linux/drivers/md/bcache/btree.c
Coly Li 4a784266c6 bcache: remove embedded struct cache_sb from struct cache_set
Since bcache code was merged into mainline kerrnel, each cache set only
as one single cache in it. The multiple caches framework is here but the
code is far from completed. Considering the multiple copies of cached
data can also be stored on e.g. md raid1 devices, it is unnecessary to
support multiple caches in one cache set indeed.

The previous preparation patches fix the dependencies of explicitly
making a cache set only have single cache. Now we don't have to maintain
an embedded partial super block in struct cache_set, the in-memory super
block can be directly referenced from struct cache.

This patch removes the embedded struct cache_sb from struct cache_set,
and fixes all locations where the superb lock was referenced from this
removed super block by referencing the in-memory super block of struct
cache.

Signed-off-by: Coly Li <colyli@suse.de>
Reviewed-by: Hannes Reinecke <hare@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2020-10-02 14:25:30 -06:00

2767 lines
63 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
*
* Uses a block device as cache for other block devices; optimized for SSDs.
* All allocation is done in buckets, which should match the erase block size
* of the device.
*
* Buckets containing cached data are kept on a heap sorted by priority;
* bucket priority is increased on cache hit, and periodically all the buckets
* on the heap have their priority scaled down. This currently is just used as
* an LRU but in the future should allow for more intelligent heuristics.
*
* Buckets have an 8 bit counter; freeing is accomplished by incrementing the
* counter. Garbage collection is used to remove stale pointers.
*
* Indexing is done via a btree; nodes are not necessarily fully sorted, rather
* as keys are inserted we only sort the pages that have not yet been written.
* When garbage collection is run, we resort the entire node.
*
* All configuration is done via sysfs; see Documentation/admin-guide/bcache.rst.
*/
#include "bcache.h"
#include "btree.h"
#include "debug.h"
#include "extents.h"
#include <linux/slab.h>
#include <linux/bitops.h>
#include <linux/hash.h>
#include <linux/kthread.h>
#include <linux/prefetch.h>
#include <linux/random.h>
#include <linux/rcupdate.h>
#include <linux/sched/clock.h>
#include <linux/rculist.h>
#include <linux/delay.h>
#include <trace/events/bcache.h>
/*
* Todo:
* register_bcache: Return errors out to userspace correctly
*
* Writeback: don't undirty key until after a cache flush
*
* Create an iterator for key pointers
*
* On btree write error, mark bucket such that it won't be freed from the cache
*
* Journalling:
* Check for bad keys in replay
* Propagate barriers
* Refcount journal entries in journal_replay
*
* Garbage collection:
* Finish incremental gc
* Gc should free old UUIDs, data for invalid UUIDs
*
* Provide a way to list backing device UUIDs we have data cached for, and
* probably how long it's been since we've seen them, and a way to invalidate
* dirty data for devices that will never be attached again
*
* Keep 1 min/5 min/15 min statistics of how busy a block device has been, so
* that based on that and how much dirty data we have we can keep writeback
* from being starved
*
* Add a tracepoint or somesuch to watch for writeback starvation
*
* When btree depth > 1 and splitting an interior node, we have to make sure
* alloc_bucket() cannot fail. This should be true but is not completely
* obvious.
*
* Plugging?
*
* If data write is less than hard sector size of ssd, round up offset in open
* bucket to the next whole sector
*
* Superblock needs to be fleshed out for multiple cache devices
*
* Add a sysfs tunable for the number of writeback IOs in flight
*
* Add a sysfs tunable for the number of open data buckets
*
* IO tracking: Can we track when one process is doing io on behalf of another?
* IO tracking: Don't use just an average, weigh more recent stuff higher
*
* Test module load/unload
*/
#define MAX_NEED_GC 64
#define MAX_SAVE_PRIO 72
#define MAX_GC_TIMES 100
#define MIN_GC_NODES 100
#define GC_SLEEP_MS 100
#define PTR_DIRTY_BIT (((uint64_t) 1 << 36))
#define PTR_HASH(c, k) \
(((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0))
#define insert_lock(s, b) ((b)->level <= (s)->lock)
static inline struct bset *write_block(struct btree *b)
{
return ((void *) btree_bset_first(b)) + b->written * block_bytes(b->c->cache);
}
static void bch_btree_init_next(struct btree *b)
{
/* If not a leaf node, always sort */
if (b->level && b->keys.nsets)
bch_btree_sort(&b->keys, &b->c->sort);
else
bch_btree_sort_lazy(&b->keys, &b->c->sort);
if (b->written < btree_blocks(b))
bch_bset_init_next(&b->keys, write_block(b),
bset_magic(&b->c->cache->sb));
}
/* Btree key manipulation */
void bkey_put(struct cache_set *c, struct bkey *k)
{
unsigned int i;
for (i = 0; i < KEY_PTRS(k); i++)
if (ptr_available(c, k, i))
atomic_dec_bug(&PTR_BUCKET(c, k, i)->pin);
}
/* Btree IO */
static uint64_t btree_csum_set(struct btree *b, struct bset *i)
{
uint64_t crc = b->key.ptr[0];
void *data = (void *) i + 8, *end = bset_bkey_last(i);
crc = bch_crc64_update(crc, data, end - data);
return crc ^ 0xffffffffffffffffULL;
}
void bch_btree_node_read_done(struct btree *b)
{
const char *err = "bad btree header";
struct bset *i = btree_bset_first(b);
struct btree_iter *iter;
/*
* c->fill_iter can allocate an iterator with more memory space
* than static MAX_BSETS.
* See the comment arount cache_set->fill_iter.
*/
iter = mempool_alloc(&b->c->fill_iter, GFP_NOIO);
iter->size = b->c->cache->sb.bucket_size / b->c->cache->sb.block_size;
iter->used = 0;
#ifdef CONFIG_BCACHE_DEBUG
iter->b = &b->keys;
#endif
if (!i->seq)
goto err;
for (;
b->written < btree_blocks(b) && i->seq == b->keys.set[0].data->seq;
i = write_block(b)) {
err = "unsupported bset version";
if (i->version > BCACHE_BSET_VERSION)
goto err;
err = "bad btree header";
if (b->written + set_blocks(i, block_bytes(b->c->cache)) >
btree_blocks(b))
goto err;
err = "bad magic";
if (i->magic != bset_magic(&b->c->cache->sb))
goto err;
err = "bad checksum";
switch (i->version) {
case 0:
if (i->csum != csum_set(i))
goto err;
break;
case BCACHE_BSET_VERSION:
if (i->csum != btree_csum_set(b, i))
goto err;
break;
}
err = "empty set";
if (i != b->keys.set[0].data && !i->keys)
goto err;
bch_btree_iter_push(iter, i->start, bset_bkey_last(i));
b->written += set_blocks(i, block_bytes(b->c->cache));
}
err = "corrupted btree";
for (i = write_block(b);
bset_sector_offset(&b->keys, i) < KEY_SIZE(&b->key);
i = ((void *) i) + block_bytes(b->c->cache))
if (i->seq == b->keys.set[0].data->seq)
goto err;
bch_btree_sort_and_fix_extents(&b->keys, iter, &b->c->sort);
i = b->keys.set[0].data;
err = "short btree key";
if (b->keys.set[0].size &&
bkey_cmp(&b->key, &b->keys.set[0].end) < 0)
goto err;
if (b->written < btree_blocks(b))
bch_bset_init_next(&b->keys, write_block(b),
bset_magic(&b->c->cache->sb));
out:
mempool_free(iter, &b->c->fill_iter);
return;
err:
set_btree_node_io_error(b);
bch_cache_set_error(b->c, "%s at bucket %zu, block %u, %u keys",
err, PTR_BUCKET_NR(b->c, &b->key, 0),
bset_block_offset(b, i), i->keys);
goto out;
}
static void btree_node_read_endio(struct bio *bio)
{
struct closure *cl = bio->bi_private;
closure_put(cl);
}
static void bch_btree_node_read(struct btree *b)
{
uint64_t start_time = local_clock();
struct closure cl;
struct bio *bio;
trace_bcache_btree_read(b);
closure_init_stack(&cl);
bio = bch_bbio_alloc(b->c);
bio->bi_iter.bi_size = KEY_SIZE(&b->key) << 9;
bio->bi_end_io = btree_node_read_endio;
bio->bi_private = &cl;
bio->bi_opf = REQ_OP_READ | REQ_META;
bch_bio_map(bio, b->keys.set[0].data);
bch_submit_bbio(bio, b->c, &b->key, 0);
closure_sync(&cl);
if (bio->bi_status)
set_btree_node_io_error(b);
bch_bbio_free(bio, b->c);
if (btree_node_io_error(b))
goto err;
bch_btree_node_read_done(b);
bch_time_stats_update(&b->c->btree_read_time, start_time);
return;
err:
bch_cache_set_error(b->c, "io error reading bucket %zu",
PTR_BUCKET_NR(b->c, &b->key, 0));
}
static void btree_complete_write(struct btree *b, struct btree_write *w)
{
if (w->prio_blocked &&
!atomic_sub_return(w->prio_blocked, &b->c->prio_blocked))
wake_up_allocators(b->c);
if (w->journal) {
atomic_dec_bug(w->journal);
__closure_wake_up(&b->c->journal.wait);
}
w->prio_blocked = 0;
w->journal = NULL;
}
static void btree_node_write_unlock(struct closure *cl)
{
struct btree *b = container_of(cl, struct btree, io);
up(&b->io_mutex);
}
static void __btree_node_write_done(struct closure *cl)
{
struct btree *b = container_of(cl, struct btree, io);
struct btree_write *w = btree_prev_write(b);
bch_bbio_free(b->bio, b->c);
b->bio = NULL;
btree_complete_write(b, w);
if (btree_node_dirty(b))
schedule_delayed_work(&b->work, 30 * HZ);
closure_return_with_destructor(cl, btree_node_write_unlock);
}
static void btree_node_write_done(struct closure *cl)
{
struct btree *b = container_of(cl, struct btree, io);
bio_free_pages(b->bio);
__btree_node_write_done(cl);
}
static void btree_node_write_endio(struct bio *bio)
{
struct closure *cl = bio->bi_private;
struct btree *b = container_of(cl, struct btree, io);
if (bio->bi_status)
set_btree_node_io_error(b);
bch_bbio_count_io_errors(b->c, bio, bio->bi_status, "writing btree");
closure_put(cl);
}
static void do_btree_node_write(struct btree *b)
{
struct closure *cl = &b->io;
struct bset *i = btree_bset_last(b);
BKEY_PADDED(key) k;
i->version = BCACHE_BSET_VERSION;
i->csum = btree_csum_set(b, i);
BUG_ON(b->bio);
b->bio = bch_bbio_alloc(b->c);
b->bio->bi_end_io = btree_node_write_endio;
b->bio->bi_private = cl;
b->bio->bi_iter.bi_size = roundup(set_bytes(i), block_bytes(b->c->cache));
b->bio->bi_opf = REQ_OP_WRITE | REQ_META | REQ_FUA;
bch_bio_map(b->bio, i);
/*
* If we're appending to a leaf node, we don't technically need FUA -
* this write just needs to be persisted before the next journal write,
* which will be marked FLUSH|FUA.
