linux/drivers/gpu/drm/i915/intel_hdmi.c
Linus Torvalds a2d635decb drm pull request for 5.2
-----BEGIN PGP SIGNATURE-----
 
 iQIcBAABAgAGBQJc04M6AAoJEAx081l5xIa+SJgP/0uIgIOM53vPpydgmr+2IEHF
 jbDqrd+mipgNriRVHjDsWdUHCUNtyhB7YEBCMrj3mY0rRFI7FlQQf4lOwYGoHiKP
 4JZg4kwC37997lFXl1uabGj3DmJLtxKL2/D15zCH/uLe+2EDzWznP6NVdFT3WK0P
 YKZQCWT19PWSsLoBRPutWxkmop4AYvkqE0a6vXUlJlFYZK3Bbytx6/179uWKfiX5
 ZkKEEtx1XiDAvcp5gBb6PISurycrBY0e/bkPBnK3ES5vawMbTU5IrmWOrQ4D8yOd
 z9qOVZawZ6+b2XBDgBWjQ9bM7I5R7Il1q/LglYEaFI9+wHUnlUdDSm6ft5/5BiCZ
 fqgkh5Bj2iEsajbSsacoljMOpxpYPqj63mqc+7fAGXF34V+B+9U1bpt8kCbMKowf
 7Abb7IuiCR6vLDapjP6VqTMvdQ4O466OEAN83ULGFTdmMqYYH4AxaIwc+xcAk/aP
 RNq7/RHhh4FRynRAj9fCkGlF3ArnM88gLINwWuEQq4SClWGcvdw7eaHpwWo77c4g
 iccCnTLqSIg5pDVu07AQzzBlW6KulWxh5o72x+Xx+EXWdYUDHQ1SlNs11bSNUBV1
 5MkrzY2GuD+NFEjsXJEDIPOr40mQOyJCXnxq8nXPsz/hD9kHeJPvWn3J3eVKyb5B
 Z6/knNqM0BDn3SaYR/rD
 =YFiQ
 -----END PGP SIGNATURE-----

Merge tag 'drm-next-2019-05-09' of git://anongit.freedesktop.org/drm/drm

Pull drm updates from Dave Airlie:
 "This has two exciting community drivers for ARM Mali accelerators.
  Since ARM has never been open source friendly on the GPU side of the
  house, the community has had to create open source drivers for the
  Mali GPUs. Lima covers the older t4xx and panfrost the newer 6xx/7xx
  series. Well done to all involved and hopefully this will help ARM
  head in the right direction.

  There is also now the ability if you don't have any of the legacy
  drivers enabled (pre-KMS) to remove all the pre-KMS support code from
  the core drm, this saves 10% or so in codesize on my machine.

  i915 also enable Icelake/Elkhart Lake Gen11 GPUs by default, vboxvideo
  moves out of staging.

  There are also some rcar-du patches which crossover with media tree
  but all should be acked by Mauro.

  Summary:

  uapi changes:
   - Colorspace connector property
   - fourcc - new YUV formts
   - timeline sync objects initially merged
   - expose FB_DAMAGE_CLIPS to atomic userspace

  new drivers:
   - vboxvideo: moved out of staging
   - aspeed: ASPEED SoC BMC chip display support
   - lima: ARM Mali4xx GPU acceleration driver support
   - panfrost: ARM Mali6xx/7xx Midgard/Bitfrost acceleration driver support

  core:
   - component helper docs
   - unplugging fixes
   - devm device init
   - MIPI/DSI rate control
   - shmem backed gem objects
   - connector, display_info, edid_quirks cleanups
   - dma_buf fence chain support
   - 64-bit dma-fence seqno comparison fixes
   - move initial fb config code to core
   - gem fence array helpers for Lima
   - ability to remove legacy support code if no drivers requires it (removes 10% of drm.ko size)
   - lease fixes

  ttm:
   - unified DRM_FILE_PAGE_OFFSET handling
   - Account for kernel allocations in kernel zone only

  panel:
   - OSD070T1718-19TS panel support
   - panel-tpo-td028ttec1 backlight support
   - Ronbo RB070D30 MIPI/DSI
   - Feiyang FY07024DI26A30-D MIPI-DSI panel
   - Rocktech jh057n00900 MIPI-DSI panel

  i915:
   - Comet Lake (Gen9) PCI IDs
   - Updated Icelake PCI IDs
   - Elkhartlake (Gen11) support
   - DP MST property addtions
   - plane and watermark fixes
   - Icelake port sync and VEBOX disable fixes
   - struct_mutex usage reduction
   - Icelake gamma fix
   - GuC reset fixes
   - make mmap more asynchronous
   - sound display power well race fixes
   - DDI/MIPI-DSI clocks for Icelake
   - Icelake RPS frequency changing support
   - Icelake workarounds

  amdgpu:
   - Use HMM for userptr
   - vega20 experimental smu11 support
   - RAS support for vega20
   - BACO support for vega12 + fixes for vega20
   - reworked IH interrupt handling
   - amdkfd RAS support
   - Freesync improvements
   - initial timeline sync object support
   - DC Z ordering fixes
   - NV12 planes support
   - colorspace properties for planes=
   - eDP opts if eDP already initialized

  nouveau:
   - misc fixes

  etnaviv:
   - misc fixes

  msm:
   - GPU zap shader support expansion
   - robustness ABI addition

  exynos:
   - Logging cleanups

  tegra:
   - Shared reset fix
   - CPU cache maintenance fix

  cirrus:
   - driver rewritten using simple helpers

  meson:
   - G12A support

  vmwgfx:
   - Resource dirtying management improvements
   - Userspace logging improvements

  virtio:
   - PRIME fixes

  rockchip:
   - rk3066 hdmi support

  sun4i:
   - DSI burst mode support

  vc4:
   - load tracker to detect underflow

  v3d:
   - v3d v4.2 support

  malidp:
   - initial Mali D71 support in komeda driver

  tfp410:
   - omap related improvement

  omapdrm:
   - drm bridge/panel support
   - drop some omap specific panels

  rcar-du:
   - Display writeback support"

* tag 'drm-next-2019-05-09' of git://anongit.freedesktop.org/drm/drm: (1507 commits)
  drm/msm/a6xx: No zap shader is not an error
  drm/cma-helper: Fix drm_gem_cma_free_object()
  drm: Fix timestamp docs for variable refresh properties.
  drm/komeda: Mark the local functions as static
  drm/komeda: Fixed warning: Function parameter or member not described
  drm/komeda: Expose bus_width to Komeda-CORE
  drm/komeda: Add sysfs attribute: core_id and config_id
  drm: add non-desktop quirk for Valve HMDs
  drm/panfrost: Show stored feature registers
  drm/panfrost: Don't scream about deferred probe
  drm/panfrost: Disable PM on probe failure
  drm/panfrost: Set DMA masks earlier
  drm/panfrost: Add sanity checks to submit IOCTL
  drm/etnaviv: initialize idle mask before querying the HW db
  drm: introduce a capability flag for syncobj timeline support
  drm: report consistent errors when checking syncobj capibility
  drm/nouveau/nouveau: forward error generated while resuming objects tree
  drm/nouveau/fb/ramgk104: fix spelling mistake "sucessfully" -> "successfully"
  drm/nouveau/i2c: Disable i2c bus access after ->fini()
  drm/nouveau: Remove duplicate ACPI_VIDEO_NOTIFY_PROBE definition
  ...
2019-05-08 21:35:19 -07:00

