linux/drivers/net/wireless/iwlegacy/common.h
Stanislaw Gruszka c6af8074fd iwlegacy: add il_{stop,wake}_queues_by_reason functions
Add functions that will stop/wake all queues. Make them safe
regarding multiple calls and when some ac are stopped/woke
independently.

Tested-by: Jake Edge <jake@lwn.net>
Signed-off-by: Stanislaw Gruszka <sgruszka@redhat.com>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
2013-06-12 15:06:56 -04:00

3069 lines
88 KiB
C

/******************************************************************************
*
* Copyright(c) 2003 - 2011 Intel Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
*
* The full GNU General Public License is included in this distribution in the
* file called LICENSE.
*
* Contact Information:
* Intel Linux Wireless <ilw@linux.intel.com>
* Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
*
*****************************************************************************/
#ifndef __il_core_h__
#define __il_core_h__
#include <linux/interrupt.h>
#include <linux/pci.h> /* for struct pci_device_id */
#include <linux/kernel.h>
#include <linux/leds.h>
#include <linux/wait.h>
#include <linux/io.h>
#include <net/mac80211.h>
#include <net/ieee80211_radiotap.h>
#include "commands.h"
#include "csr.h"
#include "prph.h"
struct il_host_cmd;
struct il_cmd;
struct il_tx_queue;
#define IL_ERR(f, a...) dev_err(&il->pci_dev->dev, f, ## a)
#define IL_WARN(f, a...) dev_warn(&il->pci_dev->dev, f, ## a)
#define IL_INFO(f, a...) dev_info(&il->pci_dev->dev, f, ## a)
#define RX_QUEUE_SIZE 256
#define RX_QUEUE_MASK 255
#define RX_QUEUE_SIZE_LOG 8
/*
* RX related structures and functions
*/
#define RX_FREE_BUFFERS 64
#define RX_LOW_WATERMARK 8
#define U32_PAD(n) ((4-(n))&0x3)
/* CT-KILL constants */
#define CT_KILL_THRESHOLD_LEGACY 110 /* in Celsius */
/* Default noise level to report when noise measurement is not available.
* This may be because we're:
* 1) Not associated (4965, no beacon stats being sent to driver)
* 2) Scanning (noise measurement does not apply to associated channel)
* 3) Receiving CCK (3945 delivers noise info only for OFDM frames)
* Use default noise value of -127 ... this is below the range of measurable
* Rx dBm for either 3945 or 4965, so it can indicate "unmeasurable" to user.
* Also, -127 works better than 0 when averaging frames with/without
* noise info (e.g. averaging might be done in app); measured dBm values are
* always negative ... using a negative value as the default keeps all
* averages within an s8's (used in some apps) range of negative values. */
#define IL_NOISE_MEAS_NOT_AVAILABLE (-127)
/*
* RTS threshold here is total size [2347] minus 4 FCS bytes
* Per spec:
* a value of 0 means RTS on all data/management packets
* a value > max MSDU size means no RTS
* else RTS for data/management frames where MPDU is larger
* than RTS value.
*/
#define DEFAULT_RTS_THRESHOLD 2347U
#define MIN_RTS_THRESHOLD 0U
#define MAX_RTS_THRESHOLD 2347U
#define MAX_MSDU_SIZE 2304U
#define MAX_MPDU_SIZE 2346U
#define DEFAULT_BEACON_INTERVAL 100U
#define DEFAULT_SHORT_RETRY_LIMIT 7U
#define DEFAULT_LONG_RETRY_LIMIT 4U
struct il_rx_buf {
dma_addr_t page_dma;
struct page *page;
struct list_head list;
};
#define rxb_addr(r) page_address(r->page)
/* defined below */
struct il_device_cmd;
struct il_cmd_meta {
/* only for SYNC commands, iff the reply skb is wanted */
struct il_host_cmd *source;
/*
* only for ASYNC commands
* (which is somewhat stupid -- look at common.c for instance
* which duplicates a bunch of code because the callback isn't
* invoked for SYNC commands, if it were and its result passed
* through it would be simpler...)
*/
void (*callback) (struct il_priv *il, struct il_device_cmd *cmd,
struct il_rx_pkt *pkt);
/* The CMD_SIZE_HUGE flag bit indicates that the command
* structure is stored at the end of the shared queue memory. */
u32 flags;
DEFINE_DMA_UNMAP_ADDR(mapping);
DEFINE_DMA_UNMAP_LEN(len);
};
/*
* Generic queue structure
*
* Contains common data for Rx and Tx queues
*/
struct il_queue {
int n_bd; /* number of BDs in this queue */
int write_ptr; /* 1-st empty entry (idx) host_w */
int read_ptr; /* last used entry (idx) host_r */
/* use for monitoring and recovering the stuck queue */
dma_addr_t dma_addr; /* physical addr for BD's */
int n_win; /* safe queue win */
u32 id;
int low_mark; /* low watermark, resume queue if free
* space more than this */
int high_mark; /* high watermark, stop queue if free
* space less than this */
};
/**
* struct il_tx_queue - Tx Queue for DMA
* @q: generic Rx/Tx queue descriptor
* @bd: base of circular buffer of TFDs
* @cmd: array of command/TX buffer pointers
* @meta: array of meta data for each command/tx buffer
* @dma_addr_cmd: physical address of cmd/tx buffer array
* @skbs: array of per-TFD socket buffer pointers
* @time_stamp: time (in jiffies) of last read_ptr change
* @need_update: indicates need to update read/write idx
* @sched_retry: indicates queue is high-throughput aggregation (HT AGG) enabled
*
* A Tx queue consists of circular buffer of BDs (a.k.a. TFDs, transmit frame
* descriptors) and required locking structures.
*/
#define TFD_TX_CMD_SLOTS 256
#define TFD_CMD_SLOTS 32
struct il_tx_queue {
struct il_queue q;
void *tfds;
struct il_device_cmd **cmd;
struct il_cmd_meta *meta;
struct sk_buff **skbs;
unsigned long time_stamp;
u8 need_update;
u8 sched_retry;
u8 active;
u8 swq_id;
};
/*
* EEPROM access time values:
*
* Driver initiates EEPROM read by writing byte address << 1 to CSR_EEPROM_REG.
* Driver then polls CSR_EEPROM_REG for CSR_EEPROM_REG_READ_VALID_MSK (0x1).
* When polling, wait 10 uSec between polling loops, up to a maximum 5000 uSec.
* Driver reads 16-bit value from bits 31-16 of CSR_EEPROM_REG.
*/
#define IL_EEPROM_ACCESS_TIMEOUT 5000 /* uSec */
#define IL_EEPROM_SEM_TIMEOUT 10 /* microseconds */
#define IL_EEPROM_SEM_RETRY_LIMIT 1000 /* number of attempts (not time) */
/*
* Regulatory channel usage flags in EEPROM struct il4965_eeprom_channel.flags.
*
* IBSS and/or AP operation is allowed *only* on those channels with
* (VALID && IBSS && ACTIVE && !RADAR). This restriction is in place because
* RADAR detection is not supported by the 4965 driver, but is a
* requirement for establishing a new network for legal operation on channels
* requiring RADAR detection or restricting ACTIVE scanning.
*
* NOTE: "WIDE" flag does not indicate anything about "HT40" 40 MHz channels.
* It only indicates that 20 MHz channel use is supported; HT40 channel
* usage is indicated by a separate set of regulatory flags for each
* HT40 channel pair.
*
* NOTE: Using a channel inappropriately will result in a uCode error!