*
* Similarly if we're writing a new btree root - the pointer is going to
* be in the next journal entry.
*
* But if we're writing a new btree node (that isn't a root) or
* appending to a non leaf btree node, we need either FUA or a flush
* when we write the parent with the new pointer. FUA is cheaper than a
* flush, and writes appending to leaf nodes aren't blocking anything so
* just make all btree node writes FUA to keep things sane.
*/
bkey_copy(&k.key, &b->key);
SET_PTR_OFFSET(&k.key, 0, PTR_OFFSET(&k.key, 0) +
bset_sector_offset(&b->keys, i));
if (!bch_bio_alloc_pages(b->bio, __GFP_NOWARN|GFP_NOWAIT)) {
struct bio_vec *bv;
void *addr = (void *) ((unsigned long) i & ~(PAGE_SIZE - 1));
struct bvec_iter_all iter_all;
bio_for_each_segment_all(bv, b->bio, iter_all) {
memcpy(page_address(bv->bv_page), addr, PAGE_SIZE);
addr += PAGE_SIZE;
}
bch_submit_bbio(b->bio, b->c, &k.key, 0);
continue_at(cl, btree_node_write_done, NULL);
} else {
/*
* No problem for multipage bvec since the bio is
* just allocated
*/
b->bio->bi_vcnt = 0;
bch_bio_map(b->bio, i);
bch_submit_bbio(b->bio, b->c, &k.key, 0);
closure_sync(cl);
continue_at_nobarrier(cl, __btree_node_write_done, NULL);
}
}
void __bch_btree_node_write(struct btree *b, struct closure *parent)
{
struct bset *i = btree_bset_last(b);
lockdep_assert_held(&b->write_lock);
trace_bcache_btree_write(b);
BUG_ON(current->bio_list);
BUG_ON(b->written >= btree_blocks(b));
BUG_ON(b->written && !i->keys);
BUG_ON(btree_bset_first(b)->seq != i->seq);
bch_check_keys(&b->keys, "writing");
cancel_delayed_work(&b->work);
/* If caller isn't waiting for write, parent refcount is cache set */
down(&b->io_mutex);
closure_init(&b->io, parent ?: &b->c->cl);
clear_bit(BTREE_NODE_dirty, &b->flags);
change_bit(BTREE_NODE_write_idx, &b->flags);
do_btree_node_write(b);
atomic_long_add(set_blocks(i, block_bytes(b->c->cache)) * b->c->cache->sb.block_size,
&PTR_CACHE(b->c, &b->key, 0)->btree_sectors_written);
b->written += set_blocks(i, block_bytes(b->c->cache));
}
void bch_btree_node_write(struct btree *b, struct closure *parent)
{
unsigned int nsets = b->keys.nsets;
lockdep_assert_held(&b->lock);
__bch_btree_node_write(b, parent);
/*
* do verify if there was more than one set initially (i.e. we did a
* sort) and we sorted down to a single set:
*/
if (nsets && !b->keys.nsets)
bch_btree_verify(b);
bch_btree_init_next(b);
}
static void bch_btree_node_write_sync(struct btree *b)
{
struct closure cl;
closure_init_stack(&cl);
mutex_lock(&b->write_lock);
bch_btree_node_write(b, &cl);
mutex_unlock(&b->write_lock);
closure_sync(&cl);
}
static void btree_node_write_work(struct work_struct *w)
{
struct btree *b = container_of(to_delayed_work(w), struct btree, work);
mutex_lock(&b->write_lock);
if (btree_node_dirty(b))
__bch_btree_node_write(b, NULL);
mutex_unlock(&b->write_lock);
}
static void bch_btree_leaf_dirty(struct btree *b, atomic_t *journal_ref)
{
struct bset *i = btree_bset_last(b);
struct btree_write *w = btree_current_write(b);
lockdep_assert_held(&b->write_lock);
BUG_ON(!b->written);
BUG_ON(!i->keys);
if (!btree_node_dirty(b))
schedule_delayed_work(&b->work, 30 * HZ);
set_btree_node_dirty(b);
/*
* w->journal is always the oldest journal pin of all bkeys
* in the leaf node, to make sure the oldest jset seq won't
* be increased before this btree node is flushed.
*/
if (journal_ref) {
if (w->journal &&
journal_pin_cmp(b->c, w->journal, journal_ref)) {
atomic_dec_bug(w->journal);
w->journal = NULL;
}
if (!w->journal) {
w->journal = journal_ref;
atomic_inc(w->journal);
}
}
/* Force write if set is too big */
if (set_bytes(i) > PAGE_SIZE - 48 &&
!current->bio_list)
bch_btree_node_write(b, NULL);
}
/*
* Btree in memory cache - allocation/freeing
* mca -> memory cache
*/
#define mca_reserve(c) (((!IS_ERR_OR_NULL(c->root) && c->root->level) \
? c->root->level : 1) * 8 + 16)
#define mca_can_free(c) \
max_t(int, 0, c->btree_cache_used - mca_reserve(c))
static void mca_data_free(struct btree *b)
{
BUG_ON(b->io_mutex.count != 1);
bch_btree_keys_free(&b->keys);
b->c->btree_cache_used--;
list_move(&b->list, &b->c->btree_cache_freed);
}
static void mca_bucket_free(struct btree *b)
{
BUG_ON(btree_node_dirty(b));
b->key.ptr[0] = 0;
hlist_del_init_rcu(&b->hash);
list_move(&b->list, &b->c->btree_cache_freeable);
}
static unsigned int btree_order(struct bkey *k)
{
return ilog2(KEY_SIZE(k) / PAGE_SECTORS ?: 1);
}
static void mca_data_alloc(struct btree *b, struct bkey *k, gfp_t gfp)
{
if (!bch_btree_keys_alloc(&b->keys,
max_t(unsigned int,
ilog2(b->c->btree_pages),
btree_order(k)),
gfp)) {
b->c->btree_cache_used++;
list_move(&b->list, &b->c->btree_cache);
} else {
list_move(&b->list, &b->c->btree_cache_freed);
}
}
static struct btree *mca_bucket_alloc(struct cache_set *c,
struct bkey *k, gfp_t gfp)
{
/*
* kzalloc() is necessary here for initialization,
* see code comments in bch_btree_keys_init().
*/
struct btree *b = kzalloc(sizeof(struct btree), gfp);
if (!b)
return NULL;
init_rwsem(&b->lock);
lockdep_set_novalidate_class(&b->lock);
mutex_init(&b->write_lock);
lockdep_set_novalidate_class(&b->write_lock);
INIT_LIST_HEAD(&b->list);
INIT_DELAYED_WORK(&b->work, btree_node_write_work);
b->c = c;
sema_init(&b->io_mutex, 1);
mca_data_alloc(b, k, gfp);
return b;
}
static int mca_reap(struct btree *b, unsigned int min_order, bool flush)
{
struct closure cl;
closure_init_stack(&cl);
lockdep_assert_held(&b->c->bucket_lock);
if (!down_write_trylock(&b->lock))
return -ENOMEM;
BUG_ON(btree_node_dirty(b) && !b->keys.set[0].data);
if (b->keys.page_order < min_order)
goto out_unlock;
if (!flush) {
if (btree_node_dirty(b))
goto out_unlock;
if (down_trylock(&b->io_mutex))
goto out_unlock;
up(&b->io_mutex);
}
retry:
/*
* BTREE_NODE_dirty might be cleared in btree_flush_btree() by
* __bch_btree_node_write(). To avoid an extra flush, acquire
* b->write_lock before checking BTREE_NODE_dirty bit.
*/
mutex_lock(&b->write_lock);
/*
* If this btree node is selected in btree_flush_write() by journal
* code, delay and retry until the node is flushed by journal code
* and BTREE_NODE_journal_flush bit cleared by btree_flush_write().
