7c0f6ba682
This was entirely automated, using the script by Al: PATT='^[[:blank:]]*#[[:blank:]]*include[[:blank:]]*<asm/uaccess.h>' sed -i -e "s!$PATT!#include <linux/uaccess.h>!" \ $(git grep -l "$PATT"|grep -v ^include/linux/uaccess.h) to do the replacement at the end of the merge window. Requested-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
1192 lines
30 KiB
C
1192 lines
30 KiB
C
/*
|
|
* edac_mc kernel module
|
|
* (C) 2005, 2006 Linux Networx (http://lnxi.com)
|
|
* This file may be distributed under the terms of the
|
|
* GNU General Public License.
|
|
*
|
|
* Written by Thayne Harbaugh
|
|
* Based on work by Dan Hollis <goemon at anime dot net> and others.
|
|
* http://www.anime.net/~goemon/linux-ecc/
|
|
*
|
|
* Modified by Dave Peterson and Doug Thompson
|
|
*
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/proc_fs.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/types.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/init.h>
|
|
#include <linux/sysctl.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/timer.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/jiffies.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/list.h>
|
|
#include <linux/ctype.h>
|
|
#include <linux/edac.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/uaccess.h>
|
|
#include <asm/page.h>
|
|
#include "edac_mc.h"
|
|
#include "edac_module.h"
|
|
#include <ras/ras_event.h>
|
|
|
|
#ifdef CONFIG_EDAC_ATOMIC_SCRUB
|
|
#include <asm/edac.h>
|
|
#else
|
|
#define edac_atomic_scrub(va, size) do { } while (0)
|
|
#endif
|
|
|
|
/* lock to memory controller's control array */
|
|
static DEFINE_MUTEX(mem_ctls_mutex);
|
|
static LIST_HEAD(mc_devices);
|
|
|
|
/*
|
|
* Used to lock EDAC MC to just one module, avoiding two drivers e. g.
|
|
* apei/ghes and i7core_edac to be used at the same time.
|
|
*/
|
|
static void const *edac_mc_owner;
|
|
|
|
static struct bus_type mc_bus[EDAC_MAX_MCS];
|
|
|
|
unsigned edac_dimm_info_location(struct dimm_info *dimm, char *buf,
|
|
unsigned len)
|
|
{
|
|
struct mem_ctl_info *mci = dimm->mci;
|
|
int i, n, count = 0;
|
|
char *p = buf;
|
|
|
|
for (i = 0; i < mci->n_layers; i++) {
|
|
n = snprintf(p, len, "%s %d ",
|
|
edac_layer_name[mci->layers[i].type],
|
|
dimm->location[i]);
|
|
p += n;
|
|
len -= n;
|
|
count += n;
|
|
if (!len)
|
|
break;
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
#ifdef CONFIG_EDAC_DEBUG
|
|
|
|
static void edac_mc_dump_channel(struct rank_info *chan)
|
|
{
|
|
edac_dbg(4, " channel->chan_idx = %d\n", chan->chan_idx);
|
|
edac_dbg(4, " channel = %p\n", chan);
|
|
edac_dbg(4, " channel->csrow = %p\n", chan->csrow);
|
|
edac_dbg(4, " channel->dimm = %p\n", chan->dimm);
|
|
}
|
|
|
|
static void edac_mc_dump_dimm(struct dimm_info *dimm, int number)
|
|
{
|
|
char location[80];
|
|
|
|
edac_dimm_info_location(dimm, location, sizeof(location));
|
|
|
|
edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n",
|
|
dimm->mci->csbased ? "rank" : "dimm",
|
|
number, location, dimm->csrow, dimm->cschannel);
|
|
edac_dbg(4, " dimm = %p\n", dimm);
|
|
edac_dbg(4, " dimm->label = '%s'\n", dimm->label);
|
|
edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages);
|
|
edac_dbg(4, " dimm->grain = %d\n", dimm->grain);
|
|
edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages);
|
|
}
|
|
|
|
static void edac_mc_dump_csrow(struct csrow_info *csrow)
|
|
{
|
|
edac_dbg(4, "csrow->csrow_idx = %d\n", csrow->csrow_idx);
|
|
edac_dbg(4, " csrow = %p\n", csrow);
|
|
edac_dbg(4, " csrow->first_page = 0x%lx\n", csrow->first_page);
|
|
edac_dbg(4, " csrow->last_page = 0x%lx\n", csrow->last_page);
|
|
edac_dbg(4, " csrow->page_mask = 0x%lx\n", csrow->page_mask);
|
|
edac_dbg(4, " csrow->nr_channels = %d\n", csrow->nr_channels);
|
|
edac_dbg(4, " csrow->channels = %p\n", csrow->channels);
|
|
edac_dbg(4, " csrow->mci = %p\n", csrow->mci);
|
|
}
|
|
|
|
static void edac_mc_dump_mci(struct mem_ctl_info *mci)
|
|
{
|
|
edac_dbg(3, "\tmci = %p\n", mci);
|
|
edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci->mtype_cap);
|
|
edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap);
|
|
edac_dbg(3, "\tmci->edac_cap = %lx\n", mci->edac_cap);
|
|
edac_dbg(4, "\tmci->edac_check = %p\n", mci->edac_check);
|
|
edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n",
|
|
mci->nr_csrows, mci->csrows);
|
|
edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n",
|
|
mci->tot_dimms, mci->dimms);
|
|
edac_dbg(3, "\tdev = %p\n", mci->pdev);
|
|
edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n",
|
|
mci->mod_name, mci->ctl_name);
|
|
edac_dbg(3, "\tpvt_info = %p\n\n", mci->pvt_info);
|
|
}
|
|
|
|
#endif /* CONFIG_EDAC_DEBUG */
|
|
|
|
const char * const edac_mem_types[] = {
|
|
[MEM_EMPTY] = "Empty csrow",
|
|