*/
#define IL_NUM_TX_CALIB_GROUPS 5
enum {
EEPROM_CHANNEL_VALID = (1 << 0), /* usable for this SKU/geo */
EEPROM_CHANNEL_IBSS = (1 << 1), /* usable as an IBSS channel */
/* Bit 2 Reserved */
EEPROM_CHANNEL_ACTIVE = (1 << 3), /* active scanning allowed */
EEPROM_CHANNEL_RADAR = (1 << 4), /* radar detection required */
EEPROM_CHANNEL_WIDE = (1 << 5), /* 20 MHz channel okay */
/* Bit 6 Reserved (was Narrow Channel) */
EEPROM_CHANNEL_DFS = (1 << 7), /* dynamic freq selection candidate */
};
/* SKU Capabilities */
/* 3945 only */
#define EEPROM_SKU_CAP_SW_RF_KILL_ENABLE (1 << 0)
#define EEPROM_SKU_CAP_HW_RF_KILL_ENABLE (1 << 1)
/* *regulatory* channel data format in eeprom, one for each channel.
* There are separate entries for HT40 (40 MHz) vs. normal (20 MHz) channels. */
struct il_eeprom_channel {
u8 flags; /* EEPROM_CHANNEL_* flags copied from EEPROM */
s8 max_power_avg; /* max power (dBm) on this chnl, limit 31 */
} __packed;
/* 3945 Specific */
#define EEPROM_3945_EEPROM_VERSION (0x2f)
/* 4965 has two radio transmitters (and 3 radio receivers) */
#define EEPROM_TX_POWER_TX_CHAINS (2)
/* 4965 has room for up to 8 sets of txpower calibration data */
#define EEPROM_TX_POWER_BANDS (8)
/* 4965 factory calibration measures txpower gain settings for
* each of 3 target output levels */
#define EEPROM_TX_POWER_MEASUREMENTS (3)
/* 4965 Specific */
/* 4965 driver does not work with txpower calibration version < 5 */
#define EEPROM_4965_TX_POWER_VERSION (5)
#define EEPROM_4965_EEPROM_VERSION (0x2f)
#define EEPROM_4965_CALIB_VERSION_OFFSET (2*0xB6) /* 2 bytes */
#define EEPROM_4965_CALIB_TXPOWER_OFFSET (2*0xE8) /* 48 bytes */
#define EEPROM_4965_BOARD_REVISION (2*0x4F) /* 2 bytes */
#define EEPROM_4965_BOARD_PBA (2*0x56+1) /* 9 bytes */
/* 2.4 GHz */
extern const u8 il_eeprom_band_1[14];
/*
* factory calibration data for one txpower level, on one channel,
* measured on one of the 2 tx chains (radio transmitter and associated
* antenna). EEPROM contains:
*
* 1) Temperature (degrees Celsius) of device when measurement was made.
*
* 2) Gain table idx used to achieve the target measurement power.
* This refers to the "well-known" gain tables (see 4965.h).
*
* 3) Actual measured output power, in half-dBm ("34" = 17 dBm).
*
* 4) RF power amplifier detector level measurement (not used).
*/
struct il_eeprom_calib_measure {
u8 temperature; /* Device temperature (Celsius) */
u8 gain_idx; /* Index into gain table */
u8 actual_pow; /* Measured RF output power, half-dBm */
s8 pa_det; /* Power amp detector level (not used) */
} __packed;
/*
* measurement set for one channel. EEPROM contains:
*
* 1) Channel number measured
*
* 2) Measurements for each of 3 power levels for each of 2 radio transmitters
* (a.k.a. "tx chains") (6 measurements altogether)
*/
struct il_eeprom_calib_ch_info {
u8 ch_num;
struct il_eeprom_calib_measure
measurements[EEPROM_TX_POWER_TX_CHAINS]
[EEPROM_TX_POWER_MEASUREMENTS];
} __packed;
/*
* txpower subband info.
*
* For each frequency subband, EEPROM contains the following:
*
* 1) First and last channels within range of the subband. "0" values
* indicate that this sample set is not being used.
*
* 2) Sample measurement sets for 2 channels close to the range endpoints.
*/
struct il_eeprom_calib_subband_info {
u8 ch_from; /* channel number of lowest channel in subband */
u8 ch_to; /* channel number of highest channel in subband */
struct il_eeprom_calib_ch_info ch1;
struct il_eeprom_calib_ch_info ch2;
} __packed;
/*
* txpower calibration info. EEPROM contains:
*
* 1) Factory-measured saturation power levels (maximum levels at which
* tx power amplifier can output a signal without too much distortion).
* There is one level for 2.4 GHz band and one for 5 GHz band. These
* values apply to all channels within each of the bands.
*
* 2) Factory-measured power supply voltage level. This is assumed to be
* constant (i.e. same value applies to all channels/bands) while the
* factory measurements are being made.
*
* 3) Up to 8 sets of factory-measured txpower calibration values.
* These are for different frequency ranges, since txpower gain
* characteristics of the analog radio circuitry vary with frequency.
*
* Not all sets need to be filled with data;
* struct il_eeprom_calib_subband_info contains range of channels
* (0 if unused) for each set of data.
*/
struct il_eeprom_calib_info {
u8 saturation_power24; /* half-dBm (e.g. "34" = 17 dBm) */
u8 saturation_power52; /* half-dBm */
__le16 voltage; /* signed */
struct il_eeprom_calib_subband_info band_info[EEPROM_TX_POWER_BANDS];
} __packed;
/* General */
#define EEPROM_DEVICE_ID (2*0x08) /* 2 bytes */
#define EEPROM_MAC_ADDRESS (2*0x15) /* 6 bytes */
#define EEPROM_BOARD_REVISION (2*0x35) /* 2 bytes */
#define EEPROM_BOARD_PBA_NUMBER (2*0x3B+1) /* 9 bytes */
#define EEPROM_VERSION (2*0x44) /* 2 bytes */
#define EEPROM_SKU_CAP (2*0x45) /* 2 bytes */
#define EEPROM_OEM_MODE (2*0x46) /* 2 bytes */
#define EEPROM_WOWLAN_MODE (2*0x47) /* 2 bytes */
#define EEPROM_RADIO_CONFIG (2*0x48) /* 2 bytes */
#define EEPROM_NUM_MAC_ADDRESS (2*0x4C) /* 2 bytes */
/* The following masks are to be applied on EEPROM_RADIO_CONFIG */
#define EEPROM_RF_CFG_TYPE_MSK(x) (x & 0x3) /* bits 0-1 */
#define EEPROM_RF_CFG_STEP_MSK(x) ((x >> 2) & 0x3) /* bits 2-3 */
#define EEPROM_RF_CFG_DASH_MSK(x) ((x >> 4) & 0x3) /* bits 4-5 */
#define EEPROM_RF_CFG_PNUM_MSK(x) ((x >> 6) & 0x3) /* bits 6-7 */
#define EEPROM_RF_CFG_TX_ANT_MSK(x) ((x >> 8) & 0xF) /* bits 8-11 */
#define EEPROM_RF_CFG_RX_ANT_MSK(x) ((x >> 12) & 0xF) /* bits 12-15 */
#define EEPROM_3945_RF_CFG_TYPE_MAX 0x0
#define EEPROM_4965_RF_CFG_TYPE_MAX 0x1
/*
* Per-channel regulatory data.
*
* Each channel that *might* be supported by iwl has a fixed location
* in EEPROM containing EEPROM_CHANNEL_* usage flags (LSB) and max regulatory
* txpower (MSB).
*
* Entries immediately below are for 20 MHz channel width. HT40 (40 MHz)
* channels (only for 4965, not supported by 3945) appear later in the EEPROM.