3112 lines
89 KiB
C

/*
* Copyright 2006 Dave Airlie <airlied@linux.ie>
* Copyright © 2006-2009 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*
* Authors:
* Eric Anholt <eric@anholt.net>
* Jesse Barnes <jesse.barnes@intel.com>
*/
#include <linux/delay.h>
#include <linux/hdmi.h>
#include <linux/i2c.h>
#include <linux/slab.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_crtc.h>
#include <drm/drm_edid.h>
#include <drm/drm_hdcp.h>
#include <drm/drm_scdc_helper.h>
#include <drm/i915_drm.h>
#include <drm/intel_lpe_audio.h>
#include "i915_drv.h"
#include "intel_audio.h"
#include "intel_connector.h"
#include "intel_ddi.h"
#include "intel_dp.h"
#include "intel_drv.h"
#include "intel_hdcp.h"
#include "intel_hdmi.h"
#include "intel_lspcon.h"
#include "intel_sdvo.h"
#include "intel_panel.h"
static struct drm_device *intel_hdmi_to_dev(struct intel_hdmi *intel_hdmi)
{
return hdmi_to_dig_port(intel_hdmi)->base.base.dev;
}
static void
assert_hdmi_port_disabled(struct intel_hdmi *intel_hdmi)
{
struct drm_device *dev = intel_hdmi_to_dev(intel_hdmi);
struct drm_i915_private *dev_priv = to_i915(dev);
u32 enabled_bits;
enabled_bits = HAS_DDI(dev_priv) ? DDI_BUF_CTL_ENABLE : SDVO_ENABLE;
WARN(I915_READ(intel_hdmi->hdmi_reg) & enabled_bits,
"HDMI port enabled, expecting disabled\n");
}
static void
assert_hdmi_transcoder_func_disabled(struct drm_i915_private *dev_priv,
enum transcoder cpu_transcoder)
{
WARN(I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder)) &
TRANS_DDI_FUNC_ENABLE,
"HDMI transcoder function enabled, expecting disabled\n");
}
struct intel_hdmi *enc_to_intel_hdmi(struct drm_encoder *encoder)
{
struct intel_digital_port *intel_dig_port =
container_of(encoder, struct intel_digital_port, base.base);
return &intel_dig_port->hdmi;
}
static struct intel_hdmi *intel_attached_hdmi(struct drm_connector *connector)
{
return enc_to_intel_hdmi(&intel_attached_encoder(connector)->base);
}
static u32 g4x_infoframe_index(unsigned int type)
{
switch (type) {
case HDMI_PACKET_TYPE_GAMUT_METADATA:
return VIDEO_DIP_SELECT_GAMUT;
case HDMI_INFOFRAME_TYPE_AVI:
return VIDEO_DIP_SELECT_AVI;
case HDMI_INFOFRAME_TYPE_SPD:
return VIDEO_DIP_SELECT_SPD;
case HDMI_INFOFRAME_TYPE_VENDOR:
return VIDEO_DIP_SELECT_VENDOR;
default:
MISSING_CASE(type);
return 0;
}
}
static u32 g4x_infoframe_enable(unsigned int type)
{
switch (type) {
case HDMI_PACKET_TYPE_GENERAL_CONTROL:
return VIDEO_DIP_ENABLE_GCP;
case HDMI_PACKET_TYPE_GAMUT_METADATA:
return VIDEO_DIP_ENABLE_GAMUT;
case DP_SDP_VSC:
return 0;
case HDMI_INFOFRAME_TYPE_AVI:
return VIDEO_DIP_ENABLE_AVI;
case HDMI_INFOFRAME_TYPE_SPD:
return VIDEO_DIP_ENABLE_SPD;
case HDMI_INFOFRAME_TYPE_VENDOR:
return VIDEO_DIP_ENABLE_VENDOR;
default:
MISSING_CASE(type);
return 0;
}
}
static u32 hsw_infoframe_enable(unsigned int type)
{
switch (type) {
case HDMI_PACKET_TYPE_GENERAL_CONTROL:
return VIDEO_DIP_ENABLE_GCP_HSW;
case HDMI_PACKET_TYPE_GAMUT_METADATA:
return VIDEO_DIP_ENABLE_GMP_HSW;
case DP_SDP_VSC:
return VIDEO_DIP_ENABLE_VSC_HSW;
case DP_SDP_PPS:
return VDIP_ENABLE_PPS;
case HDMI_INFOFRAME_TYPE_AVI:
return VIDEO_DIP_ENABLE_AVI_HSW;
case HDMI_INFOFRAME_TYPE_SPD:
return VIDEO_DIP_ENABLE_SPD_HSW;
case HDMI_INFOFRAME_TYPE_VENDOR:
return VIDEO_DIP_ENABLE_VS_HSW;
default:
MISSING_CASE(type);
return 0;
}
}
static i915_reg_t
hsw_dip_data_reg(struct drm_i915_private *dev_priv,
enum transcoder cpu_transcoder,
unsigned int type,
int i)
{
switch (type) {
case HDMI_PACKET_TYPE_GAMUT_METADATA:
return HSW_TVIDEO_DIP_GMP_DATA(cpu_transcoder, i);
case DP_SDP_VSC:
return HSW_TVIDEO_DIP_VSC_DATA(cpu_transcoder, i);
case DP_SDP_PPS:
return ICL_VIDEO_DIP_PPS_DATA(cpu_transcoder, i);
case HDMI_INFOFRAME_TYPE_AVI:
return HSW_TVIDEO_DIP_AVI_DATA(cpu_transcoder, i);
case HDMI_INFOFRAME_TYPE_SPD:
return HSW_TVIDEO_DIP_SPD_DATA(cpu_transcoder, i);
case HDMI_INFOFRAME_TYPE_VENDOR:
return HSW_TVIDEO_DIP_VS_DATA(cpu_transcoder, i);
default:
MISSING_CASE(type);
return INVALID_MMIO_REG;
}
}
static int hsw_dip_data_size(unsigned int type)
{
switch (type) {
case DP_SDP_VSC:
return VIDEO_DIP_VSC_DATA_SIZE;
case DP_SDP_PPS:
return VIDEO_DIP_PPS_DATA_SIZE;
default:
return VIDEO_DIP_DATA_SIZE;
}
}
static void g4x_write_infoframe(struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state,
unsigned int type,
const void *frame, ssize_t len)
{
const u32 *data = frame;
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
u32 val = I915_READ(VIDEO_DIP_CTL);
int i;
WARN(!(val & VIDEO_DIP_ENABLE), "Writing DIP with CTL reg disabled\n");
val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
val |= g4x_infoframe_index(type);
val &= ~g4x_infoframe_enable(type);
I915_WRITE(VIDEO_DIP_CTL, val);
for (i = 0; i < len; i += 4) {
I915_WRITE(VIDEO_DIP_DATA, *data);
data++;
}
/* Write every possible data byte to force correct ECC calculation. */
for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
I915_WRITE(VIDEO_DIP_DATA, 0);
val |= g4x_infoframe_enable(type);
val &= ~VIDEO_DIP_FREQ_MASK;
val |= VIDEO_DIP_FREQ_VSYNC;
I915_WRITE(VIDEO_DIP_CTL, val);
POSTING_READ(VIDEO_DIP_CTL);
}
static void g4x_read_infoframe(struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state,
unsigned int type,
void *frame, ssize_t len)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
u32 val, *data = frame;
int i;
val = I915_READ(VIDEO_DIP_CTL);
val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
val |= g4x_infoframe_index(type);
I915_WRITE(VIDEO_DIP_CTL, val);
for (i = 0; i < len; i += 4)
*data++ = I915_READ(VIDEO_DIP_DATA);
}
static u32 g4x_infoframes_enabled(struct intel_encoder *encoder,
const struct intel_crtc_state *pipe_config)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
u32 val = I915_READ(VIDEO_DIP_CTL);
if ((val & VIDEO_DIP_ENABLE) == 0)
return 0;
if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port))
return 0;
return val & (VIDEO_DIP_ENABLE_AVI |
VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
}
static void ibx_write_infoframe(struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state,
unsigned int type,
const void *frame, ssize_t len)
{
const u32 *data = frame;
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
i915_reg_t reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
u32 val = I915_READ(reg);
int i;
WARN(!(val & VIDEO_DIP_ENABLE), "Writing DIP with CTL reg disabled\n");
val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
val |= g4x_infoframe_index(type);
val &= ~g4x_infoframe_enable(type);
I915_WRITE(reg, val);
for (i = 0; i < len; i += 4) {
I915_WRITE(TVIDEO_DIP_DATA(intel_crtc->pipe), *data);
data++;
}
/* Write every possible data byte to force correct ECC calculation. */
for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
I915_WRITE(TVIDEO_DIP_DATA(intel_crtc->pipe), 0);
val |= g4x_infoframe_enable(type);
val &= ~VIDEO_DIP_FREQ_MASK;
val |= VIDEO_DIP_FREQ_VSYNC;
I915_WRITE(reg, val);
POSTING_READ(reg);
}
static void ibx_read_infoframe(struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state,
unsigned int type,
void *frame, ssize_t len)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
u32 val, *data = frame;
int i;
val = I915_READ(TVIDEO_DIP_CTL(crtc->pipe));
val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
val |= g4x_infoframe_index(type);
I915_WRITE(TVIDEO_DIP_CTL(crtc->pipe), val);
for (i = 0; i < len; i += 4)
*data++ = I915_READ(TVIDEO_DIP_DATA(crtc->pipe));
}
static u32 ibx_infoframes_enabled(struct intel_encoder *encoder,
const struct intel_crtc_state *pipe_config)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
enum pipe pipe = to_intel_crtc(pipe_config->base.crtc)->pipe;
i915_reg_t reg = TVIDEO_DIP_CTL(pipe);
u32 val = I915_READ(reg);
if ((val & VIDEO_DIP_ENABLE) == 0)
return 0;
if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port))
return 0;
return val & (VIDEO_DIP_ENABLE_AVI |
VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
}
static void cpt_write_infoframe(struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state,
unsigned int type,
const void *frame, ssize_t len)
{
const u32 *data = frame;
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
i915_reg_t reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
u32 val = I915_READ(reg);
int i;
WARN(!(val & VIDEO_DIP_ENABLE), "Writing DIP with CTL reg disabled\n");
val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
val |= g4x_infoframe_index(type);
/* The DIP control register spec says that we need to update the AVI
* infoframe without clearing its enable bit */
if (type != HDMI_INFOFRAME_TYPE_AVI)
val &= ~g4x_infoframe_enable(type);
I915_WRITE(reg, val);
for (i = 0; i < len; i += 4) {
I915_WRITE(TVIDEO_DIP_DATA(intel_crtc->pipe), *data);
data++;
}
/* Write every possible data byte to force correct ECC calculation. */
for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
I915_WRITE(TVIDEO_DIP_DATA(intel_crtc->pipe), 0);
val |= g4x_infoframe_enable(type);
val &= ~VIDEO_DIP_FREQ_MASK;
val |= VIDEO_DIP_FREQ_VSYNC;
I915_WRITE(reg, val);
POSTING_READ(reg);
}
static void cpt_read_infoframe(struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state,
unsigned int type,
void *frame, ssize_t len)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
u32 val, *data = frame;
int i;
val = I915_READ(TVIDEO_DIP_CTL(crtc->pipe));
val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
val |= g4x_infoframe_index(type);
I915_WRITE(TVIDEO_DIP_CTL(crtc->pipe), val);
for (i = 0; i < len; i += 4)
*data++ = I915_READ(TVIDEO_DIP_DATA(crtc->pipe));
}
static u32 cpt_infoframes_enabled(struct intel_encoder *encoder,
const struct intel_crtc_state *pipe_config)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
enum pipe pipe = to_intel_crtc(pipe_config->base.crtc)->pipe;
u32 val = I915_READ(TVIDEO_DIP_CTL(pipe));
if ((val & VIDEO_DIP_ENABLE) == 0)
return 0;
return val & (VIDEO_DIP_ENABLE_AVI |
VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
}
static void vlv_write_infoframe(struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state,
unsigned int type,
const void *frame, ssize_t len)
{
const u32 *data = frame;
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
i915_reg_t reg = VLV_TVIDEO_DIP_CTL(intel_crtc->pipe);
u32 val = I915_READ(reg);
int i;
WARN(!(val & VIDEO_DIP_ENABLE), "Writing DIP with CTL reg disabled\n");
val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
val |= g4x_infoframe_index(type);
val &= ~g4x_infoframe_enable(type);
I915_WRITE(reg, val);
for (i = 0; i < len; i += 4) {
I915_WRITE(VLV_TVIDEO_DIP_DATA(intel_crtc->pipe), *data);
data++;
}
/* Write every possible data byte to force correct ECC calculation. */
for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
I915_WRITE(VLV_TVIDEO_DIP_DATA(intel_crtc->pipe), 0);
val |= g4x_infoframe_enable(type);
val &= ~VIDEO_DIP_FREQ_MASK;
val |= VIDEO_DIP_FREQ_VSYNC;
I915_WRITE(reg, val);
POSTING_READ(reg);
}
static void vlv_read_infoframe(struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state,
unsigned int type,
void *frame, ssize_t len)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
u32 val, *data = frame;
int i;
val = I915_READ(VLV_TVIDEO_DIP_CTL(crtc->pipe));
val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
val |= g4x_infoframe_index(type);
I915_WRITE(VLV_TVIDEO_DIP_CTL(crtc->pipe), val);
for (i = 0; i < len; i += 4)
*data++ = I915_READ(VLV_TVIDEO_DIP_DATA(crtc->pipe));
}
static u32 vlv_infoframes_enabled(struct intel_encoder *encoder,
const struct intel_crtc_state *pipe_config)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
enum pipe pipe = to_intel_crtc(pipe_config->base.crtc)->pipe;
u32 val = I915_READ(VLV_TVIDEO_DIP_CTL(pipe));
if ((val & VIDEO_DIP_ENABLE) == 0)
return 0;