[MEM_RESERVED] = "Reserved csrow type",
|
|
[MEM_UNKNOWN] = "Unknown csrow type",
|
|
[MEM_FPM] = "Fast page mode RAM",
|
|
[MEM_EDO] = "Extended data out RAM",
|
|
[MEM_BEDO] = "Burst Extended data out RAM",
|
|
[MEM_SDR] = "Single data rate SDRAM",
|
|
[MEM_RDR] = "Registered single data rate SDRAM",
|
|
[MEM_DDR] = "Double data rate SDRAM",
|
|
[MEM_RDDR] = "Registered Double data rate SDRAM",
|
|
[MEM_RMBS] = "Rambus DRAM",
|
|
[MEM_DDR2] = "Unbuffered DDR2 RAM",
|
|
[MEM_FB_DDR2] = "Fully buffered DDR2",
|
|
[MEM_RDDR2] = "Registered DDR2 RAM",
|
|
[MEM_XDR] = "Rambus XDR",
|
|
[MEM_DDR3] = "Unbuffered DDR3 RAM",
|
|
[MEM_RDDR3] = "Registered DDR3 RAM",
|
|
[MEM_LRDDR3] = "Load-Reduced DDR3 RAM",
|
|
[MEM_DDR4] = "Unbuffered DDR4 RAM",
|
|
[MEM_RDDR4] = "Registered DDR4 RAM",
|
|
};
|
|
EXPORT_SYMBOL_GPL(edac_mem_types);
|
|
|
|
/**
|
|
* edac_align_ptr - Prepares the pointer offsets for a single-shot allocation
|
|
* @p: pointer to a pointer with the memory offset to be used. At
|
|
* return, this will be incremented to point to the next offset
|
|
* @size: Size of the data structure to be reserved
|
|
* @n_elems: Number of elements that should be reserved
|
|
*
|
|
* If 'size' is a constant, the compiler will optimize this whole function
|
|
* down to either a no-op or the addition of a constant to the value of '*p'.
|
|
*
|
|
* The 'p' pointer is absolutely needed to keep the proper advancing
|
|
* further in memory to the proper offsets when allocating the struct along
|
|
* with its embedded structs, as edac_device_alloc_ctl_info() does it
|
|
* above, for example.
|
|
*
|
|
* At return, the pointer 'p' will be incremented to be used on a next call
|
|
* to this function.
|
|
*/
|
|
void *edac_align_ptr(void **p, unsigned size, int n_elems)
|
|
{
|
|
unsigned align, r;
|
|
void *ptr = *p;
|
|
|
|
*p += size * n_elems;
|
|
|
|
/*
|
|
* 'p' can possibly be an unaligned item X such that sizeof(X) is
|
|
* 'size'. Adjust 'p' so that its alignment is at least as
|
|
* stringent as what the compiler would provide for X and return
|
|
* the aligned result.
|
|
* Here we assume that the alignment of a "long long" is the most
|
|
* stringent alignment that the compiler will ever provide by default.
|
|
* As far as I know, this is a reasonable assumption.
|
|
*/
|
|
if (size > sizeof(long))
|
|
align = sizeof(long long);
|
|
else if (size > sizeof(int))
|
|
align = sizeof(long);
|
|
else if (size > sizeof(short))
|
|
align = sizeof(int);
|
|
else if (size > sizeof(char))
|
|
align = sizeof(short);
|
|
else
|
|
return (char *)ptr;
|
|
|
|
r = (unsigned long)p % align;
|
|
|
|
if (r == 0)
|
|
return (char *)ptr;
|
|
|
|
*p += align - r;
|
|
|
|
return (void *)(((unsigned long)ptr) + align - r);
|
|
}
|
|
|
|
static void _edac_mc_free(struct mem_ctl_info *mci)
|
|
{
|
|
int i, chn, row;
|
|
struct csrow_info *csr;
|
|
const unsigned int tot_dimms = mci->tot_dimms;
|
|
const unsigned int tot_channels = mci->num_cschannel;
|
|
const unsigned int tot_csrows = mci->nr_csrows;
|
|
|
|
if (mci->dimms) {
|
|
for (i = 0; i < tot_dimms; i++)
|
|
kfree(mci->dimms[i]);
|
|
kfree(mci->dimms);
|
|
}
|
|
if (mci->csrows) {
|
|
for (row = 0; row < tot_csrows; row++) {
|
|
csr = mci->csrows[row];
|
|
if (csr) {
|
|
if (csr->channels) {
|
|
for (chn = 0; chn < tot_channels; chn++)
|
|
kfree(csr->channels[chn]);
|
|
kfree(csr->channels);
|
|
}
|
|
kfree(csr);
|
|
}
|
|
}
|
|
kfree(mci->csrows);
|
|
}
|
|
kfree(mci);
|
|
}
|
|
|
|
struct mem_ctl_info *edac_mc_alloc(unsigned mc_num,
|
|
unsigned n_layers,
|
|
struct edac_mc_layer *layers,
|
|
unsigned sz_pvt)
|
|
{
|
|
struct mem_ctl_info *mci;
|
|
struct edac_mc_layer *layer;
|
|
struct csrow_info *csr;
|
|
struct rank_info *chan;
|
|
struct dimm_info *dimm;
|
|
u32 *ce_per_layer[EDAC_MAX_LAYERS], *ue_per_layer[EDAC_MAX_LAYERS];
|
|
unsigned pos[EDAC_MAX_LAYERS];
|
|
unsigned size, tot_dimms = 1, count = 1;
|
|
unsigned tot_csrows = 1, tot_channels = 1, tot_errcount = 0;
|
|
void *pvt, *p, *ptr = NULL;
|
|
int i, j, row, chn, n, len, off;
|
|
bool per_rank = false;
|
|
|
|
BUG_ON(n_layers > EDAC_MAX_LAYERS || n_layers == 0);
|
|
/*
|
|
* Calculate the total amount of dimms and csrows/cschannels while
|
|
* in the old API emulation mode
|
|
*/
|
|
for (i = 0; i < n_layers; i++) {
|
|
tot_dimms *= layers[i].size;
|
|
if (layers[i].is_virt_csrow)
|
|
tot_csrows *= layers[i].size;
|
|
else
|
|
tot_channels *= layers[i].size;
|
|
|
|
if (layers[i].type == EDAC_MC_LAYER_CHIP_SELECT)
|
|
per_rank = true;
|
|
}
|
|
|
|
/* Figure out the offsets of the various items from the start of an mc
|
|
* structure. We want the alignment of each item to be at least as
|
|
* stringent as what the compiler would provide if we could simply
|
|
* hardcode everything into a single struct.