*
* 2.4 GHz channels 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
*/
#define EEPROM_REGULATORY_SKU_ID (2*0x60) /* 4 bytes */
#define EEPROM_REGULATORY_BAND_1 (2*0x62) /* 2 bytes */
#define EEPROM_REGULATORY_BAND_1_CHANNELS (2*0x63) /* 28 bytes */
/*
* 4.9 GHz channels 183, 184, 185, 187, 188, 189, 192, 196,
* 5.0 GHz channels 7, 8, 11, 12, 16
* (4915-5080MHz) (none of these is ever supported)
*/
#define EEPROM_REGULATORY_BAND_2 (2*0x71) /* 2 bytes */
#define EEPROM_REGULATORY_BAND_2_CHANNELS (2*0x72) /* 26 bytes */
/*
* 5.2 GHz channels 34, 36, 38, 40, 42, 44, 46, 48, 52, 56, 60, 64
* (5170-5320MHz)
*/
#define EEPROM_REGULATORY_BAND_3 (2*0x7F) /* 2 bytes */
#define EEPROM_REGULATORY_BAND_3_CHANNELS (2*0x80) /* 24 bytes */
/*
* 5.5 GHz channels 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140
* (5500-5700MHz)
*/
#define EEPROM_REGULATORY_BAND_4 (2*0x8C) /* 2 bytes */
#define EEPROM_REGULATORY_BAND_4_CHANNELS (2*0x8D) /* 22 bytes */
/*
* 5.7 GHz channels 145, 149, 153, 157, 161, 165
* (5725-5825MHz)
*/
#define EEPROM_REGULATORY_BAND_5 (2*0x98) /* 2 bytes */
#define EEPROM_REGULATORY_BAND_5_CHANNELS (2*0x99) /* 12 bytes */
/*
* 2.4 GHz HT40 channels 1 (5), 2 (6), 3 (7), 4 (8), 5 (9), 6 (10), 7 (11)
*
* The channel listed is the center of the lower 20 MHz half of the channel.
* The overall center frequency is actually 2 channels (10 MHz) above that,
* and the upper half of each HT40 channel is centered 4 channels (20 MHz) away
* from the lower half; e.g. the upper half of HT40 channel 1 is channel 5,
* and the overall HT40 channel width centers on channel 3.
*
* NOTE: The RXON command uses 20 MHz channel numbers to specify the
* control channel to which to tune. RXON also specifies whether the
* control channel is the upper or lower half of a HT40 channel.
*
* NOTE: 4965 does not support HT40 channels on 2.4 GHz.
*/
#define EEPROM_4965_REGULATORY_BAND_24_HT40_CHANNELS (2*0xA0) /* 14 bytes */
/*
* 5.2 GHz HT40 channels 36 (40), 44 (48), 52 (56), 60 (64),
* 100 (104), 108 (112), 116 (120), 124 (128), 132 (136), 149 (153), 157 (161)
*/
#define EEPROM_4965_REGULATORY_BAND_52_HT40_CHANNELS (2*0xA8) /* 22 bytes */
#define EEPROM_REGULATORY_BAND_NO_HT40 (0)
int il_eeprom_init(struct il_priv *il);
void il_eeprom_free(struct il_priv *il);
const u8 *il_eeprom_query_addr(const struct il_priv *il, size_t offset);
u16 il_eeprom_query16(const struct il_priv *il, size_t offset);
int il_init_channel_map(struct il_priv *il);
void il_free_channel_map(struct il_priv *il);
const struct il_channel_info *il_get_channel_info(const struct il_priv *il,
enum ieee80211_band band,
u16 channel);
#define IL_NUM_SCAN_RATES (2)
struct il4965_channel_tgd_info {
u8 type;
s8 max_power;
};
struct il4965_channel_tgh_info {
s64 last_radar_time;
};
#define IL4965_MAX_RATE (33)
struct il3945_clip_group {
/* maximum power level to prevent clipping for each rate, derived by
* us from this band's saturation power in EEPROM */
const s8 clip_powers[IL_MAX_RATES];
};
/* current Tx power values to use, one for each rate for each channel.
* requested power is limited by:
* -- regulatory EEPROM limits for this channel
* -- hardware capabilities (clip-powers)
* -- spectrum management
* -- user preference (e.g. iwconfig)
* when requested power is set, base power idx must also be set. */
struct il3945_channel_power_info {
struct il3945_tx_power tpc; /* actual radio and DSP gain settings */
s8 power_table_idx; /* actual (compenst'd) idx into gain table */
s8 base_power_idx; /* gain idx for power at factory temp. */
s8 requested_power; /* power (dBm) requested for this chnl/rate */
};
/* current scan Tx power values to use, one for each scan rate for each
* channel. */
struct il3945_scan_power_info {
struct il3945_tx_power tpc; /* actual radio and DSP gain settings */
s8 power_table_idx; /* actual (compenst'd) idx into gain table */
s8 requested_power; /* scan pwr (dBm) requested for chnl/rate */
};
/*
* One for each channel, holds all channel setup data
* Some of the fields (e.g. eeprom and flags/max_power_avg) are redundant
* with one another!
*/
struct il_channel_info {
struct il4965_channel_tgd_info tgd;
struct il4965_channel_tgh_info tgh;
struct il_eeprom_channel eeprom; /* EEPROM regulatory limit */
struct il_eeprom_channel ht40_eeprom; /* EEPROM regulatory limit for
* HT40 channel */
u8 channel; /* channel number */
u8 flags; /* flags copied from EEPROM */
s8 max_power_avg; /* (dBm) regul. eeprom, normal Tx, any rate */
s8 curr_txpow; /* (dBm) regulatory/spectrum/user (not h/w) limit */
s8 min_power; /* always 0 */
s8 scan_power; /* (dBm) regul. eeprom, direct scans, any rate */
u8 group_idx; /* 0-4, maps channel to group1/2/3/4/5 */
u8 band_idx; /* 0-4, maps channel to band1/2/3/4/5 */
enum ieee80211_band band;
/* HT40 channel info */
s8 ht40_max_power_avg; /* (dBm) regul. eeprom, normal Tx, any rate */
u8 ht40_flags; /* flags copied from EEPROM */
u8 ht40_extension_channel; /* HT_IE_EXT_CHANNEL_* */
/* Radio/DSP gain settings for each "normal" data Tx rate.
* These include, in addition to RF and DSP gain, a few fields for
* remembering/modifying gain settings (idxes). */
struct il3945_channel_power_info power_info[IL4965_MAX_RATE];
/* Radio/DSP gain settings for each scan rate, for directed scans. */
struct il3945_scan_power_info scan_pwr_info[IL_NUM_SCAN_RATES];
};
#define IL_TX_FIFO_BK 0 /* shared */
#define IL_TX_FIFO_BE 1
#define IL_TX_FIFO_VI 2 /* shared */
#define IL_TX_FIFO_VO 3
#define IL_TX_FIFO_UNUSED -1
/* Minimum number of queues. MAX_NUM is defined in hw specific files.
* Set the minimum to accommodate the 4 standard TX queues, 1 command
* queue, 2 (unused) HCCA queues, and 4 HT queues (one for each AC) */
#define IL_MIN_NUM_QUEUES 10
#define IL_DEFAULT_CMD_QUEUE_NUM 4
#define IEEE80211_DATA_LEN 2304
#define IEEE80211_4ADDR_LEN 30
#define IEEE80211_HLEN (IEEE80211_4ADDR_LEN)
#define IEEE80211_FRAME_LEN (IEEE80211_DATA_LEN + IEEE80211_HLEN)
struct il_frame {
union {
struct ieee80211_hdr frame;
struct il_tx_beacon_cmd beacon;
u8 raw[IEEE80211_FRAME_LEN];
u8 cmd[360];
} u;
struct list_head list;
};
enum {
CMD_SYNC = 0,
CMD_SIZE_NORMAL = 0,
CMD_NO_SKB = 0,
CMD_SIZE_HUGE = (1 << 0),
CMD_ASYNC = (1 << 1),
CMD_WANT_SKB = (1 << 2),
CMD_MAPPED = (1 << 3),
};
#define DEF_CMD_PAYLOAD_SIZE 320
/**
* struct il_device_cmd
*
* For allocation of the command and tx queues, this establishes the overall
* size of the largest command we send to uCode, except for a scan command
* (which is relatively huge; space is allocated separately).
