linux/drivers/gpu/drm/i915/i915_gem_execbuffer.c
Chris Wilson c872522663 drm/i915: Protect against drm_gem_object not being the first member
Dave Airlie spotted that we had a potential bug should we ever rearrange
the drm_i915_gem_object so not the base drm_gem_object was not its first
member. He noticed that we often convert the return of
drm_gem_object_lookup() immediately into drm_i915_gem_object and then
check the result for nullity. This is only valid when the base object is
the first member and so the superobject has the same address. Play safe
instead and use the compiler to convert back to the original return
address for sanity testing.

Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
2011-02-22 15:55:57 +00:00

1344 lines
35 KiB
C

/*
* Copyright © 2008,2010 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Eric Anholt <eric@anholt.net>
* Chris Wilson <chris@chris-wilson.co.uk>
*
*/
#include "drmP.h"
#include "drm.h"
#include "i915_drm.h"
#include "i915_drv.h"
#include "i915_trace.h"
#include "intel_drv.h"
struct change_domains {
uint32_t invalidate_domains;
uint32_t flush_domains;
uint32_t flush_rings;
};
/*
* Set the next domain for the specified object. This
* may not actually perform the necessary flushing/invaliding though,
* as that may want to be batched with other set_domain operations
*
* This is (we hope) the only really tricky part of gem. The goal
* is fairly simple -- track which caches hold bits of the object
* and make sure they remain coherent. A few concrete examples may
* help to explain how it works. For shorthand, we use the notation
* (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
* a pair of read and write domain masks.
*
* Case 1: the batch buffer
*
* 1. Allocated
* 2. Written by CPU
* 3. Mapped to GTT
* 4. Read by GPU
* 5. Unmapped from GTT
* 6. Freed
*
* Let's take these a step at a time
*
* 1. Allocated
* Pages allocated from the kernel may still have
* cache contents, so we set them to (CPU, CPU) always.
* 2. Written by CPU (using pwrite)
* The pwrite function calls set_domain (CPU, CPU) and
* this function does nothing (as nothing changes)
* 3. Mapped by GTT
* This function asserts that the object is not
* currently in any GPU-based read or write domains
* 4. Read by GPU
* i915_gem_execbuffer calls set_domain (COMMAND, 0).
* As write_domain is zero, this function adds in the
* current read domains (CPU+COMMAND, 0).
* flush_domains is set to CPU.
* invalidate_domains is set to COMMAND
* clflush is run to get data out of the CPU caches
* then i915_dev_set_domain calls i915_gem_flush to
* emit an MI_FLUSH and drm_agp_chipset_flush
* 5. Unmapped from GTT
* i915_gem_object_unbind calls set_domain (CPU, CPU)
* flush_domains and invalidate_domains end up both zero
* so no flushing/invalidating happens
* 6. Freed
* yay, done
*
* Case 2: The shared render buffer
*
* 1. Allocated
* 2. Mapped to GTT
* 3. Read/written by GPU
* 4. set_domain to (CPU,CPU)
* 5. Read/written by CPU
* 6. Read/written by GPU
*
* 1. Allocated
* Same as last example, (CPU, CPU)
* 2. Mapped to GTT
* Nothing changes (assertions find that it is not in the GPU)
* 3. Read/written by GPU
* execbuffer calls set_domain (RENDER, RENDER)
* flush_domains gets CPU
* invalidate_domains gets GPU
* clflush (obj)
* MI_FLUSH and drm_agp_chipset_flush
* 4. set_domain (CPU, CPU)
* flush_domains gets GPU
* invalidate_domains gets CPU
* wait_rendering (obj) to make sure all drawing is complete.
* This will include an MI_FLUSH to get the data from GPU
* to memory
* clflush (obj) to invalidate the CPU cache
* Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
* 5. Read/written by CPU
* cache lines are loaded and dirtied
* 6. Read written by GPU
* Same as last GPU access
*
* Case 3: The constant buffer
*
* 1. Allocated
* 2. Written by CPU
* 3. Read by GPU
* 4. Updated (written) by CPU again
* 5. Read by GPU
*
* 1. Allocated
* (CPU, CPU)
* 2. Written by CPU
* (CPU, CPU)
* 3. Read by GPU
* (CPU+RENDER, 0)
* flush_domains = CPU
* invalidate_domains = RENDER
* clflush (obj)
* MI_FLUSH
* drm_agp_chipset_flush
* 4. Updated (written) by CPU again
* (CPU, CPU)
* flush_domains = 0 (no previous write domain)
* invalidate_domains = 0 (no new read domains)
* 5. Read by GPU
* (CPU+RENDER, 0)
* flush_domains = CPU
* invalidate_domains = RENDER
* clflush (obj)
* MI_FLUSH
* drm_agp_chipset_flush
*/
static void
i915_gem_object_set_to_gpu_domain(struct drm_i915_gem_object *obj,
struct intel_ring_buffer *ring,
struct change_domains *cd)
{
uint32_t invalidate_domains = 0, flush_domains = 0;
/*
* If the object isn't moving to a new write domain,
* let the object stay in multiple read domains
*/
if (obj->base.pending_write_domain == 0)
obj->base.pending_read_domains |= obj->base.read_domains;
/*
* Flush the current write domain if
* the new read domains don't match. Invalidate
* any read domains which differ from the old
* write domain
*/
if (obj->base.write_domain &&
(((obj->base.write_domain != obj->base.pending_read_domains ||
obj->ring != ring)) ||
(obj->fenced_gpu_access && !obj->pending_fenced_gpu_access))) {
flush_domains |= obj->base.write_domain;
invalidate_domains |=
obj->base.pending_read_domains & ~obj->base.write_domain;
}
/*
* Invalidate any read caches which may have
* stale data. That is, any new read domains.