if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port))
return 0;
return val & (VIDEO_DIP_ENABLE_AVI |
VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
}
static void hsw_write_infoframe(struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state,
unsigned int type,
const void *frame, ssize_t len)
{
const u32 *data = frame;
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
i915_reg_t ctl_reg = HSW_TVIDEO_DIP_CTL(cpu_transcoder);
int data_size;
int i;
u32 val = I915_READ(ctl_reg);
data_size = hsw_dip_data_size(type);
val &= ~hsw_infoframe_enable(type);
I915_WRITE(ctl_reg, val);
for (i = 0; i < len; i += 4) {
I915_WRITE(hsw_dip_data_reg(dev_priv, cpu_transcoder,
type, i >> 2), *data);
data++;
}
/* Write every possible data byte to force correct ECC calculation. */
for (; i < data_size; i += 4)
I915_WRITE(hsw_dip_data_reg(dev_priv, cpu_transcoder,
type, i >> 2), 0);
val |= hsw_infoframe_enable(type);
I915_WRITE(ctl_reg, val);
POSTING_READ(ctl_reg);
}
static void hsw_read_infoframe(struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state,
unsigned int type,
void *frame, ssize_t len)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
u32 val, *data = frame;
int i;
val = I915_READ(HSW_TVIDEO_DIP_CTL(cpu_transcoder));
for (i = 0; i < len; i += 4)
*data++ = I915_READ(hsw_dip_data_reg(dev_priv, cpu_transcoder,
type, i >> 2));
}
static u32 hsw_infoframes_enabled(struct intel_encoder *encoder,
const struct intel_crtc_state *pipe_config)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
u32 val = I915_READ(HSW_TVIDEO_DIP_CTL(pipe_config->cpu_transcoder));
return val & (VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_AVI_HSW |
VIDEO_DIP_ENABLE_GCP_HSW | VIDEO_DIP_ENABLE_VS_HSW |
VIDEO_DIP_ENABLE_GMP_HSW | VIDEO_DIP_ENABLE_SPD_HSW);
}
static const u8 infoframe_type_to_idx[] = {
HDMI_PACKET_TYPE_GENERAL_CONTROL,
HDMI_PACKET_TYPE_GAMUT_METADATA,
DP_SDP_VSC,
HDMI_INFOFRAME_TYPE_AVI,
HDMI_INFOFRAME_TYPE_SPD,
HDMI_INFOFRAME_TYPE_VENDOR,
};
u32 intel_hdmi_infoframe_enable(unsigned int type)
{
int i;
for (i = 0; i < ARRAY_SIZE(infoframe_type_to_idx); i++) {
if (infoframe_type_to_idx[i] == type)
return BIT(i);
}
return 0;
}
u32 intel_hdmi_infoframes_enabled(struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_digital_port *dig_port = enc_to_dig_port(&encoder->base);
u32 val, ret = 0;
int i;
val = dig_port->infoframes_enabled(encoder, crtc_state);
/* map from hardware bits to dip idx */
for (i = 0; i < ARRAY_SIZE(infoframe_type_to_idx); i++) {
unsigned int type = infoframe_type_to_idx[i];
if (HAS_DDI(dev_priv)) {
if (val & hsw_infoframe_enable(type))
ret |= BIT(i);
} else {
if (val & g4x_infoframe_enable(type))
ret |= BIT(i);
}
}
return ret;
}
/*
* The data we write to the DIP data buffer registers is 1 byte bigger than the
* HDMI infoframe size because of an ECC/reserved byte at position 3 (starting
* at 0). It's also a byte used by DisplayPort so the same DIP registers can be
* used for both technologies.
*
* DW0: Reserved/ECC/DP | HB2 | HB1 | HB0
* DW1: DB3 | DB2 | DB1 | DB0
* DW2: DB7 | DB6 | DB5 | DB4
* DW3: ...
*
* (HB is Header Byte, DB is Data Byte)
*
* The hdmi pack() functions don't know about that hardware specific hole so we
* trick them by giving an offset into the buffer and moving back the header
* bytes by one.
*/
static void intel_write_infoframe(struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state,
enum hdmi_infoframe_type type,
const union hdmi_infoframe *frame)
{
struct intel_digital_port *intel_dig_port = enc_to_dig_port(&encoder->base);
u8 buffer[VIDEO_DIP_DATA_SIZE];
ssize_t len;
if ((crtc_state->infoframes.enable &
intel_hdmi_infoframe_enable(type)) == 0)
return;
if (WARN_ON(frame->any.type != type))
return;
/* see comment above for the reason for this offset */
len = hdmi_infoframe_pack_only(frame, buffer + 1, sizeof(buffer) - 1);
if (WARN_ON(len < 0))
return;
/* Insert the 'hole' (see big comment above) at position 3 */
memmove(&buffer[0], &buffer[1], 3);
buffer[3] = 0;
len++;
intel_dig_port->write_infoframe(encoder, crtc_state, type, buffer, len);
}
void intel_read_infoframe(struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state,
enum hdmi_infoframe_type type,
union hdmi_infoframe *frame)
{
struct intel_digital_port *intel_dig_port = enc_to_dig_port(&encoder->base);
u8 buffer[VIDEO_DIP_DATA_SIZE];
int ret;
if ((crtc_state->infoframes.enable &
intel_hdmi_infoframe_enable(type)) == 0)
return;
intel_dig_port->read_infoframe(encoder, crtc_state,
type, buffer, sizeof(buffer));
/* Fill the 'hole' (see big comment above) at position 3 */
memmove(&buffer[1], &buffer[0], 3);
/* see comment above for the reason for this offset */
ret = hdmi_infoframe_unpack(frame, buffer + 1, sizeof(buffer) - 1);
if (ret) {
DRM_DEBUG_KMS("Failed to unpack infoframe type 0x%02x\n", type);
return;
}
if (frame->any.type != type)
DRM_DEBUG_KMS("Found the wrong infoframe type 0x%x (expected 0x%02x)\n",
frame->any.type, type);
}
static bool
intel_hdmi_compute_avi_infoframe(struct intel_encoder *encoder,
struct intel_crtc_state *crtc_state,
struct drm_connector_state *conn_state)
{
struct hdmi_avi_infoframe *frame = &crtc_state->infoframes.avi.avi;
const struct drm_display_mode *adjusted_mode =
&crtc_state->base.adjusted_mode;
struct drm_connector *connector = conn_state->connector;
int ret;
if (!crtc_state->has_infoframe)
return true;
crtc_state->infoframes.enable |=
intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_AVI);
ret = drm_hdmi_avi_infoframe_from_display_mode(frame, connector,
adjusted_mode);
if (ret)
return false;
if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
frame->colorspace = HDMI_COLORSPACE_YUV420;
else if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444)
frame->colorspace = HDMI_COLORSPACE_YUV444;
else
frame->colorspace = HDMI_COLORSPACE_RGB;
drm_hdmi_avi_infoframe_colorspace(frame, conn_state);
drm_hdmi_avi_infoframe_quant_range(frame, connector,
adjusted_mode,
crtc_state->limited_color_range ?
HDMI_QUANTIZATION_RANGE_LIMITED :
HDMI_QUANTIZATION_RANGE_FULL);
drm_hdmi_avi_infoframe_content_type(frame, conn_state);
/* TODO: handle pixel repetition for YCBCR420 outputs */
ret = hdmi_avi_infoframe_check(frame);
if (WARN_ON(ret))
return false;
return true;
}
static bool
intel_hdmi_compute_spd_infoframe(struct intel_encoder *encoder,
struct intel_crtc_state *crtc_state,
struct drm_connector_state *conn_state)
{
struct hdmi_spd_infoframe *frame = &crtc_state->infoframes.spd.spd;
int ret;
if (!crtc_state->has_infoframe)
return true;
crtc_state->infoframes.enable |=
intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_SPD);
ret = hdmi_spd_infoframe_init(frame, "Intel", "Integrated gfx");
if (WARN_ON(ret))
return false;
frame->sdi = HDMI_SPD_SDI_PC;
ret = hdmi_spd_infoframe_check(frame);
if (WARN_ON(ret))
return false;
return true;
}
static bool
intel_hdmi_compute_hdmi_infoframe(struct intel_encoder *encoder,
struct intel_crtc_state *crtc_state,
struct drm_connector_state *conn_state)
{
struct hdmi_vendor_infoframe *frame =
&crtc_state->infoframes.hdmi.vendor.hdmi;
const struct drm_display_info *info =
&conn_state->connector->display_info;
int ret;
if (!crtc_state->has_infoframe || !info->has_hdmi_infoframe)
return true;
crtc_state->infoframes.enable |=
intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_VENDOR);
ret = drm_hdmi_vendor_infoframe_from_display_mode(frame,
conn_state->connector,
&crtc_state->base.adjusted_mode);
if (WARN_ON(ret))
return false;
ret = hdmi_vendor_infoframe_check(frame);
if (WARN_ON(ret))
return false;
return true;
}
static void g4x_set_infoframes(struct intel_encoder *encoder,
bool enable,
const struct intel_crtc_state *crtc_state,
const struct drm_connector_state *conn_state)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_digital_port *intel_dig_port = enc_to_dig_port(&encoder->base);
struct intel_hdmi *intel_hdmi = &intel_dig_port->hdmi;
i915_reg_t reg = VIDEO_DIP_CTL;
u32 val = I915_READ(reg);
u32 port = VIDEO_DIP_PORT(encoder->port);
assert_hdmi_port_disabled(intel_hdmi);
/* If the registers were not initialized yet, they might be zeroes,
* which means we're selecting the AVI DIP and we're setting its
* frequency to once. This seems to really confuse the HW and make
* things stop working (the register spec says the AVI always needs to
* be sent every VSync). So here we avoid writing to the register more
* than we need and also explicitly select the AVI DIP and explicitly
* set its frequency to every VSync. Avoiding to write it twice seems to
* be enough to solve the problem, but being defensive shouldn't hurt us
* either. */
val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
if (!enable) {
if (!(val & VIDEO_DIP_ENABLE))
return;
if (port != (val & VIDEO_DIP_PORT_MASK)) {
DRM_DEBUG_KMS("video DIP still enabled on port %c\n",
(val & VIDEO_DIP_PORT_MASK) >> 29);
return;
}
val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
I915_WRITE(reg, val);
POSTING_READ(reg);
return;
}
if (port != (val & VIDEO_DIP_PORT_MASK)) {
if (val & VIDEO_DIP_ENABLE) {
DRM_DEBUG_KMS("video DIP already enabled on port %c\n",
(val & VIDEO_DIP_PORT_MASK) >> 29);
return;
}
val &= ~VIDEO_DIP_PORT_MASK;
val |= port;
}
val |= VIDEO_DIP_ENABLE;
val &= ~(VIDEO_DIP_ENABLE_AVI |
VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
I915_WRITE(reg, val);
POSTING_READ(reg);
intel_write_infoframe(encoder, crtc_state,
HDMI_INFOFRAME_TYPE_AVI,
&crtc_state->infoframes.avi);
intel_write_infoframe(encoder, crtc_state,
HDMI_INFOFRAME_TYPE_SPD,
&crtc_state->infoframes.spd);
intel_write_infoframe(encoder, crtc_state,
HDMI_INFOFRAME_TYPE_VENDOR,
&crtc_state->infoframes.hdmi);
}
static bool hdmi_sink_is_deep_color(const struct drm_connector_state *conn_state)
{
struct drm_connector *connector = conn_state->connector;
/*
* HDMI cloning is only supported on g4x which doesn't
* support deep color or GCP infoframes anyway so no
* need to worry about multiple HDMI sinks here.
*/
return connector->display_info.bpc > 8;
}
/*
* Determine if default_phase=1 can be indicated in the GCP infoframe.
*
* From HDMI specification 1.4a:
* - The first pixel of each Video Data Period shall always have a pixel packing phase of 0
* - The first pixel following each Video Data Period shall have a pixel packing phase of 0
* - The PP bits shall be constant for all GCPs and will be equal to the last packing phase
* - The first pixel following every transition of HSYNC or VSYNC shall have a pixel packing
* phase of 0
*/
static bool gcp_default_phase_possible(int pipe_bpp,
const struct drm_display_mode *mode)
{
unsigned int pixels_per_group;
switch (pipe_bpp) {
case 30:
/* 4 pixels in 5 clocks */
pixels_per_group = 4;
break;
case 36:
/* 2 pixels in 3 clocks */
pixels_per_group = 2;
break;
case 48:
/* 1 pixel in 2 clocks */
pixels_per_group = 1;
break;
default:
/* phase information not relevant for 8bpc */
return false;
}
return mode->crtc_hdisplay % pixels_per_group == 0 &&
mode->crtc_htotal % pixels_per_group == 0 &&
mode->crtc_hblank_start % pixels_per_group == 0 &&
mode->crtc_hblank_end % pixels_per_group == 0 &&
mode->crtc_hsync_start % pixels_per_group == 0 &&
mode->crtc_hsync_end % pixels_per_group == 0 &&
((mode->flags & DRM_MODE_FLAG_INTERLACE) == 0 ||
mode->crtc_htotal/2 % pixels_per_group == 0);
}
static bool intel_hdmi_set_gcp_infoframe(struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state,
const struct drm_connector_state *conn_state)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
i915_reg_t reg;
if ((crtc_state->infoframes.enable &
intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL)) == 0)
return false;
if (HAS_DDI(dev_priv))
reg = HSW_TVIDEO_DIP_GCP(crtc_state->cpu_transcoder);
