ca40b03052
This patch integrates the below patch into f2fs. "ext4 crypto: shrink size of the ext4_crypto_ctx structure Some fields are only used when the crypto_ctx is being used on the read path, some are only used on the write path, and some are only used when the structure is on free list. Optimize memory use by using a union." Signed-off-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
558 lines
15 KiB
C
558 lines
15 KiB
C
/*
|
|
* linux/fs/f2fs/crypto.c
|
|
*
|
|
* Copied from linux/fs/ext4/crypto.c
|
|
*
|
|
* Copyright (C) 2015, Google, Inc.
|
|
* Copyright (C) 2015, Motorola Mobility
|
|
*
|
|
* This contains encryption functions for f2fs
|
|
*
|
|
* Written by Michael Halcrow, 2014.
|
|
*
|
|
* Filename encryption additions
|
|
* Uday Savagaonkar, 2014
|
|
* Encryption policy handling additions
|
|
* Ildar Muslukhov, 2014
|
|
* Remove ext4_encrypted_zeroout(),
|
|
* add f2fs_restore_and_release_control_page()
|
|
* Jaegeuk Kim, 2015.
|
|
*
|
|
* This has not yet undergone a rigorous security audit.
|
|
*
|
|
* The usage of AES-XTS should conform to recommendations in NIST
|
|
* Special Publication 800-38E and IEEE P1619/D16.
|
|
*/
|
|
#include <crypto/hash.h>
|
|
#include <crypto/sha.h>
|
|
#include <keys/user-type.h>
|
|
#include <keys/encrypted-type.h>
|
|
#include <linux/crypto.h>
|
|
#include <linux/ecryptfs.h>
|
|
#include <linux/gfp.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/key.h>
|
|
#include <linux/list.h>
|
|
#include <linux/mempool.h>
|
|
#include <linux/module.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/random.h>
|
|
#include <linux/scatterlist.h>
|
|
#include <linux/spinlock_types.h>
|
|
#include <linux/f2fs_fs.h>
|
|
#include <linux/ratelimit.h>
|
|
#include <linux/bio.h>
|
|
|
|
#include "f2fs.h"
|
|
#include "xattr.h"
|
|
|
|
/* Encryption added and removed here! (L: */
|
|
|
|
static unsigned int num_prealloc_crypto_pages = 32;
|
|
static unsigned int num_prealloc_crypto_ctxs = 128;
|
|
|
|
module_param(num_prealloc_crypto_pages, uint, 0444);
|
|
MODULE_PARM_DESC(num_prealloc_crypto_pages,
|
|
"Number of crypto pages to preallocate");
|
|
module_param(num_prealloc_crypto_ctxs, uint, 0444);
|
|
MODULE_PARM_DESC(num_prealloc_crypto_ctxs,
|
|
"Number of crypto contexts to preallocate");
|
|
|
|
static mempool_t *f2fs_bounce_page_pool;
|
|
|
|
static LIST_HEAD(f2fs_free_crypto_ctxs);
|
|
static DEFINE_SPINLOCK(f2fs_crypto_ctx_lock);
|
|
|
|
struct workqueue_struct *f2fs_read_workqueue;
|
|
static DEFINE_MUTEX(crypto_init);
|
|
|
|
static struct kmem_cache *f2fs_crypto_ctx_cachep;
|
|
struct kmem_cache *f2fs_crypt_info_cachep;
|
|
|
|
/**
|
|
* f2fs_release_crypto_ctx() - Releases an encryption context
|
|
* @ctx: The encryption context to release.
|
|
*
|
|
* If the encryption context was allocated from the pre-allocated pool, returns
|
|
* it to that pool. Else, frees it.
|
|
*
|
|
* If there's a bounce page in the context, this frees that.