*/
invalidate_domains |= obj->base.pending_read_domains & ~obj->base.read_domains;
if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
i915_gem_clflush_object(obj);
/* blow away mappings if mapped through GTT */
if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_GTT)
i915_gem_release_mmap(obj);
/* The actual obj->write_domain will be updated with
* pending_write_domain after we emit the accumulated flush for all
* of our domain changes in execbuffers (which clears objects'
* write_domains). So if we have a current write domain that we
* aren't changing, set pending_write_domain to that.
*/
if (flush_domains == 0 && obj->base.pending_write_domain == 0)
obj->base.pending_write_domain = obj->base.write_domain;
cd->invalidate_domains |= invalidate_domains;
cd->flush_domains |= flush_domains;
if (flush_domains & I915_GEM_GPU_DOMAINS)
cd->flush_rings |= obj->ring->id;
if (invalidate_domains & I915_GEM_GPU_DOMAINS)
cd->flush_rings |= ring->id;
}
struct eb_objects {
int and;
struct hlist_head buckets[0];
};
static struct eb_objects *
eb_create(int size)
{
struct eb_objects *eb;
int count = PAGE_SIZE / sizeof(struct hlist_head) / 2;
while (count > size)
count >>= 1;
eb = kzalloc(count*sizeof(struct hlist_head) +
sizeof(struct eb_objects),
GFP_KERNEL);
if (eb == NULL)
return eb;
eb->and = count - 1;
return eb;
}
static void
eb_reset(struct eb_objects *eb)
{
memset(eb->buckets, 0, (eb->and+1)*sizeof(struct hlist_head));
}
static void
eb_add_object(struct eb_objects *eb, struct drm_i915_gem_object *obj)
{
hlist_add_head(&obj->exec_node,
&eb->buckets[obj->exec_handle & eb->and]);
}
static struct drm_i915_gem_object *
eb_get_object(struct eb_objects *eb, unsigned long handle)
{
struct hlist_head *head;
struct hlist_node *node;
struct drm_i915_gem_object *obj;
head = &eb->buckets[handle & eb->and];
hlist_for_each(node, head) {
obj = hlist_entry(node, struct drm_i915_gem_object, exec_node);
if (obj->exec_handle == handle)
return obj;
}
return NULL;
}
static void
eb_destroy(struct eb_objects *eb)
{
kfree(eb);
}
static int
i915_gem_execbuffer_relocate_entry(struct drm_i915_gem_object *obj,
struct eb_objects *eb,
struct drm_i915_gem_relocation_entry *reloc)
{
struct drm_device *dev = obj->base.dev;
struct drm_gem_object *target_obj;
uint32_t target_offset;
int ret = -EINVAL;
/* we've already hold a reference to all valid objects */
target_obj = &eb_get_object(eb, reloc->target_handle)->base;
if (unlikely(target_obj == NULL))
return -ENOENT;
target_offset = to_intel_bo(target_obj)->gtt_offset;
/* The target buffer should have appeared before us in the
* exec_object list, so it should have a GTT space bound by now.
*/
if (unlikely(target_offset == 0)) {
DRM_ERROR("No GTT space found for object %d\n",
reloc->target_handle);
return ret;
}
/* Validate that the target is in a valid r/w GPU domain */
if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
DRM_ERROR("reloc with multiple write domains: "
"obj %p target %d offset %d "
"read %08x write %08x",
obj, reloc->target_handle,
(int) reloc->offset,
reloc->read_domains,
reloc->write_domain);
return ret;
}
if (unlikely((reloc->write_domain | reloc->read_domains) & I915_GEM_DOMAIN_CPU)) {
DRM_ERROR("reloc with read/write CPU domains: "
"obj %p target %d offset %d "
"read %08x write %08x",
obj, reloc->target_handle,
(int) reloc->offset,
reloc->read_domains,
reloc->write_domain);
return ret;
}
if (unlikely(reloc->write_domain && target_obj->pending_write_domain &&
reloc->write_domain != target_obj->pending_write_domain)) {
DRM_ERROR("Write domain conflict: "
"obj %p target %d offset %d "
"new %08x old %08x\n",
obj, reloc->target_handle,
(int) reloc->offset,
reloc->write_domain,
target_obj->pending_write_domain);
return ret;
}
target_obj->pending_read_domains |= reloc->read_domains;
target_obj->pending_write_domain |= reloc->write_domain;
/* If the relocation already has the right value in it, no
* more work needs to be done.
