CATU, enable it before we turn
* this on
*/
tmc_etr_enable_catu(drvdata);
CS_UNLOCK(drvdata->base);
/* Wait for TMCSReady bit to be set */
tmc_wait_for_tmcready(drvdata);
writel_relaxed(etr_buf->size / 4, drvdata->base + TMC_RSZ);
writel_relaxed(TMC_MODE_CIRCULAR_BUFFER, drvdata->base + TMC_MODE);
axictl = readl_relaxed(drvdata->base + TMC_AXICTL);
axictl &= ~TMC_AXICTL_CLEAR_MASK;
axictl |= (TMC_AXICTL_PROT_CTL_B1 | TMC_AXICTL_WR_BURST_16);
axictl |= TMC_AXICTL_AXCACHE_OS;
if (tmc_etr_has_cap(drvdata, TMC_ETR_AXI_ARCACHE)) {
axictl &= ~TMC_AXICTL_ARCACHE_MASK;
axictl |= TMC_AXICTL_ARCACHE_OS;
}
if (etr_buf->mode == ETR_MODE_ETR_SG) {
if (WARN_ON(!tmc_etr_has_cap(drvdata, TMC_ETR_SG)))
return;
axictl |= TMC_AXICTL_SCT_GAT_MODE;
}
writel_relaxed(axictl, drvdata->base + TMC_AXICTL);
tmc_write_dba(drvdata, etr_buf->hwaddr);
/*
* If the TMC pointers must be programmed before the session,
* we have to set it properly (i.e, RRP/RWP to base address and
* STS to "not full").
*/
if (tmc_etr_has_cap(drvdata, TMC_ETR_SAVE_RESTORE)) {
tmc_write_rrp(drvdata, etr_buf->hwaddr);
tmc_write_rwp(drvdata, etr_buf->hwaddr);
sts = readl_relaxed(drvdata->base + TMC_STS) & ~TMC_STS_FULL;
writel_relaxed(sts, drvdata->base + TMC_STS);
}
writel_relaxed(TMC_FFCR_EN_FMT | TMC_FFCR_EN_TI |
TMC_FFCR_FON_FLIN | TMC_FFCR_FON_TRIG_EVT |
TMC_FFCR_TRIGON_TRIGIN,
drvdata->base + TMC_FFCR);
writel_relaxed(drvdata->trigger_cntr, drvdata->base + TMC_TRG);
tmc_enable_hw(drvdata);
CS_LOCK(drvdata->base);
}
/*
* Return the available trace data in the buffer (starts at etr_buf->offset,
* limited by etr_buf->len) from @pos, with a maximum limit of @len,
* also updating the @bufpp on where to find it. Since the trace data
* starts at anywhere in the buffer, depending on the RRP, we adjust the
* @len returned to handle buffer wrapping around.
*
* We are protected here by drvdata->reading != 0, which ensures the
* sysfs_buf stays alive.
*/
ssize_t tmc_etr_get_sysfs_trace(struct tmc_drvdata *drvdata,
loff_t pos, size_t len, char **bufpp)
{
s64 offset;
ssize_t actual = len;
struct etr_buf *etr_buf = drvdata->sysfs_buf;
if (pos + actual > etr_buf->len)
actual = etr_buf->len - pos;
if (actual <= 0)
return actual;
/* Compute the offset from which we read the data */
offset = etr_buf->offset + pos;
if (offset >= etr_buf->size)
offset -= etr_buf->size;
return tmc_etr_buf_get_data(etr_buf, offset, actual, bufpp);
}
static struct etr_buf *
tmc_etr_setup_sysfs_buf(struct tmc_drvdata *drvdata)
{
return tmc_alloc_etr_buf(drvdata, drvdata->size,
0, cpu_to_node(0), NULL);
}
static void
tmc_etr_free_sysfs_buf(struct etr_buf *buf)
{
if (buf)
tmc_free_etr_buf(buf);
}
static void tmc_etr_sync_sysfs_buf(struct tmc_drvdata *drvdata)
{
struct etr_buf *etr_buf = drvdata->etr_buf;
if (WARN_ON(drvdata->sysfs_buf != etr_buf)) {
tmc_etr_free_sysfs_buf(drvdata->sysfs_buf);
drvdata->sysfs_buf = NULL;
} else {
tmc_sync_etr_buf(drvdata);
}
}
static void tmc_etr_disable_hw(struct tmc_drvdata *drvdata)
{
CS_UNLOCK(drvdata->base);
tmc_flush_and_stop(drvdata);
/*
* When operating in sysFS mode the content of the buffer needs to be
* read before the TMC is disabled.
*/
if (drvdata->mode == CS_MODE_SYSFS)
tmc_etr_sync_sysfs_buf(drvdata);
tmc_disable_hw(drvdata);
CS_LOCK(drvdata->base);
/* Disable CATU device if this ETR is connected to one */
tmc_etr_disable_catu(drvdata);
/* Reset the ETR buf used by hardware */
drvdata->etr_buf = NULL;
}
static int tmc_enable_etr_sink_sysfs(struct coresight_device *csdev)
{
int ret = 0;
unsigned long flags;
struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
struct etr_buf *sysfs_buf = NULL, *new_buf = NULL, *free_buf = NULL;
/*
* If we are enabling the ETR from disabled state, we need to make
* sure we have a buffer with the right size. The etr_buf is not reset
* immediately after we stop the tracing in SYSFS mode as we wait for
* the user to collect the data. We may be able to reuse the existing
* buffer, provided the size matches. Any allocation has to be done
* with the lock released.