else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
reg = VLV_TVIDEO_DIP_GCP(crtc->pipe);
else if (HAS_PCH_SPLIT(dev_priv))
reg = TVIDEO_DIP_GCP(crtc->pipe);
else
return false;
I915_WRITE(reg, crtc_state->infoframes.gcp);
return true;
}
void intel_hdmi_read_gcp_infoframe(struct intel_encoder *encoder,
struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
i915_reg_t reg;
if ((crtc_state->infoframes.enable &
intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL)) == 0)
return;
if (HAS_DDI(dev_priv))
reg = HSW_TVIDEO_DIP_GCP(crtc_state->cpu_transcoder);
else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
reg = VLV_TVIDEO_DIP_GCP(crtc->pipe);
else if (HAS_PCH_SPLIT(dev_priv))
reg = TVIDEO_DIP_GCP(crtc->pipe);
else
return;
crtc_state->infoframes.gcp = I915_READ(reg);
}
static void intel_hdmi_compute_gcp_infoframe(struct intel_encoder *encoder,
struct intel_crtc_state *crtc_state,
struct drm_connector_state *conn_state)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
if (IS_G4X(dev_priv) || !crtc_state->has_infoframe)
return;
crtc_state->infoframes.enable |=
intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL);
/* Indicate color depth whenever the sink supports deep color */
if (hdmi_sink_is_deep_color(conn_state))
crtc_state->infoframes.gcp |= GCP_COLOR_INDICATION;
/* Enable default_phase whenever the display mode is suitably aligned */
if (gcp_default_phase_possible(crtc_state->pipe_bpp,
&crtc_state->base.adjusted_mode))
crtc_state->infoframes.gcp |= GCP_DEFAULT_PHASE_ENABLE;
}
static void ibx_set_infoframes(struct intel_encoder *encoder,
bool enable,
const struct intel_crtc_state *crtc_state,
const struct drm_connector_state *conn_state)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
struct intel_digital_port *intel_dig_port = enc_to_dig_port(&encoder->base);
struct intel_hdmi *intel_hdmi = &intel_dig_port->hdmi;
i915_reg_t reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
u32 val = I915_READ(reg);
u32 port = VIDEO_DIP_PORT(encoder->port);
assert_hdmi_port_disabled(intel_hdmi);
/* See the big comment in g4x_set_infoframes() */
val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
if (!enable) {
if (!(val & VIDEO_DIP_ENABLE))
return;
val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
I915_WRITE(reg, val);
POSTING_READ(reg);
return;
}
if (port != (val & VIDEO_DIP_PORT_MASK)) {
WARN(val & VIDEO_DIP_ENABLE,
"DIP already enabled on port %c\n",
(val & VIDEO_DIP_PORT_MASK) >> 29);
val &= ~VIDEO_DIP_PORT_MASK;
val |= port;
}
val |= VIDEO_DIP_ENABLE;
val &= ~(VIDEO_DIP_ENABLE_AVI |
VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
val |= VIDEO_DIP_ENABLE_GCP;
I915_WRITE(reg, val);
POSTING_READ(reg);
intel_write_infoframe(encoder, crtc_state,
HDMI_INFOFRAME_TYPE_AVI,
&crtc_state->infoframes.avi);
intel_write_infoframe(encoder, crtc_state,
HDMI_INFOFRAME_TYPE_SPD,
&crtc_state->infoframes.spd);
intel_write_infoframe(encoder, crtc_state,
HDMI_INFOFRAME_TYPE_VENDOR,
&crtc_state->infoframes.hdmi);
}
static void cpt_set_infoframes(struct intel_encoder *encoder,
bool enable,
const struct intel_crtc_state *crtc_state,
const struct drm_connector_state *conn_state)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
i915_reg_t reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
u32 val = I915_READ(reg);
assert_hdmi_port_disabled(intel_hdmi);
/* See the big comment in g4x_set_infoframes() */
val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
if (!enable) {
if (!(val & VIDEO_DIP_ENABLE))
return;
val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
I915_WRITE(reg, val);
POSTING_READ(reg);
return;
}
/* Set both together, unset both together: see the spec. */
val |= VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI;
val &= ~(VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
val |= VIDEO_DIP_ENABLE_GCP;
I915_WRITE(reg, val);
POSTING_READ(reg);
intel_write_infoframe(encoder, crtc_state,
HDMI_INFOFRAME_TYPE_AVI,
&crtc_state->infoframes.avi);
intel_write_infoframe(encoder, crtc_state,
HDMI_INFOFRAME_TYPE_SPD,
&crtc_state->infoframes.spd);
intel_write_infoframe(encoder, crtc_state,
HDMI_INFOFRAME_TYPE_VENDOR,
&crtc_state->infoframes.hdmi);
}
static void vlv_set_infoframes(struct intel_encoder *encoder,
bool enable,
const struct intel_crtc_state *crtc_state,
const struct drm_connector_state *conn_state)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
i915_reg_t reg = VLV_TVIDEO_DIP_CTL(intel_crtc->pipe);
u32 val = I915_READ(reg);
u32 port = VIDEO_DIP_PORT(encoder->port);
assert_hdmi_port_disabled(intel_hdmi);
/* See the big comment in g4x_set_infoframes() */
val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
if (!enable) {
if (!(val & VIDEO_DIP_ENABLE))
return;
val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
I915_WRITE(reg, val);
POSTING_READ(reg);
return;
}
if (port != (val & VIDEO_DIP_PORT_MASK)) {
WARN(val & VIDEO_DIP_ENABLE,
"DIP already enabled on port %c\n",
(val & VIDEO_DIP_PORT_MASK) >> 29);
val &= ~VIDEO_DIP_PORT_MASK;
val |= port;
}
val |= VIDEO_DIP_ENABLE;
val &= ~(VIDEO_DIP_ENABLE_AVI |
VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
val |= VIDEO_DIP_ENABLE_GCP;
I915_WRITE(reg, val);
POSTING_READ(reg);
intel_write_infoframe(encoder, crtc_state,
HDMI_INFOFRAME_TYPE_AVI,
&crtc_state->infoframes.avi);
intel_write_infoframe(encoder, crtc_state,
HDMI_INFOFRAME_TYPE_SPD,
&crtc_state->infoframes.spd);
intel_write_infoframe(encoder, crtc_state,
HDMI_INFOFRAME_TYPE_VENDOR,
&crtc_state->infoframes.hdmi);
}
static void hsw_set_infoframes(struct intel_encoder *encoder,
bool enable,
const struct intel_crtc_state *crtc_state,
const struct drm_connector_state *conn_state)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
i915_reg_t reg = HSW_TVIDEO_DIP_CTL(crtc_state->cpu_transcoder);
u32 val = I915_READ(reg);
assert_hdmi_transcoder_func_disabled(dev_priv,
crtc_state->cpu_transcoder);
val &= ~(VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_AVI_HSW |
VIDEO_DIP_ENABLE_GCP_HSW | VIDEO_DIP_ENABLE_VS_HSW |
VIDEO_DIP_ENABLE_GMP_HSW | VIDEO_DIP_ENABLE_SPD_HSW);
if (!enable) {
I915_WRITE(reg, val);
POSTING_READ(reg);
return;
}
if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
val |= VIDEO_DIP_ENABLE_GCP_HSW;
I915_WRITE(reg, val);
POSTING_READ(reg);
intel_write_infoframe(encoder, crtc_state,
HDMI_INFOFRAME_TYPE_AVI,
&crtc_state->infoframes.avi);
intel_write_infoframe(encoder, crtc_state,
HDMI_INFOFRAME_TYPE_SPD,
&crtc_state->infoframes.spd);
intel_write_infoframe(encoder, crtc_state,
HDMI_INFOFRAME_TYPE_VENDOR,
&crtc_state->infoframes.hdmi);
}
void intel_dp_dual_mode_set_tmds_output(struct intel_hdmi *hdmi, bool enable)
{
struct drm_i915_private *dev_priv = to_i915(intel_hdmi_to_dev(hdmi));
struct i2c_adapter *adapter =
intel_gmbus_get_adapter(dev_priv, hdmi->ddc_bus);
if (hdmi->dp_dual_mode.type < DRM_DP_DUAL_MODE_TYPE2_DVI)
return;
DRM_DEBUG_KMS("%s DP dual mode adaptor TMDS output\n",
enable ? "Enabling" : "Disabling");
drm_dp_dual_mode_set_tmds_output(hdmi->dp_dual_mode.type,
adapter, enable);
}
static int intel_hdmi_hdcp_read(struct intel_digital_port *intel_dig_port,
unsigned int offset, void *buffer, size_t size)
{
struct intel_hdmi *hdmi = &intel_dig_port->hdmi;
struct drm_i915_private *dev_priv =
intel_dig_port->base.base.dev->dev_private;
struct i2c_adapter *adapter = intel_gmbus_get_adapter(dev_priv,
hdmi->ddc_bus);
int ret;
u8 start = offset & 0xff;
struct i2c_msg msgs[] = {
{
.addr = DRM_HDCP_DDC_ADDR,
.flags = 0,
.len = 1,
.buf = &start,
},
{
.addr = DRM_HDCP_DDC_ADDR,
.flags = I2C_M_RD,
.len = size,
.buf = buffer
}
};
ret = i2c_transfer(adapter, msgs, ARRAY_SIZE(msgs));
if (ret == ARRAY_SIZE(msgs))
return 0;
return ret >= 0 ? -EIO : ret;
}
static int intel_hdmi_hdcp_write(struct intel_digital_port *intel_dig_port,
unsigned int offset, void *buffer, size_t size)
{
struct intel_hdmi *hdmi = &intel_dig_port->hdmi;
struct drm_i915_private *dev_priv =
intel_dig_port->base.base.dev->dev_private;
struct i2c_adapter *adapter = intel_gmbus_get_adapter(dev_priv,
hdmi->ddc_bus);
int ret;
u8 *write_buf;
struct i2c_msg msg;
write_buf = kzalloc(size + 1, GFP_KERNEL);
if (!write_buf)
return -ENOMEM;
write_buf[0] = offset & 0xff;
memcpy(&write_buf[1], buffer, size);
msg.addr = DRM_HDCP_DDC_ADDR;
msg.flags = 0,
msg.len = size + 1,
msg.buf = write_buf;
ret = i2c_transfer(adapter, &msg, 1);
if (ret == 1)
ret = 0;
else if (ret >= 0)
ret = -EIO;
kfree(write_buf);
return ret;
}
static
int intel_hdmi_hdcp_write_an_aksv(struct intel_digital_port *intel_dig_port,
u8 *an)
{
struct intel_hdmi *hdmi = &intel_dig_port->hdmi;
struct drm_i915_private *dev_priv =
intel_dig_port->base.base.dev->dev_private;
struct i2c_adapter *adapter = intel_gmbus_get_adapter(dev_priv,
hdmi->ddc_bus);
int ret;
ret = intel_hdmi_hdcp_write(intel_dig_port, DRM_HDCP_DDC_AN, an,
DRM_HDCP_AN_LEN);
if (ret) {
DRM_DEBUG_KMS("Write An over DDC failed (%d)\n", ret);
return ret;
}
ret = intel_gmbus_output_aksv(adapter);
if (ret < 0) {
DRM_DEBUG_KMS("Failed to output aksv (%d)\n", ret);
return ret;
}
return 0;
}
static int intel_hdmi_hdcp_read_bksv(struct intel_digital_port *intel_dig_port,
u8 *bksv)
{
int ret;
ret = intel_hdmi_hdcp_read(intel_dig_port, DRM_HDCP_DDC_BKSV, bksv,
DRM_HDCP_KSV_LEN);
if (ret)
DRM_DEBUG_KMS("Read Bksv over DDC failed (%d)\n", ret);
return ret;
}
static
int intel_hdmi_hdcp_read_bstatus(struct intel_digital_port *intel_dig_port,
u8 *bstatus)
{
int ret;
ret = intel_hdmi_hdcp_read(intel_dig_port, DRM_HDCP_DDC_BSTATUS,
bstatus, DRM_HDCP_BSTATUS_LEN);
if (ret)
DRM_DEBUG_KMS("Read bstatus over DDC failed (%d)\n", ret);
return ret;
}
static
int intel_hdmi_hdcp_repeater_present(struct intel_digital_port *intel_dig_port,
bool *repeater_present)
{
int ret;
u8 val;
ret = intel_hdmi_hdcp_read(intel_dig_port, DRM_HDCP_DDC_BCAPS, &val, 1);
if (ret) {
DRM_DEBUG_KMS("Read bcaps over DDC failed (%d)\n", ret);
return ret;
}
*repeater_present = val & DRM_HDCP_DDC_BCAPS_REPEATER_PRESENT;
return 0;
}
static
int intel_hdmi_hdcp_read_ri_prime(struct intel_digital_port *intel_dig_port,
u8 *ri_prime)
{
int ret;
ret = intel_hdmi_hdcp_read(intel_dig_port, DRM_HDCP_DDC_RI_PRIME,
ri_prime, DRM_HDCP_RI_LEN);
if (ret)
DRM_DEBUG_KMS("Read Ri' over DDC failed (%d)\n", ret);
return ret;
}
static
int intel_hdmi_hdcp_read_ksv_ready(struct intel_digital_port *intel_dig_port,
bool *ksv_ready)
{
int ret;
u8 val;
ret = intel_hdmi_hdcp_read(intel_dig_port, DRM_HDCP_DDC_BCAPS, &val, 1);
if (ret) {
DRM_DEBUG_KMS("Read bcaps over DDC failed (%d)\n", ret);
return ret;
}
*ksv_ready = val & DRM_HDCP_DDC_BCAPS_KSV_FIFO_READY;
return 0;
}
static
int intel_hdmi_hdcp_read_ksv_fifo(struct intel_digital_port *intel_dig_port,
int num_downstream, u8 *ksv_fifo)
{
int ret;
ret = intel_hdmi_hdcp_read(intel_dig_port, DRM_HDCP_DDC_KSV_FIFO,
ksv_fifo, num_downstream * DRM_HDCP_KSV_LEN);
if (ret) {
DRM_DEBUG_KMS("Read ksv fifo over DDC failed (%d)\n", ret);
return ret;
}
return 0;
}
static
int intel_hdmi_hdcp_read_v_prime_part(struct intel_digital_port *intel_dig_port,
int i, u32 *part)
{
int ret;
if (i >= DRM_HDCP_V_PRIME_NUM_PARTS)
return -EINVAL;
ret = intel_hdmi_hdcp_read(intel_dig_port, DRM_HDCP_DDC_V_PRIME(i),
part, DRM_HDCP_V_PRIME_PART_LEN);
if (ret)
DRM_DEBUG_KMS("Read V'[%d] over DDC failed (%d)\n", i, ret);
return ret;
}
static int kbl_repositioning_enc_en_signal(struct intel_connector *connector)
{
struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
struct drm_crtc *crtc = connector->base.state->crtc;
struct intel_crtc *intel_crtc = container_of(crtc,
struct intel_crtc, base);
u32 scanline;
int ret;
for (;;) {
scanline = I915_READ(PIPEDSL(intel_crtc->pipe));
if (scanline > 100 && scanline < 200)
break;