|
|
*/
|
|
mci = edac_align_ptr(&ptr, sizeof(*mci), 1);
|
|
layer = edac_align_ptr(&ptr, sizeof(*layer), n_layers);
|
|
for (i = 0; i < n_layers; i++) {
|
|
count *= layers[i].size;
|
|
edac_dbg(4, "errcount layer %d size %d\n", i, count);
|
|
ce_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
|
|
ue_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
|
|
tot_errcount += 2 * count;
|
|
}
|
|
|
|
edac_dbg(4, "allocating %d error counters\n", tot_errcount);
|
|
pvt = edac_align_ptr(&ptr, sz_pvt, 1);
|
|
size = ((unsigned long)pvt) + sz_pvt;
|
|
|
|
edac_dbg(1, "allocating %u bytes for mci data (%d %s, %d csrows/channels)\n",
|
|
size,
|
|
tot_dimms,
|
|
per_rank ? "ranks" : "dimms",
|
|
tot_csrows * tot_channels);
|
|
|
|
mci = kzalloc(size, GFP_KERNEL);
|
|
if (mci == NULL)
|
|
return NULL;
|
|
|
|
/* Adjust pointers so they point within the memory we just allocated
|
|
* rather than an imaginary chunk of memory located at address 0.
|
|
*/
|
|
layer = (struct edac_mc_layer *)(((char *)mci) + ((unsigned long)layer));
|
|
for (i = 0; i < n_layers; i++) {
|
|
mci->ce_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ce_per_layer[i]));
|
|
mci->ue_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ue_per_layer[i]));
|
|
}
|
|
pvt = sz_pvt ? (((char *)mci) + ((unsigned long)pvt)) : NULL;
|
|
|
|
/* setup index and various internal pointers */
|
|
mci->mc_idx = mc_num;
|
|
mci->tot_dimms = tot_dimms;
|
|
mci->pvt_info = pvt;
|
|
mci->n_layers = n_layers;
|
|
mci->layers = layer;
|
|
memcpy(mci->layers, layers, sizeof(*layer) * n_layers);
|
|
mci->nr_csrows = tot_csrows;
|
|
mci->num_cschannel = tot_channels;
|
|
mci->csbased = per_rank;
|
|
|
|
/*
|
|
* Alocate and fill the csrow/channels structs
|
|
*/
|
|
mci->csrows = kcalloc(tot_csrows, sizeof(*mci->csrows), GFP_KERNEL);
|
|
if (!mci->csrows)
|
|
goto error;
|
|
for (row = 0; row < tot_csrows; row++) {
|
|
csr = kzalloc(sizeof(**mci->csrows), GFP_KERNEL);
|
|
if (!csr)
|
|
goto error;
|
|
mci->csrows[row] = csr;
|
|
csr->csrow_idx = row;
|
|
csr->mci = mci;
|
|
csr->nr_channels = tot_channels;
|
|
csr->channels = kcalloc(tot_channels, sizeof(*csr->channels),
|
|
GFP_KERNEL);
|
|
if (!csr->channels)
|
|
goto error;
|
|
|
|
for (chn = 0; chn < tot_channels; chn++) {
|
|
chan = kzalloc(sizeof(**csr->channels), GFP_KERNEL);
|
|
if (!chan)
|
|
goto error;
|
|
csr->channels[chn] = chan;
|
|
chan->chan_idx = chn;
|
|
chan->csrow = csr;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Allocate and fill the dimm structs
|
|
*/
|
|
mci->dimms = kcalloc(tot_dimms, sizeof(*mci->dimms), GFP_KERNEL);
|
|
if (!mci->dimms)
|
|
goto error;
|
|
|
|
memset(&pos, 0, sizeof(pos));
|
|
row = 0;
|
|
chn = 0;
|
|
for (i = 0; i < tot_dimms; i++) {
|
|
chan = mci->csrows[row]->channels[chn];
|
|
off = EDAC_DIMM_OFF(layer, n_layers, pos[0], pos[1], pos[2]);
|
|
if (off < 0 || off >= tot_dimms) {
|
|
edac_mc_printk(mci, KERN_ERR, "EDAC core bug: EDAC_DIMM_OFF is trying to do an illegal data access\n");
|
|
goto error;
|
|
}
|
|
|
|
dimm = kzalloc(sizeof(**mci->dimms), GFP_KERNEL);
|
|
if (!dimm)
|
|
goto error;
|
|
mci->dimms[off] = dimm;
|
|
dimm->mci = mci;
|
|
|
|
/*
|
|
* Copy DIMM location and initialize it.