*/
if (btree_node_journal_flush(b)) {
pr_debug("bnode %p is flushing by journal, retry\n", b);
mutex_unlock(&b->write_lock);
udelay(1);
goto retry;
}
if (btree_node_dirty(b))
__bch_btree_node_write(b, &cl);
mutex_unlock(&b->write_lock);
closure_sync(&cl);
/* wait for any in flight btree write */
down(&b->io_mutex);
up(&b->io_mutex);
return 0;
out_unlock:
rw_unlock(true, b);
return -ENOMEM;
}
static unsigned long bch_mca_scan(struct shrinker *shrink,
struct shrink_control *sc)
{
struct cache_set *c = container_of(shrink, struct cache_set, shrink);
struct btree *b, *t;
unsigned long i, nr = sc->nr_to_scan;
unsigned long freed = 0;
unsigned int btree_cache_used;
if (c->shrinker_disabled)
return SHRINK_STOP;
if (c->btree_cache_alloc_lock)
return SHRINK_STOP;
/* Return -1 if we can't do anything right now */
if (sc->gfp_mask & __GFP_IO)
mutex_lock(&c->bucket_lock);
else if (!mutex_trylock(&c->bucket_lock))
return -1;
/*
* It's _really_ critical that we don't free too many btree nodes - we
* have to always leave ourselves a reserve. The reserve is how we
* guarantee that allocating memory for a new btree node can always
* succeed, so that inserting keys into the btree can always succeed and
* IO can always make forward progress:
*/
nr /= c->btree_pages;
if (nr == 0)
nr = 1;
nr = min_t(unsigned long, nr, mca_can_free(c));
i = 0;
btree_cache_used = c->btree_cache_used;
list_for_each_entry_safe_reverse(b, t, &c->btree_cache_freeable, list) {
if (nr <= 0)
goto out;
if (!mca_reap(b, 0, false)) {
mca_data_free(b);
rw_unlock(true, b);
freed++;
}
nr--;
i++;
}
list_for_each_entry_safe_reverse(b, t, &c->btree_cache, list) {
if (nr <= 0 || i >= btree_cache_used)
goto out;
if (!mca_reap(b, 0, false)) {
mca_bucket_free(b);
mca_data_free(b);
rw_unlock(true, b);
freed++;
}
nr--;
i++;
}
out:
mutex_unlock(&c->bucket_lock);
return freed * c->btree_pages;
}
static unsigned long bch_mca_count(struct shrinker *shrink,
struct shrink_control *sc)
{
struct cache_set *c = container_of(shrink, struct cache_set, shrink);
if (c->shrinker_disabled)
return 0;
if (c->btree_cache_alloc_lock)
return 0;
return mca_can_free(c) * c->btree_pages;
}
void bch_btree_cache_free(struct cache_set *c)
{
struct btree *b;
struct closure cl;
closure_init_stack(&cl);
if (c->shrink.list.next)
unregister_shrinker(&c->shrink);
mutex_lock(&c->bucket_lock);
#ifdef CONFIG_BCACHE_DEBUG
if (c->verify_data)
list_move(&c->verify_data->list, &c->btree_cache);
free_pages((unsigned long) c->verify_ondisk, ilog2(meta_bucket_pages(&c->cache->sb)));
#endif
list_splice(&c->btree_cache_freeable,
&c->btree_cache);
while (!list_empty(&c->btree_cache)) {
b = list_first_entry(&c->btree_cache, struct btree, list);
/*
* This function is called by cache_set_free(), no I/O
* request on cache now, it is unnecessary to acquire
* b->write_lock before clearing BTREE_NODE_dirty anymore.
*/
if (btree_node_dirty(b)) {
btree_complete_write(b, btree_current_write(b));
clear_bit(BTREE_NODE_dirty, &b->flags);
}
mca_data_free(b);
}
while (!list_empty(&c->btree_cache_freed)) {
b = list_first_entry(&c->btree_cache_freed,
struct btree, list);
list_del(&b->list);
cancel_delayed_work_sync(&b->work);
kfree(b);
}
mutex_unlock(&c->bucket_lock);
}
int bch_btree_cache_alloc(struct cache_set *c)
{
unsigned int i;
for (i = 0; i < mca_reserve(c); i++)
if (!mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL))
return -ENOMEM;
list_splice_init(&c->btree_cache,
&c->btree_cache_freeable);
#ifdef CONFIG_BCACHE_DEBUG
mutex_init(&c->verify_lock);
c->verify_ondisk = (void *)
__get_free_pages(GFP_KERNEL|__GFP_COMP,
ilog2(meta_bucket_pages(&c->cache->sb)));
if (!c->verify_ondisk) {
/*
* Don't worry about the mca_rereserve buckets
* allocated in previous for-loop, they will be
* handled properly in bch_cache_set_unregister().
*/
return -ENOMEM;
}
c->verify_data = mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL);
if (c->verify_data &&
c->verify_data->keys.set->data)
list_del_init(&c->verify_data->list);
else
c->verify_data = NULL;
#endif
c->shrink.count_objects = bch_mca_count;
c->shrink.scan_objects = bch_mca_scan;
c->shrink.seeks = 4;
c->shrink.batch = c->btree_pages * 2;
if (register_shrinker(&c->shrink))
pr_warn("bcache: %s: could not register shrinker\n",
__func__);
return 0;
}
/* Btree in memory cache - hash table */
static struct hlist_head *mca_hash(struct cache_set *c, struct bkey *k)
{
return &c->bucket_hash[hash_32(PTR_HASH(c, k), BUCKET_HASH_BITS)];
}
static struct btree *mca_find(struct cache_set *c, struct bkey *k)
{
struct btree *b;
rcu_read_lock();
hlist_for_each_entry_rcu(b, mca_hash(c, k), hash)
if (PTR_HASH(c, &b->key) == PTR_HASH(c, k))
goto out;
b = NULL;
out:
rcu_read_unlock();
return b;
}
static int mca_cannibalize_lock(struct cache_set *c, struct btree_op *op)
{
spin_lock(&c->btree_cannibalize_lock);
if (likely(c->btree_cache_alloc_lock == NULL)) {
c->btree_cache_alloc_lock = current;
} else if (c->btree_cache_alloc_lock != current) {
if (op)
prepare_to_wait(&c->btree_cache_wait, &op->wait,
TASK_UNINTERRUPTIBLE);
spin_unlock(&c->btree_cannibalize_lock);
return -EINTR;
}
spin_unlock(&c->btree_cannibalize_lock);
return 0;
}
static struct btree *mca_cannibalize(struct cache_set *c, struct btree_op *op,
struct bkey *k)
{
struct btree *b;
trace_bcache_btree_cache_cannibalize(c);
if (mca_cannibalize_lock(c, op))
return ERR_PTR(-EINTR);
list_for_each_entry_reverse(b, &c->btree_cache, list)
if (!mca_reap(b, btree_order(k), false))
return b;
list_for_each_entry_reverse(b, &c->btree_cache, list)
if (!mca_reap(b, btree_order(k), true))
return b;
WARN(1, "btree cache cannibalize failed\n");
return ERR_PTR(-ENOMEM);
}
/*
* We can only have one thread cannibalizing other cached btree nodes at a time,
* or we'll deadlock. We use an open coded mutex to ensure that, which a
* cannibalize_bucket() will take. This means every time we unlock the root of
* the btree, we need to release this lock if we have it held.
*/
static void bch_cannibalize_unlock(struct cache_set *c)
{
spin_lock(&c->btree_cannibalize_lock);
if (c->btree_cache_alloc_lock == current) {
c->btree_cache_alloc_lock = NULL;
wake_up(&c->btree_cache_wait);
}
spin_unlock(&c->btree_cannibalize_lock);
}
static struct btree *mca_alloc(struct cache_set *c, struct btree_op *op,
struct bkey *k, int level)
{
struct btree *b;
BUG_ON(current->bio_list);
lockdep_assert_held(&c->bucket_lock);
if (mca_find(c, k))
return NULL;
/* btree_free() doesn't free memory; it sticks the node on the end of
* the list. Check if there's any freed nodes there:
*/
list_for_each_entry(b, &c->btree_cache_freeable, list)
if (!mca_reap(b, btree_order(k), false))
goto out;
/* We never free struct btree itself, just the memory that holds the on
* disk node. Check the freed list before allocating a new one:
*/
list_for_each_entry(b, &c->btree_cache_freed, list)
if (!mca_reap(b, 0, false)) {
mca_data_alloc(b, k, __GFP_NOWARN|GFP_NOIO);
if (!b->keys.set[0].data)
goto err;
else
goto out;
}
b = mca_bucket_alloc(c, k, __GFP_NOWARN|GFP_NOIO);
if (!b)
goto err;
BUG_ON(!down_write_trylock(&b->lock));
if (!b->keys.set->data)
goto err;
out:
BUG_ON(b->io_mutex.count != 1);
bkey_copy(&b->key, k);
list_move(&b->list, &c->btree_cache);
hlist_del_init_rcu(&b->hash);
hlist_add_head_rcu(&b->hash, mca_hash(c, k));
lock_set_subclass(&b->lock.dep_map, level + 1, _THIS_IP_);
b->parent = (void *) ~0UL;
b->flags = 0;
b->written = 0;
b->level = level;
if (!b->level)
bch_btree_keys_init(&b->keys, &bch_extent_keys_ops,
&b->c->expensive_debug_checks);
else
bch_btree_keys_init(&b->keys, &bch_btree_keys_ops,
&b->c->expensive_debug_checks);
return b;
err:
if (b)
rw_unlock(true, b);
b = mca_cannibalize(c, op, k);
if (!IS_ERR(b))
goto out;
return b;
}
/*
* bch_btree_node_get - find a btree node in the cache and lock it, reading it
* in from disk if necessary.
*
* If IO is necessary and running under submit_bio_noacct, returns -EAGAIN.
*
* The btree node will have either a read or a write lock held, depending on
* level and op->lock.