*/
if (target_offset == reloc->presumed_offset)
return 0;
/* Check that the relocation address is valid... */
if (unlikely(reloc->offset > obj->base.size - 4)) {
DRM_ERROR("Relocation beyond object bounds: "
"obj %p target %d offset %d size %d.\n",
obj, reloc->target_handle,
(int) reloc->offset,
(int) obj->base.size);
return ret;
}
if (unlikely(reloc->offset & 3)) {
DRM_ERROR("Relocation not 4-byte aligned: "
"obj %p target %d offset %d.\n",
obj, reloc->target_handle,
(int) reloc->offset);
return ret;
}
/* and points to somewhere within the target object. */
if (unlikely(reloc->delta >= target_obj->size)) {
DRM_ERROR("Relocation beyond target object bounds: "
"obj %p target %d delta %d size %d.\n",
obj, reloc->target_handle,
(int) reloc->delta,
(int) target_obj->size);
return ret;
}
reloc->delta += target_offset;
if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) {
uint32_t page_offset = reloc->offset & ~PAGE_MASK;
char *vaddr;
vaddr = kmap_atomic(obj->pages[reloc->offset >> PAGE_SHIFT]);
*(uint32_t *)(vaddr + page_offset) = reloc->delta;
kunmap_atomic(vaddr);
} else {
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t __iomem *reloc_entry;
void __iomem *reloc_page;
ret = i915_gem_object_set_to_gtt_domain(obj, 1);
if (ret)
return ret;
/* Map the page containing the relocation we're going to perform. */
reloc->offset += obj->gtt_offset;
reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
reloc->offset & PAGE_MASK);
reloc_entry = (uint32_t __iomem *)
(reloc_page + (reloc->offset & ~PAGE_MASK));
iowrite32(reloc->delta, reloc_entry);
io_mapping_unmap_atomic(reloc_page);
}
/* and update the user's relocation entry */
reloc->presumed_offset = target_offset;
return 0;
}
static int
i915_gem_execbuffer_relocate_object(struct drm_i915_gem_object *obj,
struct eb_objects *eb)
{
struct drm_i915_gem_relocation_entry __user *user_relocs;
struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
int i, ret;
user_relocs = (void __user *)(uintptr_t)entry->relocs_ptr;
for (i = 0; i < entry->relocation_count; i++) {
struct drm_i915_gem_relocation_entry reloc;
if (__copy_from_user_inatomic(&reloc,
user_relocs+i,
sizeof(reloc)))
return -EFAULT;
ret = i915_gem_execbuffer_relocate_entry(obj, eb, &reloc);
if (ret)
return ret;
if (__copy_to_user_inatomic(&user_relocs[i].presumed_offset,
&reloc.presumed_offset,
sizeof(reloc.presumed_offset)))
return -EFAULT;
}
return 0;
}
static int
i915_gem_execbuffer_relocate_object_slow(struct drm_i915_gem_object *obj,
struct eb_objects *eb,
struct drm_i915_gem_relocation_entry *relocs)
{
const struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
int i, ret;
for (i = 0; i < entry->relocation_count; i++) {
ret = i915_gem_execbuffer_relocate_entry(obj, eb, &relocs[i]);
if (ret)
return ret;
}
return 0;
}
static int
i915_gem_execbuffer_relocate(struct drm_device *dev,
struct eb_objects *eb,
struct list_head *objects)
{
struct drm_i915_gem_object *obj;
int ret;
list_for_each_entry(obj, objects, exec_list) {
ret = i915_gem_execbuffer_relocate_object(obj, eb);
if (ret)
return ret;
}
return 0;
}
static int
i915_gem_execbuffer_reserve(struct intel_ring_buffer *ring,
struct drm_file *file,
struct list_head *objects)
{
struct drm_i915_gem_object *obj;
int ret, retry;
bool has_fenced_gpu_access = INTEL_INFO(ring->dev)->gen < 4;
struct list_head ordered_objects;
INIT_LIST_HEAD(&ordered_objects);
while (!list_empty(objects)) {
struct drm_i915_gem_exec_object2 *entry;
bool need_fence, need_mappable;
obj = list_first_entry(objects,
struct drm_i915_gem_object,
exec_list);
entry = obj->exec_entry;
need_fence =
has_fenced_gpu_access &&
entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
obj->tiling_mode != I915_TILING_NONE;
need_mappable =
entry->relocation_count ? true : need_fence;
if (need_mappable)
list_move(&obj->exec_list, &ordered_objects);
else
list_move_tail(&obj->exec_list, &ordered_objects);
obj->base.pending_read_domains = 0;
obj->base.pending_write_domain = 0;
}
list_splice(&ordered_objects, objects);
/* Attempt to pin all of the buffers into the GTT.