|
|
*/
|
|
len = sizeof(dimm->label);
|
|
p = dimm->label;
|
|
n = snprintf(p, len, "mc#%u", mc_num);
|
|
p += n;
|
|
len -= n;
|
|
for (j = 0; j < n_layers; j++) {
|
|
n = snprintf(p, len, "%s#%u",
|
|
edac_layer_name[layers[j].type],
|
|
pos[j]);
|
|
p += n;
|
|
len -= n;
|
|
dimm->location[j] = pos[j];
|
|
|
|
if (len <= 0)
|
|
break;
|
|
}
|
|
|
|
/* Link it to the csrows old API data */
|
|
chan->dimm = dimm;
|
|
dimm->csrow = row;
|
|
dimm->cschannel = chn;
|
|
|
|
/* Increment csrow location */
|
|
if (layers[0].is_virt_csrow) {
|
|
chn++;
|
|
if (chn == tot_channels) {
|
|
chn = 0;
|
|
row++;
|
|
}
|
|
} else {
|
|
row++;
|
|
if (row == tot_csrows) {
|
|
row = 0;
|
|
chn++;
|
|
}
|
|
}
|
|
|
|
/* Increment dimm location */
|
|
for (j = n_layers - 1; j >= 0; j--) {
|
|
pos[j]++;
|
|
if (pos[j] < layers[j].size)
|
|
break;
|
|
pos[j] = 0;
|
|
}
|
|
}
|
|
|
|
mci->op_state = OP_ALLOC;
|
|
|
|
return mci;
|
|
|
|
error:
|
|
_edac_mc_free(mci);
|
|
|
|
return NULL;
|
|
}
|
|
EXPORT_SYMBOL_GPL(edac_mc_alloc);
|
|
|
|
void edac_mc_free(struct mem_ctl_info *mci)
|
|
{
|
|
edac_dbg(1, "\n");
|
|
|
|
/* If we're not yet registered with sysfs free only what was allocated
|
|
* in edac_mc_alloc().
|
|
*/
|
|
if (!device_is_registered(&mci->dev)) {
|
|
_edac_mc_free(mci);
|
|
return;
|
|
}
|
|
|
|
/* the mci instance is freed here, when the sysfs object is dropped */
|
|
edac_unregister_sysfs(mci);
|
|
}
|
|
EXPORT_SYMBOL_GPL(edac_mc_free);
|
|
|
|
/* Caller must hold mem_ctls_mutex */
|
|
static struct mem_ctl_info *__find_mci_by_dev(struct device *dev)
|
|
{
|
|
struct mem_ctl_info *mci;
|
|
struct list_head *item;
|
|
|
|
edac_dbg(3, "\n");
|
|
|
|
list_for_each(item, &mc_devices) {
|
|
mci = list_entry(item, struct mem_ctl_info, link);
|
|
|
|
if (mci->pdev == dev)
|
|
return mci;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* find_mci_by_dev
|
|
*
|
|
* scan list of controllers looking for the one that manages
|
|
* the 'dev' device
|
|
* @dev: pointer to a struct device related with the MCI
|
|
*/
|
|
struct mem_ctl_info *find_mci_by_dev(struct device *dev)
|
|
{
|
|
struct mem_ctl_info *ret;
|
|
|
|
mutex_lock(&mem_ctls_mutex);
|
|
ret = __find_mci_by_dev(dev);
|
|
mutex_unlock(&mem_ctls_mutex);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(find_mci_by_dev);
|
|
|
|
/*
|
|
* handler for EDAC to check if NMI type handler has asserted interrupt
|
|
*/
|
|
static int edac_mc_assert_error_check_and_clear(void)
|
|
{
|
|
int old_state;
|
|
|
|
if (edac_op_state == EDAC_OPSTATE_POLL)
|
|
return 1;
|
|
|
|
old_state = edac_err_assert;
|
|
edac_err_assert = 0;
|
|
|
|
return old_state;
|
|
}
|
|
|
|
/*
|
|
* edac_mc_workq_function
|
|
* performs the operation scheduled by a workq request
|
|
*/
|
|
static void edac_mc_workq_function(struct work_struct *work_req)
|
|
{
|
|
struct delayed_work *d_work = to_delayed_work(work_req);
|
|
struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work);
|
|
|
|
mutex_lock(&mem_ctls_mutex);
|
|
|
|
if (mci->op_state != OP_RUNNING_POLL) {
|
|
mutex_unlock(&mem_ctls_mutex);
|
|
return;
|
|
}
|
|
|
|
if (edac_mc_assert_error_check_and_clear())
|
|
mci->edac_check(mci);
|
|
|
|
mutex_unlock(&mem_ctls_mutex);
|
|
|
|
/* Queue ourselves again. */
|
|
edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec()));
|
|
}
|
|
|
|
/*
|
|
* edac_mc_reset_delay_period(unsigned long value)
|
|
*
|
|
* user space has updated our poll period value, need to
|
|
* reset our workq delays
|
|
*/
|
|
void edac_mc_reset_delay_period(unsigned long value)
|
|
{
|
|
struct mem_ctl_info *mci;
|
|
struct list_head *item;
|
|
|
|
mutex_lock(&mem_ctls_mutex);
|
|
|
|
list_for_each(item, &mc_devices) {
|
|
mci = list_entry(item, struct mem_ctl_info, link);
|
|
|
|
if (mci->op_state == OP_RUNNING_POLL)
|
|
edac_mod_work(&mci->work, value);
|
|
}
|
|
mutex_unlock(&mem_ctls_mutex);
|
|
}
|
|
|
|
|
|
|
|
/* Return 0 on success, 1 on failure.
|
|
* Before calling this function, caller must
|
|
* assign a unique value to mci->mc_idx.