|
|
*/
|
|
void f2fs_release_crypto_ctx(struct f2fs_crypto_ctx *ctx)
|
|
{
|
|
unsigned long flags;
|
|
|
|
if (ctx->flags & F2FS_WRITE_PATH_FL && ctx->w.bounce_page) {
|
|
if (ctx->flags & F2FS_BOUNCE_PAGE_REQUIRES_FREE_ENCRYPT_FL)
|
|
__free_page(ctx->w.bounce_page);
|
|
else
|
|
mempool_free(ctx->w.bounce_page, f2fs_bounce_page_pool);
|
|
ctx->w.bounce_page = NULL;
|
|
}
|
|
ctx->w.control_page = NULL;
|
|
if (ctx->flags & F2FS_CTX_REQUIRES_FREE_ENCRYPT_FL) {
|
|
if (ctx->tfm)
|
|
crypto_free_tfm(ctx->tfm);
|
|
kmem_cache_free(f2fs_crypto_ctx_cachep, ctx);
|
|
} else {
|
|
spin_lock_irqsave(&f2fs_crypto_ctx_lock, flags);
|
|
list_add(&ctx->free_list, &f2fs_free_crypto_ctxs);
|
|
spin_unlock_irqrestore(&f2fs_crypto_ctx_lock, flags);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* f2fs_get_crypto_ctx() - Gets an encryption context
|
|
* @inode: The inode for which we are doing the crypto
|
|
*
|
|
* Allocates and initializes an encryption context.
|
|
*
|
|
* Return: An allocated and initialized encryption context on success; error
|
|
* value or NULL otherwise.
|
|
*/
|
|
struct f2fs_crypto_ctx *f2fs_get_crypto_ctx(struct inode *inode)
|
|
{
|
|
struct f2fs_crypto_ctx *ctx = NULL;
|
|
int res = 0;
|
|
unsigned long flags;
|
|
struct f2fs_crypt_info *ci = F2FS_I(inode)->i_crypt_info;
|
|
|
|
if (ci == NULL)
|
|
return ERR_PTR(-EACCES);
|
|
|
|
/*
|
|
* We first try getting the ctx from a free list because in
|
|
* the common case the ctx will have an allocated and
|
|
* initialized crypto tfm, so it's probably a worthwhile
|
|
* optimization. For the bounce page, we first try getting it
|
|
* from the kernel allocator because that's just about as fast
|
|
* as getting it from a list and because a cache of free pages
|
|
* should generally be a "last resort" option for a filesystem
|
|
* to be able to do its job.
|
|
*/
|
|
spin_lock_irqsave(&f2fs_crypto_ctx_lock, flags);
|
|
ctx = list_first_entry_or_null(&f2fs_free_crypto_ctxs,
|
|
struct f2fs_crypto_ctx, free_list);
|
|
if (ctx)
|
|
list_del(&ctx->free_list);
|
|
spin_unlock_irqrestore(&f2fs_crypto_ctx_lock, flags);
|
|
if (!ctx) {
|
|
ctx = kmem_cache_zalloc(f2fs_crypto_ctx_cachep, GFP_NOFS);
|
|
if (!ctx) {
|
|
res = -ENOMEM;
|
|
goto out;
|
|
}
|
|
ctx->flags |= F2FS_CTX_REQUIRES_FREE_ENCRYPT_FL;
|
|
} else {
|
|
ctx->flags &= ~F2FS_CTX_REQUIRES_FREE_ENCRYPT_FL;
|
|
}
|
|
ctx->flags &= ~F2FS_WRITE_PATH_FL;
|
|
|
|
/*
|
|
* Allocate a new Crypto API context if we don't already have
|
|
* one or if it isn't the right mode.
|
|
*/
|
|
if (ctx->tfm && (ctx->mode != ci->ci_data_mode)) {
|
|
crypto_free_tfm(ctx->tfm);
|
|
ctx->tfm = NULL;
|
|
ctx->mode = F2FS_ENCRYPTION_MODE_INVALID;
|
|
}
|
|
if (!ctx->tfm) {
|
|
switch (ci->ci_data_mode) {
|
|
case F2FS_ENCRYPTION_MODE_AES_256_XTS:
|
|
ctx->tfm = crypto_ablkcipher_tfm(
|
|
crypto_alloc_ablkcipher("xts(aes)", 0, 0));
|
|
break;
|
|
case F2FS_ENCRYPTION_MODE_AES_256_GCM:
|
|
/*
|
|
* TODO(mhalcrow): AEAD w/ gcm(aes);
|
|
* crypto_aead_setauthsize()
|
|
*/
|
|
ctx->tfm = ERR_PTR(-ENOTSUPP);
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
if (IS_ERR_OR_NULL(ctx->tfm)) {
|
|
res = PTR_ERR(ctx->tfm);
|
|
ctx->tfm = NULL;
|
|
goto out;
|
|
}
|
|
ctx->mode = ci->ci_data_mode;
|
|
}
|
|
BUG_ON(ci->ci_size != f2fs_encryption_key_size(ci->ci_data_mode));
|
|
|
|
out:
|
|
if (res) {
|
|
if (!IS_ERR_OR_NULL(ctx))
|
|
f2fs_release_crypto_ctx(ctx);
|
|
ctx = ERR_PTR(res);
|
|
}
|
|
return ctx;
|
|
}
|
|
|
|
/*
|
|
* Call f2fs_decrypt on every single page, reusing the encryption
|
|
* context.