*/
struct btree *bch_btree_node_get(struct cache_set *c, struct btree_op *op,
struct bkey *k, int level, bool write,
struct btree *parent)
{
int i = 0;
struct btree *b;
BUG_ON(level < 0);
retry:
b = mca_find(c, k);
if (!b) {
if (current->bio_list)
return ERR_PTR(-EAGAIN);
mutex_lock(&c->bucket_lock);
b = mca_alloc(c, op, k, level);
mutex_unlock(&c->bucket_lock);
if (!b)
goto retry;
if (IS_ERR(b))
return b;
bch_btree_node_read(b);
if (!write)
downgrade_write(&b->lock);
} else {
rw_lock(write, b, level);
if (PTR_HASH(c, &b->key) != PTR_HASH(c, k)) {
rw_unlock(write, b);
goto retry;
}
BUG_ON(b->level != level);
}
if (btree_node_io_error(b)) {
rw_unlock(write, b);
return ERR_PTR(-EIO);
}
BUG_ON(!b->written);
b->parent = parent;
for (; i <= b->keys.nsets && b->keys.set[i].size; i++) {
prefetch(b->keys.set[i].tree);
prefetch(b->keys.set[i].data);
}
for (; i <= b->keys.nsets; i++)
prefetch(b->keys.set[i].data);
return b;
}
static void btree_node_prefetch(struct btree *parent, struct bkey *k)
{
struct btree *b;
mutex_lock(&parent->c->bucket_lock);
b = mca_alloc(parent->c, NULL, k, parent->level - 1);
mutex_unlock(&parent->c->bucket_lock);
if (!IS_ERR_OR_NULL(b)) {
b->parent = parent;
bch_btree_node_read(b);
rw_unlock(true, b);
}
}
/* Btree alloc */
static void btree_node_free(struct btree *b)
{
trace_bcache_btree_node_free(b);
BUG_ON(b == b->c->root);
retry:
mutex_lock(&b->write_lock);
/*
* If the btree node is selected and flushing in btree_flush_write(),
* delay and retry until the BTREE_NODE_journal_flush bit cleared,
* then it is safe to free the btree node here. Otherwise this btree
* node will be in race condition.
*/
if (btree_node_journal_flush(b)) {
mutex_unlock(&b->write_lock);
pr_debug("bnode %p journal_flush set, retry\n", b);
udelay(1);
goto retry;
}
if (btree_node_dirty(b)) {
btree_complete_write(b, btree_current_write(b));
clear_bit(BTREE_NODE_dirty, &b->flags);
}
mutex_unlock(&b->write_lock);
cancel_delayed_work(&b->work);
mutex_lock(&b->c->bucket_lock);
bch_bucket_free(b->c, &b->key);
mca_bucket_free(b);
mutex_unlock(&b->c->bucket_lock);
}
struct btree *__bch_btree_node_alloc(struct cache_set *c, struct btree_op *op,
int level, bool wait,
struct btree *parent)
{
BKEY_PADDED(key) k;
struct btree *b = ERR_PTR(-EAGAIN);
mutex_lock(&c->bucket_lock);
retry:
if (__bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, wait))
goto err;
bkey_put(c, &k.key);
SET_KEY_SIZE(&k.key, c->btree_pages * PAGE_SECTORS);
b = mca_alloc(c, op, &k.key, level);
if (IS_ERR(b))
goto err_free;
if (!b) {
cache_bug(c,
"Tried to allocate bucket that was in btree cache");
goto retry;
}
b->parent = parent;
bch_bset_init_next(&b->keys, b->keys.set->data, bset_magic(&b->c->cache->sb));
mutex_unlock(&c->bucket_lock);
trace_bcache_btree_node_alloc(b);
return b;
err_free:
bch_bucket_free(c, &k.key);
err:
mutex_unlock(&c->bucket_lock);
trace_bcache_btree_node_alloc_fail(c);
return b;
}
static struct btree *bch_btree_node_alloc(struct cache_set *c,
struct btree_op *op, int level,
struct btree *parent)
{
return __bch_btree_node_alloc(c, op, level, op != NULL, parent);
}
static struct btree *btree_node_alloc_replacement(struct btree *b,
struct btree_op *op)
{
struct btree *n = bch_btree_node_alloc(b->c, op, b->level, b->parent);
if (!IS_ERR_OR_NULL(n)) {
mutex_lock(&n->write_lock);
bch_btree_sort_into(&b->keys, &n->keys, &b->c->sort);
bkey_copy_key(&n->key, &b->key);
mutex_unlock(&n->write_lock);
}
return n;
}
static void make_btree_freeing_key(struct btree *b, struct bkey *k)
{
unsigned int i;
mutex_lock(&b->c->bucket_lock);
atomic_inc(&b->c->prio_blocked);
bkey_copy(k, &b->key);
bkey_copy_key(k, &ZERO_KEY);
for (i = 0; i < KEY_PTRS(k); i++)
SET_PTR_GEN(k, i,
bch_inc_gen(PTR_CACHE(b->c, &b->key, i),
PTR_BUCKET(b->c, &b->key, i)));
mutex_unlock(&b->c->bucket_lock);
}
static int btree_check_reserve(struct btree *b, struct btree_op *op)
{
struct cache_set *c = b->c;
struct cache *ca = c->cache;
unsigned int reserve = (c->root->level - b->level) * 2 + 1;
mutex_lock(&c->bucket_lock);
if (fifo_used(&ca->free[RESERVE_BTREE]) < reserve) {
if (op)
prepare_to_wait(&c->btree_cache_wait, &op->wait,
TASK_UNINTERRUPTIBLE);
mutex_unlock(&c->bucket_lock);
return -EINTR;
}
mutex_unlock(&c->bucket_lock);
return mca_cannibalize_lock(b->c, op);
}
/* Garbage collection */
static uint8_t __bch_btree_mark_key(struct cache_set *c, int level,
struct bkey *k)
{
uint8_t stale = 0;
unsigned int i;
struct bucket *g;
/*
* ptr_invalid() can't return true for the keys that mark btree nodes as
* freed, but since ptr_bad() returns true we'll never actually use them
* for anything and thus we don't want mark their pointers here
*/
if (!bkey_cmp(k, &ZERO_KEY))
return stale;
for (i = 0; i < KEY_PTRS(k); i++) {
if (!ptr_available(c, k, i))
continue;
g = PTR_BUCKET(c, k, i);
if (gen_after(g->last_gc, PTR_GEN(k, i)))
g->last_gc = PTR_GEN(k, i);
if (ptr_stale(c, k, i)) {
stale = max(stale, ptr_stale(c, k, i));
continue;
}
cache_bug_on(GC_MARK(g) &&
(GC_MARK(g) == GC_MARK_METADATA) != (level != 0),
c, "inconsistent ptrs: mark = %llu, level = %i",
GC_MARK(g), level);
if (level)
SET_GC_MARK(g, GC_MARK_METADATA);
else if (KEY_DIRTY(k))
SET_GC_MARK(g, GC_MARK_DIRTY);
else if (!GC_MARK(g))
SET_GC_MARK(g, GC_MARK_RECLAIMABLE);
/* guard against overflow */
SET_GC_SECTORS_USED(g, min_t(unsigned int,
GC_SECTORS_USED(g) + KEY_SIZE(k),
MAX_GC_SECTORS_USED));
BUG_ON(!GC_SECTORS_USED(g));
}
return stale;
}
#define btree_mark_key(b, k) __bch_btree_mark_key(b->c, b->level, k)
void bch_initial_mark_key(struct cache_set *c, int level, struct bkey *k)
{
unsigned int i;
for (i = 0; i < KEY_PTRS(k); i++)
if (ptr_available(c, k, i) &&
!ptr_stale(c, k, i)) {
struct bucket *b = PTR_BUCKET(c, k, i);
b->gen = PTR_GEN(k, i);
if (level && bkey_cmp(k, &ZERO_KEY))
b->prio = BTREE_PRIO;
else if (!level && b->prio == BTREE_PRIO)
b->prio = INITIAL_PRIO;
}
__bch_btree_mark_key(c, level, k);
}
void bch_update_bucket_in_use(struct cache_set *c, struct gc_stat *stats)
{
stats->in_use = (c->nbuckets - c->avail_nbuckets) * 100 / c->nbuckets;
}
static bool btree_gc_mark_node(struct btree *b, struct gc_stat *gc)
{
uint8_t stale = 0;
unsigned int keys = 0, good_keys = 0;
struct bkey *k;
struct btree_iter iter;
struct bset_tree *t;
gc->nodes++;
for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) {
stale = max(stale, btree_mark_key(b, k));
keys++;
if (bch_ptr_bad(&b->keys, k))
continue;
gc->key_bytes += bkey_u64s(k);
gc->nkeys++;
good_keys++;
gc->data += KEY_SIZE(k);
}
for (t = b->keys.set; t <= &b->keys.set[b->keys.nsets]; t++)
btree_bug_on(t->size &&
bset_written(&b->keys, t) &&
bkey_cmp(&b->key, &t->end) < 0,
b, "found short btree key in gc");
if (b->c->gc_always_rewrite)
return true;
if (stale > 10)
return true;
if ((keys - good_keys) * 2 > keys)
return true;
return false;
}
#define GC_MERGE_NODES 4U
struct gc_merge_info {
struct btree *b;
unsigned int keys;
};
static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
struct keylist *insert_keys,
atomic_t *journal_ref,
struct bkey *replace_key);
static int btree_gc_coalesce(struct btree *b, struct btree_op *op,
struct gc_stat *gc, struct gc_merge_info *r)
{
unsigned int i, nodes = 0, keys = 0, blocks;
struct btree *new_nodes[GC_MERGE_NODES];
struct keylist keylist;
struct closure cl;