*/
struct il_device_cmd {
struct il_cmd_header hdr; /* uCode API */
union {
u32 flags;
u8 val8;
u16 val16;
u32 val32;
struct il_tx_cmd tx;
u8 payload[DEF_CMD_PAYLOAD_SIZE];
} __packed cmd;
} __packed;
#define TFD_MAX_PAYLOAD_SIZE (sizeof(struct il_device_cmd))
struct il_host_cmd {
const void *data;
unsigned long reply_page;
void (*callback) (struct il_priv *il, struct il_device_cmd *cmd,
struct il_rx_pkt *pkt);
u32 flags;
u16 len;
u8 id;
};
#define SUP_RATE_11A_MAX_NUM_CHANNELS 8
#define SUP_RATE_11B_MAX_NUM_CHANNELS 4
#define SUP_RATE_11G_MAX_NUM_CHANNELS 12
/**
* struct il_rx_queue - Rx queue
* @bd: driver's pointer to buffer of receive buffer descriptors (rbd)
* @bd_dma: bus address of buffer of receive buffer descriptors (rbd)
* @read: Shared idx to newest available Rx buffer
* @write: Shared idx to oldest written Rx packet
* @free_count: Number of pre-allocated buffers in rx_free
* @rx_free: list of free SKBs for use
* @rx_used: List of Rx buffers with no SKB
* @need_update: flag to indicate we need to update read/write idx
* @rb_stts: driver's pointer to receive buffer status
* @rb_stts_dma: bus address of receive buffer status
*
* NOTE: rx_free and rx_used are used as a FIFO for il_rx_bufs
*/
struct il_rx_queue {
__le32 *bd;
dma_addr_t bd_dma;
struct il_rx_buf pool[RX_QUEUE_SIZE + RX_FREE_BUFFERS];
struct il_rx_buf *queue[RX_QUEUE_SIZE];
u32 read;
u32 write;
u32 free_count;
u32 write_actual;
struct list_head rx_free;
struct list_head rx_used;
int need_update;
struct il_rb_status *rb_stts;
dma_addr_t rb_stts_dma;
spinlock_t lock;
};
#define IL_SUPPORTED_RATES_IE_LEN 8
#define MAX_TID_COUNT 9
#define IL_INVALID_RATE 0xFF
#define IL_INVALID_VALUE -1
/**
* struct il_ht_agg -- aggregation status while waiting for block-ack
* @txq_id: Tx queue used for Tx attempt
* @frame_count: # frames attempted by Tx command
* @wait_for_ba: Expect block-ack before next Tx reply
* @start_idx: Index of 1st Transmit Frame Descriptor (TFD) in Tx win
* @bitmap0: Low order bitmap, one bit for each frame pending ACK in Tx win
* @bitmap1: High order, one bit for each frame pending ACK in Tx win
* @rate_n_flags: Rate at which Tx was attempted
*
* If C_TX indicates that aggregation was attempted, driver must wait
* for block ack (N_COMPRESSED_BA). This struct stores tx reply info
* until block ack arrives.
*/
struct il_ht_agg {
u16 txq_id;
u16 frame_count;
u16 wait_for_ba;
u16 start_idx;
u64 bitmap;
u32 rate_n_flags;
#define IL_AGG_OFF 0
#define IL_AGG_ON 1
#define IL_EMPTYING_HW_QUEUE_ADDBA 2
#define IL_EMPTYING_HW_QUEUE_DELBA 3
u8 state;
};
struct il_tid_data {
u16 seq_number; /* 4965 only */
u16 tfds_in_queue;
struct il_ht_agg agg;
};
struct il_hw_key {
u32 cipher;
int keylen;
u8 keyidx;
u8 key[32];
};
union il_ht_rate_supp {
u16 rates;
struct {
u8 siso_rate;
u8 mimo_rate;
};
};
#define CFG_HT_RX_AMPDU_FACTOR_8K (0x0)
#define CFG_HT_RX_AMPDU_FACTOR_16K (0x1)
#define CFG_HT_RX_AMPDU_FACTOR_32K (0x2)
#define CFG_HT_RX_AMPDU_FACTOR_64K (0x3)
#define CFG_HT_RX_AMPDU_FACTOR_DEF CFG_HT_RX_AMPDU_FACTOR_64K
#define CFG_HT_RX_AMPDU_FACTOR_MAX CFG_HT_RX_AMPDU_FACTOR_64K
#define CFG_HT_RX_AMPDU_FACTOR_MIN CFG_HT_RX_AMPDU_FACTOR_8K
/*
* Maximal MPDU density for TX aggregation
* 4 - 2us density
* 5 - 4us density
* 6 - 8us density
* 7 - 16us density
*/
#define CFG_HT_MPDU_DENSITY_2USEC (0x4)
#define CFG_HT_MPDU_DENSITY_4USEC (0x5)
#define CFG_HT_MPDU_DENSITY_8USEC (0x6)
#define CFG_HT_MPDU_DENSITY_16USEC (0x7)
#define CFG_HT_MPDU_DENSITY_DEF CFG_HT_MPDU_DENSITY_4USEC
#define CFG_HT_MPDU_DENSITY_MAX CFG_HT_MPDU_DENSITY_16USEC
#define CFG_HT_MPDU_DENSITY_MIN (0x1)
struct il_ht_config {
bool single_chain_sufficient;
enum ieee80211_smps_mode smps; /* current smps mode */
};
/* QoS structures */
struct il_qos_info {
int qos_active;
struct il_qosparam_cmd def_qos_parm;
};
/*
* Structure should be accessed with sta_lock held. When station addition
* is in progress (IL_STA_UCODE_INPROGRESS) it is possible to access only
* the commands (il_addsta_cmd and il_link_quality_cmd) without
* sta_lock held.
*/
struct il_station_entry {
struct il_addsta_cmd sta;
struct il_tid_data tid[MAX_TID_COUNT];
u8 used;
struct il_hw_key keyinfo;
struct il_link_quality_cmd *lq;
};
struct il_station_priv_common {
u8 sta_id;
};
/**
* struct il_vif_priv - driver's ilate per-interface information
*
* When mac80211 allocates a virtual interface, it can allocate
* space for us to put data into.