|
|
*
|
|
* locking model:
|
|
*
|
|
* called with the mem_ctls_mutex lock held
|
|
*/
|
|
static int add_mc_to_global_list(struct mem_ctl_info *mci)
|
|
{
|
|
struct list_head *item, *insert_before;
|
|
struct mem_ctl_info *p;
|
|
|
|
insert_before = &mc_devices;
|
|
|
|
p = __find_mci_by_dev(mci->pdev);
|
|
if (unlikely(p != NULL))
|
|
goto fail0;
|
|
|
|
list_for_each(item, &mc_devices) {
|
|
p = list_entry(item, struct mem_ctl_info, link);
|
|
|
|
if (p->mc_idx >= mci->mc_idx) {
|
|
if (unlikely(p->mc_idx == mci->mc_idx))
|
|
goto fail1;
|
|
|
|
insert_before = item;
|
|
break;
|
|
}
|
|
}
|
|
|
|
list_add_tail_rcu(&mci->link, insert_before);
|
|
atomic_inc(&edac_handlers);
|
|
return 0;
|
|
|
|
fail0:
|
|
edac_printk(KERN_WARNING, EDAC_MC,
|
|
"%s (%s) %s %s already assigned %d\n", dev_name(p->pdev),
|
|
edac_dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx);
|
|
return 1;
|
|
|
|
fail1:
|
|
edac_printk(KERN_WARNING, EDAC_MC,
|
|
"bug in low-level driver: attempt to assign\n"
|
|
" duplicate mc_idx %d in %s()\n", p->mc_idx, __func__);
|
|
return 1;
|
|
}
|
|
|
|
static int del_mc_from_global_list(struct mem_ctl_info *mci)
|
|
{
|
|
int handlers = atomic_dec_return(&edac_handlers);
|
|
list_del_rcu(&mci->link);
|
|
|
|
/* these are for safe removal of devices from global list while
|
|
* NMI handlers may be traversing list
|
|
*/
|
|
synchronize_rcu();
|
|
INIT_LIST_HEAD(&mci->link);
|
|
|
|
return handlers;
|
|
}
|
|
|
|
struct mem_ctl_info *edac_mc_find(int idx)
|
|
{
|
|
struct mem_ctl_info *mci = NULL;
|
|
struct list_head *item;
|
|
|
|
mutex_lock(&mem_ctls_mutex);
|
|
|
|
list_for_each(item, &mc_devices) {
|
|
mci = list_entry(item, struct mem_ctl_info, link);
|
|
|
|
if (mci->mc_idx >= idx) {
|
|
if (mci->mc_idx == idx) {
|
|
goto unlock;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
unlock:
|
|
mutex_unlock(&mem_ctls_mutex);
|
|
return mci;
|
|
}
|
|
EXPORT_SYMBOL(edac_mc_find);
|
|
|
|
|
|
/* FIXME - should a warning be printed if no error detection? correction? */
|
|
int edac_mc_add_mc_with_groups(struct mem_ctl_info *mci,
|
|
const struct attribute_group **groups)
|
|
{
|
|
int ret = -EINVAL;
|
|
edac_dbg(0, "\n");
|
|
|
|
if (mci->mc_idx >= EDAC_MAX_MCS) {
|
|
pr_warn_once("Too many memory controllers: %d\n", mci->mc_idx);
|
|
return -ENODEV;
|
|
}
|
|
|
|
#ifdef CONFIG_EDAC_DEBUG
|
|
if (edac_debug_level >= 3)
|
|
edac_mc_dump_mci(mci);
|
|
|
|
if (edac_debug_level >= 4) {
|
|
int i;
|
|
|
|
for (i = 0; i < mci->nr_csrows; i++) {
|
|
struct csrow_info *csrow = mci->csrows[i];
|
|
u32 nr_pages = 0;
|
|
int j;
|
|
|
|
for (j = 0; j < csrow->nr_channels; j++)
|
|
nr_pages += csrow->channels[j]->dimm->nr_pages;
|
|
if (!nr_pages)
|
|
continue;
|
|
edac_mc_dump_csrow(csrow);
|
|
for (j = 0; j < csrow->nr_channels; j++)
|
|
if (csrow->channels[j]->dimm->nr_pages)
|
|
edac_mc_dump_channel(csrow->channels[j]);
|
|
}
|
|
for (i = 0; i < mci->tot_dimms; i++)
|
|
if (mci->dimms[i]->nr_pages)
|
|
edac_mc_dump_dimm(mci->dimms[i], i);
|
|
}
|
|
#endif
|
|
mutex_lock(&mem_ctls_mutex);
|
|
|
|
if (edac_mc_owner && edac_mc_owner != mci->mod_name) {
|
|
ret = -EPERM;
|
|
goto fail0;
|
|
}
|
|
|
|
if (add_mc_to_global_list(mci))
|
|
goto fail0;
|
|
|
|
/* set load time so that error rate can be tracked */
|
|
mci->start_time = jiffies;
|
|
|
|
mci->bus = &mc_bus[mci->mc_idx];
|
|
|
|
if (edac_create_sysfs_mci_device(mci, groups)) {
|
|
edac_mc_printk(mci, KERN_WARNING,
|
|
"failed to create sysfs device\n");
|
|
goto fail1;
|
|
}
|
|
|
|
if (mci->edac_check) {
|
|
mci->op_state = OP_RUNNING_POLL;
|
|
|
|
INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function);
|
|
edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec()));
|
|
|
|
} else {
|
|
mci->op_state = OP_RUNNING_INTERRUPT;
|
|
}
|
|
|
|
/* Report action taken */
|
|
edac_mc_printk(mci, KERN_INFO,
|
|
"Giving out device to module %s controller %s: DEV %s (%s)\n",
|
|
mci->mod_name, mci->ctl_name, mci->dev_name,
|
|
edac_op_state_to_string(mci->op_state));
|
|
|
|
edac_mc_owner = mci->mod_name;
|
|
|
|
mutex_unlock(&mem_ctls_mutex);
|
|
return 0;
|
|
|
|
fail1:
|
|
del_mc_from_global_list(mci);
|
|
|
|
fail0:
|
|
mutex_unlock(&mem_ctls_mutex);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(edac_mc_add_mc_with_groups);
|
|
|
|
struct mem_ctl_info *edac_mc_del_mc(struct device *dev)
|
|
{
|
|
struct mem_ctl_info *mci;
|
|
|
|
edac_dbg(0, "\n");
|
|
|
|
mutex_lock(&mem_ctls_mutex);
|
|
|
|
/* find the requested mci struct in the global list */
|
|
mci = __find_mci_by_dev(dev);
|
|
if (mci == NULL) {
|
|
mutex_unlock(&mem_ctls_mutex);
|
|
return NULL;
|
|
}
|
|
|
|
/* mark MCI offline: */
|
|
mci->op_state = OP_OFFLINE;
|
|
|
|
if (!del_mc_from_global_list(mci))
|
|