* This is done in 3 phases:
*
* 1a. Unbind all objects that do not match the GTT constraints for
* the execbuffer (fenceable, mappable, alignment etc).
* 1b. Increment pin count for already bound objects.
* 2. Bind new objects.
* 3. Decrement pin count.
*
* This avoid unnecessary unbinding of later objects in order to makr
* room for the earlier objects *unless* we need to defragment.
*/
retry = 0;
do {
ret = 0;
/* Unbind any ill-fitting objects or pin. */
list_for_each_entry(obj, objects, exec_list) {
struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
bool need_fence, need_mappable;
if (!obj->gtt_space)
continue;
need_fence =
has_fenced_gpu_access &&
entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
obj->tiling_mode != I915_TILING_NONE;
need_mappable =
entry->relocation_count ? true : need_fence;
if ((entry->alignment && obj->gtt_offset & (entry->alignment - 1)) ||
(need_mappable && !obj->map_and_fenceable))
ret = i915_gem_object_unbind(obj);
else
ret = i915_gem_object_pin(obj,
entry->alignment,
need_mappable);
if (ret)
goto err;
entry++;
}
/* Bind fresh objects */
list_for_each_entry(obj, objects, exec_list) {
struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
bool need_fence;
need_fence =
has_fenced_gpu_access &&
entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
obj->tiling_mode != I915_TILING_NONE;
if (!obj->gtt_space) {
bool need_mappable =
entry->relocation_count ? true : need_fence;
ret = i915_gem_object_pin(obj,
entry->alignment,
need_mappable);
if (ret)
break;
}
if (has_fenced_gpu_access) {
if (need_fence) {
ret = i915_gem_object_get_fence(obj, ring, 1);
if (ret)
break;
} else if (entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
obj->tiling_mode == I915_TILING_NONE) {
/* XXX pipelined! */
ret = i915_gem_object_put_fence(obj);
if (ret)
break;
}
obj->pending_fenced_gpu_access = need_fence;
}
entry->offset = obj->gtt_offset;
}
/* Decrement pin count for bound objects */
list_for_each_entry(obj, objects, exec_list) {
if (obj->gtt_space)
i915_gem_object_unpin(obj);
}
if (ret != -ENOSPC || retry > 1)
return ret;
/* First attempt, just clear anything that is purgeable.
* Second attempt, clear the entire GTT.
*/
ret = i915_gem_evict_everything(ring->dev, retry == 0);
if (ret)
return ret;
retry++;
} while (1);
err:
obj = list_entry(obj->exec_list.prev,
struct drm_i915_gem_object,
exec_list);
while (objects != &obj->exec_list) {
if (obj->gtt_space)
i915_gem_object_unpin(obj);
obj = list_entry(obj->exec_list.prev,
struct drm_i915_gem_object,
exec_list);
}
return ret;
}
static int
i915_gem_execbuffer_relocate_slow(struct drm_device *dev,
struct drm_file *file,
struct intel_ring_buffer *ring,
struct list_head *objects,
struct eb_objects *eb,
struct drm_i915_gem_exec_object2 *exec,
int count)
{
struct drm_i915_gem_relocation_entry *reloc;
struct drm_i915_gem_object *obj;
int *reloc_offset;
int i, total, ret;
/* We may process another execbuffer during the unlock... */
while (!list_empty(objects)) {
obj = list_first_entry(objects,
struct drm_i915_gem_object,
exec_list);
list_del_init(&obj->exec_list);
drm_gem_object_unreference(&obj->base);
}
mutex_unlock(&dev->struct_mutex);
total = 0;
for (i = 0; i < count; i++)
total += exec[i].relocation_count;
reloc_offset = drm_malloc_ab(count, sizeof(*reloc_offset));
reloc = drm_malloc_ab(total, sizeof(*reloc));
if (reloc == NULL || reloc_offset == NULL) {
drm_free_large(reloc);
drm_free_large(reloc_offset);
mutex_lock(&dev->struct_mutex);
return -ENOMEM;
}
total = 0;
for (i = 0; i < count; i++) {
struct drm_i915_gem_relocation_entry __user *user_relocs;
user_relocs = (void __user *)(uintptr_t)exec[i].relocs_ptr;
if (copy_from_user(reloc+total, user_relocs,
exec[i].relocation_count * sizeof(*reloc))) {
ret = -EFAULT;
mutex_lock(&dev->struct_mutex);
goto err;
}
reloc_offset[i] = total;
total += exec[i].relocation_count;
}
ret = i915_mutex_lock_interruptible(dev);
if (ret) {
mutex_lock(&dev->struct_mutex);
goto err;
}
/* reacquire the objects */
eb_reset(eb);
for (i = 0; i < count; i++) {
obj = to_intel_bo(drm_gem_object_lookup(dev, file,
exec[i].handle));
if (&obj->base == NULL) {
DRM_ERROR("Invalid object handle %d at index %d\n",
exec[i].handle, i);
ret = -ENOENT;
goto err;
}
list_add_tail(&obj->exec_list, objects);
obj->exec_handle = exec[i].handle;
obj->exec_entry = &exec[i];
eb_add_object(eb, obj);
}
ret = i915_gem_execbuffer_reserve(ring, file, objects);
if (ret)
goto err;
list_for_each_entry(obj, objects, exec_list) {
int offset = obj->exec_entry - exec;
ret = i915_gem_execbuffer_relocate_object_slow(obj, eb,
reloc + reloc_offset[offset]);
if (ret)
goto err;
}
/* Leave the user relocations as are, this is the painfully slow path,
* and we want to avoid the complication of dropping the lock whilst
* having buffers reserved in the aperture and so causing spurious
* ENOSPC for random operations.