struct bkey *k;
bch_keylist_init(&keylist);
if (btree_check_reserve(b, NULL))
return 0;
memset(new_nodes, 0, sizeof(new_nodes));
closure_init_stack(&cl);
while (nodes < GC_MERGE_NODES && !IS_ERR_OR_NULL(r[nodes].b))
keys += r[nodes++].keys;
blocks = btree_default_blocks(b->c) * 2 / 3;
if (nodes < 2 ||
__set_blocks(b->keys.set[0].data, keys,
block_bytes(b->c->cache)) > blocks * (nodes - 1))
return 0;
for (i = 0; i < nodes; i++) {
new_nodes[i] = btree_node_alloc_replacement(r[i].b, NULL);
if (IS_ERR_OR_NULL(new_nodes[i]))
goto out_nocoalesce;
}
/*
* We have to check the reserve here, after we've allocated our new
* nodes, to make sure the insert below will succeed - we also check
* before as an optimization to potentially avoid a bunch of expensive
* allocs/sorts
*/
if (btree_check_reserve(b, NULL))
goto out_nocoalesce;
for (i = 0; i < nodes; i++)
mutex_lock(&new_nodes[i]->write_lock);
for (i = nodes - 1; i > 0; --i) {
struct bset *n1 = btree_bset_first(new_nodes[i]);
struct bset *n2 = btree_bset_first(new_nodes[i - 1]);
struct bkey *k, *last = NULL;
keys = 0;
if (i > 1) {
for (k = n2->start;
k < bset_bkey_last(n2);
k = bkey_next(k)) {
if (__set_blocks(n1, n1->keys + keys +
bkey_u64s(k),
block_bytes(b->c->cache)) > blocks)
break;
last = k;
keys += bkey_u64s(k);
}
} else {
/*
* Last node we're not getting rid of - we're getting
* rid of the node at r[0]. Have to try and fit all of
* the remaining keys into this node; we can't ensure
* they will always fit due to rounding and variable
* length keys (shouldn't be possible in practice,
* though)
*/
if (__set_blocks(n1, n1->keys + n2->keys,
block_bytes(b->c->cache)) >
btree_blocks(new_nodes[i]))
goto out_unlock_nocoalesce;
keys = n2->keys;
/* Take the key of the node we're getting rid of */
last = &r->b->key;
}
BUG_ON(__set_blocks(n1, n1->keys + keys, block_bytes(b->c->cache)) >
btree_blocks(new_nodes[i]));
if (last)
bkey_copy_key(&new_nodes[i]->key, last);
memcpy(bset_bkey_last(n1),
n2->start,
(void *) bset_bkey_idx(n2, keys) - (void *) n2->start);
n1->keys += keys;
r[i].keys = n1->keys;
memmove(n2->start,
bset_bkey_idx(n2, keys),
(void *) bset_bkey_last(n2) -
(void *) bset_bkey_idx(n2, keys));
n2->keys -= keys;
if (__bch_keylist_realloc(&keylist,
bkey_u64s(&new_nodes[i]->key)))
goto out_unlock_nocoalesce;
bch_btree_node_write(new_nodes[i], &cl);
bch_keylist_add(&keylist, &new_nodes[i]->key);
}
for (i = 0; i < nodes; i++)
mutex_unlock(&new_nodes[i]->write_lock);
closure_sync(&cl);
/* We emptied out this node */
BUG_ON(btree_bset_first(new_nodes[0])->keys);
btree_node_free(new_nodes[0]);
rw_unlock(true, new_nodes[0]);
new_nodes[0] = NULL;
for (i = 0; i < nodes; i++) {
if (__bch_keylist_realloc(&keylist, bkey_u64s(&r[i].b->key)))
goto out_nocoalesce;
make_btree_freeing_key(r[i].b, keylist.top);
bch_keylist_push(&keylist);
}
bch_btree_insert_node(b, op, &keylist, NULL, NULL);
BUG_ON(!bch_keylist_empty(&keylist));
for (i = 0; i < nodes; i++) {
btree_node_free(r[i].b);
rw_unlock(true, r[i].b);
r[i].b = new_nodes[i];
}
memmove(r, r + 1, sizeof(r[0]) * (nodes - 1));
r[nodes - 1].b = ERR_PTR(-EINTR);
trace_bcache_btree_gc_coalesce(nodes);
gc->nodes--;
bch_keylist_free(&keylist);
/* Invalidated our iterator */
return -EINTR;
out_unlock_nocoalesce:
for (i = 0; i < nodes; i++)
mutex_unlock(&new_nodes[i]->write_lock);
out_nocoalesce:
closure_sync(&cl);
while ((k = bch_keylist_pop(&keylist)))
if (!bkey_cmp(k, &ZERO_KEY))
atomic_dec(&b->c->prio_blocked);
bch_keylist_free(&keylist);
for (i = 0; i < nodes; i++)
if (!IS_ERR_OR_NULL(new_nodes[i])) {
btree_node_free(new_nodes[i]);
rw_unlock(true, new_nodes[i]);
}
return 0;
}
static int btree_gc_rewrite_node(struct btree *b, struct btree_op *op,
struct btree *replace)
{
struct keylist keys;
struct btree *n;
if (btree_check_reserve(b, NULL))
return 0;
n = btree_node_alloc_replacement(replace, NULL);
/* recheck reserve after allocating replacement node */
if (btree_check_reserve(b, NULL)) {
btree_node_free(n);
rw_unlock(true, n);
return 0;
}
bch_btree_node_write_sync(n);
bch_keylist_init(&keys);
bch_keylist_add(&keys, &n->key);
make_btree_freeing_key(replace, keys.top);
bch_keylist_push(&keys);
bch_btree_insert_node(b, op, &keys, NULL, NULL);
BUG_ON(!bch_keylist_empty(&keys));
btree_node_free(replace);
rw_unlock(true, n);
/* Invalidated our iterator */
return -EINTR;
}
static unsigned int btree_gc_count_keys(struct btree *b)
{
struct bkey *k;
struct btree_iter iter;
unsigned int ret = 0;
for_each_key_filter(&b->keys, k, &iter, bch_ptr_bad)
ret += bkey_u64s(k);
return ret;
}
static size_t btree_gc_min_nodes(struct cache_set *c)
{
size_t min_nodes;
/*
* Since incremental GC would stop 100ms when front
* side I/O comes, so when there are many btree nodes,
* if GC only processes constant (100) nodes each time,
* GC would last a long time, and the front side I/Os
* would run out of the buckets (since no new bucket
* can be allocated during GC), and be blocked again.
* So GC should not process constant nodes, but varied
* nodes according to the number of btree nodes, which
* realized by dividing GC into constant(100) times,
* so when there are many btree nodes, GC can process
* more nodes each time, otherwise, GC will process less
* nodes each time (but no less than MIN_GC_NODES)
*/
min_nodes = c->gc_stats.nodes / MAX_GC_TIMES;
if (min_nodes < MIN_GC_NODES)
min_nodes = MIN_GC_NODES;
return min_nodes;
}
static int btree_gc_recurse(struct btree *b, struct btree_op *op,
struct closure *writes, struct gc_stat *gc)
{
int ret = 0;
bool should_rewrite;
struct bkey *k;
struct btree_iter iter;
struct gc_merge_info r[GC_MERGE_NODES];
struct gc_merge_info *i, *last = r + ARRAY_SIZE(r) - 1;
bch_btree_iter_init(&b->keys, &iter, &b->c->gc_done);
for (i = r; i < r + ARRAY_SIZE(r); i++)
i->b = ERR_PTR(-EINTR);
while (1) {
k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad);
if (k) {
r->b = bch_btree_node_get(b->c, op, k, b->level - 1,
true, b);
if (IS_ERR(r->b)) {
ret = PTR_ERR(r->b);
break;
}
r->keys = btree_gc_count_keys(r->b);
ret = btree_gc_coalesce(b, op, gc, r);
if (ret)
break;
}
if (!last->b)
break;
if (!IS_ERR(last->b)) {
should_rewrite = btree_gc_mark_node(last->b, gc);
if (should_rewrite) {
ret = btree_gc_rewrite_node(b, op, last->b);
if (ret)
break;
}
if (last->b->level) {
ret = btree_gc_recurse(last->b, op, writes, gc);
if (ret)
break;
}
bkey_copy_key(&b->c->gc_done, &last->b->key);
/*
* Must flush leaf nodes before gc ends, since replace
* operations aren't journalled
*/
mutex_lock(&last->b->write_lock);
if (btree_node_dirty(last->b))
bch_btree_node_write(last->b, writes);
mutex_unlock(&last->b->write_lock);
rw_unlock(true, last->b);
}
memmove(r + 1, r, sizeof(r[0]) * (GC_MERGE_NODES - 1));
r->b = NULL;
if (atomic_read(&b->c->search_inflight) &&
gc->nodes >= gc->nodes_pre + btree_gc_min_nodes(b->c)) {
gc->nodes_pre = gc->nodes;
ret = -EAGAIN;
break;
}
if (need_resched()) {
ret = -EAGAIN;
break;
}
}
for (i = r; i < r + ARRAY_SIZE(r); i++)
if (!IS_ERR_OR_NULL(i->b)) {
mutex_lock(&i->b->write_lock);
if (btree_node_dirty(i->b))
bch_btree_node_write(i->b, writes);
mutex_unlock(&i->b->write_lock);
rw_unlock(true, i->b);
}
return ret;
}
static int bch_btree_gc_root(struct btree *b, struct btree_op *op,
struct closure *writes, struct gc_stat *gc)
{
struct btree *n = NULL;
int ret = 0;
