forked from Minki/linux
07c100b187
As we disable the log capture events, flush any residual interrupt before we flush and disable the worker. v2: Mika pointed out that it wasn't the worker re-queueing itself, but a rogue irq. Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=109716 Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Mika Kuoppala <mika.kuoppala@linux.intel.com> Reviewed-by: Mika Kuoppala <mika.kuoppala@linux.intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20190221163833.21393-1-chris@chris-wilson.co.uk
642 lines
17 KiB
C
642 lines
17 KiB
C
/*
|
|
* Copyright © 2014-2017 Intel Corporation
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
|
* IN THE SOFTWARE.
|
|
*
|
|
*/
|
|
|
|
#include <linux/debugfs.h>
|
|
|
|
#include "intel_guc_log.h"
|
|
#include "i915_drv.h"
|
|
|
|
static void guc_log_capture_logs(struct intel_guc_log *log);
|
|
|
|
/**
|
|
* DOC: GuC firmware log
|
|
*
|
|
* Firmware log is enabled by setting i915.guc_log_level to the positive level.
|
|
* Log data is printed out via reading debugfs i915_guc_log_dump. Reading from
|
|
* i915_guc_load_status will print out firmware loading status and scratch
|
|
* registers value.
|
|
*/
|
|
|
|
static int guc_action_flush_log_complete(struct intel_guc *guc)
|
|
{
|
|
u32 action[] = {
|
|
INTEL_GUC_ACTION_LOG_BUFFER_FILE_FLUSH_COMPLETE
|
|
};
|
|
|
|
return intel_guc_send(guc, action, ARRAY_SIZE(action));
|
|
}
|
|
|
|
static int guc_action_flush_log(struct intel_guc *guc)
|
|
{
|
|
u32 action[] = {
|
|
INTEL_GUC_ACTION_FORCE_LOG_BUFFER_FLUSH,
|
|
0
|
|
};
|
|
|
|
return intel_guc_send(guc, action, ARRAY_SIZE(action));
|
|
}
|
|
|
|
static int guc_action_control_log(struct intel_guc *guc, bool enable,
|
|
bool default_logging, u32 verbosity)
|
|
{
|
|
u32 action[] = {
|
|
INTEL_GUC_ACTION_UK_LOG_ENABLE_LOGGING,
|
|
(enable ? GUC_LOG_CONTROL_LOGGING_ENABLED : 0) |
|
|
(verbosity << GUC_LOG_CONTROL_VERBOSITY_SHIFT) |
|
|
(default_logging ? GUC_LOG_CONTROL_DEFAULT_LOGGING : 0)
|
|
};
|
|
|
|
GEM_BUG_ON(verbosity > GUC_LOG_VERBOSITY_MAX);
|
|
|
|
return intel_guc_send(guc, action, ARRAY_SIZE(action));
|
|
}
|
|
|
|
static inline struct intel_guc *log_to_guc(struct intel_guc_log *log)
|
|
{
|
|
return container_of(log, struct intel_guc, log);
|
|
}
|
|
|
|
static void guc_log_enable_flush_events(struct intel_guc_log *log)
|
|
{
|
|
intel_guc_enable_msg(log_to_guc(log),
|
|
INTEL_GUC_RECV_MSG_FLUSH_LOG_BUFFER |
|
|
INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED);
|
|
}
|
|
|
|
static void guc_log_disable_flush_events(struct intel_guc_log *log)
|
|
{
|
|
intel_guc_disable_msg(log_to_guc(log),
|
|
INTEL_GUC_RECV_MSG_FLUSH_LOG_BUFFER |
|
|
INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED);
|
|
}
|
|
|
|
/*
|
|
* Sub buffer switch callback. Called whenever relay has to switch to a new
|
|
* sub buffer, relay stays on the same sub buffer if 0 is returned.
|
|
*/
|
|
static int subbuf_start_callback(struct rchan_buf *buf,
|
|
void *subbuf,
|
|
void *prev_subbuf,
|
|
size_t prev_padding)
|
|
{
|
|
/*
|
|
* Use no-overwrite mode by default, where relay will stop accepting
|
|
* new data if there are no empty sub buffers left.