*/
err:
drm_free_large(reloc);
drm_free_large(reloc_offset);
return ret;
}
static int
i915_gem_execbuffer_flush(struct drm_device *dev,
uint32_t invalidate_domains,
uint32_t flush_domains,
uint32_t flush_rings)
{
drm_i915_private_t *dev_priv = dev->dev_private;
int i, ret;
if (flush_domains & I915_GEM_DOMAIN_CPU)
intel_gtt_chipset_flush();
if (flush_domains & I915_GEM_DOMAIN_GTT)
wmb();
if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
for (i = 0; i < I915_NUM_RINGS; i++)
if (flush_rings & (1 << i)) {
ret = i915_gem_flush_ring(&dev_priv->ring[i],
invalidate_domains,
flush_domains);
if (ret)
return ret;
}
}
return 0;
}
static int
i915_gem_execbuffer_sync_rings(struct drm_i915_gem_object *obj,
struct intel_ring_buffer *to)
{
struct intel_ring_buffer *from = obj->ring;
u32 seqno;
int ret, idx;
if (from == NULL || to == from)
return 0;
/* XXX gpu semaphores are currently causing hard hangs on SNB mobile */
if (INTEL_INFO(obj->base.dev)->gen < 6 || IS_MOBILE(obj->base.dev))
return i915_gem_object_wait_rendering(obj, true);
idx = intel_ring_sync_index(from, to);
seqno = obj->last_rendering_seqno;
if (seqno <= from->sync_seqno[idx])
return 0;
if (seqno == from->outstanding_lazy_request) {
struct drm_i915_gem_request *request;
request = kzalloc(sizeof(*request), GFP_KERNEL);
if (request == NULL)
return -ENOMEM;
ret = i915_add_request(from, NULL, request);
if (ret) {
kfree(request);
return ret;
}
seqno = request->seqno;
}
from->sync_seqno[idx] = seqno;
return intel_ring_sync(to, from, seqno - 1);
}
static int
i915_gem_execbuffer_move_to_gpu(struct intel_ring_buffer *ring,
struct list_head *objects)
{
struct drm_i915_gem_object *obj;
struct change_domains cd;
int ret;
cd.invalidate_domains = 0;
cd.flush_domains = 0;
cd.flush_rings = 0;
list_for_each_entry(obj, objects, exec_list)
i915_gem_object_set_to_gpu_domain(obj, ring, &cd);
if (cd.invalidate_domains | cd.flush_domains) {
ret = i915_gem_execbuffer_flush(ring->dev,
cd.invalidate_domains,
cd.flush_domains,
cd.flush_rings);
if (ret)
return ret;
}
list_for_each_entry(obj, objects, exec_list) {
ret = i915_gem_execbuffer_sync_rings(obj, ring);
if (ret)
return ret;
}
return 0;
}
static bool
i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
{
return ((exec->batch_start_offset | exec->batch_len) & 0x7) == 0;
}
static int
validate_exec_list(struct drm_i915_gem_exec_object2 *exec,
int count)
{
int i;
for (i = 0; i < count; i++) {
char __user *ptr = (char __user *)(uintptr_t)exec[i].relocs_ptr;
int length; /* limited by fault_in_pages_readable() */
/* First check for malicious input causing overflow */
if (exec[i].relocation_count >
INT_MAX / sizeof(struct drm_i915_gem_relocation_entry))
return -EINVAL;
length = exec[i].relocation_count *
sizeof(struct drm_i915_gem_relocation_entry);
if (!access_ok(VERIFY_READ, ptr, length))
return -EFAULT;
/* we may also need to update the presumed offsets */
if (!access_ok(VERIFY_WRITE, ptr, length))
return -EFAULT;
if (fault_in_pages_readable(ptr, length))
return -EFAULT;
}
return 0;
}
static int
i915_gem_execbuffer_wait_for_flips(struct intel_ring_buffer *ring,
struct list_head *objects)
{
struct drm_i915_gem_object *obj;
int flips;
/* Check for any pending flips. As we only maintain a flip queue depth
* of 1, we can simply insert a WAIT for the next display flip prior
* to executing the batch and avoid stalling the CPU.