|
|
*/
|
|
static void completion_pages(struct work_struct *work)
|
|
{
|
|
struct f2fs_crypto_ctx *ctx =
|
|
container_of(work, struct f2fs_crypto_ctx, r.work);
|
|
struct bio *bio = ctx->r.bio;
|
|
struct bio_vec *bv;
|
|
int i;
|
|
|
|
bio_for_each_segment_all(bv, bio, i) {
|
|
struct page *page = bv->bv_page;
|
|
int ret = f2fs_decrypt(ctx, page);
|
|
|
|
if (ret) {
|
|
WARN_ON_ONCE(1);
|
|
SetPageError(page);
|
|
} else
|
|
SetPageUptodate(page);
|
|
unlock_page(page);
|
|
}
|
|
f2fs_release_crypto_ctx(ctx);
|
|
bio_put(bio);
|
|
}
|
|
|
|
void f2fs_end_io_crypto_work(struct f2fs_crypto_ctx *ctx, struct bio *bio)
|
|
{
|
|
INIT_WORK(&ctx->r.work, completion_pages);
|
|
ctx->r.bio = bio;
|
|
queue_work(f2fs_read_workqueue, &ctx->r.work);
|
|
}
|
|
|
|
/**
|
|
* f2fs_exit_crypto() - Shutdown the f2fs encryption system
|
|
*/
|
|
void f2fs_exit_crypto(void)
|
|
{
|
|
struct f2fs_crypto_ctx *pos, *n;
|
|
|
|
list_for_each_entry_safe(pos, n, &f2fs_free_crypto_ctxs, free_list) {
|
|
if (pos->w.bounce_page) {
|
|
if (pos->flags &
|
|
F2FS_BOUNCE_PAGE_REQUIRES_FREE_ENCRYPT_FL)
|
|
__free_page(pos->w.bounce_page);
|
|
else
|
|
mempool_free(pos->w.bounce_page,
|
|
f2fs_bounce_page_pool);
|
|
}
|
|
if (pos->tfm)
|
|
crypto_free_tfm(pos->tfm);
|
|
kmem_cache_free(f2fs_crypto_ctx_cachep, pos);
|
|
}
|
|
INIT_LIST_HEAD(&f2fs_free_crypto_ctxs);
|
|
if (f2fs_bounce_page_pool)
|
|
mempool_destroy(f2fs_bounce_page_pool);
|
|
f2fs_bounce_page_pool = NULL;
|
|
if (f2fs_read_workqueue)
|
|
destroy_workqueue(f2fs_read_workqueue);
|
|
f2fs_read_workqueue = NULL;
|
|
if (f2fs_crypto_ctx_cachep)
|
|
kmem_cache_destroy(f2fs_crypto_ctx_cachep);
|
|
f2fs_crypto_ctx_cachep = NULL;
|
|
if (f2fs_crypt_info_cachep)
|
|
kmem_cache_destroy(f2fs_crypt_info_cachep);
|
|
f2fs_crypt_info_cachep = NULL;
|
|
}
|
|
|
|
/**
|
|
* f2fs_init_crypto() - Set up for f2fs encryption.
|
|
*
|
|
* We only call this when we start accessing encrypted files, since it
|
|
* results in memory getting allocated that wouldn't otherwise be used.
|
|
*
|
|
* Return: Zero on success, non-zero otherwise.