|
|
* There is no strict synchronization enforced by relay between Consumer
|
|
* and Producer. In overwrite mode, there is a possibility of getting
|
|
* inconsistent/garbled data, the producer could be writing on to the
|
|
* same sub buffer from which Consumer is reading. This can't be avoided
|
|
* unless Consumer is fast enough and can always run in tandem with
|
|
* Producer.
|
|
*/
|
|
if (relay_buf_full(buf))
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* file_create() callback. Creates relay file in debugfs.
|
|
*/
|
|
static struct dentry *create_buf_file_callback(const char *filename,
|
|
struct dentry *parent,
|
|
umode_t mode,
|
|
struct rchan_buf *buf,
|
|
int *is_global)
|
|
{
|
|
struct dentry *buf_file;
|
|
|
|
/*
|
|
* This to enable the use of a single buffer for the relay channel and
|
|
* correspondingly have a single file exposed to User, through which
|
|
* it can collect the logs in order without any post-processing.
|
|
* Need to set 'is_global' even if parent is NULL for early logging.
|
|
*/
|
|
*is_global = 1;
|
|
|
|
if (!parent)
|
|
return NULL;
|
|
|
|
buf_file = debugfs_create_file(filename, mode,
|
|
parent, buf, &relay_file_operations);
|
|
if (IS_ERR(buf_file))
|
|
return NULL;
|
|
|
|
return buf_file;
|
|
}
|
|
|
|
/*
|
|
* file_remove() default callback. Removes relay file in debugfs.
|
|
*/
|
|
static int remove_buf_file_callback(struct dentry *dentry)
|
|
{
|
|
debugfs_remove(dentry);
|
|
return 0;
|
|
}
|
|
|
|
/* relay channel callbacks */
|
|
static struct rchan_callbacks relay_callbacks = {
|
|
.subbuf_start = subbuf_start_callback,
|
|
.create_buf_file = create_buf_file_callback,
|
|
.remove_buf_file = remove_buf_file_callback,
|
|
};
|
|
|
|
static void guc_move_to_next_buf(struct intel_guc_log *log)
|
|
{
|
|
/*
|
|
* Make sure the updates made in the sub buffer are visible when
|
|
* Consumer sees the following update to offset inside the sub buffer.
|
|
*/
|
|
smp_wmb();
|
|
|
|
/* All data has been written, so now move the offset of sub buffer. */
|
|
relay_reserve(log->relay.channel, log->vma->obj->base.size);
|
|
|
|
/* Switch to the next sub buffer */
|
|
relay_flush(log->relay.channel);
|
|
}
|
|
|
|
static void *guc_get_write_buffer(struct intel_guc_log *log)
|
|
{
|
|
/*
|
|
* Just get the base address of a new sub buffer and copy data into it
|
|
* ourselves. NULL will be returned in no-overwrite mode, if all sub
|
|
* buffers are full. Could have used the relay_write() to indirectly
|
|
* copy the data, but that would have been bit convoluted, as we need to
|
|
* write to only certain locations inside a sub buffer which cannot be
|
|
* done without using relay_reserve() along with relay_write(). So its
|
|
* better to use relay_reserve() alone.