*/
flips = 0;
list_for_each_entry(obj, objects, exec_list) {
if (obj->base.write_domain)
flips |= atomic_read(&obj->pending_flip);
}
if (flips) {
int plane, flip_mask, ret;
for (plane = 0; flips >> plane; plane++) {
if (((flips >> plane) & 1) == 0)
continue;
if (plane)
flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
else
flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
ret = intel_ring_begin(ring, 2);
if (ret)
return ret;
intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
intel_ring_emit(ring, MI_NOOP);
intel_ring_advance(ring);
}
}
return 0;
}
static void
i915_gem_execbuffer_move_to_active(struct list_head *objects,
struct intel_ring_buffer *ring,
u32 seqno)
{
struct drm_i915_gem_object *obj;
list_for_each_entry(obj, objects, exec_list) {
u32 old_read = obj->base.read_domains;
u32 old_write = obj->base.write_domain;
obj->base.read_domains = obj->base.pending_read_domains;
obj->base.write_domain = obj->base.pending_write_domain;
obj->fenced_gpu_access = obj->pending_fenced_gpu_access;
i915_gem_object_move_to_active(obj, ring, seqno);
if (obj->base.write_domain) {
obj->dirty = 1;
obj->pending_gpu_write = true;
list_move_tail(&obj->gpu_write_list,
&ring->gpu_write_list);
intel_mark_busy(ring->dev, obj);
}
trace_i915_gem_object_change_domain(obj, old_read, old_write);
}
}
static void
i915_gem_execbuffer_retire_commands(struct drm_device *dev,
struct drm_file *file,
struct intel_ring_buffer *ring)
{
struct drm_i915_gem_request *request;
u32 invalidate;
/*
* Ensure that the commands in the batch buffer are
* finished before the interrupt fires.
*
* The sampler always gets flushed on i965 (sigh).
*/
invalidate = I915_GEM_DOMAIN_COMMAND;
if (INTEL_INFO(dev)->gen >= 4)
invalidate |= I915_GEM_DOMAIN_SAMPLER;
if (ring->flush(ring, invalidate, 0)) {
i915_gem_next_request_seqno(ring);
return;
}
/* Add a breadcrumb for the completion of the batch buffer */
request = kzalloc(sizeof(*request), GFP_KERNEL);
if (request == NULL || i915_add_request(ring, file, request)) {
i915_gem_next_request_seqno(ring);
kfree(request);
}
}
static int
i915_gem_do_execbuffer(struct drm_device *dev, void *data,
struct drm_file *file,
struct drm_i915_gem_execbuffer2 *args,
struct drm_i915_gem_exec_object2 *exec)
{
drm_i915_private_t *dev_priv = dev->dev_private;
struct list_head objects;
struct eb_objects *eb;
struct drm_i915_gem_object *batch_obj;
struct drm_clip_rect *cliprects = NULL;
struct intel_ring_buffer *ring;
u32 exec_start, exec_len;
u32 seqno;
int ret, mode, i;
if (!i915_gem_check_execbuffer(args)) {
DRM_ERROR("execbuf with invalid offset/length\n");
return -EINVAL;
}
ret = validate_exec_list(exec, args->buffer_count);
if (ret)
return ret;
switch (args->flags & I915_EXEC_RING_MASK) {
case I915_EXEC_DEFAULT:
case I915_EXEC_RENDER:
ring = &dev_priv->ring[RCS];
break;
case I915_EXEC_BSD:
if (!HAS_BSD(dev)) {
DRM_ERROR("execbuf with invalid ring (BSD)\n");
return -EINVAL;
}
ring = &dev_priv->ring[VCS];
break;
case I915_EXEC_BLT:
if (!HAS_BLT(dev)) {
DRM_ERROR("execbuf with invalid ring (BLT)\n");
return -EINVAL;
}
ring = &dev_priv->ring[BCS];
break;
default:
DRM_ERROR("execbuf with unknown ring: %d\n",
(int)(args->flags & I915_EXEC_RING_MASK));
return -EINVAL;
}
mode = args->flags & I915_EXEC_CONSTANTS_MASK;
switch (mode) {
case I915_EXEC_CONSTANTS_REL_GENERAL:
case I915_EXEC_CONSTANTS_ABSOLUTE:
case I915_EXEC_CONSTANTS_REL_SURFACE:
if (ring == &dev_priv->ring[RCS] &&