usleep_range(25, 50);
}
ret = intel_ddi_toggle_hdcp_signalling(&intel_dig_port->base, false);
if (ret) {
DRM_ERROR("Disable HDCP signalling failed (%d)\n", ret);
return ret;
}
ret = intel_ddi_toggle_hdcp_signalling(&intel_dig_port->base, true);
if (ret) {
DRM_ERROR("Enable HDCP signalling failed (%d)\n", ret);
return ret;
}
return 0;
}
static
int intel_hdmi_hdcp_toggle_signalling(struct intel_digital_port *intel_dig_port,
bool enable)
{
struct intel_hdmi *hdmi = &intel_dig_port->hdmi;
struct intel_connector *connector = hdmi->attached_connector;
struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
int ret;
if (!enable)
usleep_range(6, 60); /* Bspec says >= 6us */
ret = intel_ddi_toggle_hdcp_signalling(&intel_dig_port->base, enable);
if (ret) {
DRM_ERROR("%s HDCP signalling failed (%d)\n",
enable ? "Enable" : "Disable", ret);
return ret;
}
/*
* WA: To fix incorrect positioning of the window of
* opportunity and enc_en signalling in KABYLAKE.
*/
if (IS_KABYLAKE(dev_priv) && enable)
return kbl_repositioning_enc_en_signal(connector);
return 0;
}
static
bool intel_hdmi_hdcp_check_link(struct intel_digital_port *intel_dig_port)
{
struct drm_i915_private *dev_priv =
intel_dig_port->base.base.dev->dev_private;
enum port port = intel_dig_port->base.port;
int ret;
union {
u32 reg;
u8 shim[DRM_HDCP_RI_LEN];
} ri;
ret = intel_hdmi_hdcp_read_ri_prime(intel_dig_port, ri.shim);
if (ret)
return false;
I915_WRITE(PORT_HDCP_RPRIME(port), ri.reg);
/* Wait for Ri prime match */
if (wait_for(I915_READ(PORT_HDCP_STATUS(port)) &
(HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC), 1)) {
DRM_ERROR("Ri' mismatch detected, link check failed (%x)\n",
I915_READ(PORT_HDCP_STATUS(port)));
return false;
}
return true;
}
static struct hdcp2_hdmi_msg_data {
u8 msg_id;
u32 timeout;
u32 timeout2;
} hdcp2_msg_data[] = {
{HDCP_2_2_AKE_INIT, 0, 0},
{HDCP_2_2_AKE_SEND_CERT, HDCP_2_2_CERT_TIMEOUT_MS, 0},
{HDCP_2_2_AKE_NO_STORED_KM, 0, 0},
{HDCP_2_2_AKE_STORED_KM, 0, 0},
{HDCP_2_2_AKE_SEND_HPRIME, HDCP_2_2_HPRIME_PAIRED_TIMEOUT_MS,
HDCP_2_2_HPRIME_NO_PAIRED_TIMEOUT_MS},
{HDCP_2_2_AKE_SEND_PAIRING_INFO, HDCP_2_2_PAIRING_TIMEOUT_MS,
0},
{HDCP_2_2_LC_INIT, 0, 0},
{HDCP_2_2_LC_SEND_LPRIME, HDCP_2_2_HDMI_LPRIME_TIMEOUT_MS, 0},
{HDCP_2_2_SKE_SEND_EKS, 0, 0},
{HDCP_2_2_REP_SEND_RECVID_LIST,
HDCP_2_2_RECVID_LIST_TIMEOUT_MS, 0},
{HDCP_2_2_REP_SEND_ACK, 0, 0},
{HDCP_2_2_REP_STREAM_MANAGE, 0, 0},
{HDCP_2_2_REP_STREAM_READY, HDCP_2_2_STREAM_READY_TIMEOUT_MS,
0},
};
static
int intel_hdmi_hdcp2_read_rx_status(struct intel_digital_port *intel_dig_port,
u8 *rx_status)
{
return intel_hdmi_hdcp_read(intel_dig_port,
HDCP_2_2_HDMI_REG_RXSTATUS_OFFSET,
rx_status,
HDCP_2_2_HDMI_RXSTATUS_LEN);
}
static int get_hdcp2_msg_timeout(u8 msg_id, bool is_paired)
{
int i;
for (i = 0; i < ARRAY_SIZE(hdcp2_msg_data); i++)
if (hdcp2_msg_data[i].msg_id == msg_id &&
(msg_id != HDCP_2_2_AKE_SEND_HPRIME || is_paired))
return hdcp2_msg_data[i].timeout;
else if (hdcp2_msg_data[i].msg_id == msg_id)
return hdcp2_msg_data[i].timeout2;
return -EINVAL;
}
static inline
int hdcp2_detect_msg_availability(struct intel_digital_port *intel_digital_port,
u8 msg_id, bool *msg_ready,
ssize_t *msg_sz)
{
u8 rx_status[HDCP_2_2_HDMI_RXSTATUS_LEN];
int ret;
ret = intel_hdmi_hdcp2_read_rx_status(intel_digital_port, rx_status);
if (ret < 0) {
DRM_DEBUG_KMS("rx_status read failed. Err %d\n", ret);
return ret;
}
*msg_sz = ((HDCP_2_2_HDMI_RXSTATUS_MSG_SZ_HI(rx_status[1]) << 8) |
rx_status[0]);
if (msg_id == HDCP_2_2_REP_SEND_RECVID_LIST)
*msg_ready = (HDCP_2_2_HDMI_RXSTATUS_READY(rx_status[1]) &&
*msg_sz);
else
*msg_ready = *msg_sz;
return 0;
}
static ssize_t
intel_hdmi_hdcp2_wait_for_msg(struct intel_digital_port *intel_dig_port,
u8 msg_id, bool paired)
{
bool msg_ready = false;
int timeout, ret;
ssize_t msg_sz = 0;
timeout = get_hdcp2_msg_timeout(msg_id, paired);
if (timeout < 0)
return timeout;
ret = __wait_for(ret = hdcp2_detect_msg_availability(intel_dig_port,
msg_id, &msg_ready,
&msg_sz),
!ret && msg_ready && msg_sz, timeout * 1000,
1000, 5 * 1000);
if (ret)
DRM_DEBUG_KMS("msg_id: %d, ret: %d, timeout: %d\n",
msg_id, ret, timeout);
return ret ? ret : msg_sz;
}
static
int intel_hdmi_hdcp2_write_msg(struct intel_digital_port *intel_dig_port,
void *buf, size_t size)
{
unsigned int offset;
offset = HDCP_2_2_HDMI_REG_WR_MSG_OFFSET;
return intel_hdmi_hdcp_write(intel_dig_port, offset, buf, size);
}
static
int intel_hdmi_hdcp2_read_msg(struct intel_digital_port *intel_dig_port,
u8 msg_id, void *buf, size_t size)
{
struct intel_hdmi *hdmi = &intel_dig_port->hdmi;
struct intel_hdcp *hdcp = &hdmi->attached_connector->hdcp;
unsigned int offset;
ssize_t ret;
ret = intel_hdmi_hdcp2_wait_for_msg(intel_dig_port, msg_id,
hdcp->is_paired);
if (ret < 0)
return ret;
/*
* Available msg size should be equal to or lesser than the
* available buffer.
*/
if (ret > size) {
DRM_DEBUG_KMS("msg_sz(%zd) is more than exp size(%zu)\n",
ret, size);
return -1;
}
offset = HDCP_2_2_HDMI_REG_RD_MSG_OFFSET;
ret = intel_hdmi_hdcp_read(intel_dig_port, offset, buf, ret);
if (ret)
DRM_DEBUG_KMS("Failed to read msg_id: %d(%zd)\n", msg_id, ret);
return ret;
}
static
int intel_hdmi_hdcp2_check_link(struct intel_digital_port *intel_dig_port)
{
u8 rx_status[HDCP_2_2_HDMI_RXSTATUS_LEN];
int ret;
ret = intel_hdmi_hdcp2_read_rx_status(intel_dig_port, rx_status);
if (ret)
return ret;
/*
* Re-auth request and Link Integrity Failures are represented by
* same bit. i.e reauth_req.
*/
if (HDCP_2_2_HDMI_RXSTATUS_REAUTH_REQ(rx_status[1]))
ret = HDCP_REAUTH_REQUEST;
else if (HDCP_2_2_HDMI_RXSTATUS_READY(rx_status[1]))
ret = HDCP_TOPOLOGY_CHANGE;
return ret;
}
static
int intel_hdmi_hdcp2_capable(struct intel_digital_port *intel_dig_port,
bool *capable)
{
u8 hdcp2_version;
int ret;
*capable = false;
ret = intel_hdmi_hdcp_read(intel_dig_port, HDCP_2_2_HDMI_REG_VER_OFFSET,
&hdcp2_version, sizeof(hdcp2_version));
if (!ret && hdcp2_version & HDCP_2_2_HDMI_SUPPORT_MASK)
*capable = true;
return ret;
}
static inline
enum hdcp_wired_protocol intel_hdmi_hdcp2_protocol(void)
{
return HDCP_PROTOCOL_HDMI;
}
static const struct intel_hdcp_shim intel_hdmi_hdcp_shim = {
.write_an_aksv = intel_hdmi_hdcp_write_an_aksv,
.read_bksv = intel_hdmi_hdcp_read_bksv,
.read_bstatus = intel_hdmi_hdcp_read_bstatus,
.repeater_present = intel_hdmi_hdcp_repeater_present,
.read_ri_prime = intel_hdmi_hdcp_read_ri_prime,
.read_ksv_ready = intel_hdmi_hdcp_read_ksv_ready,
.read_ksv_fifo = intel_hdmi_hdcp_read_ksv_fifo,
.read_v_prime_part = intel_hdmi_hdcp_read_v_prime_part,
.toggle_signalling = intel_hdmi_hdcp_toggle_signalling,
.check_link = intel_hdmi_hdcp_check_link,
.write_2_2_msg = intel_hdmi_hdcp2_write_msg,
.read_2_2_msg = intel_hdmi_hdcp2_read_msg,
.check_2_2_link = intel_hdmi_hdcp2_check_link,
.hdcp_2_2_capable = intel_hdmi_hdcp2_capable,
.protocol = HDCP_PROTOCOL_HDMI,
};
static void intel_hdmi_prepare(struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state)
{
struct drm_device *dev = encoder->base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
const struct drm_display_mode *adjusted_mode = &crtc_state->base.adjusted_mode;
u32 hdmi_val;
intel_dp_dual_mode_set_tmds_output(intel_hdmi, true);
hdmi_val = SDVO_ENCODING_HDMI;
if (!HAS_PCH_SPLIT(dev_priv) && crtc_state->limited_color_range)
hdmi_val |= HDMI_COLOR_RANGE_16_235;
if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
hdmi_val |= SDVO_VSYNC_ACTIVE_HIGH;
if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
hdmi_val |= SDVO_HSYNC_ACTIVE_HIGH;
if (crtc_state->pipe_bpp > 24)
hdmi_val |= HDMI_COLOR_FORMAT_12bpc;
else
hdmi_val |= SDVO_COLOR_FORMAT_8bpc;
if (crtc_state->has_hdmi_sink)
hdmi_val |= HDMI_MODE_SELECT_HDMI;
if (HAS_PCH_CPT(dev_priv))
hdmi_val |= SDVO_PIPE_SEL_CPT(crtc->pipe);
else if (IS_CHERRYVIEW(dev_priv))
hdmi_val |= SDVO_PIPE_SEL_CHV(crtc->pipe);
else
hdmi_val |= SDVO_PIPE_SEL(crtc->pipe);
I915_WRITE(intel_hdmi->hdmi_reg, hdmi_val);
POSTING_READ(intel_hdmi->hdmi_reg);
}
static bool intel_hdmi_get_hw_state(struct intel_encoder *encoder,
enum pipe *pipe)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
intel_wakeref_t wakeref;
bool ret;
wakeref = intel_display_power_get_if_enabled(dev_priv,
encoder->power_domain);
if (!wakeref)
return false;
ret = intel_sdvo_port_enabled(dev_priv, intel_hdmi->hdmi_reg, pipe);
intel_display_power_put(dev_priv, encoder->power_domain, wakeref);
return ret;
}
static void intel_hdmi_get_config(struct intel_encoder *encoder,
struct intel_crtc_state *pipe_config)
{
struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
struct drm_device *dev = encoder->base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
u32 tmp, flags = 0;
int dotclock;
pipe_config->output_types |= BIT(INTEL_OUTPUT_HDMI);
tmp = I915_READ(intel_hdmi->hdmi_reg);
if (tmp & SDVO_HSYNC_ACTIVE_HIGH)
flags |= DRM_MODE_FLAG_PHSYNC;
else
flags |= DRM_MODE_FLAG_NHSYNC;
if (tmp & SDVO_VSYNC_ACTIVE_HIGH)
flags |= DRM_MODE_FLAG_PVSYNC;
else
flags |= DRM_MODE_FLAG_NVSYNC;
if (tmp & HDMI_MODE_SELECT_HDMI)
pipe_config->has_hdmi_sink = true;
pipe_config->infoframes.enable |=
intel_hdmi_infoframes_enabled(encoder, pipe_config);
if (pipe_config->infoframes.enable)
pipe_config->has_infoframe = true;
if (tmp & SDVO_AUDIO_ENABLE)
pipe_config->has_audio = true;
if (!HAS_PCH_SPLIT(dev_priv) &&
tmp & HDMI_COLOR_RANGE_16_235)
pipe_config->limited_color_range = true;
pipe_config->base.adjusted_mode.flags |= flags;
if ((tmp & SDVO_COLOR_FORMAT_MASK) == HDMI_COLOR_FORMAT_12bpc)
dotclock = pipe_config->port_clock * 2 / 3;
else
dotclock = pipe_config->port_clock;
if (pipe_config->pixel_multiplier)
dotclock /= pipe_config->pixel_multiplier;
pipe_config->base.adjusted_mode.crtc_clock = dotclock;
pipe_config->lane_count = 4;
intel_hdmi_read_gcp_infoframe(encoder, pipe_config);
intel_read_infoframe(encoder, pipe_config,
HDMI_INFOFRAME_TYPE_AVI,
&pipe_config->infoframes.avi);
intel_read_infoframe(encoder, pipe_config,
HDMI_INFOFRAME_TYPE_SPD,
&pipe_config->infoframes.spd);
intel_read_infoframe(encoder, pipe_config,
HDMI_INFOFRAME_TYPE_VENDOR,
&pipe_config->infoframes.hdmi);
}
static void intel_enable_hdmi_audio(struct intel_encoder *encoder,
const struct intel_crtc_state *pipe_config,
const struct drm_connector_state *conn_state)
{
struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
WARN_ON(!pipe_config->has_hdmi_sink);
DRM_DEBUG_DRIVER("Enabling HDMI audio on pipe %c\n",
pipe_name(crtc->pipe));
intel_audio_codec_enable(encoder, pipe_config, conn_state);
}
static void g4x_enable_hdmi(struct intel_encoder *encoder,
const struct intel_crtc_state *pipe_config,
const struct drm_connector_state *conn_state)
{
struct drm_device *dev = encoder->base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
u32 temp;
temp = I915_READ(intel_hdmi->hdmi_reg);
temp |= SDVO_ENABLE;
if (pipe_config->has_audio)
temp |= SDVO_AUDIO_ENABLE;
I915_WRITE(intel_hdmi->hdmi_reg, temp);
POSTING_READ(intel_hdmi->hdmi_reg);
if (pipe_config->has_audio)
intel_enable_hdmi_audio(encoder, pipe_config, conn_state);
}
static void ibx_enable_hdmi(struct intel_encoder *encoder,
const struct intel_crtc_state *pipe_config,
const struct drm_connector_state *conn_state)
{
struct drm_device *dev = encoder->base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
u32 temp;
temp = I915_READ(intel_hdmi->hdmi_reg);
temp |= SDVO_ENABLE;
if (pipe_config->has_audio)
temp |= SDVO_AUDIO_ENABLE;
/*
* HW workaround, need to write this twice for issue
* that may result in first write getting masked.
*/
I915_WRITE(intel_hdmi->hdmi_reg, temp);
POSTING_READ(intel_hdmi->hdmi_reg);
I915_WRITE(intel_hdmi->hdmi_reg, temp);
POSTING_READ(intel_hdmi->hdmi_reg);
/*
* HW workaround, need to toggle enable bit off and on