|
|
*/
|
|
int f2fs_init_crypto(void)
|
|
{
|
|
int i, res = -ENOMEM;
|
|
|
|
mutex_lock(&crypto_init);
|
|
if (f2fs_read_workqueue)
|
|
goto already_initialized;
|
|
|
|
f2fs_read_workqueue = alloc_workqueue("f2fs_crypto", WQ_HIGHPRI, 0);
|
|
if (!f2fs_read_workqueue)
|
|
goto fail;
|
|
|
|
f2fs_crypto_ctx_cachep = KMEM_CACHE(f2fs_crypto_ctx,
|
|
SLAB_RECLAIM_ACCOUNT);
|
|
if (!f2fs_crypto_ctx_cachep)
|
|
goto fail;
|
|
|
|
f2fs_crypt_info_cachep = KMEM_CACHE(f2fs_crypt_info,
|
|
SLAB_RECLAIM_ACCOUNT);
|
|
if (!f2fs_crypt_info_cachep)
|
|
goto fail;
|
|
|
|
for (i = 0; i < num_prealloc_crypto_ctxs; i++) {
|
|
struct f2fs_crypto_ctx *ctx;
|
|
|
|
ctx = kmem_cache_zalloc(f2fs_crypto_ctx_cachep, GFP_KERNEL);
|
|
if (!ctx) {
|
|
res = -ENOMEM;
|
|
goto fail;
|
|
}
|
|
list_add(&ctx->free_list, &f2fs_free_crypto_ctxs);
|
|
}
|
|
|
|
f2fs_bounce_page_pool =
|
|
mempool_create_page_pool(num_prealloc_crypto_pages, 0);
|
|
if (!f2fs_bounce_page_pool) {
|
|
res = -ENOMEM;
|
|
goto fail;
|
|
}
|
|
already_initialized:
|
|
mutex_unlock(&crypto_init);
|
|
return 0;
|
|
fail:
|
|
f2fs_exit_crypto();
|
|
mutex_unlock(&crypto_init);
|
|
return res;
|
|
}
|
|
|
|
void f2fs_restore_and_release_control_page(struct page **page)
|
|
{
|
|
struct f2fs_crypto_ctx *ctx;
|
|
struct page *bounce_page;
|
|
|
|
/* The bounce data pages are unmapped. */
|
|
if ((*page)->mapping)
|
|
return;
|
|
|
|
/* The bounce data page is unmapped. */
|
|
bounce_page = *page;
|
|
ctx = (struct f2fs_crypto_ctx *)page_private(bounce_page);
|
|
|
|
/* restore control page */
|
|
*page = ctx->w.control_page;
|
|
|
|
f2fs_restore_control_page(bounce_page);
|
|
}
|
|
|
|
void f2fs_restore_control_page(struct page *data_page)
|
|
{
|
|
struct f2fs_crypto_ctx *ctx =
|
|
(struct f2fs_crypto_ctx *)page_private(data_page);
|
|
|
|
set_page_private(data_page, (unsigned long)NULL);
|
|
ClearPagePrivate(data_page);
|
|
unlock_page(data_page);
|
|
f2fs_release_crypto_ctx(ctx);
|
|
}
|
|
|
|
/**
|
|
* f2fs_crypt_complete() - The completion callback for page encryption
|
|
* @req: The asynchronous encryption request context
|
|
* @res: The result of the encryption operation
|
|
*/
|
|
static void f2fs_crypt_complete(struct crypto_async_request *req, int res)
|
|
{
|
|
struct f2fs_completion_result *ecr = req->data;
|
|
|
|
if (res == -EINPROGRESS)
|
|
return;
|
|
ecr->res = res;
|
|
complete(&ecr->completion);
|
|
}
|
|
|
|
typedef enum {
|
|
F2FS_DECRYPT = 0,
|
|
F2FS_ENCRYPT,
|
|
} f2fs_direction_t;
|
|
|
|
static int f2fs_page_crypto(struct f2fs_crypto_ctx *ctx,
|
|
struct inode *inode,
|
|
f2fs_direction_t rw,
|
|
pgoff_t index,
|
|
struct page *src_page,
|
|
struct page *dest_page)
|
|
{
|
|
u8 xts_tweak[F2FS_XTS_TWEAK_SIZE];