*/
struct il_vif_priv {
u8 ibss_bssid_sta_id;
};
/* one for each uCode image (inst/data, boot/init/runtime) */
struct fw_desc {
void *v_addr; /* access by driver */
dma_addr_t p_addr; /* access by card's busmaster DMA */
u32 len; /* bytes */
};
/* uCode file layout */
struct il_ucode_header {
__le32 ver; /* major/minor/API/serial */
struct {
__le32 inst_size; /* bytes of runtime code */
__le32 data_size; /* bytes of runtime data */
__le32 init_size; /* bytes of init code */
__le32 init_data_size; /* bytes of init data */
__le32 boot_size; /* bytes of bootstrap code */
u8 data[0]; /* in same order as sizes */
} v1;
};
struct il4965_ibss_seq {
u8 mac[ETH_ALEN];
u16 seq_num;
u16 frag_num;
unsigned long packet_time;
struct list_head list;
};
struct il_sensitivity_ranges {
u16 min_nrg_cck;
u16 max_nrg_cck;
u16 nrg_th_cck;
u16 nrg_th_ofdm;
u16 auto_corr_min_ofdm;
u16 auto_corr_min_ofdm_mrc;
u16 auto_corr_min_ofdm_x1;
u16 auto_corr_min_ofdm_mrc_x1;
u16 auto_corr_max_ofdm;
u16 auto_corr_max_ofdm_mrc;
u16 auto_corr_max_ofdm_x1;
u16 auto_corr_max_ofdm_mrc_x1;
u16 auto_corr_max_cck;
u16 auto_corr_max_cck_mrc;
u16 auto_corr_min_cck;
u16 auto_corr_min_cck_mrc;
u16 barker_corr_th_min;
u16 barker_corr_th_min_mrc;
u16 nrg_th_cca;
};
#define KELVIN_TO_CELSIUS(x) ((x)-273)
#define CELSIUS_TO_KELVIN(x) ((x)+273)
/**
* struct il_hw_params
* @bcast_id: f/w broadcast station ID
* @max_txq_num: Max # Tx queues supported
* @dma_chnl_num: Number of Tx DMA/FIFO channels
* @scd_bc_tbls_size: size of scheduler byte count tables
* @tfd_size: TFD size
* @tx/rx_chains_num: Number of TX/RX chains
* @valid_tx/rx_ant: usable antennas
* @max_rxq_size: Max # Rx frames in Rx queue (must be power-of-2)
* @max_rxq_log: Log-base-2 of max_rxq_size
* @rx_page_order: Rx buffer page order
* @rx_wrt_ptr_reg: FH{39}_RSCSR_CHNL0_WPTR
* @max_stations:
* @ht40_channel: is 40MHz width possible in band 2.4
* BIT(IEEE80211_BAND_5GHZ) BIT(IEEE80211_BAND_5GHZ)
* @sw_crypto: 0 for hw, 1 for sw
* @max_xxx_size: for ucode uses
* @ct_kill_threshold: temperature threshold
* @beacon_time_tsf_bits: number of valid tsf bits for beacon time
* @struct il_sensitivity_ranges: range of sensitivity values
*/
struct il_hw_params {
u8 bcast_id;
u8 max_txq_num;
u8 dma_chnl_num;
u16 scd_bc_tbls_size;
u32 tfd_size;
u8 tx_chains_num;
u8 rx_chains_num;
u8 valid_tx_ant;
u8 valid_rx_ant;
u16 max_rxq_size;
u16 max_rxq_log;
u32 rx_page_order;
u32 rx_wrt_ptr_reg;
u8 max_stations;
u8 ht40_channel;
u8 max_beacon_itrvl; /* in 1024 ms */
u32 max_inst_size;
u32 max_data_size;
u32 max_bsm_size;
u32 ct_kill_threshold; /* value in hw-dependent units */
u16 beacon_time_tsf_bits;
const struct il_sensitivity_ranges *sens;
};
/******************************************************************************
*
* Functions implemented in core module which are forward declared here
* for use by iwl-[4-5].c
*
* NOTE: The implementation of these functions are not hardware specific
* which is why they are in the core module files.
*
* Naming convention --
* il_ <-- Is part of iwlwifi
* iwlXXXX_ <-- Hardware specific (implemented in iwl-XXXX.c for XXXX)
* il4965_bg_ <-- Called from work queue context
* il4965_mac_ <-- mac80211 callback
*
****************************************************************************/
extern void il4965_update_chain_flags(struct il_priv *il);
extern const u8 il_bcast_addr[ETH_ALEN];
extern int il_queue_space(const struct il_queue *q);
static inline int
il_queue_used(const struct il_queue *q, int i)
{
return q->write_ptr >= q->read_ptr ? (i >= q->read_ptr &&
i < q->write_ptr) : !(i <
q->read_ptr
&& i >=
q->
write_ptr);
}
static inline u8
il_get_cmd_idx(struct il_queue *q, u32 idx, int is_huge)
{
/*
* This is for init calibration result and scan command which
* required buffer > TFD_MAX_PAYLOAD_SIZE,
* the big buffer at end of command array
*/
if (is_huge)
return q->n_win; /* must be power of 2 */
/* Otherwise, use normal size buffers */
return idx & (q->n_win - 1);
}
struct il_dma_ptr {
dma_addr_t dma;
void *addr;
size_t size;
};
#define IL_OPERATION_MODE_AUTO 0
#define IL_OPERATION_MODE_HT_ONLY 1
#define IL_OPERATION_MODE_MIXED 2
#define IL_OPERATION_MODE_20MHZ 3
#define IL_TX_CRC_SIZE 4
#define IL_TX_DELIMITER_SIZE 4
#define TX_POWER_IL_ILLEGAL_VOLTAGE -10000
/* Sensitivity and chain noise calibration */
#define INITIALIZATION_VALUE 0xFFFF
#define IL4965_CAL_NUM_BEACONS 20
#define IL_CAL_NUM_BEACONS 16
#define MAXIMUM_ALLOWED_PATHLOSS 15
#define CHAIN_NOISE_MAX_DELTA_GAIN_CODE 3
#define MAX_FA_OFDM 50
#define MIN_FA_OFDM 5
#define MAX_FA_CCK 50
#define MIN_FA_CCK 5
#define AUTO_CORR_STEP_OFDM 1
#define AUTO_CORR_STEP_CCK 3
#define AUTO_CORR_MAX_TH_CCK 160
#define NRG_DIFF 2
#define NRG_STEP_CCK 2
#define NRG_MARGIN 8
#define MAX_NUMBER_CCK_NO_FA 100
#define AUTO_CORR_CCK_MIN_VAL_DEF (125)
#define CHAIN_A 0
#define CHAIN_B 1
#define CHAIN_C 2
#define CHAIN_NOISE_DELTA_GAIN_INIT_VAL 4
#define ALL_BAND_FILTER 0xFF00
#define IN_BAND_FILTER 0xFF
#define MIN_AVERAGE_NOISE_MAX_VALUE 0xFFFFFFFF
#define NRG_NUM_PREV_STAT_L 20
#define NUM_RX_CHAINS 3
enum il4965_false_alarm_state {
IL_FA_TOO_MANY = 0,
IL_FA_TOO_FEW = 1,
IL_FA_GOOD_RANGE = 2,
};
enum il4965_chain_noise_state {
IL_CHAIN_NOISE_ALIVE = 0, /* must be 0 */
IL_CHAIN_NOISE_ACCUMULATE,
IL_CHAIN_NOISE_CALIBRATED,
IL_CHAIN_NOISE_DONE,
};
enum ucode_type {
UCODE_NONE = 0,
UCODE_INIT,
UCODE_RT
};
/* Sensitivity calib data */
struct il_sensitivity_data {
u32 auto_corr_ofdm;
u32 auto_corr_ofdm_mrc;
u32 auto_corr_ofdm_x1;
u32 auto_corr_ofdm_mrc_x1;
u32 auto_corr_cck;
u32 auto_corr_cck_mrc;
u32 last_bad_plcp_cnt_ofdm;
u32 last_fa_cnt_ofdm;
u32 last_bad_plcp_cnt_cck;
u32 last_fa_cnt_cck;
u32 nrg_curr_state;
u32 nrg_prev_state;
u32 nrg_value[10];
u8 nrg_silence_rssi[NRG_NUM_PREV_STAT_L];