bool should_rewrite;
should_rewrite = btree_gc_mark_node(b, gc);
if (should_rewrite) {
n = btree_node_alloc_replacement(b, NULL);
if (!IS_ERR_OR_NULL(n)) {
bch_btree_node_write_sync(n);
bch_btree_set_root(n);
btree_node_free(b);
rw_unlock(true, n);
return -EINTR;
}
}
__bch_btree_mark_key(b->c, b->level + 1, &b->key);
if (b->level) {
ret = btree_gc_recurse(b, op, writes, gc);
if (ret)
return ret;
}
bkey_copy_key(&b->c->gc_done, &b->key);
return ret;
}
static void btree_gc_start(struct cache_set *c)
{
struct cache *ca;
struct bucket *b;
if (!c->gc_mark_valid)
return;
mutex_lock(&c->bucket_lock);
c->gc_mark_valid = 0;
c->gc_done = ZERO_KEY;
ca = c->cache;
for_each_bucket(b, ca) {
b->last_gc = b->gen;
if (!atomic_read(&b->pin)) {
SET_GC_MARK(b, 0);
SET_GC_SECTORS_USED(b, 0);
}
}
mutex_unlock(&c->bucket_lock);
}
static void bch_btree_gc_finish(struct cache_set *c)
{
struct bucket *b;
struct cache *ca;
unsigned int i, j;
uint64_t *k;
mutex_lock(&c->bucket_lock);
set_gc_sectors(c);
c->gc_mark_valid = 1;
c->need_gc = 0;
for (i = 0; i < KEY_PTRS(&c->uuid_bucket); i++)
SET_GC_MARK(PTR_BUCKET(c, &c->uuid_bucket, i),
GC_MARK_METADATA);
/* don't reclaim buckets to which writeback keys point */
rcu_read_lock();
for (i = 0; i < c->devices_max_used; i++) {
struct bcache_device *d = c->devices[i];
struct cached_dev *dc;
struct keybuf_key *w, *n;
if (!d || UUID_FLASH_ONLY(&c->uuids[i]))
continue;
dc = container_of(d, struct cached_dev, disk);
spin_lock(&dc->writeback_keys.lock);
rbtree_postorder_for_each_entry_safe(w, n,
&dc->writeback_keys.keys, node)
for (j = 0; j < KEY_PTRS(&w->key); j++)
SET_GC_MARK(PTR_BUCKET(c, &w->key, j),
GC_MARK_DIRTY);
spin_unlock(&dc->writeback_keys.lock);
}
rcu_read_unlock();
c->avail_nbuckets = 0;
ca = c->cache;
ca->invalidate_needs_gc = 0;
for (k = ca->sb.d; k < ca->sb.d + ca->sb.keys; k++)
SET_GC_MARK(ca->buckets + *k, GC_MARK_METADATA);
for (k = ca->prio_buckets;
k < ca->prio_buckets + prio_buckets(ca) * 2; k++)
SET_GC_MARK(ca->buckets + *k, GC_MARK_METADATA);
for_each_bucket(b, ca) {
c->need_gc = max(c->need_gc, bucket_gc_gen(b));
if (atomic_read(&b->pin))
continue;
BUG_ON(!GC_MARK(b) && GC_SECTORS_USED(b));
if (!GC_MARK(b) || GC_MARK(b) == GC_MARK_RECLAIMABLE)
c->avail_nbuckets++;
}
mutex_unlock(&c->bucket_lock);
}
static void bch_btree_gc(struct cache_set *c)
{
int ret;
struct gc_stat stats;
struct closure writes;
struct btree_op op;
uint64_t start_time = local_clock();
trace_bcache_gc_start(c);
memset(&stats, 0, sizeof(struct gc_stat));
closure_init_stack(&writes);
bch_btree_op_init(&op, SHRT_MAX);
btree_gc_start(c);
/* if CACHE_SET_IO_DISABLE set, gc thread should stop too */
do {
ret = bcache_btree_root(gc_root, c, &op, &writes, &stats);
closure_sync(&writes);
cond_resched();
if (ret == -EAGAIN)
schedule_timeout_interruptible(msecs_to_jiffies
(GC_SLEEP_MS));
else if (ret)
pr_warn("gc failed!\n");
} while (ret && !test_bit(CACHE_SET_IO_DISABLE, &c->flags));
bch_btree_gc_finish(c);
wake_up_allocators(c);
bch_time_stats_update(&c->btree_gc_time, start_time);
stats.key_bytes *= sizeof(uint64_t);
stats.data <<= 9;
bch_update_bucket_in_use(c, &stats);
memcpy(&c->gc_stats, &stats, sizeof(struct gc_stat));
trace_bcache_gc_end(c);
bch_moving_gc(c);
}
static bool gc_should_run(struct cache_set *c)
{
struct cache *ca = c->cache;
if (ca->invalidate_needs_gc)
return true;
if (atomic_read(&c->sectors_to_gc) < 0)
return true;
return false;
}
static int bch_gc_thread(void *arg)
{
struct cache_set *c = arg;
while (1) {
wait_event_interruptible(c->gc_wait,
kthread_should_stop() ||
test_bit(CACHE_SET_IO_DISABLE, &c->flags) ||
gc_should_run(c));
if (kthread_should_stop() ||
test_bit(CACHE_SET_IO_DISABLE, &c->flags))
break;
set_gc_sectors(c);
bch_btree_gc(c);
}
wait_for_kthread_stop();
return 0;
}
int bch_gc_thread_start(struct cache_set *c)
{
c->gc_thread = kthread_run(bch_gc_thread, c, "bcache_gc");
return PTR_ERR_OR_ZERO(c->gc_thread);
}
/* Initial partial gc */
static int bch_btree_check_recurse(struct btree *b, struct btree_op *op)
{
int ret = 0;
struct bkey *k, *p = NULL;
struct btree_iter iter;
for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid)
bch_initial_mark_key(b->c, b->level, k);
bch_initial_mark_key(b->c, b->level + 1, &b->key);
if (b->level) {
bch_btree_iter_init(&b->keys, &iter, NULL);
do {
k = bch_btree_iter_next_filter(&iter, &b->keys,
bch_ptr_bad);
if (k) {
btree_node_prefetch(b, k);
/*
* initiallize c->gc_stats.nodes
* for incremental GC
*/
b->c->gc_stats.nodes++;
}
if (p)
ret = bcache_btree(check_recurse, p, b, op);
p = k;
} while (p && !ret);
}
return ret;
}
static int bch_btree_check_thread(void *arg)
{
int ret;
struct btree_check_info *info = arg;
struct btree_check_state *check_state = info->state;
struct cache_set *c = check_state->c;
struct btree_iter iter;
struct bkey *k, *p;
int cur_idx, prev_idx, skip_nr;
k = p = NULL;
cur_idx = prev_idx = 0;
ret = 0;
/* root node keys are checked before thread created */
bch_btree_iter_init(&c->root->keys, &iter, NULL);
k = bch_btree_iter_next_filter(&iter, &c->root->keys, bch_ptr_bad);
BUG_ON(!k);
p = k;
while (k) {
/*
* Fetch a root node key index, skip the keys which
* should be fetched by other threads, then check the
* sub-tree indexed by the fetched key.
*/
spin_lock(&check_state->idx_lock);
cur_idx = check_state->key_idx;
check_state->key_idx++;
spin_unlock(&check_state->idx_lock);
skip_nr = cur_idx - prev_idx;
while (skip_nr) {
k = bch_btree_iter_next_filter(&iter,
&c->root->keys,
bch_ptr_bad);
if (k)
p = k;
else {
/*
* No more keys to check in root node,
* current checking threads are enough,
* stop creating more.
*/
atomic_set(&check_state->enough, 1);
/* Update check_state->enough earlier */
smp_mb__after_atomic();
goto out;
}
skip_nr--;
cond_resched();
}
if (p) {
struct btree_op op;
btree_node_prefetch(c->root, p);
c->gc_stats.nodes++;
bch_btree_op_init(&op, 0);
ret = bcache_btree(check_recurse, p, c->root, &op);
if (ret)
goto out;
}
p = NULL;
prev_idx = cur_idx;
cond_resched();
}
out:
info->result = ret;
/* update check_state->started among all CPUs */
smp_mb__before_atomic();
if (atomic_dec_and_test(&check_state->started))
wake_up(&check_state->wait);
return ret;
}
static int bch_btree_chkthread_nr(void)
{
int n = num_online_cpus()/2;
if (n == 0)
n = 1;
else if (n > BCH_BTR_CHKTHREAD_MAX)
n = BCH_BTR_CHKTHREAD_MAX;
return n;
}
int bch_btree_check(struct cache_set *c)
{
int ret = 0;
int i;
struct bkey *k = NULL;
struct btree_iter iter;
struct btree_check_state *check_state;
char name[32];
/* check and mark root node keys */
for_each_key_filter(&c->root->keys, k, &iter, bch_ptr_invalid)
bch_initial_mark_key(c, c->root->level, k);
bch_initial_mark_key(c, c->root->level + 1, &c->root->key);
if (c->root->level == 0)
return 0;
check_state = kzalloc(sizeof(struct btree_check_state), GFP_KERNEL);
if (!check_state)
return -ENOMEM;
check_state->c = c;
check_state->total_threads = bch_btree_chkthread_nr();
check_state->key_idx = 0;
spin_lock_init(&check_state->idx_lock);
atomic_set(&check_state->started, 0);
atomic_set(&check_state->enough, 0);
init_waitqueue_head(&check_state->wait);
/*
* Run multiple threads to check btree nodes in parallel,
* if check_state->enough is non-zero, it means current
* running check threads are enough, unncessary to create
* more.