* for 12bpc with pixel repeat.
*
* FIXME: BSpec says this should be done at the end of
* of the modeset sequence, so not sure if this isn't too soon.
*/
if (pipe_config->pipe_bpp > 24 &&
pipe_config->pixel_multiplier > 1) {
I915_WRITE(intel_hdmi->hdmi_reg, temp & ~SDVO_ENABLE);
POSTING_READ(intel_hdmi->hdmi_reg);
/*
* HW workaround, need to write this twice for issue
* that may result in first write getting masked.
*/
I915_WRITE(intel_hdmi->hdmi_reg, temp);
POSTING_READ(intel_hdmi->hdmi_reg);
I915_WRITE(intel_hdmi->hdmi_reg, temp);
POSTING_READ(intel_hdmi->hdmi_reg);
}
if (pipe_config->has_audio)
intel_enable_hdmi_audio(encoder, pipe_config, conn_state);
}
static void cpt_enable_hdmi(struct intel_encoder *encoder,
const struct intel_crtc_state *pipe_config,
const struct drm_connector_state *conn_state)
{
struct drm_device *dev = encoder->base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
enum pipe pipe = crtc->pipe;
u32 temp;
temp = I915_READ(intel_hdmi->hdmi_reg);
temp |= SDVO_ENABLE;
if (pipe_config->has_audio)
temp |= SDVO_AUDIO_ENABLE;
/*
* WaEnableHDMI8bpcBefore12bpc:snb,ivb
*
* The procedure for 12bpc is as follows:
* 1. disable HDMI clock gating
* 2. enable HDMI with 8bpc
* 3. enable HDMI with 12bpc
* 4. enable HDMI clock gating
*/
if (pipe_config->pipe_bpp > 24) {
I915_WRITE(TRANS_CHICKEN1(pipe),
I915_READ(TRANS_CHICKEN1(pipe)) |
TRANS_CHICKEN1_HDMIUNIT_GC_DISABLE);
temp &= ~SDVO_COLOR_FORMAT_MASK;
temp |= SDVO_COLOR_FORMAT_8bpc;
}
I915_WRITE(intel_hdmi->hdmi_reg, temp);
POSTING_READ(intel_hdmi->hdmi_reg);
if (pipe_config->pipe_bpp > 24) {
temp &= ~SDVO_COLOR_FORMAT_MASK;
temp |= HDMI_COLOR_FORMAT_12bpc;
I915_WRITE(intel_hdmi->hdmi_reg, temp);
POSTING_READ(intel_hdmi->hdmi_reg);
I915_WRITE(TRANS_CHICKEN1(pipe),
I915_READ(TRANS_CHICKEN1(pipe)) &
~TRANS_CHICKEN1_HDMIUNIT_GC_DISABLE);
}
if (pipe_config->has_audio)
intel_enable_hdmi_audio(encoder, pipe_config, conn_state);
}
static void vlv_enable_hdmi(struct intel_encoder *encoder,
const struct intel_crtc_state *pipe_config,
const struct drm_connector_state *conn_state)
{
}
static void intel_disable_hdmi(struct intel_encoder *encoder,
const struct intel_crtc_state *old_crtc_state,
const struct drm_connector_state *old_conn_state)
{
struct drm_device *dev = encoder->base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
struct intel_digital_port *intel_dig_port =
hdmi_to_dig_port(intel_hdmi);
struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
u32 temp;
temp = I915_READ(intel_hdmi->hdmi_reg);
temp &= ~(SDVO_ENABLE | SDVO_AUDIO_ENABLE);
I915_WRITE(intel_hdmi->hdmi_reg, temp);
POSTING_READ(intel_hdmi->hdmi_reg);
/*
* HW workaround for IBX, we need to move the port
* to transcoder A after disabling it to allow the
* matching DP port to be enabled on transcoder A.
*/
if (HAS_PCH_IBX(dev_priv) && crtc->pipe == PIPE_B) {
/*
* We get CPU/PCH FIFO underruns on the other pipe when
* doing the workaround. Sweep them under the rug.
*/
intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false);
intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false);
temp &= ~SDVO_PIPE_SEL_MASK;
temp |= SDVO_ENABLE | SDVO_PIPE_SEL(PIPE_A);
/*
* HW workaround, need to write this twice for issue
* that may result in first write getting masked.
*/
I915_WRITE(intel_hdmi->hdmi_reg, temp);
POSTING_READ(intel_hdmi->hdmi_reg);
I915_WRITE(intel_hdmi->hdmi_reg, temp);
POSTING_READ(intel_hdmi->hdmi_reg);
temp &= ~SDVO_ENABLE;
I915_WRITE(intel_hdmi->hdmi_reg, temp);
POSTING_READ(intel_hdmi->hdmi_reg);
intel_wait_for_vblank_if_active(dev_priv, PIPE_A);
intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true);
intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true);
}
intel_dig_port->set_infoframes(encoder,
false,
old_crtc_state, old_conn_state);
intel_dp_dual_mode_set_tmds_output(intel_hdmi, false);
}
static void g4x_disable_hdmi(struct intel_encoder *encoder,
const struct intel_crtc_state *old_crtc_state,
const struct drm_connector_state *old_conn_state)
{
if (old_crtc_state->has_audio)
intel_audio_codec_disable(encoder,
old_crtc_state, old_conn_state);
intel_disable_hdmi(encoder, old_crtc_state, old_conn_state);
}
static void pch_disable_hdmi(struct intel_encoder *encoder,
const struct intel_crtc_state *old_crtc_state,
const struct drm_connector_state *old_conn_state)
{
if (old_crtc_state->has_audio)
intel_audio_codec_disable(encoder,
old_crtc_state, old_conn_state);
}
static void pch_post_disable_hdmi(struct intel_encoder *encoder,
const struct intel_crtc_state *old_crtc_state,
const struct drm_connector_state *old_conn_state)
{
intel_disable_hdmi(encoder, old_crtc_state, old_conn_state);
}
static int intel_hdmi_source_max_tmds_clock(struct intel_encoder *encoder)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
const struct ddi_vbt_port_info *info =
&dev_priv->vbt.ddi_port_info[encoder->port];
int max_tmds_clock;
if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
max_tmds_clock = 594000;
else if (INTEL_GEN(dev_priv) >= 8 || IS_HASWELL(dev_priv))
max_tmds_clock = 300000;
else if (INTEL_GEN(dev_priv) >= 5)
max_tmds_clock = 225000;
else
max_tmds_clock = 165000;
if (info->max_tmds_clock)
max_tmds_clock = min(max_tmds_clock, info->max_tmds_clock);
return max_tmds_clock;
}
static int hdmi_port_clock_limit(struct intel_hdmi *hdmi,
bool respect_downstream_limits,
bool force_dvi)
{
struct intel_encoder *encoder = &hdmi_to_dig_port(hdmi)->base;
int max_tmds_clock = intel_hdmi_source_max_tmds_clock(encoder);
if (respect_downstream_limits) {
struct intel_connector *connector = hdmi->attached_connector;
const struct drm_display_info *info = &connector->base.display_info;
if (hdmi->dp_dual_mode.max_tmds_clock)
max_tmds_clock = min(max_tmds_clock,
hdmi->dp_dual_mode.max_tmds_clock);
if (info->max_tmds_clock)
max_tmds_clock = min(max_tmds_clock,
info->max_tmds_clock);
else if (!hdmi->has_hdmi_sink || force_dvi)
max_tmds_clock = min(max_tmds_clock, 165000);
}
return max_tmds_clock;
}
static enum drm_mode_status
hdmi_port_clock_valid(struct intel_hdmi *hdmi,
int clock, bool respect_downstream_limits,
bool force_dvi)
{
struct drm_i915_private *dev_priv = to_i915(intel_hdmi_to_dev(hdmi));
if (clock < 25000)
return MODE_CLOCK_LOW;
if (clock > hdmi_port_clock_limit(hdmi, respect_downstream_limits, force_dvi))
return MODE_CLOCK_HIGH;
/* BXT DPLL can't generate 223-240 MHz */
if (IS_GEN9_LP(dev_priv) && clock > 223333 && clock < 240000)
return MODE_CLOCK_RANGE;
/* CHV DPLL can't generate 216-240 MHz */
if (IS_CHERRYVIEW(dev_priv) && clock > 216000 && clock < 240000)
return MODE_CLOCK_RANGE;
return MODE_OK;
}
static enum drm_mode_status
intel_hdmi_mode_valid(struct drm_connector *connector,
struct drm_display_mode *mode)
{
struct intel_hdmi *hdmi = intel_attached_hdmi(connector);
struct drm_device *dev = intel_hdmi_to_dev(hdmi);
struct drm_i915_private *dev_priv = to_i915(dev);
enum drm_mode_status status;
int clock;
int max_dotclk = to_i915(connector->dev)->max_dotclk_freq;
bool force_dvi =
READ_ONCE(to_intel_digital_connector_state(connector->state)->force_audio) == HDMI_AUDIO_OFF_DVI;
if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
return MODE_NO_DBLESCAN;
clock = mode->clock;
if ((mode->flags & DRM_MODE_FLAG_3D_MASK) == DRM_MODE_FLAG_3D_FRAME_PACKING)
clock *= 2;
if (clock > max_dotclk)
return MODE_CLOCK_HIGH;
if (mode->flags & DRM_MODE_FLAG_DBLCLK)
clock *= 2;
if (drm_mode_is_420_only(&connector->display_info, mode))
clock /= 2;
/* check if we can do 8bpc */
status = hdmi_port_clock_valid(hdmi, clock, true, force_dvi);
if (hdmi->has_hdmi_sink && !force_dvi) {
/* if we can't do 8bpc we may still be able to do 12bpc */
if (status != MODE_OK && !HAS_GMCH(dev_priv))
status = hdmi_port_clock_valid(hdmi, clock * 3 / 2,
true, force_dvi);
/* if we can't do 8,12bpc we may still be able to do 10bpc */
if (status != MODE_OK && INTEL_GEN(dev_priv) >= 11)
status = hdmi_port_clock_valid(hdmi, clock * 5 / 4,
true, force_dvi);
}
return status;
}
static bool hdmi_deep_color_possible(const struct intel_crtc_state *crtc_state,
int bpc)
{
struct drm_i915_private *dev_priv =
to_i915(crtc_state->base.crtc->dev);
struct drm_atomic_state *state = crtc_state->base.state;
struct drm_connector_state *connector_state;
struct drm_connector *connector;
const struct drm_display_mode *adjusted_mode =
&crtc_state->base.adjusted_mode;
int i;
if (HAS_GMCH(dev_priv))
return false;
if (bpc == 10 && INTEL_GEN(dev_priv) < 11)
return false;
if (crtc_state->pipe_bpp <= 8*3)
return false;
if (!crtc_state->has_hdmi_sink)
return false;
/*
* HDMI deep color affects the clocks, so it's only possible
* when not cloning with other encoder types.
*/
if (crtc_state->output_types != 1 << INTEL_OUTPUT_HDMI)
return false;
for_each_new_connector_in_state(state, connector, connector_state, i) {
const struct drm_display_info *info = &connector->display_info;
if (connector_state->crtc != crtc_state->base.crtc)
continue;
if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420) {
const struct drm_hdmi_info *hdmi = &info->hdmi;
if (bpc == 12 && !(hdmi->y420_dc_modes &
DRM_EDID_YCBCR420_DC_36))
return false;
else if (bpc == 10 && !(hdmi->y420_dc_modes &
DRM_EDID_YCBCR420_DC_30))
return false;
} else {
if (bpc == 12 && !(info->edid_hdmi_dc_modes &
DRM_EDID_HDMI_DC_36))
return false;
else if (bpc == 10 && !(info->edid_hdmi_dc_modes &
DRM_EDID_HDMI_DC_30))
return false;
}
}
/* Display WA #1139: glk */
if (bpc == 12 && IS_GLK_REVID(dev_priv, 0, GLK_REVID_A1) &&
adjusted_mode->htotal > 5460)
return false;
/* Display Wa_1405510057:icl */
if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420 &&
bpc == 10 && INTEL_GEN(dev_priv) >= 11 &&
(adjusted_mode->crtc_hblank_end -
adjusted_mode->crtc_hblank_start) % 8 == 2)
return false;
return true;
}
static bool
intel_hdmi_ycbcr420_config(struct drm_connector *connector,
struct intel_crtc_state *config,
int *clock_12bpc, int *clock_10bpc,
int *clock_8bpc)
{
struct intel_crtc *intel_crtc = to_intel_crtc(config->base.crtc);
if (!connector->ycbcr_420_allowed) {
DRM_ERROR("Platform doesn't support YCBCR420 output\n");
return false;
}
/* YCBCR420 TMDS rate requirement is half the pixel clock */
config->port_clock /= 2;
*clock_12bpc /= 2;
*clock_10bpc /= 2;
*clock_8bpc /= 2;
config->output_format = INTEL_OUTPUT_FORMAT_YCBCR420;
/* YCBCR 420 output conversion needs a scaler */
if (skl_update_scaler_crtc(config)) {
DRM_DEBUG_KMS("Scaler allocation for output failed\n");
return false;
}
intel_pch_panel_fitting(intel_crtc, config,
DRM_MODE_SCALE_FULLSCREEN);
return true;
}
int intel_hdmi_compute_config(struct intel_encoder *encoder,
struct intel_crtc_state *pipe_config,
struct drm_connector_state *conn_state)
{
struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
struct drm_connector *connector = conn_state->connector;
struct drm_scdc *scdc = &connector->display_info.hdmi.scdc;
struct intel_digital_connector_state *intel_conn_state =
to_intel_digital_connector_state(conn_state);
int clock_8bpc = pipe_config->base.adjusted_mode.crtc_clock;
int clock_10bpc = clock_8bpc * 5 / 4;
int clock_12bpc = clock_8bpc * 3 / 2;
int desired_bpp;
bool force_dvi = intel_conn_state->force_audio == HDMI_AUDIO_OFF_DVI;
if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)
return -EINVAL;
pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
pipe_config->has_hdmi_sink = !force_dvi && intel_hdmi->has_hdmi_sink;
if (pipe_config->has_hdmi_sink)
pipe_config->has_infoframe = true;
if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) {
/* See CEA-861-E - 5.1 Default Encoding Parameters */
pipe_config->limited_color_range =
pipe_config->has_hdmi_sink &&
drm_default_rgb_quant_range(adjusted_mode) ==