u32 nrg_silence_ref;
u32 nrg_energy_idx;
u32 nrg_silence_idx;
u32 nrg_th_cck;
s32 nrg_auto_corr_silence_diff;
u32 num_in_cck_no_fa;
u32 nrg_th_ofdm;
u16 barker_corr_th_min;
u16 barker_corr_th_min_mrc;
u16 nrg_th_cca;
};
/* Chain noise (differential Rx gain) calib data */
struct il_chain_noise_data {
u32 active_chains;
u32 chain_noise_a;
u32 chain_noise_b;
u32 chain_noise_c;
u32 chain_signal_a;
u32 chain_signal_b;
u32 chain_signal_c;
u16 beacon_count;
u8 disconn_array[NUM_RX_CHAINS];
u8 delta_gain_code[NUM_RX_CHAINS];
u8 radio_write;
u8 state;
};
#define EEPROM_SEM_TIMEOUT 10 /* milliseconds */
#define EEPROM_SEM_RETRY_LIMIT 1000 /* number of attempts (not time) */
#define IL_TRAFFIC_ENTRIES (256)
#define IL_TRAFFIC_ENTRY_SIZE (64)
enum {
MEASUREMENT_READY = (1 << 0),
MEASUREMENT_ACTIVE = (1 << 1),
};
/* interrupt stats */
struct isr_stats {
u32 hw;
u32 sw;
u32 err_code;
u32 sch;
u32 alive;
u32 rfkill;
u32 ctkill;
u32 wakeup;
u32 rx;
u32 handlers[IL_CN_MAX];
u32 tx;
u32 unhandled;
};
/* management stats */
enum il_mgmt_stats {
MANAGEMENT_ASSOC_REQ = 0,
MANAGEMENT_ASSOC_RESP,
MANAGEMENT_REASSOC_REQ,
MANAGEMENT_REASSOC_RESP,
MANAGEMENT_PROBE_REQ,
MANAGEMENT_PROBE_RESP,
MANAGEMENT_BEACON,
MANAGEMENT_ATIM,
MANAGEMENT_DISASSOC,
MANAGEMENT_AUTH,
MANAGEMENT_DEAUTH,
MANAGEMENT_ACTION,
MANAGEMENT_MAX,
};
/* control stats */
enum il_ctrl_stats {
CONTROL_BACK_REQ = 0,
CONTROL_BACK,
CONTROL_PSPOLL,
CONTROL_RTS,
CONTROL_CTS,
CONTROL_ACK,
CONTROL_CFEND,
CONTROL_CFENDACK,
CONTROL_MAX,
};
struct traffic_stats {
#ifdef CONFIG_IWLEGACY_DEBUGFS
u32 mgmt[MANAGEMENT_MAX];
u32 ctrl[CONTROL_MAX];
u32 data_cnt;
u64 data_bytes;
#endif
};
/*
* host interrupt timeout value
* used with setting interrupt coalescing timer
* the CSR_INT_COALESCING is an 8 bit register in 32-usec unit
*
* default interrupt coalescing timer is 64 x 32 = 2048 usecs
* default interrupt coalescing calibration timer is 16 x 32 = 512 usecs
*/
#define IL_HOST_INT_TIMEOUT_MAX (0xFF)
#define IL_HOST_INT_TIMEOUT_DEF (0x40)
#define IL_HOST_INT_TIMEOUT_MIN (0x0)
#define IL_HOST_INT_CALIB_TIMEOUT_MAX (0xFF)
#define IL_HOST_INT_CALIB_TIMEOUT_DEF (0x10)
#define IL_HOST_INT_CALIB_TIMEOUT_MIN (0x0)
#define IL_DELAY_NEXT_FORCE_FW_RELOAD (HZ*5)
/* TX queue watchdog timeouts in mSecs */
#define IL_DEF_WD_TIMEOUT (2000)
#define IL_LONG_WD_TIMEOUT (10000)
#define IL_MAX_WD_TIMEOUT (120000)
struct il_force_reset {
int reset_request_count;
int reset_success_count;
int reset_reject_count;
unsigned long reset_duration;
unsigned long last_force_reset_jiffies;
};
/* extend beacon time format bit shifting */
/*
* for _3945 devices
* bits 31:24 - extended
* bits 23:0 - interval
*/
#define IL3945_EXT_BEACON_TIME_POS 24
/*
* for _4965 devices
* bits 31:22 - extended
* bits 21:0 - interval
*/
#define IL4965_EXT_BEACON_TIME_POS 22
struct il_rxon_context {
struct ieee80211_vif *vif;
};
struct il_power_mgr {
struct il_powertable_cmd sleep_cmd;
struct il_powertable_cmd sleep_cmd_next;
int debug_sleep_level_override;
bool pci_pm;
};
struct il_priv {
struct ieee80211_hw *hw;
struct ieee80211_channel *ieee_channels;
struct ieee80211_rate *ieee_rates;
struct il_cfg *cfg;
const struct il_ops *ops;
#ifdef CONFIG_IWLEGACY_DEBUGFS
const struct il_debugfs_ops *debugfs_ops;
#endif
/* temporary frame storage list */
struct list_head free_frames;
int frames_count;
enum ieee80211_band band;
int alloc_rxb_page;
void (*handlers[IL_CN_MAX]) (struct il_priv *il,
struct il_rx_buf *rxb);
struct ieee80211_supported_band bands[IEEE80211_NUM_BANDS];
/* spectrum measurement report caching */
struct il_spectrum_notification measure_report;
u8 measurement_status;
/* ucode beacon time */
u32 ucode_beacon_time;
int missed_beacon_threshold;
/* track IBSS manager (last beacon) status */
u32 ibss_manager;
/* force reset */
struct il_force_reset force_reset;
/* we allocate array of il_channel_info for NIC's valid channels.
* Access via channel # using indirect idx array */
struct il_channel_info *channel_info; /* channel info array */
u8 channel_count; /* # of channels */
/* thermal calibration */
s32 temperature; /* degrees Kelvin */
s32 last_temperature;
/* Scan related variables */
unsigned long scan_start;
unsigned long scan_start_tsf;
void *scan_cmd;
enum ieee80211_band scan_band;
struct cfg80211_scan_request *scan_request;
struct ieee80211_vif *scan_vif;
u8 scan_tx_ant[IEEE80211_NUM_BANDS];
u8 mgmt_tx_ant;
/* spinlock */
spinlock_t lock; /* protect general shared data */
spinlock_t hcmd_lock; /* protect hcmd */
spinlock_t reg_lock; /* protect hw register access */
struct mutex mutex;
/* basic pci-network driver stuff */
struct pci_dev *pci_dev;
/* pci hardware address support */
void __iomem *hw_base;
u32 hw_rev;
u32 hw_wa_rev;
u8 rev_id;
/* command queue number */
u8 cmd_queue;
/* max number of station keys */
u8 sta_key_max_num;
/* EEPROM MAC addresses */
struct mac_address addresses[1];
/* uCode images, save to reload in case of failure */
int fw_idx; /* firmware we're trying to load */
u32 ucode_ver; /* version of ucode, copy of
il_ucode.ver */
struct fw_desc ucode_code; /* runtime inst */
struct fw_desc ucode_data; /* runtime data original */
struct fw_desc ucode_data_backup; /* runtime data save/restore */
struct fw_desc ucode_init; /* initialization inst */
struct fw_desc ucode_init_data; /* initialization data */
struct fw_desc ucode_boot; /* bootstrap inst */
enum ucode_type ucode_type;
u8 ucode_write_complete; /* the image write is complete */
char firmware_name[25];
struct ieee80211_vif *vif;
struct il_qos_info qos_data;
struct {
bool enabled;
bool is_40mhz;
bool non_gf_sta_present;
u8 protection;
u8 extension_chan_offset;
} ht;
/*
* We declare this const so it can only be
* changed via explicit cast within the
* routines that actually update the physical
* hardware.