|
|
*/
|
|
return relay_reserve(log->relay.channel, 0);
|
|
}
|
|
|
|
static bool guc_check_log_buf_overflow(struct intel_guc_log *log,
|
|
enum guc_log_buffer_type type,
|
|
unsigned int full_cnt)
|
|
{
|
|
unsigned int prev_full_cnt = log->stats[type].sampled_overflow;
|
|
bool overflow = false;
|
|
|
|
if (full_cnt != prev_full_cnt) {
|
|
overflow = true;
|
|
|
|
log->stats[type].overflow = full_cnt;
|
|
log->stats[type].sampled_overflow += full_cnt - prev_full_cnt;
|
|
|
|
if (full_cnt < prev_full_cnt) {
|
|
/* buffer_full_cnt is a 4 bit counter */
|
|
log->stats[type].sampled_overflow += 16;
|
|
}
|
|
DRM_ERROR_RATELIMITED("GuC log buffer overflow\n");
|
|
}
|
|
|
|
return overflow;
|
|
}
|
|
|
|
static unsigned int guc_get_log_buffer_size(enum guc_log_buffer_type type)
|
|
{
|
|
switch (type) {
|
|
case GUC_ISR_LOG_BUFFER:
|
|
return ISR_BUFFER_SIZE;
|
|
case GUC_DPC_LOG_BUFFER:
|
|
return DPC_BUFFER_SIZE;
|
|
case GUC_CRASH_DUMP_LOG_BUFFER:
|
|
return CRASH_BUFFER_SIZE;
|
|
default:
|
|
MISSING_CASE(type);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void guc_read_update_log_buffer(struct intel_guc_log *log)
|
|
{
|
|
unsigned int buffer_size, read_offset, write_offset, bytes_to_copy, full_cnt;
|
|
struct guc_log_buffer_state *log_buf_state, *log_buf_snapshot_state;
|
|
struct guc_log_buffer_state log_buf_state_local;
|
|
enum guc_log_buffer_type type;
|
|
void *src_data, *dst_data;
|
|
bool new_overflow;
|
|
|
|
mutex_lock(&log->relay.lock);
|
|
|
|
if (WARN_ON(!intel_guc_log_relay_enabled(log)))
|
|
goto out_unlock;
|
|
|
|
/* Get the pointer to shared GuC log buffer */
|
|
log_buf_state = src_data = log->relay.buf_addr;
|
|
|
|
/* Get the pointer to local buffer to store the logs */
|
|
log_buf_snapshot_state = dst_data = guc_get_write_buffer(log);
|
|
|
|
if (unlikely(!log_buf_snapshot_state)) {
|
|
/*
|
|
* Used rate limited to avoid deluge of messages, logs might be
|
|
* getting consumed by User at a slow rate.
|
|
*/
|
|
DRM_ERROR_RATELIMITED("no sub-buffer to capture logs\n");
|
|
log->relay.full_count++;
|
|
|
|
goto out_unlock;
|
|
}
|
|
|
|
/* Actual logs are present from the 2nd page */
|
|
src_data += PAGE_SIZE;
|
|
dst_data += PAGE_SIZE;
|
|
|
|
for (type = GUC_ISR_LOG_BUFFER; type < GUC_MAX_LOG_BUFFER; type++) {
|
|
/*
|
|
* Make a copy of the state structure, inside GuC log buffer
|
|
* (which is uncached mapped), on the stack to avoid reading
|
|
* from it multiple times.
|
|
*/
|
|
memcpy(&log_buf_state_local, log_buf_state,
|
|
sizeof(struct guc_log_buffer_state));
|
|
buffer_size = guc_get_log_buffer_size(type);
|
|
read_offset = log_buf_state_local.read_ptr;
|
|
write_offset = log_buf_state_local.sampled_write_ptr;
|
|
full_cnt = log_buf_state_local.buffer_full_cnt;
|
|
|
|
/* Bookkeeping stuff */
|
|
log->stats[type].flush += log_buf_state_local.flush_to_file;
|
|
new_overflow = guc_check_log_buf_overflow(log, type, full_cnt);
|
|
|
|
/* Update the state of shared log buffer */
|
|
log_buf_state->read_ptr = write_offset;
|
|
log_buf_state->flush_to_file = 0;
|
|
log_buf_state++;
|
|
|
|
/* First copy the state structure in snapshot buffer */
|
|
memcpy(log_buf_snapshot_state, &log_buf_state_local,
|
|
sizeof(struct guc_log_buffer_state));
|
|
|
|
/*
|
|
* The write pointer could have been updated by GuC firmware,
|
|
* after sending the flush interrupt to Host, for consistency
|
|
* set write pointer value to same value of sampled_write_ptr
|
|
* in the snapshot buffer.