mode != dev_priv->relative_constants_mode) {
if (INTEL_INFO(dev)->gen < 4)
return -EINVAL;
if (INTEL_INFO(dev)->gen > 5 &&
mode == I915_EXEC_CONSTANTS_REL_SURFACE)
return -EINVAL;
ret = intel_ring_begin(ring, 4);
if (ret)
return ret;
intel_ring_emit(ring, MI_NOOP);
intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
intel_ring_emit(ring, INSTPM);
intel_ring_emit(ring,
I915_EXEC_CONSTANTS_MASK << 16 | mode);
intel_ring_advance(ring);
dev_priv->relative_constants_mode = mode;
}
break;
default:
DRM_ERROR("execbuf with unknown constants: %d\n", mode);
return -EINVAL;
}
if (args->buffer_count < 1) {
DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
return -EINVAL;
}
if (args->num_cliprects != 0) {
if (ring != &dev_priv->ring[RCS]) {
DRM_ERROR("clip rectangles are only valid with the render ring\n");
return -EINVAL;
}
cliprects = kmalloc(args->num_cliprects * sizeof(*cliprects),
GFP_KERNEL);
if (cliprects == NULL) {
ret = -ENOMEM;
goto pre_mutex_err;
}
if (copy_from_user(cliprects,
(struct drm_clip_rect __user *)(uintptr_t)
args->cliprects_ptr,
sizeof(*cliprects)*args->num_cliprects)) {
ret = -EFAULT;
goto pre_mutex_err;
}
}
ret = i915_mutex_lock_interruptible(dev);
if (ret)
goto pre_mutex_err;
if (dev_priv->mm.suspended) {
mutex_unlock(&dev->struct_mutex);
ret = -EBUSY;
goto pre_mutex_err;
}
eb = eb_create(args->buffer_count);
if (eb == NULL) {
mutex_unlock(&dev->struct_mutex);
ret = -ENOMEM;
goto pre_mutex_err;
}
/* Look up object handles */
INIT_LIST_HEAD(&objects);
for (i = 0; i < args->buffer_count; i++) {
struct drm_i915_gem_object *obj;
obj = to_intel_bo(drm_gem_object_lookup(dev, file,
exec[i].handle));
if (&obj->base == NULL) {
DRM_ERROR("Invalid object handle %d at index %d\n",
exec[i].handle, i);
/* prevent error path from reading uninitialized data */
ret = -ENOENT;
goto err;
}
if (!list_empty(&obj->exec_list)) {
DRM_ERROR("Object %p [handle %d, index %d] appears more than once in object list\n",
obj, exec[i].handle, i);
ret = -EINVAL;
goto err;
}
list_add_tail(&obj->exec_list, &objects);
obj->exec_handle = exec[i].handle;
obj->exec_entry = &exec[i];
eb_add_object(eb, obj);
}
/* take note of the batch buffer before we might reorder the lists */
batch_obj = list_entry(objects.prev,
struct drm_i915_gem_object,
exec_list);
/* Move the objects en-masse into the GTT, evicting if necessary. */
ret = i915_gem_execbuffer_reserve(ring, file, &objects);
if (ret)
goto err;
/* The objects are in their final locations, apply the relocations. */
ret = i915_gem_execbuffer_relocate(dev, eb, &objects);
if (ret) {
if (ret == -EFAULT) {
ret = i915_gem_execbuffer_relocate_slow(dev, file, ring,
&objects, eb,
exec,
args->buffer_count);
BUG_ON(!mutex_is_locked(&dev->struct_mutex));
}
if (ret)
goto err;
}
/* Set the pending read domains for the batch buffer to COMMAND */
if (batch_obj->base.pending_write_domain) {
DRM_ERROR("Attempting to use self-modifying batch buffer\n");
ret = -EINVAL;
goto err;
}
batch_obj->base.pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
ret = i915_gem_execbuffer_move_to_gpu(ring, &objects);
if (ret)
goto err;
ret = i915_gem_execbuffer_wait_for_flips(ring, &objects);
if (ret)
goto err;
seqno = i915_gem_next_request_seqno(ring);
for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++) {
if (seqno < ring->sync_seqno[i]) {
/* The GPU can not handle its semaphore value wrapping,
* so every billion or so execbuffers, we need to stall
* the GPU in order to reset the counters.