*/
const struct il_rxon_cmd active;
struct il_rxon_cmd staging;
struct il_rxon_time_cmd timing;
__le16 switch_channel;
/* 1st responses from initialize and runtime uCode images.
* _4965's initialize alive response contains some calibration data. */
struct il_init_alive_resp card_alive_init;
struct il_alive_resp card_alive;
u16 active_rate;
u8 start_calib;
struct il_sensitivity_data sensitivity_data;
struct il_chain_noise_data chain_noise_data;
__le16 sensitivity_tbl[HD_TBL_SIZE];
struct il_ht_config current_ht_config;
/* Rate scaling data */
u8 retry_rate;
wait_queue_head_t wait_command_queue;
int activity_timer_active;
/* Rx and Tx DMA processing queues */
struct il_rx_queue rxq;
struct il_tx_queue *txq;
unsigned long txq_ctx_active_msk;
struct il_dma_ptr kw; /* keep warm address */
struct il_dma_ptr scd_bc_tbls;
u32 scd_base_addr; /* scheduler sram base address */
unsigned long status;
/* counts mgmt, ctl, and data packets */
struct traffic_stats tx_stats;
struct traffic_stats rx_stats;
/* counts interrupts */
struct isr_stats isr_stats;
struct il_power_mgr power_data;
/* context information */
u8 bssid[ETH_ALEN]; /* used only on 3945 but filled by core */
/* station table variables */
/* Note: if lock and sta_lock are needed, lock must be acquired first */
spinlock_t sta_lock;
int num_stations;
struct il_station_entry stations[IL_STATION_COUNT];
unsigned long ucode_key_table;
/* queue refcounts */
#define IL_MAX_HW_QUEUES 32
unsigned long queue_stopped[BITS_TO_LONGS(IL_MAX_HW_QUEUES)];
#define IL_STOP_REASON_PASSIVE 0
unsigned long stop_reason;
/* for each AC */
atomic_t queue_stop_count[4];
/* Indication if ieee80211_ops->open has been called */
u8 is_open;
u8 mac80211_registered;
/* eeprom -- this is in the card's little endian byte order */
u8 *eeprom;
struct il_eeprom_calib_info *calib_info;
enum nl80211_iftype iw_mode;
/* Last Rx'd beacon timestamp */
u64 timestamp;
union {
#if defined(CONFIG_IWL3945) || defined(CONFIG_IWL3945_MODULE)
struct {
void *shared_virt;
dma_addr_t shared_phys;
struct delayed_work thermal_periodic;
struct delayed_work rfkill_poll;
struct il3945_notif_stats stats;
#ifdef CONFIG_IWLEGACY_DEBUGFS
struct il3945_notif_stats accum_stats;
struct il3945_notif_stats delta_stats;
struct il3945_notif_stats max_delta;
#endif
u32 sta_supp_rates;
int last_rx_rssi; /* From Rx packet stats */
/* Rx'd packet timing information */
u32 last_beacon_time;
u64 last_tsf;
/*
* each calibration channel group in the
* EEPROM has a derived clip setting for
* each rate.
*/
const struct il3945_clip_group clip_groups[5];
} _3945;
#endif
#if defined(CONFIG_IWL4965) || defined(CONFIG_IWL4965_MODULE)
struct {
struct il_rx_phy_res last_phy_res;
bool last_phy_res_valid;
u32 ampdu_ref;
struct completion firmware_loading_complete;
/*
* chain noise reset and gain commands are the
* two extra calibration commands follows the standard
* phy calibration commands
*/
u8 phy_calib_chain_noise_reset_cmd;
u8 phy_calib_chain_noise_gain_cmd;
u8 key_mapping_keys;
struct il_wep_key wep_keys[WEP_KEYS_MAX];
struct il_notif_stats stats;
#ifdef CONFIG_IWLEGACY_DEBUGFS
struct il_notif_stats accum_stats;
struct il_notif_stats delta_stats;
struct il_notif_stats max_delta;
#endif
} _4965;
#endif
};
struct il_hw_params hw_params;
u32 inta_mask;
struct workqueue_struct *workqueue;
struct work_struct restart;
struct work_struct scan_completed;
struct work_struct rx_replenish;
struct work_struct abort_scan;
bool beacon_enabled;
struct sk_buff *beacon_skb;
struct work_struct tx_flush;
struct tasklet_struct irq_tasklet;
struct delayed_work init_alive_start;
struct delayed_work alive_start;
struct delayed_work scan_check;
/* TX Power */
s8 tx_power_user_lmt;
s8 tx_power_device_lmt;
s8 tx_power_next;
#ifdef CONFIG_IWLEGACY_DEBUG
/* debugging info */
u32 debug_level; /* per device debugging will override global
il_debug_level if set */
#endif /* CONFIG_IWLEGACY_DEBUG */
#ifdef CONFIG_IWLEGACY_DEBUGFS
/* debugfs */
u16 tx_traffic_idx;
u16 rx_traffic_idx;
u8 *tx_traffic;
u8 *rx_traffic;
struct dentry *debugfs_dir;
u32 dbgfs_sram_offset, dbgfs_sram_len;
bool disable_ht40;
#endif /* CONFIG_IWLEGACY_DEBUGFS */
struct work_struct txpower_work;
u32 disable_sens_cal;
u32 disable_chain_noise_cal;
u32 disable_tx_power_cal;
struct work_struct run_time_calib_work;
struct timer_list stats_periodic;
struct timer_list watchdog;
bool hw_ready;
struct led_classdev led;
unsigned long blink_on, blink_off;
bool led_registered;
}; /*il_priv */
static inline void
il_txq_ctx_activate(struct il_priv *il, int txq_id)
{
set_bit(txq_id, &il->txq_ctx_active_msk);
}
static inline void
il_txq_ctx_deactivate(struct il_priv *il, int txq_id)
{
clear_bit(txq_id, &il->txq_ctx_active_msk);
}
static inline int
il_is_associated(struct il_priv *il)
{
return (il->active.filter_flags & RXON_FILTER_ASSOC_MSK) ? 1 : 0;
}
static inline int
il_is_any_associated(struct il_priv *il)
{
return il_is_associated(il);
}
static inline int
il_is_channel_valid(const struct il_channel_info *ch_info)
{
if (ch_info == NULL)
return 0;
return (ch_info->flags & EEPROM_CHANNEL_VALID) ? 1 : 0;
}
static inline int
il_is_channel_radar(const struct il_channel_info *ch_info)
{
return (ch_info->flags & EEPROM_CHANNEL_RADAR) ? 1 : 0;
}
static inline u8
il_is_channel_a_band(const struct il_channel_info *ch_info)
{
return ch_info->band == IEEE80211_BAND_5GHZ;
}
static inline int
il_is_channel_passive(const struct il_channel_info *ch)
{
return (!(ch->flags & EEPROM_CHANNEL_ACTIVE)) ? 1 : 0;
}
static inline int
il_is_channel_ibss(const struct il_channel_info *ch)
{
return (ch->flags & EEPROM_CHANNEL_IBSS) ? 1 : 0;
}
static inline void
__il_free_pages(struct il_priv *il, struct page *page)
{
__free_pages(page, il->hw_params.rx_page_order);
il->alloc_rxb_page--;
}
static inline void
il_free_pages(struct il_priv *il, unsigned long page)
{
free_pages(page, il->hw_params.rx_page_order);
il->alloc_rxb_page--;
}
#define IWLWIFI_VERSION "in-tree:"
#define DRV_COPYRIGHT "Copyright(c) 2003-2011 Intel Corporation"
#define DRV_AUTHOR "<ilw@linux.intel.com>"
#define IL_PCI_DEVICE(dev, subdev, cfg) \
.vendor = PCI_VENDOR_ID_INTEL, .device = (dev), \
.subvendor = PCI_ANY_ID, .subdevice = (subdev), \
.driver_data = (kernel_ulong_t)&(cfg)
#define TIME_UNIT 1024