|
|
*/
|
|
log_buf_snapshot_state->write_ptr = write_offset;
|
|
log_buf_snapshot_state++;
|
|
|
|
/* Now copy the actual logs. */
|
|
if (unlikely(new_overflow)) {
|
|
/* copy the whole buffer in case of overflow */
|
|
read_offset = 0;
|
|
write_offset = buffer_size;
|
|
} else if (unlikely((read_offset > buffer_size) ||
|
|
(write_offset > buffer_size))) {
|
|
DRM_ERROR("invalid log buffer state\n");
|
|
/* copy whole buffer as offsets are unreliable */
|
|
read_offset = 0;
|
|
write_offset = buffer_size;
|
|
}
|
|
|
|
/* Just copy the newly written data */
|
|
if (read_offset > write_offset) {
|
|
i915_memcpy_from_wc(dst_data, src_data, write_offset);
|
|
bytes_to_copy = buffer_size - read_offset;
|
|
} else {
|
|
bytes_to_copy = write_offset - read_offset;
|
|
}
|
|
i915_memcpy_from_wc(dst_data + read_offset,
|
|
src_data + read_offset, bytes_to_copy);
|
|
|
|
src_data += buffer_size;
|
|
dst_data += buffer_size;
|
|
}
|
|
|
|
guc_move_to_next_buf(log);
|
|
|
|
out_unlock:
|
|
mutex_unlock(&log->relay.lock);
|
|
}
|
|
|
|
static void capture_logs_work(struct work_struct *work)
|
|
{
|
|
struct intel_guc_log *log =
|
|
container_of(work, struct intel_guc_log, relay.flush_work);
|
|
|
|
guc_log_capture_logs(log);
|
|
}
|
|
|
|
static int guc_log_map(struct intel_guc_log *log)
|
|
{
|
|
struct intel_guc *guc = log_to_guc(log);
|
|
struct drm_i915_private *dev_priv = guc_to_i915(guc);
|
|
void *vaddr;
|
|
int ret;
|
|
|
|
lockdep_assert_held(&log->relay.lock);
|
|
|
|
if (!log->vma)
|
|
return -ENODEV;
|
|
|
|
mutex_lock(&dev_priv->drm.struct_mutex);
|
|
ret = i915_gem_object_set_to_wc_domain(log->vma->obj, true);
|
|
mutex_unlock(&dev_priv->drm.struct_mutex);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* Create a WC (Uncached for read) vmalloc mapping of log
|
|
* buffer pages, so that we can directly get the data
|
|
* (up-to-date) from memory.
|
|
*/
|
|
vaddr = i915_gem_object_pin_map(log->vma->obj, I915_MAP_WC);
|
|
if (IS_ERR(vaddr)) {
|
|
DRM_ERROR("Couldn't map log buffer pages %d\n", ret);
|
|
return PTR_ERR(vaddr);
|
|
}
|
|
|
|
log->relay.buf_addr = vaddr;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void guc_log_unmap(struct intel_guc_log *log)
|
|
{
|
|
lockdep_assert_held(&log->relay.lock);
|
|
|
|
i915_gem_object_unpin_map(log->vma->obj);
|
|
log->relay.buf_addr = NULL;
|
|
}
|
|
|
|
void intel_guc_log_init_early(struct intel_guc_log *log)
|
|
{
|
|
mutex_init(&log->relay.lock);
|
|
INIT_WORK(&log->relay.flush_work, capture_logs_work);
|
|
}
|
|
|
|
static int guc_log_relay_create(struct intel_guc_log *log)
|
|
{
|
|
struct intel_guc *guc = log_to_guc(log);
|
|
struct drm_i915_private *dev_priv = guc_to_i915(guc);
|
|
struct rchan *guc_log_relay_chan;
|
|
size_t n_subbufs, subbuf_size;
|
|
int ret;
|
|
|
|
lockdep_assert_held(&log->relay.lock);
|
|
|
|
/* Keep the size of sub buffers same as shared log buffer */
|
|
subbuf_size = log->vma->size;
|
|
|
|
/*
|
|
* Store up to 8 snapshots, which is large enough to buffer sufficient
|
|
* boot time logs and provides enough leeway to User, in terms of
|
|
* latency, for consuming the logs from relay. Also doesn't take
|
|
* up too much memory.