edac_mc_owner = NULL;
|
|
|
|
mutex_unlock(&mem_ctls_mutex);
|
|
|
|
if (mci->edac_check)
|
|
edac_stop_work(&mci->work);
|
|
|
|
/* remove from sysfs */
|
|
edac_remove_sysfs_mci_device(mci);
|
|
|
|
edac_printk(KERN_INFO, EDAC_MC,
|
|
"Removed device %d for %s %s: DEV %s\n", mci->mc_idx,
|
|
mci->mod_name, mci->ctl_name, edac_dev_name(mci));
|
|
|
|
return mci;
|
|
}
|
|
EXPORT_SYMBOL_GPL(edac_mc_del_mc);
|
|
|
|
static void edac_mc_scrub_block(unsigned long page, unsigned long offset,
|
|
u32 size)
|
|
{
|
|
struct page *pg;
|
|
void *virt_addr;
|
|
unsigned long flags = 0;
|
|
|
|
edac_dbg(3, "\n");
|
|
|
|
/* ECC error page was not in our memory. Ignore it. */
|
|
if (!pfn_valid(page))
|
|
return;
|
|
|
|
/* Find the actual page structure then map it and fix */
|
|
pg = pfn_to_page(page);
|
|
|
|
if (PageHighMem(pg))
|
|
local_irq_save(flags);
|
|
|
|
virt_addr = kmap_atomic(pg);
|
|
|
|
/* Perform architecture specific atomic scrub operation */
|
|
edac_atomic_scrub(virt_addr + offset, size);
|
|
|
|
/* Unmap and complete */
|
|
kunmap_atomic(virt_addr);
|
|
|
|
if (PageHighMem(pg))
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
/* FIXME - should return -1 */
|
|
int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page)
|
|
{
|
|
struct csrow_info **csrows = mci->csrows;
|
|
int row, i, j, n;
|
|
|
|
edac_dbg(1, "MC%d: 0x%lx\n", mci->mc_idx, page);
|
|
row = -1;
|
|
|
|
for (i = 0; i < mci->nr_csrows; i++) {
|
|
struct csrow_info *csrow = csrows[i];
|
|
n = 0;
|
|
for (j = 0; j < csrow->nr_channels; j++) {
|
|
struct dimm_info *dimm = csrow->channels[j]->dimm;
|
|
n += dimm->nr_pages;
|
|
}
|
|
if (n == 0)
|
|
continue;
|
|
|
|
edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n",
|
|
mci->mc_idx,
|
|
csrow->first_page, page, csrow->last_page,
|
|
csrow->page_mask);
|
|
|
|
if ((page >= csrow->first_page) &&
|
|
(page <= csrow->last_page) &&
|
|
((page & csrow->page_mask) ==
|
|
(csrow->first_page & csrow->page_mask))) {
|
|
row = i;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (row == -1)
|
|
edac_mc_printk(mci, KERN_ERR,
|
|
"could not look up page error address %lx\n",
|
|
(unsigned long)page);
|
|
|
|
return row;
|
|
}
|
|
EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page);
|
|
|
|
const char *edac_layer_name[] = {
|
|
[EDAC_MC_LAYER_BRANCH] = "branch",
|
|
[EDAC_MC_LAYER_CHANNEL] = "channel",
|
|
[EDAC_MC_LAYER_SLOT] = "slot",
|
|
[EDAC_MC_LAYER_CHIP_SELECT] = "csrow",
|
|
[EDAC_MC_LAYER_ALL_MEM] = "memory",
|
|
};
|
|
EXPORT_SYMBOL_GPL(edac_layer_name);
|
|
|
|
static void edac_inc_ce_error(struct mem_ctl_info *mci,
|
|
bool enable_per_layer_report,
|
|
const int pos[EDAC_MAX_LAYERS],
|
|
const u16 count)
|
|
{
|
|
int i, index = 0;
|
|
|
|
mci->ce_mc += count;
|
|
|
|
if (!enable_per_layer_report) {
|
|
mci->ce_noinfo_count += count;
|
|
return;
|
|
}
|
|
|
|
for (i = 0; i < mci->n_layers; i++) {
|
|
if (pos[i] < 0)
|
|
break;
|
|
index += pos[i];
|
|
mci->ce_per_layer[i][index] += count;
|
|
|
|
if (i < mci->n_layers - 1)
|
|
index *= mci->layers[i + 1].size;
|
|
}
|
|
}
|
|
|
|
static void edac_inc_ue_error(struct mem_ctl_info *mci,
|
|
bool enable_per_layer_report,
|
|
const int pos[EDAC_MAX_LAYERS],
|
|
const u16 count)
|
|
{
|
|
int i, index = 0;
|
|
|
|
mci->ue_mc += count;
|
|
|
|
if (!enable_per_layer_report) {
|
|
mci->ue_noinfo_count += count;
|
|
return;
|
|
}
|
|
|
|
for (i = 0; i < mci->n_layers; i++) {
|
|
if (pos[i] < 0)
|
|
break;
|
|
index += pos[i];
|
|
mci->ue_per_layer[i][index] += count;
|
|
|
|
if (i < mci->n_layers - 1)
|
|
index *= mci->layers[i + 1].size;
|
|
}
|
|
}
|
|
|
|
static void edac_ce_error(struct mem_ctl_info *mci,
|
|
const u16 error_count,
|
|
const int pos[EDAC_MAX_LAYERS],
|
|
const char *msg,
|
|
const char *location,
|
|
const char *label,
|
|
const char *detail,
|
|
const char *other_detail,
|
|
const bool enable_per_layer_report,
|
|
const unsigned long page_frame_number,
|
|
const unsigned long offset_in_page,
|
|
long grain)
|
|
{
|
|
unsigned long remapped_page;
|
|
char *msg_aux = "";
|
|
|
|
if (*msg)
|
|
msg_aux = " ";
|
|
|
|
if (edac_mc_get_log_ce()) {
|
|
if (other_detail && *other_detail)
|
|
edac_mc_printk(mci, KERN_WARNING,
|
|
"%d CE %s%son %s (%s %s - %s)\n",
|
|
error_count, msg, msg_aux, label,
|
|
location, detail, other_detail);
|
|
else
|
|
edac_mc_printk(mci, KERN_WARNING,
|
|
"%d CE %s%son %s (%s %s)\n",
|
|
error_count, msg, msg_aux, label,
|
|
location, detail);
|
|
}
|
|
edac_inc_ce_error(mci, enable_per_layer_report, pos, error_count);
|
|
|
|
if (mci->scrub_mode == SCRUB_SW_SRC) {
|
|
/*
|
|
* Some memory controllers (called MCs below) can remap
|
|
* memory so that it is still available at a different
|
|
* address when PCI devices map into memory.