HDMI_QUANTIZATION_RANGE_LIMITED;
} else {
pipe_config->limited_color_range =
intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_LIMITED;
}
if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK) {
pipe_config->pixel_multiplier = 2;
clock_8bpc *= 2;
clock_10bpc *= 2;
clock_12bpc *= 2;
}
if (drm_mode_is_420_only(&connector->display_info, adjusted_mode)) {
if (!intel_hdmi_ycbcr420_config(connector, pipe_config,
&clock_12bpc, &clock_10bpc,
&clock_8bpc)) {
DRM_ERROR("Can't support YCBCR420 output\n");
return -EINVAL;
}
}
if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv))
pipe_config->has_pch_encoder = true;
if (pipe_config->has_hdmi_sink) {
if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO)
pipe_config->has_audio = intel_hdmi->has_audio;
else
pipe_config->has_audio =
intel_conn_state->force_audio == HDMI_AUDIO_ON;
}
/*
* Note that g4x/vlv don't support 12bpc hdmi outputs. We also need
* to check that the higher clock still fits within limits.
*/
if (hdmi_deep_color_possible(pipe_config, 12) &&
hdmi_port_clock_valid(intel_hdmi, clock_12bpc,
true, force_dvi) == MODE_OK) {
DRM_DEBUG_KMS("picking bpc to 12 for HDMI output\n");
desired_bpp = 12*3;
/* Need to adjust the port link by 1.5x for 12bpc. */
pipe_config->port_clock = clock_12bpc;
} else if (hdmi_deep_color_possible(pipe_config, 10) &&
hdmi_port_clock_valid(intel_hdmi, clock_10bpc,
true, force_dvi) == MODE_OK) {
DRM_DEBUG_KMS("picking bpc to 10 for HDMI output\n");
desired_bpp = 10 * 3;
/* Need to adjust the port link by 1.25x for 10bpc. */
pipe_config->port_clock = clock_10bpc;
} else {
DRM_DEBUG_KMS("picking bpc to 8 for HDMI output\n");
desired_bpp = 8*3;
pipe_config->port_clock = clock_8bpc;
}
if (!pipe_config->bw_constrained) {
DRM_DEBUG_KMS("forcing pipe bpp to %i for HDMI\n", desired_bpp);
pipe_config->pipe_bpp = desired_bpp;
}
if (hdmi_port_clock_valid(intel_hdmi, pipe_config->port_clock,
false, force_dvi) != MODE_OK) {
DRM_DEBUG_KMS("unsupported HDMI clock, rejecting mode\n");
return -EINVAL;
}
/* Set user selected PAR to incoming mode's member */
adjusted_mode->picture_aspect_ratio = conn_state->picture_aspect_ratio;
pipe_config->lane_count = 4;
if (scdc->scrambling.supported && (INTEL_GEN(dev_priv) >= 10 ||
IS_GEMINILAKE(dev_priv))) {
if (scdc->scrambling.low_rates)
pipe_config->hdmi_scrambling = true;
if (pipe_config->port_clock > 340000) {
pipe_config->hdmi_scrambling = true;
pipe_config->hdmi_high_tmds_clock_ratio = true;
}
}
intel_hdmi_compute_gcp_infoframe(encoder, pipe_config, conn_state);
if (!intel_hdmi_compute_avi_infoframe(encoder, pipe_config, conn_state)) {
DRM_DEBUG_KMS("bad AVI infoframe\n");
return -EINVAL;
}
if (!intel_hdmi_compute_spd_infoframe(encoder, pipe_config, conn_state)) {
DRM_DEBUG_KMS("bad SPD infoframe\n");
return -EINVAL;
}
if (!intel_hdmi_compute_hdmi_infoframe(encoder, pipe_config, conn_state)) {
DRM_DEBUG_KMS("bad HDMI infoframe\n");
return -EINVAL;
}
return 0;
}
static void
intel_hdmi_unset_edid(struct drm_connector *connector)
{
struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector);
intel_hdmi->has_hdmi_sink = false;
intel_hdmi->has_audio = false;
intel_hdmi->dp_dual_mode.type = DRM_DP_DUAL_MODE_NONE;
intel_hdmi->dp_dual_mode.max_tmds_clock = 0;
kfree(to_intel_connector(connector)->detect_edid);
to_intel_connector(connector)->detect_edid = NULL;
}
static void
intel_hdmi_dp_dual_mode_detect(struct drm_connector *connector, bool has_edid)
{
struct drm_i915_private *dev_priv = to_i915(connector->dev);
struct intel_hdmi *hdmi = intel_attached_hdmi(connector);
enum port port = hdmi_to_dig_port(hdmi)->base.port;
struct i2c_adapter *adapter =
intel_gmbus_get_adapter(dev_priv, hdmi->ddc_bus);
enum drm_dp_dual_mode_type type = drm_dp_dual_mode_detect(adapter);
/*
* Type 1 DVI adaptors are not required to implement any
* registers, so we can't always detect their presence.
* Ideally we should be able to check the state of the
* CONFIG1 pin, but no such luck on our hardware.
*
* The only method left to us is to check the VBT to see
* if the port is a dual mode capable DP port. But let's
* only do that when we sucesfully read the EDID, to avoid
* confusing log messages about DP dual mode adaptors when
* there's nothing connected to the port.
*/
if (type == DRM_DP_DUAL_MODE_UNKNOWN) {
/* An overridden EDID imply that we want this port for testing.
* Make sure not to set limits for that port.
*/
if (has_edid && !connector->override_edid &&
intel_bios_is_port_dp_dual_mode(dev_priv, port)) {
DRM_DEBUG_KMS("Assuming DP dual mode adaptor presence based on VBT\n");
type = DRM_DP_DUAL_MODE_TYPE1_DVI;
} else {
type = DRM_DP_DUAL_MODE_NONE;
}
}
if (type == DRM_DP_DUAL_MODE_NONE)
return;
hdmi->dp_dual_mode.type = type;
hdmi->dp_dual_mode.max_tmds_clock =
drm_dp_dual_mode_max_tmds_clock(type, adapter);
DRM_DEBUG_KMS("DP dual mode adaptor (%s) detected (max TMDS clock: %d kHz)\n",
drm_dp_get_dual_mode_type_name(type),
hdmi->dp_dual_mode.max_tmds_clock);
}
static bool
intel_hdmi_set_edid(struct drm_connector *connector)
{
struct drm_i915_private *dev_priv = to_i915(connector->dev);
struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector);
intel_wakeref_t wakeref;
struct edid *edid;
bool connected = false;
struct i2c_adapter *i2c;
wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_GMBUS);
i2c = intel_gmbus_get_adapter(dev_priv, intel_hdmi->ddc_bus);
edid = drm_get_edid(connector, i2c);
if (!edid && !intel_gmbus_is_forced_bit(i2c)) {
DRM_DEBUG_KMS("HDMI GMBUS EDID read failed, retry using GPIO bit-banging\n");
intel_gmbus_force_bit(i2c, true);
edid = drm_get_edid(connector, i2c);
intel_gmbus_force_bit(i2c, false);
}
intel_hdmi_dp_dual_mode_detect(connector, edid != NULL);
intel_display_power_put(dev_priv, POWER_DOMAIN_GMBUS, wakeref);
to_intel_connector(connector)->detect_edid = edid;
if (edid && edid->input & DRM_EDID_INPUT_DIGITAL) {
intel_hdmi->has_audio = drm_detect_monitor_audio(edid);
intel_hdmi->has_hdmi_sink = drm_detect_hdmi_monitor(edid);
connected = true;
}
cec_notifier_set_phys_addr_from_edid(intel_hdmi->cec_notifier, edid);
return connected;
}
static enum drm_connector_status
intel_hdmi_detect(struct drm_connector *connector, bool force)
{
enum drm_connector_status status = connector_status_disconnected;
struct drm_i915_private *dev_priv = to_i915(connector->dev);
struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector);
struct intel_encoder *encoder = &hdmi_to_dig_port(intel_hdmi)->base;
intel_wakeref_t wakeref;
DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
connector->base.id, connector->name);
wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_GMBUS);
if (INTEL_GEN(dev_priv) >= 11 &&
!intel_digital_port_connected(encoder))
goto out;
intel_hdmi_unset_edid(connector);
if (intel_hdmi_set_edid(connector))
status = connector_status_connected;
out:
intel_display_power_put(dev_priv, POWER_DOMAIN_GMBUS, wakeref);
if (status != connector_status_connected)
cec_notifier_phys_addr_invalidate(intel_hdmi->cec_notifier);
return status;
}
static void
intel_hdmi_force(struct drm_connector *connector)
{
DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
connector->base.id, connector->name);
intel_hdmi_unset_edid(connector);
if (connector->status != connector_status_connected)
return;
intel_hdmi_set_edid(connector);
}
static int intel_hdmi_get_modes(struct drm_connector *connector)
{
struct edid *edid;
edid = to_intel_connector(connector)->detect_edid;
if (edid == NULL)
return 0;
return intel_connector_update_modes(connector, edid);
}
static void intel_hdmi_pre_enable(struct intel_encoder *encoder,
const struct intel_crtc_state *pipe_config,
const struct drm_connector_state *conn_state)
{
struct intel_digital_port *intel_dig_port =
enc_to_dig_port(&encoder->base);
intel_hdmi_prepare(encoder, pipe_config);
intel_dig_port->set_infoframes(encoder,
pipe_config->has_infoframe,
pipe_config, conn_state);
}
static void vlv_hdmi_pre_enable(struct intel_encoder *encoder,
const struct intel_crtc_state *pipe_config,
const struct drm_connector_state *conn_state)
{
struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
vlv_phy_pre_encoder_enable(encoder, pipe_config);
/* HDMI 1.0V-2dB */
vlv_set_phy_signal_level(encoder, 0x2b245f5f, 0x00002000, 0x5578b83a,
0x2b247878);
dport->set_infoframes(encoder,
pipe_config->has_infoframe,
pipe_config, conn_state);
g4x_enable_hdmi(encoder, pipe_config, conn_state);
vlv_wait_port_ready(dev_priv, dport, 0x0);
}
static void vlv_hdmi_pre_pll_enable(struct intel_encoder *encoder,
const struct intel_crtc_state *pipe_config,
const struct drm_connector_state *conn_state)
{
intel_hdmi_prepare(encoder, pipe_config);
vlv_phy_pre_pll_enable(encoder, pipe_config);
}
static void chv_hdmi_pre_pll_enable(struct intel_encoder *encoder,
const struct intel_crtc_state *pipe_config,
const struct drm_connector_state *conn_state)
{
intel_hdmi_prepare(encoder, pipe_config);
chv_phy_pre_pll_enable(encoder, pipe_config);
}
static void chv_hdmi_post_pll_disable(struct intel_encoder *encoder,
const struct intel_crtc_state *old_crtc_state,
const struct drm_connector_state *old_conn_state)
{
chv_phy_post_pll_disable(encoder, old_crtc_state);
}
static void vlv_hdmi_post_disable(struct intel_encoder *encoder,
const struct intel_crtc_state *old_crtc_state,
const struct drm_connector_state *old_conn_state)
{
/* Reset lanes to avoid HDMI flicker (VLV w/a) */
vlv_phy_reset_lanes(encoder, old_crtc_state);
}
static void chv_hdmi_post_disable(struct intel_encoder *encoder,
const struct intel_crtc_state *old_crtc_state,
const struct drm_connector_state *old_conn_state)
{
struct drm_device *dev = encoder->base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
mutex_lock(&dev_priv->sb_lock);
/* Assert data lane reset */
chv_data_lane_soft_reset(encoder, old_crtc_state, true);
mutex_unlock(&dev_priv->sb_lock);
}
static void chv_hdmi_pre_enable(struct intel_encoder *encoder,
const struct intel_crtc_state *pipe_config,
const struct drm_connector_state *conn_state)
{
struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
struct drm_device *dev = encoder->base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
chv_phy_pre_encoder_enable(encoder, pipe_config);
/* FIXME: Program the support xxx V-dB */
/* Use 800mV-0dB */
chv_set_phy_signal_level(encoder, 128, 102, false);
dport->set_infoframes(encoder,
pipe_config->has_infoframe,
pipe_config, conn_state);
g4x_enable_hdmi(encoder, pipe_config, conn_state);
vlv_wait_port_ready(dev_priv, dport, 0x0);
/* Second common lane will stay alive on its own now */
chv_phy_release_cl2_override(encoder);
}
static int
intel_hdmi_connector_register(struct drm_connector *connector)
{
int ret;
ret = intel_connector_register(connector);
if (ret)
return ret;
i915_debugfs_connector_add(connector);
return ret;
}
static void intel_hdmi_destroy(struct drm_connector *connector)
{
if (intel_attached_hdmi(connector)->cec_notifier)
cec_notifier_put(intel_attached_hdmi(connector)->cec_notifier);
intel_connector_destroy(connector);
}
static const struct drm_connector_funcs intel_hdmi_connector_funcs = {
.detect = intel_hdmi_detect,
.force = intel_hdmi_force,
.fill_modes = drm_helper_probe_single_connector_modes,
.atomic_get_property = intel_digital_connector_atomic_get_property,
.atomic_set_property = intel_digital_connector_atomic_set_property,
.late_register = intel_hdmi_connector_register,
.early_unregister = intel_connector_unregister,
.destroy = intel_hdmi_destroy,
.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
.atomic_duplicate_state = intel_digital_connector_duplicate_state,
};
static const struct drm_connector_helper_funcs intel_hdmi_connector_helper_funcs = {
.get_modes = intel_hdmi_get_modes,