|
|
struct ablkcipher_request *req = NULL;
|
|
DECLARE_F2FS_COMPLETION_RESULT(ecr);
|
|
struct scatterlist dst, src;
|
|
struct f2fs_inode_info *fi = F2FS_I(inode);
|
|
struct crypto_ablkcipher *atfm = __crypto_ablkcipher_cast(ctx->tfm);
|
|
int res = 0;
|
|
|
|
BUG_ON(!ctx->tfm);
|
|
BUG_ON(ctx->mode != fi->i_crypt_info->ci_data_mode);
|
|
|
|
if (ctx->mode != F2FS_ENCRYPTION_MODE_AES_256_XTS) {
|
|
printk_ratelimited(KERN_ERR
|
|
"%s: unsupported crypto algorithm: %d\n",
|
|
__func__, ctx->mode);
|
|
return -ENOTSUPP;
|
|
}
|
|
|
|
crypto_ablkcipher_clear_flags(atfm, ~0);
|
|
crypto_tfm_set_flags(ctx->tfm, CRYPTO_TFM_REQ_WEAK_KEY);
|
|
|
|
res = crypto_ablkcipher_setkey(atfm, fi->i_crypt_info->ci_raw,
|
|
fi->i_crypt_info->ci_size);
|
|
if (res) {
|
|
printk_ratelimited(KERN_ERR
|
|
"%s: crypto_ablkcipher_setkey() failed\n",
|
|
__func__);
|
|
return res;
|
|
}
|
|
req = ablkcipher_request_alloc(atfm, GFP_NOFS);
|
|
if (!req) {
|
|
printk_ratelimited(KERN_ERR
|
|
"%s: crypto_request_alloc() failed\n",
|
|
__func__);
|
|
return -ENOMEM;
|
|
}
|
|
ablkcipher_request_set_callback(
|
|
req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
|
|
f2fs_crypt_complete, &ecr);
|
|
|
|
BUILD_BUG_ON(F2FS_XTS_TWEAK_SIZE < sizeof(index));
|
|
memcpy(xts_tweak, &index, sizeof(index));
|
|
memset(&xts_tweak[sizeof(index)], 0,
|
|
F2FS_XTS_TWEAK_SIZE - sizeof(index));
|
|
|
|
sg_init_table(&dst, 1);
|
|
sg_set_page(&dst, dest_page, PAGE_CACHE_SIZE, 0);
|
|
sg_init_table(&src, 1);
|
|
sg_set_page(&src, src_page, PAGE_CACHE_SIZE, 0);
|
|
ablkcipher_request_set_crypt(req, &src, &dst, PAGE_CACHE_SIZE,
|
|
xts_tweak);
|
|
if (rw == F2FS_DECRYPT)
|
|
res = crypto_ablkcipher_decrypt(req);
|
|
else
|
|
res = crypto_ablkcipher_encrypt(req);
|
|
if (res == -EINPROGRESS || res == -EBUSY) {
|
|
BUG_ON(req->base.data != &ecr);
|
|
wait_for_completion(&ecr.completion);
|
|
res = ecr.res;
|
|
}
|
|
ablkcipher_request_free(req);
|
|
if (res) {
|
|
printk_ratelimited(KERN_ERR
|
|
"%s: crypto_ablkcipher_encrypt() returned %d\n",
|
|
__func__, res);
|
|
return res;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* f2fs_encrypt() - Encrypts a page
|
|
* @inode: The inode for which the encryption should take place
|
|
* @plaintext_page: The page to encrypt. Must be locked.
|
|
*
|
|
* Allocates a ciphertext page and encrypts plaintext_page into it using the ctx
|
|
* encryption context.
|
|
*
|
|
* Called on the page write path. The caller must call
|
|
* f2fs_restore_control_page() on the returned ciphertext page to
|
|
* release the bounce buffer and the encryption context.
|
|
*
|
|
* Return: An allocated page with the encrypted content on success. Else, an
|
|
* error value or NULL.