*/
spin_lock_irqsave(&drvdata->spinlock, flags);
sysfs_buf = READ_ONCE(drvdata->sysfs_buf);
if (!sysfs_buf || (sysfs_buf->size != drvdata->size)) {
spin_unlock_irqrestore(&drvdata->spinlock, flags);
/* Allocate memory with the locks released */
free_buf = new_buf = tmc_etr_setup_sysfs_buf(drvdata);
if (IS_ERR(new_buf))
return PTR_ERR(new_buf);
/* Let's try again */
spin_lock_irqsave(&drvdata->spinlock, flags);
}
if (drvdata->reading || drvdata->mode == CS_MODE_PERF) {
ret = -EBUSY;
goto out;
}
/*
* In sysFS mode we can have multiple writers per sink. Since this
* sink is already enabled no memory is needed and the HW need not be
* touched, even if the buffer size has changed.
*/
if (drvdata->mode == CS_MODE_SYSFS)
goto out;
/*
* If we don't have a buffer or it doesn't match the requested size,
* use the buffer allocated above. Otherwise reuse the existing buffer.
*/
sysfs_buf = READ_ONCE(drvdata->sysfs_buf);
if (!sysfs_buf || (new_buf && sysfs_buf->size != new_buf->size)) {
free_buf = sysfs_buf;
drvdata->sysfs_buf = new_buf;
}
drvdata->mode = CS_MODE_SYSFS;
tmc_etr_enable_hw(drvdata, drvdata->sysfs_buf);
out:
spin_unlock_irqrestore(&drvdata->spinlock, flags);
/* Free memory outside the spinlock if need be */
if (free_buf)
tmc_etr_free_sysfs_buf(free_buf);
if (!ret)
dev_info(drvdata->dev, "TMC-ETR enabled\n");
return ret;
}
static int tmc_enable_etr_sink_perf(struct coresight_device *csdev)
{
/* We don't support perf mode yet ! */
return -EINVAL;
}
static int tmc_enable_etr_sink(struct coresight_device *csdev, u32 mode)
{
switch (mode) {
case CS_MODE_SYSFS:
return tmc_enable_etr_sink_sysfs(csdev);
case CS_MODE_PERF:
return tmc_enable_etr_sink_perf(csdev);
}
/* We shouldn't be here */
return -EINVAL;
}
static void tmc_disable_etr_sink(struct coresight_device *csdev)
{
unsigned long flags;
struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
spin_lock_irqsave(&drvdata->spinlock, flags);
if (drvdata->reading) {
spin_unlock_irqrestore(&drvdata->spinlock, flags);
return;
}
/* Disable the TMC only if it needs to */
if (drvdata->mode != CS_MODE_DISABLED) {
tmc_etr_disable_hw(drvdata);
drvdata->mode = CS_MODE_DISABLED;
}
spin_unlock_irqrestore(&drvdata->spinlock, flags);
dev_info(drvdata->dev, "TMC-ETR disabled\n");
}
static const struct coresight_ops_sink tmc_etr_sink_ops = {
.enable = tmc_enable_etr_sink,
.disable = tmc_disable_etr_sink,
};
const struct coresight_ops tmc_etr_cs_ops = {
.sink_ops = &tmc_etr_sink_ops,
};
int tmc_read_prepare_etr(struct tmc_drvdata *drvdata)
{
int ret = 0;
unsigned long flags;
/* config types are set a boot time and never change */
if (WARN_ON_ONCE(drvdata->config_type != TMC_CONFIG_TYPE_ETR))
return -EINVAL;
spin_lock_irqsave(&drvdata->spinlock, flags);
if (drvdata->reading) {
ret = -EBUSY;
goto out;
}
/*
* We can safely allow reads even if the ETR is operating in PERF mode,
* since the sysfs session is captured in mode specific data.
* If drvdata::sysfs_data is NULL the trace data has been read already.
*/
if (!drvdata->sysfs_buf) {
ret = -EINVAL;
goto out;
}
/* Disable the TMC if we are trying to read from a running session. */
if (drvdata->mode == CS_MODE_SYSFS)
tmc_etr_disable_hw(drvdata);
drvdata->reading = true;
out:
spin_unlock_irqrestore(&drvdata->spinlock, flags);
return ret;
}
int tmc_read_unprepare_etr(struct tmc_drvdata *drvdata)
{
unsigned long flags;
struct etr_buf *sysfs_buf = NULL;
/* config types are set a boot time and never change */
if (WARN_ON_ONCE(drvdata->config_type != TMC_CONFIG_TYPE_ETR))
return -EINVAL;
spin_lock_irqsave(&drvdata->spinlock, flags);
/* RE-enable the TMC if need be */
if (drvdata->mode == CS_MODE_SYSFS) {
/*
* The trace run will continue with the same allocated trace
* buffer. Since the tracer is still enabled drvdata::buf can't
* be NULL.
*/
tmc_etr_enable_hw(drvdata, drvdata->sysfs_buf);
} else {
/*
* The ETR is not tracing and the buffer was just read.
* As such prepare to free the trace buffer.
*/
sysfs_buf = drvdata->sysfs_buf;
drvdata->sysfs_buf = NULL;
}
drvdata->reading = false;
spin_unlock_irqrestore(&drvdata->spinlock, flags);
/* Free allocated memory out side of the spinlock */
if (sysfs_buf)
tmc_etr_free_sysfs_buf(sysfs_buf);
return 0;
}