*/
for (i = 0; i < check_state->total_threads; i++) {
/* fetch latest check_state->enough earlier */
smp_mb__before_atomic();
if (atomic_read(&check_state->enough))
break;
check_state->infos[i].result = 0;
check_state->infos[i].state = check_state;
snprintf(name, sizeof(name), "bch_btrchk[%u]", i);
atomic_inc(&check_state->started);
check_state->infos[i].thread =
kthread_run(bch_btree_check_thread,
&check_state->infos[i],
name);
if (IS_ERR(check_state->infos[i].thread)) {
pr_err("fails to run thread bch_btrchk[%d]\n", i);
for (--i; i >= 0; i--)
kthread_stop(check_state->infos[i].thread);
ret = -ENOMEM;
goto out;
}
}
wait_event_interruptible(check_state->wait,
atomic_read(&check_state->started) == 0 ||
test_bit(CACHE_SET_IO_DISABLE, &c->flags));
for (i = 0; i < check_state->total_threads; i++) {
if (check_state->infos[i].result) {
ret = check_state->infos[i].result;
goto out;
}
}
out:
kfree(check_state);
return ret;
}
void bch_initial_gc_finish(struct cache_set *c)
{
struct cache *ca = c->cache;
struct bucket *b;
bch_btree_gc_finish(c);
mutex_lock(&c->bucket_lock);
/*
* We need to put some unused buckets directly on the prio freelist in
* order to get the allocator thread started - it needs freed buckets in
* order to rewrite the prios and gens, and it needs to rewrite prios
* and gens in order to free buckets.
*
* This is only safe for buckets that have no live data in them, which
* there should always be some of.
*/
for_each_bucket(b, ca) {
if (fifo_full(&ca->free[RESERVE_PRIO]) &&
fifo_full(&ca->free[RESERVE_BTREE]))
break;
if (bch_can_invalidate_bucket(ca, b) &&
!GC_MARK(b)) {
__bch_invalidate_one_bucket(ca, b);
if (!fifo_push(&ca->free[RESERVE_PRIO],
b - ca->buckets))
fifo_push(&ca->free[RESERVE_BTREE],
b - ca->buckets);
}
}
mutex_unlock(&c->bucket_lock);
}
/* Btree insertion */
static bool btree_insert_key(struct btree *b, struct bkey *k,
struct bkey *replace_key)
{
unsigned int status;
BUG_ON(bkey_cmp(k, &b->key) > 0);
status = bch_btree_insert_key(&b->keys, k, replace_key);
if (status != BTREE_INSERT_STATUS_NO_INSERT) {
bch_check_keys(&b->keys, "%u for %s", status,
replace_key ? "replace" : "insert");
trace_bcache_btree_insert_key(b, k, replace_key != NULL,
status);
return true;
} else
return false;
}
static size_t insert_u64s_remaining(struct btree *b)
{
long ret = bch_btree_keys_u64s_remaining(&b->keys);
/*
* Might land in the middle of an existing extent and have to split it
*/
if (b->keys.ops->is_extents)
ret -= KEY_MAX_U64S;
return max(ret, 0L);
}
static bool bch_btree_insert_keys(struct btree *b, struct btree_op *op,
struct keylist *insert_keys,
struct bkey *replace_key)
{
bool ret = false;
int oldsize = bch_count_data(&b->keys);
while (!bch_keylist_empty(insert_keys)) {
struct bkey *k = insert_keys->keys;
if (bkey_u64s(k) > insert_u64s_remaining(b))
break;
if (bkey_cmp(k, &b->key) <= 0) {
if (!b->level)
bkey_put(b->c, k);
ret |= btree_insert_key(b, k, replace_key);
bch_keylist_pop_front(insert_keys);
} else if (bkey_cmp(&START_KEY(k), &b->key) < 0) {
BKEY_PADDED(key) temp;
bkey_copy(&temp.key, insert_keys->keys);
bch_cut_back(&b->key, &temp.key);
bch_cut_front(&b->key, insert_keys->keys);
ret |= btree_insert_key(b, &temp.key, replace_key);
break;
} else {
break;
}
}
if (!ret)
op->insert_collision = true;
BUG_ON(!bch_keylist_empty(insert_keys) && b->level);
BUG_ON(bch_count_data(&b->keys) < oldsize);
return ret;
}
static int btree_split(struct btree *b, struct btree_op *op,
struct keylist *insert_keys,
struct bkey *replace_key)
{
bool split;
struct btree *n1, *n2 = NULL, *n3 = NULL;
uint64_t start_time = local_clock();
struct closure cl;
struct keylist parent_keys;
closure_init_stack(&cl);
bch_keylist_init(&parent_keys);
if (btree_check_reserve(b, op)) {
if (!b->level)
return -EINTR;
else
WARN(1, "insufficient reserve for split\n");
}
n1 = btree_node_alloc_replacement(b, op);
if (IS_ERR(n1))
goto err;
split = set_blocks(btree_bset_first(n1),
block_bytes(n1->c->cache)) > (btree_blocks(b) * 4) / 5;
if (split) {
unsigned int keys = 0;
trace_bcache_btree_node_split(b, btree_bset_first(n1)->keys);
n2 = bch_btree_node_alloc(b->c, op, b->level, b->parent);
if (IS_ERR(n2))
goto err_free1;
if (!b->parent) {
n3 = bch_btree_node_alloc(b->c, op, b->level + 1, NULL);
if (IS_ERR(n3))
goto err_free2;
}
mutex_lock(&n1->write_lock);
mutex_lock(&n2->write_lock);
bch_btree_insert_keys(n1, op, insert_keys, replace_key);
/*
* Has to be a linear search because we don't have an auxiliary
* search tree yet
*/
while (keys < (btree_bset_first(n1)->keys * 3) / 5)
keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1),
keys));
bkey_copy_key(&n1->key,
bset_bkey_idx(btree_bset_first(n1), keys));
keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), keys));
btree_bset_first(n2)->keys = btree_bset_first(n1)->keys - keys;
btree_bset_first(n1)->keys = keys;
memcpy(btree_bset_first(n2)->start,
bset_bkey_last(btree_bset_first(n1)),
btree_bset_first(n2)->keys * sizeof(uint64_t));
bkey_copy_key(&n2->key, &b->key);
bch_keylist_add(&parent_keys, &n2->key);
bch_btree_node_write(n2, &cl);
mutex_unlock(&n2->write_lock);
rw_unlock(true, n2);
} else {
trace_bcache_btree_node_compact(b, btree_bset_first(n1)->keys);
mutex_lock(&n1->write_lock);
bch_btree_insert_keys(n1, op, insert_keys, replace_key);
}
bch_keylist_add(&parent_keys, &n1->key);
bch_btree_node_write(n1, &cl);
mutex_unlock(&n1->write_lock);
if (n3) {
/* Depth increases, make a new root */
mutex_lock(&n3->write_lock);
bkey_copy_key(&n3->key, &MAX_KEY);
bch_btree_insert_keys(n3, op, &parent_keys, NULL);
bch_btree_node_write(n3, &cl);
mutex_unlock(&n3->write_lock);
closure_sync(&cl);
bch_btree_set_root(n3);
rw_unlock(true, n3);
} else if (!b->parent) {
/* Root filled up but didn't need to be split */
closure_sync(&cl);
bch_btree_set_root(n1);
} else {
/* Split a non root node */
closure_sync(&cl);
make_btree_freeing_key(b, parent_keys.top);
bch_keylist_push(&parent_keys);
bch_btree_insert_node(b->parent, op, &parent_keys, NULL, NULL);
BUG_ON(!bch_keylist_empty(&parent_keys));
}
btree_node_free(b);
rw_unlock(true, n1);
bch_time_stats_update(&b->c->btree_split_time, start_time);
return 0;
err_free2:
bkey_put(b->c, &n2->key);
btree_node_free(n2);
rw_unlock(true, n2);
err_free1:
bkey_put(b->c, &n1->key);
btree_node_free(n1);
rw_unlock(true, n1);
err:
WARN(1, "bcache: btree split failed (level %u)", b->level);
if (n3 == ERR_PTR(-EAGAIN) ||
n2 == ERR_PTR(-EAGAIN) ||
n1 == ERR_PTR(-EAGAIN))
return -EAGAIN;
return -ENOMEM;
}
static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
struct keylist *insert_keys,
atomic_t *journal_ref,
struct bkey *replace_key)
{
struct closure cl;
BUG_ON(b->level && replace_key);
closure_init_stack(&cl);
mutex_lock(&b->write_lock);
if (write_block(b) != btree_bset_last(b) &&
b->keys.last_set_unwritten)
bch_btree_init_next(b); /* just wrote a set */
if (bch_keylist_nkeys(insert_keys) > insert_u64s_remaining(b)) {
mutex_unlock(&b->write_lock);
goto split;
}
BUG_ON(write_block(b) != btree_bset_last(b));
if (bch_btree_insert_keys(b, op, insert_keys, replace_key)) {
if (!b->level)
bch_btree_leaf_dirty(b, journal_ref);
else
bch_btree_node_write(b, &cl);
}
mutex_unlock(&b->write_lock);
/* wait for btree node write if necessary, after unlock */
closure_sync(&cl);
return 0;
split:
if (current->bio_list) {
op->lock = b->c->root->level + 1;
return -EAGAIN;
} else if (op->lock <= b->c->root->level) {
op->lock = b->c->root->level + 1;
return -EINTR;
} else {
/* Invalidated all iterators */