|
|
*/
|
|
n_subbufs = 8;
|
|
|
|
guc_log_relay_chan = relay_open("guc_log",
|
|
dev_priv->drm.primary->debugfs_root,
|
|
subbuf_size, n_subbufs,
|
|
&relay_callbacks, dev_priv);
|
|
if (!guc_log_relay_chan) {
|
|
DRM_ERROR("Couldn't create relay chan for GuC logging\n");
|
|
|
|
ret = -ENOMEM;
|
|
return ret;
|
|
}
|
|
|
|
GEM_BUG_ON(guc_log_relay_chan->subbuf_size < subbuf_size);
|
|
log->relay.channel = guc_log_relay_chan;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void guc_log_relay_destroy(struct intel_guc_log *log)
|
|
{
|
|
lockdep_assert_held(&log->relay.lock);
|
|
|
|
relay_close(log->relay.channel);
|
|
log->relay.channel = NULL;
|
|
}
|
|
|
|
static void guc_log_capture_logs(struct intel_guc_log *log)
|
|
{
|
|
struct intel_guc *guc = log_to_guc(log);
|
|
struct drm_i915_private *dev_priv = guc_to_i915(guc);
|
|
intel_wakeref_t wakeref;
|
|
|
|
guc_read_update_log_buffer(log);
|
|
|
|
/*
|
|
* Generally device is expected to be active only at this
|
|
* time, so get/put should be really quick.
|
|
*/
|
|
with_intel_runtime_pm(dev_priv, wakeref)
|
|
guc_action_flush_log_complete(guc);
|
|
}
|
|
|
|
int intel_guc_log_create(struct intel_guc_log *log)
|
|
{
|
|
struct intel_guc *guc = log_to_guc(log);
|
|
struct i915_vma *vma;
|
|
u32 guc_log_size;
|
|
int ret;
|
|
|
|
GEM_BUG_ON(log->vma);
|
|
|
|
/*
|
|
* GuC Log buffer Layout
|
|
*
|
|
* +===============================+ 00B
|
|
* | Crash dump state header |
|
|
* +-------------------------------+ 32B
|
|
* | DPC state header |
|
|
* +-------------------------------+ 64B
|
|
* | ISR state header |
|
|
* +-------------------------------+ 96B
|
|
* | |
|
|
* +===============================+ PAGE_SIZE (4KB)
|
|
* | Crash Dump logs |
|
|
* +===============================+ + CRASH_SIZE
|
|
* | DPC logs |
|
|
* +===============================+ + DPC_SIZE
|
|
* | ISR logs |
|
|
* +===============================+ + ISR_SIZE
|
|
*/
|
|
guc_log_size = PAGE_SIZE + CRASH_BUFFER_SIZE + DPC_BUFFER_SIZE +
|
|
ISR_BUFFER_SIZE;
|
|
|
|
vma = intel_guc_allocate_vma(guc, guc_log_size);
|
|
if (IS_ERR(vma)) {
|
|
ret = PTR_ERR(vma);
|
|
goto err;
|
|
}
|
|
|
|
log->vma = vma;
|
|
|
|
log->level = i915_modparams.guc_log_level;
|
|
|
|
return 0;
|
|
|
|
err:
|
|
DRM_ERROR("Failed to allocate GuC log buffer. %d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
void intel_guc_log_destroy(struct intel_guc_log *log)
|
|
{
|
|
i915_vma_unpin_and_release(&log->vma, 0);
|
|
}
|
|
|
|
int intel_guc_log_set_level(struct intel_guc_log *log, u32 level)
|
|
{
|
|
struct intel_guc *guc = log_to_guc(log);
|
|
struct drm_i915_private *dev_priv = guc_to_i915(guc);
|
|
intel_wakeref_t wakeref;
|
|
int ret = 0;
|
|
|
|
BUILD_BUG_ON(GUC_LOG_VERBOSITY_MIN != 0);
|
|
GEM_BUG_ON(!log->vma);
|
|
|
|
/*
|
|
* GuC is recognizing log levels starting from 0 to max, we're using 0
|
|
* as indication that logging should be disabled.