.mode_valid = intel_hdmi_mode_valid,
.atomic_check = intel_digital_connector_atomic_check,
};
static const struct drm_encoder_funcs intel_hdmi_enc_funcs = {
.destroy = intel_encoder_destroy,
};
static void
intel_hdmi_add_properties(struct intel_hdmi *intel_hdmi, struct drm_connector *connector)
{
struct drm_i915_private *dev_priv = to_i915(connector->dev);
struct intel_digital_port *intel_dig_port =
hdmi_to_dig_port(intel_hdmi);
intel_attach_force_audio_property(connector);
intel_attach_broadcast_rgb_property(connector);
intel_attach_aspect_ratio_property(connector);
/*
* Attach Colorspace property for Non LSPCON based device
* ToDo: This needs to be extended for LSPCON implementation
* as well. Will be implemented separately.
*/
if (!intel_dig_port->lspcon.active)
intel_attach_colorspace_property(connector);
drm_connector_attach_content_type_property(connector);
connector->state->picture_aspect_ratio = HDMI_PICTURE_ASPECT_NONE;
if (!HAS_GMCH(dev_priv))
drm_connector_attach_max_bpc_property(connector, 8, 12);
}
/*
* intel_hdmi_handle_sink_scrambling: handle sink scrambling/clock ratio setup
* @encoder: intel_encoder
* @connector: drm_connector
* @high_tmds_clock_ratio = bool to indicate if the function needs to set
* or reset the high tmds clock ratio for scrambling
* @scrambling: bool to Indicate if the function needs to set or reset
* sink scrambling
*
* This function handles scrambling on HDMI 2.0 capable sinks.
* If required clock rate is > 340 Mhz && scrambling is supported by sink
* it enables scrambling. This should be called before enabling the HDMI
* 2.0 port, as the sink can choose to disable the scrambling if it doesn't
* detect a scrambled clock within 100 ms.
*
* Returns:
* True on success, false on failure.
*/
bool intel_hdmi_handle_sink_scrambling(struct intel_encoder *encoder,
struct drm_connector *connector,
bool high_tmds_clock_ratio,
bool scrambling)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
struct drm_scrambling *sink_scrambling =
&connector->display_info.hdmi.scdc.scrambling;
struct i2c_adapter *adapter =
intel_gmbus_get_adapter(dev_priv, intel_hdmi->ddc_bus);
if (!sink_scrambling->supported)
return true;
DRM_DEBUG_KMS("[CONNECTOR:%d:%s] scrambling=%s, TMDS bit clock ratio=1/%d\n",
connector->base.id, connector->name,
yesno(scrambling), high_tmds_clock_ratio ? 40 : 10);
/* Set TMDS bit clock ratio to 1/40 or 1/10, and enable/disable scrambling */
return drm_scdc_set_high_tmds_clock_ratio(adapter,
high_tmds_clock_ratio) &&
drm_scdc_set_scrambling(adapter, scrambling);
}
static u8 chv_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
{
u8 ddc_pin;
switch (port) {
case PORT_B:
ddc_pin = GMBUS_PIN_DPB;
break;
case PORT_C:
ddc_pin = GMBUS_PIN_DPC;
break;
case PORT_D:
ddc_pin = GMBUS_PIN_DPD_CHV;
break;
default:
MISSING_CASE(port);
ddc_pin = GMBUS_PIN_DPB;
break;
}
return ddc_pin;
}
static u8 bxt_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
{
u8 ddc_pin;
switch (port) {
case PORT_B:
ddc_pin = GMBUS_PIN_1_BXT;
break;
case PORT_C:
ddc_pin = GMBUS_PIN_2_BXT;
break;
default:
MISSING_CASE(port);
ddc_pin = GMBUS_PIN_1_BXT;
break;
}
return ddc_pin;
}
static u8 cnp_port_to_ddc_pin(struct drm_i915_private *dev_priv,
enum port port)
{
u8 ddc_pin;
switch (port) {
case PORT_B:
ddc_pin = GMBUS_PIN_1_BXT;
break;
case PORT_C:
ddc_pin = GMBUS_PIN_2_BXT;
break;
case PORT_D:
ddc_pin = GMBUS_PIN_4_CNP;
break;
case PORT_F:
ddc_pin = GMBUS_PIN_3_BXT;
break;
default:
MISSING_CASE(port);
ddc_pin = GMBUS_PIN_1_BXT;
break;
}
return ddc_pin;
}
static u8 icl_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
{
u8 ddc_pin;
switch (port) {
case PORT_A:
ddc_pin = GMBUS_PIN_1_BXT;
break;
case PORT_B:
ddc_pin = GMBUS_PIN_2_BXT;
break;
case PORT_C:
ddc_pin = GMBUS_PIN_9_TC1_ICP;
break;
case PORT_D:
ddc_pin = GMBUS_PIN_10_TC2_ICP;
break;
case PORT_E:
ddc_pin = GMBUS_PIN_11_TC3_ICP;
break;
case PORT_F:
ddc_pin = GMBUS_PIN_12_TC4_ICP;
break;
default:
MISSING_CASE(port);
ddc_pin = GMBUS_PIN_2_BXT;
break;
}
return ddc_pin;
}
static u8 g4x_port_to_ddc_pin(struct drm_i915_private *dev_priv,
enum port port)
{
u8 ddc_pin;
switch (port) {
case PORT_B:
ddc_pin = GMBUS_PIN_DPB;
break;
case PORT_C:
ddc_pin = GMBUS_PIN_DPC;
break;
case PORT_D:
ddc_pin = GMBUS_PIN_DPD;
break;
default:
MISSING_CASE(port);
ddc_pin = GMBUS_PIN_DPB;
break;
}
return ddc_pin;
}
static u8 intel_hdmi_ddc_pin(struct drm_i915_private *dev_priv,
enum port port)
{
const struct ddi_vbt_port_info *info =
&dev_priv->vbt.ddi_port_info[port];
u8 ddc_pin;
if (info->alternate_ddc_pin) {
DRM_DEBUG_KMS("Using DDC pin 0x%x for port %c (VBT)\n",
info->alternate_ddc_pin, port_name(port));
return info->alternate_ddc_pin;
}
if (HAS_PCH_ICP(dev_priv))
ddc_pin = icl_port_to_ddc_pin(dev_priv, port);
else if (HAS_PCH_CNP(dev_priv))
ddc_pin = cnp_port_to_ddc_pin(dev_priv, port);
else if (IS_GEN9_LP(dev_priv))
ddc_pin = bxt_port_to_ddc_pin(dev_priv, port);
else if (IS_CHERRYVIEW(dev_priv))
ddc_pin = chv_port_to_ddc_pin(dev_priv, port);
else
ddc_pin = g4x_port_to_ddc_pin(dev_priv, port);
DRM_DEBUG_KMS("Using DDC pin 0x%x for port %c (platform default)\n",
ddc_pin, port_name(port));
return ddc_pin;
}
void intel_infoframe_init(struct intel_digital_port *intel_dig_port)
{
struct drm_i915_private *dev_priv =
to_i915(intel_dig_port->base.base.dev);
if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
intel_dig_port->write_infoframe = vlv_write_infoframe;
intel_dig_port->read_infoframe = vlv_read_infoframe;
intel_dig_port->set_infoframes = vlv_set_infoframes;
intel_dig_port->infoframes_enabled = vlv_infoframes_enabled;
} else if (IS_G4X(dev_priv)) {
intel_dig_port->write_infoframe = g4x_write_infoframe;
intel_dig_port->read_infoframe = g4x_read_infoframe;
intel_dig_port->set_infoframes = g4x_set_infoframes;
intel_dig_port->infoframes_enabled = g4x_infoframes_enabled;
} else if (HAS_DDI(dev_priv)) {
if (intel_dig_port->lspcon.active) {
intel_dig_port->write_infoframe = lspcon_write_infoframe;
intel_dig_port->read_infoframe = lspcon_read_infoframe;
intel_dig_port->set_infoframes = lspcon_set_infoframes;
intel_dig_port->infoframes_enabled = lspcon_infoframes_enabled;
} else {
intel_dig_port->write_infoframe = hsw_write_infoframe;
intel_dig_port->read_infoframe = hsw_read_infoframe;
intel_dig_port->set_infoframes = hsw_set_infoframes;
intel_dig_port->infoframes_enabled = hsw_infoframes_enabled;
}
} else if (HAS_PCH_IBX(dev_priv)) {
intel_dig_port->write_infoframe = ibx_write_infoframe;
intel_dig_port->read_infoframe = ibx_read_infoframe;
intel_dig_port->set_infoframes = ibx_set_infoframes;
intel_dig_port->infoframes_enabled = ibx_infoframes_enabled;
} else {
intel_dig_port->write_infoframe = cpt_write_infoframe;
intel_dig_port->read_infoframe = cpt_read_infoframe;
intel_dig_port->set_infoframes = cpt_set_infoframes;
intel_dig_port->infoframes_enabled = cpt_infoframes_enabled;
}
}
void intel_hdmi_init_connector(struct intel_digital_port *intel_dig_port,
struct intel_connector *intel_connector)
{
struct drm_connector *connector = &intel_connector->base;
struct intel_hdmi *intel_hdmi = &intel_dig_port->hdmi;
struct intel_encoder *intel_encoder = &intel_dig_port->base;
struct drm_device *dev = intel_encoder->base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
enum port port = intel_encoder->port;
DRM_DEBUG_KMS("Adding HDMI connector on port %c\n",
port_name(port));
if (WARN(intel_dig_port->max_lanes < 4,
"Not enough lanes (%d) for HDMI on port %c\n",
intel_dig_port->max_lanes, port_name(port)))
return;
drm_connector_init(dev, connector, &intel_hdmi_connector_funcs,
DRM_MODE_CONNECTOR_HDMIA);
drm_connector_helper_add(connector, &intel_hdmi_connector_helper_funcs);
connector->interlace_allowed = 1;
connector->doublescan_allowed = 0;
connector->stereo_allowed = 1;
if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
connector->ycbcr_420_allowed = true;
intel_hdmi->ddc_bus = intel_hdmi_ddc_pin(dev_priv, port);
if (WARN_ON(port == PORT_A))
return;
intel_encoder->hpd_pin = intel_hpd_pin_default(dev_priv, port);
if (HAS_DDI(dev_priv))
intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
else
intel_connector->get_hw_state = intel_connector_get_hw_state;
intel_hdmi_add_properties(intel_hdmi, connector);
intel_connector_attach_encoder(intel_connector, intel_encoder);
intel_hdmi->attached_connector = intel_connector;
if (is_hdcp_supported(dev_priv, port)) {
int ret = intel_hdcp_init(intel_connector,
&intel_hdmi_hdcp_shim);
if (ret)
DRM_DEBUG_KMS("HDCP init failed, skipping.\n");
}
/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
* 0xd. Failure to do so will result in spurious interrupts being
* generated on the port when a cable is not attached.
*/
if (IS_G45(dev_priv)) {
u32 temp = I915_READ(PEG_BAND_GAP_DATA);
I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
}
intel_hdmi->cec_notifier = cec_notifier_get_conn(dev->dev,
port_identifier(port));
if (!intel_hdmi->cec_notifier)
DRM_DEBUG_KMS("CEC notifier get failed\n");
}
void intel_hdmi_init(struct drm_i915_private *dev_priv,
i915_reg_t hdmi_reg, enum port port)
{
struct intel_digital_port *intel_dig_port;
struct intel_encoder *intel_encoder;
struct intel_connector *intel_connector;
intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
if (!intel_dig_port)
return;
intel_connector = intel_connector_alloc();
if (!intel_connector) {
kfree(intel_dig_port);
return;
}
intel_encoder = &intel_dig_port->base;
drm_encoder_init(&dev_priv->drm, &intel_encoder->base,
&intel_hdmi_enc_funcs, DRM_MODE_ENCODER_TMDS,
"HDMI %c", port_name(port));
intel_encoder->hotplug = intel_encoder_hotplug;
intel_encoder->compute_config = intel_hdmi_compute_config;
if (HAS_PCH_SPLIT(dev_priv)) {
intel_encoder->disable = pch_disable_hdmi;
intel_encoder->post_disable = pch_post_disable_hdmi;
} else {
intel_encoder->disable = g4x_disable_hdmi;
}
intel_encoder->get_hw_state = intel_hdmi_get_hw_state;
intel_encoder->get_config = intel_hdmi_get_config;
if (IS_CHERRYVIEW(dev_priv)) {
intel_encoder->pre_pll_enable = chv_hdmi_pre_pll_enable;
intel_encoder->pre_enable = chv_hdmi_pre_enable;
intel_encoder->enable = vlv_enable_hdmi;
intel_encoder->post_disable = chv_hdmi_post_disable;
intel_encoder->post_pll_disable = chv_hdmi_post_pll_disable;
} else if (IS_VALLEYVIEW(dev_priv)) {
intel_encoder->pre_pll_enable = vlv_hdmi_pre_pll_enable;
intel_encoder->pre_enable = vlv_hdmi_pre_enable;
intel_encoder->enable = vlv_enable_hdmi;
intel_encoder->post_disable = vlv_hdmi_post_disable;
} else {
intel_encoder->pre_enable = intel_hdmi_pre_enable;
if (HAS_PCH_CPT(dev_priv))
intel_encoder->enable = cpt_enable_hdmi;
else if (HAS_PCH_IBX(dev_priv))
intel_encoder->enable = ibx_enable_hdmi;
else
intel_encoder->enable = g4x_enable_hdmi;
}
intel_encoder->type = INTEL_OUTPUT_HDMI;
intel_encoder->power_domain = intel_port_to_power_domain(port);
intel_encoder->port = port;
if (IS_CHERRYVIEW(dev_priv)) {
if (port == PORT_D)
intel_encoder->crtc_mask = 1 << 2;
else
intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
} else {
intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
}
intel_encoder->cloneable = 1 << INTEL_OUTPUT_ANALOG;
/*
* BSpec is unclear about HDMI+HDMI cloning on g4x, but it seems
* to work on real hardware. And since g4x can send infoframes to
* only one port anyway, nothing is lost by allowing it.
*/
if (IS_G4X(dev_priv))
intel_encoder->cloneable |= 1 << INTEL_OUTPUT_HDMI;
intel_dig_port->hdmi.hdmi_reg = hdmi_reg;
intel_dig_port->dp.output_reg = INVALID_MMIO_REG;
intel_dig_port->max_lanes = 4;
intel_infoframe_init(intel_dig_port);
intel_dig_port->aux_ch = intel_bios_port_aux_ch(dev_priv, port);
intel_hdmi_init_connector(intel_dig_port, intel_connector);
}