int ret = btree_split(b, op, insert_keys, replace_key);
if (bch_keylist_empty(insert_keys))
return 0;
else if (!ret)
return -EINTR;
return ret;
}
}
int bch_btree_insert_check_key(struct btree *b, struct btree_op *op,
struct bkey *check_key)
{
int ret = -EINTR;
uint64_t btree_ptr = b->key.ptr[0];
unsigned long seq = b->seq;
struct keylist insert;
bool upgrade = op->lock == -1;
bch_keylist_init(&insert);
if (upgrade) {
rw_unlock(false, b);
rw_lock(true, b, b->level);
if (b->key.ptr[0] != btree_ptr ||
b->seq != seq + 1) {
op->lock = b->level;
goto out;
}
}
SET_KEY_PTRS(check_key, 1);
get_random_bytes(&check_key->ptr[0], sizeof(uint64_t));
SET_PTR_DEV(check_key, 0, PTR_CHECK_DEV);
bch_keylist_add(&insert, check_key);
ret = bch_btree_insert_node(b, op, &insert, NULL, NULL);
BUG_ON(!ret && !bch_keylist_empty(&insert));
out:
if (upgrade)
downgrade_write(&b->lock);
return ret;
}
struct btree_insert_op {
struct btree_op op;
struct keylist *keys;
atomic_t *journal_ref;
struct bkey *replace_key;
};
static int btree_insert_fn(struct btree_op *b_op, struct btree *b)
{
struct btree_insert_op *op = container_of(b_op,
struct btree_insert_op, op);
int ret = bch_btree_insert_node(b, &op->op, op->keys,
op->journal_ref, op->replace_key);
if (ret && !bch_keylist_empty(op->keys))
return ret;
else
return MAP_DONE;
}
int bch_btree_insert(struct cache_set *c, struct keylist *keys,
atomic_t *journal_ref, struct bkey *replace_key)
{
struct btree_insert_op op;
int ret = 0;
BUG_ON(current->bio_list);
BUG_ON(bch_keylist_empty(keys));
bch_btree_op_init(&op.op, 0);
op.keys = keys;
op.journal_ref = journal_ref;
op.replace_key = replace_key;
while (!ret && !bch_keylist_empty(keys)) {
op.op.lock = 0;
ret = bch_btree_map_leaf_nodes(&op.op, c,
&START_KEY(keys->keys),
btree_insert_fn);
}
if (ret) {
struct bkey *k;
pr_err("error %i\n", ret);
while ((k = bch_keylist_pop(keys)))
bkey_put(c, k);
} else if (op.op.insert_collision)
ret = -ESRCH;
return ret;
}
void bch_btree_set_root(struct btree *b)
{
unsigned int i;
struct closure cl;
closure_init_stack(&cl);
trace_bcache_btree_set_root(b);
BUG_ON(!b->written);
for (i = 0; i < KEY_PTRS(&b->key); i++)
BUG_ON(PTR_BUCKET(b->c, &b->key, i)->prio != BTREE_PRIO);
mutex_lock(&b->c->bucket_lock);
list_del_init(&b->list);
mutex_unlock(&b->c->bucket_lock);
b->c->root = b;
bch_journal_meta(b->c, &cl);
closure_sync(&cl);
}
/* Map across nodes or keys */
static int bch_btree_map_nodes_recurse(struct btree *b, struct btree_op *op,
struct bkey *from,
btree_map_nodes_fn *fn, int flags)
{
int ret = MAP_CONTINUE;
if (b->level) {
struct bkey *k;
struct btree_iter iter;
bch_btree_iter_init(&b->keys, &iter, from);
while ((k = bch_btree_iter_next_filter(&iter, &b->keys,
bch_ptr_bad))) {
ret = bcache_btree(map_nodes_recurse, k, b,
op, from, fn, flags);
from = NULL;
if (ret != MAP_CONTINUE)
return ret;
}
}
if (!b->level || flags == MAP_ALL_NODES)
ret = fn(op, b);
return ret;
}
int __bch_btree_map_nodes(struct btree_op *op, struct cache_set *c,
struct bkey *from, btree_map_nodes_fn *fn, int flags)
{
return bcache_btree_root(map_nodes_recurse, c, op, from, fn, flags);
}
int bch_btree_map_keys_recurse(struct btree *b, struct btree_op *op,
struct bkey *from, btree_map_keys_fn *fn,
int flags)
{
int ret = MAP_CONTINUE;
struct bkey *k;
struct btree_iter iter;
bch_btree_iter_init(&b->keys, &iter, from);
while ((k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad))) {
ret = !b->level
? fn(op, b, k)
: bcache_btree(map_keys_recurse, k,
b, op, from, fn, flags);
from = NULL;
if (ret != MAP_CONTINUE)
return ret;
}
if (!b->level && (flags & MAP_END_KEY))
ret = fn(op, b, &KEY(KEY_INODE(&b->key),
KEY_OFFSET(&b->key), 0));
return ret;
}
int bch_btree_map_keys(struct btree_op *op, struct cache_set *c,
struct bkey *from, btree_map_keys_fn *fn, int flags)
{
return bcache_btree_root(map_keys_recurse, c, op, from, fn, flags);
}
/* Keybuf code */
static inline int keybuf_cmp(struct keybuf_key *l, struct keybuf_key *r)
{
/* Overlapping keys compare equal */
if (bkey_cmp(&l->key, &START_KEY(&r->key)) <= 0)
return -1;
if (bkey_cmp(&START_KEY(&l->key), &r->key) >= 0)
return 1;
return 0;
}
static inline int keybuf_nonoverlapping_cmp(struct keybuf_key *l,
struct keybuf_key *r)
{
return clamp_t(int64_t, bkey_cmp(&l->key, &r->key), -1, 1);
}
struct refill {
struct btree_op op;
unsigned int nr_found;
struct keybuf *buf;
struct bkey *end;
keybuf_pred_fn *pred;
};
static int refill_keybuf_fn(struct btree_op *op, struct btree *b,
struct bkey *k)
{
struct refill *refill = container_of(op, struct refill, op);
struct keybuf *buf = refill->buf;
int ret = MAP_CONTINUE;
if (bkey_cmp(k, refill->end) > 0) {
ret = MAP_DONE;
goto out;
}
if (!KEY_SIZE(k)) /* end key */
goto out;
if (refill->pred(buf, k)) {
struct keybuf_key *w;
spin_lock(&buf->lock);
w = array_alloc(&buf->freelist);
if (!w) {
spin_unlock(&buf->lock);
return MAP_DONE;
}
w->private = NULL;
bkey_copy(&w->key, k);
if (RB_INSERT(&buf->keys, w, node, keybuf_cmp))
array_free(&buf->freelist, w);
else
refill->nr_found++;
if (array_freelist_empty(&buf->freelist))
ret = MAP_DONE;
spin_unlock(&buf->lock);
}
out:
buf->last_scanned = *k;
return ret;
}
void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf,
struct bkey *end, keybuf_pred_fn *pred)
{
struct bkey start = buf->last_scanned;
struct refill refill;
cond_resched();
bch_btree_op_init(&refill.op, -1);
refill.nr_found = 0;
refill.buf = buf;
refill.end = end;
refill.pred = pred;
bch_btree_map_keys(&refill.op, c, &buf->last_scanned,
refill_keybuf_fn, MAP_END_KEY);
trace_bcache_keyscan(refill.nr_found,
KEY_INODE(&start), KEY_OFFSET(&start),
KEY_INODE(&buf->last_scanned),
KEY_OFFSET(&buf->last_scanned));
spin_lock(&buf->lock);
if (!RB_EMPTY_ROOT(&buf->keys)) {
struct keybuf_key *w;
w = RB_FIRST(&buf->keys, struct keybuf_key, node);
buf->start = START_KEY(&w->key);
w = RB_LAST(&buf->keys, struct keybuf_key, node);
buf->end = w->key;
} else {
buf->start = MAX_KEY;
buf->end = MAX_KEY;
}
spin_unlock(&buf->lock);
}
static void __bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
{
rb_erase(&w->node, &buf->keys);
array_free(&buf->freelist, w);
}
void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
{
spin_lock(&buf->lock);
__bch_keybuf_del(buf, w);
spin_unlock(&buf->lock);
}
bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start,
struct bkey *end)
{
bool ret = false;
struct keybuf_key *p, *w, s;
s.key = *start;
if (bkey_cmp(end, &buf->start) <= 0 ||
bkey_cmp(start, &buf->end) >= 0)
return false;
spin_lock(&buf->lock);
w = RB_GREATER(&buf->keys, s, node, keybuf_nonoverlapping_cmp);
while (w && bkey_cmp(&START_KEY(&w->key), end) < 0) {
p = w;
w = RB_NEXT(w, node);
if (p->private)
ret = true;
else
__bch_keybuf_del(buf, p);
}
spin_unlock(&buf->lock);
return ret;
}
struct keybuf_key *bch_keybuf_next(struct keybuf *buf)
{
struct keybuf_key *w;
spin_lock(&buf->lock);
w = RB_FIRST(&buf->keys, struct keybuf_key, node);
while (w && w->private)
w = RB_NEXT(w, node);
if (w)
w->private = ERR_PTR(-EINTR);
spin_unlock(&buf->lock);
return w;
}
struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c,
struct keybuf *buf,
struct bkey *end,
keybuf_pred_fn *pred)
{
struct keybuf_key *ret;
while (1) {
ret = bch_keybuf_next(buf);
if (ret)
break;
if (bkey_cmp(&buf->last_scanned, end) >= 0) {
pr_debug("scan finished\n");
break;
}
bch_refill_keybuf(c, buf, end, pred);
}
return ret;
}
void bch_keybuf_init(struct keybuf *buf)
{
buf->last_scanned = MAX_KEY;
buf->keys = RB_ROOT;
spin_lock_init(&buf->lock);
array_allocator_init(&buf->freelist);
}