*/
ret = i915_gpu_idle(dev);
if (ret)
goto err;
BUG_ON(ring->sync_seqno[i]);
}
}
trace_i915_gem_ring_dispatch(ring, seqno);
exec_start = batch_obj->gtt_offset + args->batch_start_offset;
exec_len = args->batch_len;
if (cliprects) {
for (i = 0; i < args->num_cliprects; i++) {
ret = i915_emit_box(dev, &cliprects[i],
args->DR1, args->DR4);
if (ret)
goto err;
ret = ring->dispatch_execbuffer(ring,
exec_start, exec_len);
if (ret)
goto err;
}
} else {
ret = ring->dispatch_execbuffer(ring, exec_start, exec_len);
if (ret)
goto err;
}
i915_gem_execbuffer_move_to_active(&objects, ring, seqno);
i915_gem_execbuffer_retire_commands(dev, file, ring);
err:
eb_destroy(eb);
while (!list_empty(&objects)) {
struct drm_i915_gem_object *obj;
obj = list_first_entry(&objects,
struct drm_i915_gem_object,
exec_list);
list_del_init(&obj->exec_list);
drm_gem_object_unreference(&obj->base);
}
mutex_unlock(&dev->struct_mutex);
pre_mutex_err:
kfree(cliprects);
return ret;
}
/*
* Legacy execbuffer just creates an exec2 list from the original exec object
* list array and passes it to the real function.
*/
int
i915_gem_execbuffer(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_gem_execbuffer *args = data;
struct drm_i915_gem_execbuffer2 exec2;
struct drm_i915_gem_exec_object *exec_list = NULL;
struct drm_i915_gem_exec_object2 *exec2_list = NULL;
int ret, i;
if (args->buffer_count < 1) {
DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
return -EINVAL;
}
/* Copy in the exec list from userland */
exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
if (exec_list == NULL || exec2_list == NULL) {
DRM_ERROR("Failed to allocate exec list for %d buffers\n",
args->buffer_count);
drm_free_large(exec_list);
drm_free_large(exec2_list);
return -ENOMEM;
}
ret = copy_from_user(exec_list,
(struct drm_i915_relocation_entry __user *)
(uintptr_t) args->buffers_ptr,
sizeof(*exec_list) * args->buffer_count);
if (ret != 0) {
DRM_ERROR("copy %d exec entries failed %d\n",
args->buffer_count, ret);
drm_free_large(exec_list);
drm_free_large(exec2_list);
return -EFAULT;
}
for (i = 0; i < args->buffer_count; i++) {
exec2_list[i].handle = exec_list[i].handle;
exec2_list[i].relocation_count = exec_list[i].relocation_count;
exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
exec2_list[i].alignment = exec_list[i].alignment;
exec2_list[i].offset = exec_list[i].offset;
if (INTEL_INFO(dev)->gen < 4)
exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
else
exec2_list[i].flags = 0;
}
exec2.buffers_ptr = args->buffers_ptr;
exec2.buffer_count = args->buffer_count;
exec2.batch_start_offset = args->batch_start_offset;
exec2.batch_len = args->batch_len;
exec2.DR1 = args->DR1;
exec2.DR4 = args->DR4;
exec2.num_cliprects = args->num_cliprects;
exec2.cliprects_ptr = args->cliprects_ptr;
exec2.flags = I915_EXEC_RENDER;
ret = i915_gem_do_execbuffer(dev, data, file, &exec2, exec2_list);
if (!ret) {
/* Copy the new buffer offsets back to the user's exec list. */
for (i = 0; i < args->buffer_count; i++)
exec_list[i].offset = exec2_list[i].offset;
/* ... and back out to userspace */
ret = copy_to_user((struct drm_i915_relocation_entry __user *)
(uintptr_t) args->buffers_ptr,
exec_list,
sizeof(*exec_list) * args->buffer_count);
if (ret) {
ret = -EFAULT;
DRM_ERROR("failed to copy %d exec entries "
"back to user (%d)\n",
args->buffer_count, ret);
}
}
drm_free_large(exec_list);
drm_free_large(exec2_list);
return ret;
}
int
i915_gem_execbuffer2(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_gem_execbuffer2 *args = data;
struct drm_i915_gem_exec_object2 *exec2_list = NULL;
int ret;
if (args->buffer_count < 1) {
DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
return -EINVAL;
}
exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
if (exec2_list == NULL) {
DRM_ERROR("Failed to allocate exec list for %d buffers\n",
args->buffer_count);
return -ENOMEM;
}
ret = copy_from_user(exec2_list,
(struct drm_i915_relocation_entry __user *)
(uintptr_t) args->buffers_ptr,
sizeof(*exec2_list) * args->buffer_count);
if (ret != 0) {
DRM_ERROR("copy %d exec entries failed %d\n",
args->buffer_count, ret);
drm_free_large(exec2_list);
return -EFAULT;
}
ret = i915_gem_do_execbuffer(dev, data, file, args, exec2_list);
if (!ret) {
/* Copy the new buffer offsets back to the user's exec list. */
ret = copy_to_user((struct drm_i915_relocation_entry __user *)
(uintptr_t) args->buffers_ptr,
exec2_list,
sizeof(*exec2_list) * args->buffer_count);
if (ret) {
ret = -EFAULT;
DRM_ERROR("failed to copy %d exec entries "
"back to user (%d)\n",
args->buffer_count, ret);
}
}
drm_free_large(exec2_list);
return ret;
}