The NXP Cryptographic Acceleration and Assurance Module (CAAM)
can be used to protect user-defined data across system reboot:
- When the system is fused and boots into secure state, the master
key is a unique never-disclosed device-specific key
- random key is encrypted by key derived from master key
- data is encrypted using the random key
- encrypted data and its encrypted random key are stored alongside
- This blob can now be safely stored in non-volatile memory
On next power-on:
- blob is loaded into CAAM
- CAAM writes decrypted data either into memory or key register
Add functions to realize encrypting and decrypting into memory alongside
the CAAM driver.
They will be used in a later commit as a source for the trusted key
seal/unseal mechanism.
Reviewed-by: David Gstir <david@sigma-star.at>
Reviewed-by: Pankaj Gupta <pankaj.gupta@nxp.com>
Tested-by: Tim Harvey <tharvey@gateworks.com>
Tested-by: Matthias Schiffer <matthias.schiffer@ew.tq-group.com>
Tested-by: Pankaj Gupta <pankaj.gupta@nxp.com>
Tested-by: Michael Walle <michael@walle.cc> # on ls1028a (non-E and E)
Tested-by: John Ernberg <john.ernberg@actia.se> # iMX8QXP
Signed-off-by: Steffen Trumtrar <s.trumtrar@pengutronix.de>
Signed-off-by: Ahmad Fatoum <a.fatoum@pengutronix.de>
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>