|
|
*/
|
|
if (level < GUC_LOG_LEVEL_DISABLED || level > GUC_LOG_LEVEL_MAX)
|
|
return -EINVAL;
|
|
|
|
mutex_lock(&dev_priv->drm.struct_mutex);
|
|
|
|
if (log->level == level)
|
|
goto out_unlock;
|
|
|
|
with_intel_runtime_pm(dev_priv, wakeref)
|
|
ret = guc_action_control_log(guc,
|
|
GUC_LOG_LEVEL_IS_VERBOSE(level),
|
|
GUC_LOG_LEVEL_IS_ENABLED(level),
|
|
GUC_LOG_LEVEL_TO_VERBOSITY(level));
|
|
if (ret) {
|
|
DRM_DEBUG_DRIVER("guc_log_control action failed %d\n", ret);
|
|
goto out_unlock;
|
|
}
|
|
|
|
log->level = level;
|
|
|
|
out_unlock:
|
|
mutex_unlock(&dev_priv->drm.struct_mutex);
|
|
|
|
return ret;
|
|
}
|
|
|
|
bool intel_guc_log_relay_enabled(const struct intel_guc_log *log)
|
|
{
|
|
return log->relay.buf_addr;
|
|
}
|
|
|
|
int intel_guc_log_relay_open(struct intel_guc_log *log)
|
|
{
|
|
int ret;
|
|
|
|
mutex_lock(&log->relay.lock);
|
|
|
|
if (intel_guc_log_relay_enabled(log)) {
|
|
ret = -EEXIST;
|
|
goto out_unlock;
|
|
}
|
|
|
|
/*
|
|
* We require SSE 4.1 for fast reads from the GuC log buffer and
|
|
* it should be present on the chipsets supporting GuC based
|
|
* submisssions.
|
|
*/
|
|
if (!i915_has_memcpy_from_wc()) {
|
|
ret = -ENXIO;
|
|
goto out_unlock;
|
|
}
|
|
|
|
ret = guc_log_relay_create(log);
|
|
if (ret)
|
|
goto out_unlock;
|
|
|
|
ret = guc_log_map(log);
|
|
if (ret)
|
|
goto out_relay;
|
|
|
|
mutex_unlock(&log->relay.lock);
|
|
|
|
guc_log_enable_flush_events(log);
|
|
|
|
/*
|
|
* When GuC is logging without us relaying to userspace, we're ignoring
|
|
* the flush notification. This means that we need to unconditionally
|
|
* flush on relay enabling, since GuC only notifies us once.
|
|
*/
|
|
queue_work(log->relay.flush_wq, &log->relay.flush_work);
|
|
|
|
return 0;
|
|
|
|
out_relay:
|
|
guc_log_relay_destroy(log);
|
|
out_unlock:
|
|
mutex_unlock(&log->relay.lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
void intel_guc_log_relay_flush(struct intel_guc_log *log)
|
|
{
|
|
struct intel_guc *guc = log_to_guc(log);
|
|
struct drm_i915_private *i915 = guc_to_i915(guc);
|
|
intel_wakeref_t wakeref;
|
|
|
|
/*
|
|
* Before initiating the forceful flush, wait for any pending/ongoing
|
|
* flush to complete otherwise forceful flush may not actually happen.
|
|
*/
|
|
flush_work(&log->relay.flush_work);
|
|
|
|
with_intel_runtime_pm(i915, wakeref)
|
|
guc_action_flush_log(guc);
|
|
|
|
/* GuC would have updated log buffer by now, so capture it */
|
|
guc_log_capture_logs(log);
|
|
}
|
|
|
|
void intel_guc_log_relay_close(struct intel_guc_log *log)
|
|
{
|
|
struct intel_guc *guc = log_to_guc(log);
|
|
struct drm_i915_private *i915 = guc_to_i915(guc);
|
|
|
|
guc_log_disable_flush_events(log);
|
|
synchronize_irq(i915->drm.irq);
|
|
|
|
flush_work(&log->relay.flush_work);
|
|
|
|
mutex_lock(&log->relay.lock);
|
|
GEM_BUG_ON(!intel_guc_log_relay_enabled(log));
|
|
guc_log_unmap(log);
|
|
guc_log_relay_destroy(log);
|
|
mutex_unlock(&log->relay.lock);
|
|
}
|
|
|
|
void intel_guc_log_handle_flush_event(struct intel_guc_log *log)
|
|
{
|
|
queue_work(log->relay.flush_wq, &log->relay.flush_work);
|
|
}
|