|
|
* MC's that can't do this, lose the memory where PCI
|
|
* devices are mapped. This mapping is MC-dependent
|
|
* and so we call back into the MC driver for it to
|
|
* map the MC page to a physical (CPU) page which can
|
|
* then be mapped to a virtual page - which can then
|
|
* be scrubbed.
|
|
*/
|
|
remapped_page = mci->ctl_page_to_phys ?
|
|
mci->ctl_page_to_phys(mci, page_frame_number) :
|
|
page_frame_number;
|
|
|
|
edac_mc_scrub_block(remapped_page,
|
|
offset_in_page, grain);
|
|
}
|
|
}
|
|
|
|
static void edac_ue_error(struct mem_ctl_info *mci,
|
|
const u16 error_count,
|
|
const int pos[EDAC_MAX_LAYERS],
|
|
const char *msg,
|
|
const char *location,
|
|
const char *label,
|
|
const char *detail,
|
|
const char *other_detail,
|
|
const bool enable_per_layer_report)
|
|
{
|
|
char *msg_aux = "";
|
|
|
|
if (*msg)
|
|
msg_aux = " ";
|
|
|
|
if (edac_mc_get_log_ue()) {
|
|
if (other_detail && *other_detail)
|
|
edac_mc_printk(mci, KERN_WARNING,
|
|
"%d UE %s%son %s (%s %s - %s)\n",
|
|
error_count, msg, msg_aux, label,
|
|
location, detail, other_detail);
|
|
else
|
|
edac_mc_printk(mci, KERN_WARNING,
|
|
"%d UE %s%son %s (%s %s)\n",
|
|
error_count, msg, msg_aux, label,
|
|
location, detail);
|
|
}
|
|
|
|
if (edac_mc_get_panic_on_ue()) {
|
|
if (other_detail && *other_detail)
|
|
panic("UE %s%son %s (%s%s - %s)\n",
|
|
msg, msg_aux, label, location, detail, other_detail);
|
|
else
|
|
panic("UE %s%son %s (%s%s)\n",
|
|
msg, msg_aux, label, location, detail);
|
|
}
|
|
|
|
edac_inc_ue_error(mci, enable_per_layer_report, pos, error_count);
|
|
}
|
|
|
|
void edac_raw_mc_handle_error(const enum hw_event_mc_err_type type,
|
|
struct mem_ctl_info *mci,
|
|
struct edac_raw_error_desc *e)
|
|
{
|
|
char detail[80];
|
|
int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer };
|
|
|
|
/* Memory type dependent details about the error */
|
|
if (type == HW_EVENT_ERR_CORRECTED) {
|
|
snprintf(detail, sizeof(detail),
|
|
"page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx",
|
|
e->page_frame_number, e->offset_in_page,
|
|
e->grain, e->syndrome);
|
|
edac_ce_error(mci, e->error_count, pos, e->msg, e->location, e->label,
|
|
detail, e->other_detail, e->enable_per_layer_report,
|
|
e->page_frame_number, e->offset_in_page, e->grain);
|
|
} else {
|
|
snprintf(detail, sizeof(detail),
|
|
"page:0x%lx offset:0x%lx grain:%ld",
|
|
e->page_frame_number, e->offset_in_page, e->grain);
|
|
|
|
edac_ue_error(mci, e->error_count, pos, e->msg, e->location, e->label,
|
|
detail, e->other_detail, e->enable_per_layer_report);
|
|
}
|
|
|
|
|
|
}
|
|
EXPORT_SYMBOL_GPL(edac_raw_mc_handle_error);
|
|
|
|
void edac_mc_handle_error(const enum hw_event_mc_err_type type,
|
|
struct mem_ctl_info *mci,
|
|
const u16 error_count,
|
|
const unsigned long page_frame_number,
|
|
const unsigned long offset_in_page,
|
|
const unsigned long syndrome,
|
|
const int top_layer,
|
|
const int mid_layer,
|
|
const int low_layer,
|
|
const char *msg,
|
|
const char *other_detail)
|
|
{
|
|
char *p;
|
|
int row = -1, chan = -1;
|
|
int pos[EDAC_MAX_LAYERS] = { top_layer, mid_layer, low_layer };
|
|
int i, n_labels = 0;
|
|
u8 grain_bits;
|
|
struct edac_raw_error_desc *e = &mci->error_desc;
|
|
|
|
edac_dbg(3, "MC%d\n", mci->mc_idx);
|
|
|
|
/* Fills the error report buffer */
|
|
memset(e, 0, sizeof (*e));
|
|
e->error_count = error_count;
|
|
e->top_layer = top_layer;
|
|
e->mid_layer = mid_layer;
|
|
e->low_layer = low_layer;
|
|
e->page_frame_number = page_frame_number;
|
|
e->offset_in_page = offset_in_page;
|
|
e->syndrome = syndrome;
|
|
e->msg = msg;
|
|
e->other_detail = other_detail;
|
|
|
|
/*
|
|
* Check if the event report is consistent and if the memory
|
|
* location is known. If it is known, enable_per_layer_report will be
|
|
* true, the DIMM(s) label info will be filled and the per-layer
|
|
* error counters will be incremented.