|
|
*/
|
|
struct page *f2fs_encrypt(struct inode *inode,
|
|
struct page *plaintext_page)
|
|
{
|
|
struct f2fs_crypto_ctx *ctx;
|
|
struct page *ciphertext_page = NULL;
|
|
int err;
|
|
|
|
BUG_ON(!PageLocked(plaintext_page));
|
|
|
|
ctx = f2fs_get_crypto_ctx(inode);
|
|
if (IS_ERR(ctx))
|
|
return (struct page *)ctx;
|
|
|
|
/* The encryption operation will require a bounce page. */
|
|
ciphertext_page = alloc_page(GFP_NOFS);
|
|
if (!ciphertext_page) {
|
|
/*
|
|
* This is a potential bottleneck, but at least we'll have
|
|
* forward progress.
|
|
*/
|
|
ciphertext_page = mempool_alloc(f2fs_bounce_page_pool,
|
|
GFP_NOFS);
|
|
if (WARN_ON_ONCE(!ciphertext_page))
|
|
ciphertext_page = mempool_alloc(f2fs_bounce_page_pool,
|
|
GFP_NOFS | __GFP_WAIT);
|
|
ctx->flags &= ~F2FS_BOUNCE_PAGE_REQUIRES_FREE_ENCRYPT_FL;
|
|
} else {
|
|
ctx->flags |= F2FS_BOUNCE_PAGE_REQUIRES_FREE_ENCRYPT_FL;
|
|
}
|
|
ctx->flags |= F2FS_WRITE_PATH_FL;
|
|
ctx->w.bounce_page = ciphertext_page;
|
|
ctx->w.control_page = plaintext_page;
|
|
err = f2fs_page_crypto(ctx, inode, F2FS_ENCRYPT, plaintext_page->index,
|
|
plaintext_page, ciphertext_page);
|
|
if (err) {
|
|
f2fs_release_crypto_ctx(ctx);
|
|
return ERR_PTR(err);
|
|
}
|
|
SetPagePrivate(ciphertext_page);
|
|
set_page_private(ciphertext_page, (unsigned long)ctx);
|
|
lock_page(ciphertext_page);
|
|
return ciphertext_page;
|
|
}
|
|
|
|
/**
|
|
* f2fs_decrypt() - Decrypts a page in-place
|
|
* @ctx: The encryption context.
|
|
* @page: The page to decrypt. Must be locked.
|
|
*
|
|
* Decrypts page in-place using the ctx encryption context.
|
|
*
|
|
* Called from the read completion callback.
|
|
*
|
|
* Return: Zero on success, non-zero otherwise.
|
|
*/
|
|
int f2fs_decrypt(struct f2fs_crypto_ctx *ctx, struct page *page)
|
|
{
|
|
BUG_ON(!PageLocked(page));
|
|
|
|
return f2fs_page_crypto(ctx, page->mapping->host,
|
|
F2FS_DECRYPT, page->index, page, page);
|
|
}
|
|
|
|
/*
|
|
* Convenience function which takes care of allocating and
|
|
* deallocating the encryption context
|
|
*/
|
|
int f2fs_decrypt_one(struct inode *inode, struct page *page)
|
|
{
|
|
struct f2fs_crypto_ctx *ctx = f2fs_get_crypto_ctx(inode);
|
|
int ret;
|
|
|
|
if (!ctx)
|
|
return -ENOMEM;
|
|
ret = f2fs_decrypt(ctx, page);
|
|
f2fs_release_crypto_ctx(ctx);
|
|
return ret;
|
|
}
|
|
|
|
bool f2fs_valid_contents_enc_mode(uint32_t mode)
|
|
{
|
|
return (mode == F2FS_ENCRYPTION_MODE_AES_256_XTS);
|
|
}
|
|
|
|
/**
|
|
* f2fs_validate_encryption_key_size() - Validate the encryption key size
|
|
* @mode: The key mode.
|
|
* @size: The key size to validate.
|
|
*
|
|
* Return: The validated key size for @mode. Zero if invalid.
|
|
*/
|
|
uint32_t f2fs_validate_encryption_key_size(uint32_t mode, uint32_t size)
|
|
{
|
|
if (size == f2fs_encryption_key_size(mode))
|
|
return size;
|
|
return 0;
|
|
}
|