|
|
*/
|
|
for (i = 0; i < mci->n_layers; i++) {
|
|
if (pos[i] >= (int)mci->layers[i].size) {
|
|
|
|
edac_mc_printk(mci, KERN_ERR,
|
|
"INTERNAL ERROR: %s value is out of range (%d >= %d)\n",
|
|
edac_layer_name[mci->layers[i].type],
|
|
pos[i], mci->layers[i].size);
|
|
/*
|
|
* Instead of just returning it, let's use what's
|
|
* known about the error. The increment routines and
|
|
* the DIMM filter logic will do the right thing by
|
|
* pointing the likely damaged DIMMs.
|
|
*/
|
|
pos[i] = -1;
|
|
}
|
|
if (pos[i] >= 0)
|
|
e->enable_per_layer_report = true;
|
|
}
|
|
|
|
/*
|
|
* Get the dimm label/grain that applies to the match criteria.
|
|
* As the error algorithm may not be able to point to just one memory
|
|
* stick, the logic here will get all possible labels that could
|
|
* pottentially be affected by the error.
|
|
* On FB-DIMM memory controllers, for uncorrected errors, it is common
|
|
* to have only the MC channel and the MC dimm (also called "branch")
|
|
* but the channel is not known, as the memory is arranged in pairs,
|
|
* where each memory belongs to a separate channel within the same
|
|
* branch.
|
|
*/
|
|
p = e->label;
|
|
*p = '\0';
|
|
|
|
for (i = 0; i < mci->tot_dimms; i++) {
|
|
struct dimm_info *dimm = mci->dimms[i];
|
|
|
|
if (top_layer >= 0 && top_layer != dimm->location[0])
|
|
continue;
|
|
if (mid_layer >= 0 && mid_layer != dimm->location[1])
|
|
continue;
|
|
if (low_layer >= 0 && low_layer != dimm->location[2])
|
|
continue;
|
|
|
|
/* get the max grain, over the error match range */
|
|
if (dimm->grain > e->grain)
|
|
e->grain = dimm->grain;
|
|
|
|
/*
|
|
* If the error is memory-controller wide, there's no need to
|
|
* seek for the affected DIMMs because the whole
|
|
* channel/memory controller/... may be affected.
|
|
* Also, don't show errors for empty DIMM slots.
|
|
*/
|
|
if (e->enable_per_layer_report && dimm->nr_pages) {
|
|
if (n_labels >= EDAC_MAX_LABELS) {
|
|
e->enable_per_layer_report = false;
|
|
break;
|
|
}
|
|
n_labels++;
|
|
if (p != e->label) {
|
|
strcpy(p, OTHER_LABEL);
|
|
p += strlen(OTHER_LABEL);
|
|
}
|
|
strcpy(p, dimm->label);
|
|
p += strlen(p);
|
|
*p = '\0';
|
|
|
|
/*
|
|
* get csrow/channel of the DIMM, in order to allow
|
|
* incrementing the compat API counters
|
|
*/
|
|
edac_dbg(4, "%s csrows map: (%d,%d)\n",
|
|
mci->csbased ? "rank" : "dimm",
|
|
dimm->csrow, dimm->cschannel);
|
|
if (row == -1)
|
|
row = dimm->csrow;
|
|
else if (row >= 0 && row != dimm->csrow)
|
|
row = -2;
|
|
|
|
if (chan == -1)
|
|
chan = dimm->cschannel;
|
|
else if (chan >= 0 && chan != dimm->cschannel)
|
|
chan = -2;
|
|
}
|
|
}
|
|
|
|
if (!e->enable_per_layer_report) {
|
|
strcpy(e->label, "any memory");
|
|
} else {
|
|
edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row, chan);
|
|
if (p == e->label)
|
|
strcpy(e->label, "unknown memory");
|
|
if (type == HW_EVENT_ERR_CORRECTED) {
|
|
if (row >= 0) {
|
|
mci->csrows[row]->ce_count += error_count;
|
|
if (chan >= 0)
|
|
mci->csrows[row]->channels[chan]->ce_count += error_count;
|
|
}
|
|
} else
|
|
if (row >= 0)
|
|
mci->csrows[row]->ue_count += error_count;
|
|
}
|
|
|
|
/* Fill the RAM location data */
|
|
p = e->location;
|
|
|
|
for (i = 0; i < mci->n_layers; i++) {
|
|
if (pos[i] < 0)
|
|
continue;
|
|
|
|
p += sprintf(p, "%s:%d ",
|
|
edac_layer_name[mci->layers[i].type],
|
|
pos[i]);
|
|
}
|
|
if (p > e->location)
|
|
*(p - 1) = '\0';
|
|
|
|
/* Report the error via the trace interface */
|
|
grain_bits = fls_long(e->grain) + 1;
|
|
trace_mc_event(type, e->msg, e->label, e->error_count,
|
|
mci->mc_idx, e->top_layer, e->mid_layer, e->low_layer,
|
|
(e->page_frame_number << PAGE_SHIFT) | e->offset_in_page,
|
|
grain_bits, e->syndrome, e->other_detail);
|
|
|
|
edac_raw_mc_handle_error(type, mci, e);
|
|
}
|
|
EXPORT_SYMBOL_GPL(edac_mc_handle_error);
|