#define IL_SKU_G 0x1
#define IL_SKU_A 0x2
#define IL_SKU_N 0x8
#define IL_CMD(x) case x: return #x
/* Size of one Rx buffer in host DRAM */
#define IL_RX_BUF_SIZE_3K (3 * 1000) /* 3945 only */
#define IL_RX_BUF_SIZE_4K (4 * 1024)
#define IL_RX_BUF_SIZE_8K (8 * 1024)
#ifdef CONFIG_IWLEGACY_DEBUGFS
struct il_debugfs_ops {
ssize_t(*rx_stats_read) (struct file *file, char __user *user_buf,
size_t count, loff_t *ppos);
ssize_t(*tx_stats_read) (struct file *file, char __user *user_buf,
size_t count, loff_t *ppos);
ssize_t(*general_stats_read) (struct file *file,
char __user *user_buf, size_t count,
loff_t *ppos);
};
#endif
struct il_ops {
/* Handling TX */
void (*txq_update_byte_cnt_tbl) (struct il_priv *il,
struct il_tx_queue *txq,
u16 byte_cnt);
int (*txq_attach_buf_to_tfd) (struct il_priv *il,
struct il_tx_queue *txq, dma_addr_t addr,
u16 len, u8 reset, u8 pad);
void (*txq_free_tfd) (struct il_priv *il, struct il_tx_queue *txq);
int (*txq_init) (struct il_priv *il, struct il_tx_queue *txq);
/* alive notification after init uCode load */
void (*init_alive_start) (struct il_priv *il);
/* check validity of rtc data address */
int (*is_valid_rtc_data_addr) (u32 addr);
/* 1st ucode load */
int (*load_ucode) (struct il_priv *il);
void (*dump_nic_error_log) (struct il_priv *il);
int (*dump_fh) (struct il_priv *il, char **buf, bool display);
int (*set_channel_switch) (struct il_priv *il,
struct ieee80211_channel_switch *ch_switch);
/* power management */
int (*apm_init) (struct il_priv *il);
/* tx power */
int (*send_tx_power) (struct il_priv *il);
void (*update_chain_flags) (struct il_priv *il);
/* eeprom operations */
int (*eeprom_acquire_semaphore) (struct il_priv *il);
void (*eeprom_release_semaphore) (struct il_priv *il);
int (*rxon_assoc) (struct il_priv *il);
int (*commit_rxon) (struct il_priv *il);
void (*set_rxon_chain) (struct il_priv *il);
u16(*get_hcmd_size) (u8 cmd_id, u16 len);
u16(*build_addsta_hcmd) (const struct il_addsta_cmd *cmd, u8 *data);
int (*request_scan) (struct il_priv *il, struct ieee80211_vif *vif);
void (*post_scan) (struct il_priv *il);
void (*post_associate) (struct il_priv *il);
void (*config_ap) (struct il_priv *il);
/* station management */
int (*update_bcast_stations) (struct il_priv *il);
int (*manage_ibss_station) (struct il_priv *il,
struct ieee80211_vif *vif, bool add);
int (*send_led_cmd) (struct il_priv *il, struct il_led_cmd *led_cmd);
};
struct il_mod_params {
int sw_crypto; /* def: 0 = using hardware encryption */
int disable_hw_scan; /* def: 0 = use h/w scan */
int num_of_queues; /* def: HW dependent */
int disable_11n; /* def: 0 = 11n capabilities enabled */
int amsdu_size_8K; /* def: 1 = enable 8K amsdu size */
int antenna; /* def: 0 = both antennas (use diversity) */
int restart_fw; /* def: 1 = restart firmware */
};
#define IL_LED_SOLID 11
#define IL_DEF_LED_INTRVL cpu_to_le32(1000)
#define IL_LED_ACTIVITY (0<<1)
#define IL_LED_LINK (1<<1)
/*
* LED mode
* IL_LED_DEFAULT: use device default
* IL_LED_RF_STATE: turn LED on/off based on RF state
* LED ON = RF ON
* LED OFF = RF OFF
* IL_LED_BLINK: adjust led blink rate based on blink table
*/
enum il_led_mode {
IL_LED_DEFAULT,
IL_LED_RF_STATE,
IL_LED_BLINK,
};
void il_leds_init(struct il_priv *il);
void il_leds_exit(struct il_priv *il);
/**
* struct il_cfg
* @fw_name_pre: Firmware filename prefix. The api version and extension
* (.ucode) will be added to filename before loading from disk. The
* filename is constructed as fw_name_pre<api>.ucode.
* @ucode_api_max: Highest version of uCode API supported by driver.
* @ucode_api_min: Lowest version of uCode API supported by driver.
* @scan_antennas: available antenna for scan operation
* @led_mode: 0=blinking, 1=On(RF On)/Off(RF Off)
*
* We enable the driver to be backward compatible wrt API version. The
* driver specifies which APIs it supports (with @ucode_api_max being the
* highest and @ucode_api_min the lowest). Firmware will only be loaded if
* it has a supported API version. The firmware's API version will be
* stored in @il_priv, enabling the driver to make runtime changes based
* on firmware version used.
*
* For example,
* if (IL_UCODE_API(il->ucode_ver) >= 2) {
* Driver interacts with Firmware API version >= 2.
* } else {
* Driver interacts with Firmware API version 1.
* }
*
* The ideal usage of this infrastructure is to treat a new ucode API
* release as a new hardware revision. That is, through utilizing the
* il_hcmd_utils_ops etc. we accommodate different command structures
* and flows between hardware versions as well as their API
* versions.
*
*/
struct il_cfg {
/* params specific to an individual device within a device family */
const char *name;
const char *fw_name_pre;
const unsigned int ucode_api_max;
const unsigned int ucode_api_min;
u8 valid_tx_ant;
u8 valid_rx_ant;
unsigned int sku;
u16 eeprom_ver;
u16 eeprom_calib_ver;
/* module based parameters which can be set from modprobe cmd */
const struct il_mod_params *mod_params;
/* params not likely to change within a device family */
struct il_base_params *base_params;
/* params likely to change within a device family */
u8 scan_rx_antennas[IEEE80211_NUM_BANDS];
enum il_led_mode led_mode;
int eeprom_size;
int num_of_queues; /* def: HW dependent */
int num_of_ampdu_queues; /* def: HW dependent */
/* for il_apm_init() */
u32 pll_cfg_val;
bool set_l0s;
bool use_bsm;
u16 led_compensation;
int chain_noise_num_beacons;
unsigned int wd_timeout;
bool temperature_kelvin;
const bool ucode_tracing;
const bool sensitivity_calib_by_driver;
const bool chain_noise_calib_by_driver;
const u32 regulatory_bands[7];
};
/***************************
* L i b *
***************************/
int il_mac_conf_tx(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
u16 queue, const struct ieee80211_tx_queue_params *params);
int il_mac_tx_last_beacon(struct ieee80211_hw *hw);
void il_set_rxon_hwcrypto(struct il_priv *il, int hw_decrypt);
int il_check_rxon_cmd(struct il_priv *il);
int il_full_rxon_required(struct il_priv *il);
int il_set_rxon_channel(struct il_priv *il, struct ieee80211_channel *ch);
void il_set_flags_for_band(struct il_priv *il, enum ieee80211_band band,
struct ieee80211_vif *vif);
u8 il_get_single_channel_number(struct il_priv *il, enum ieee80211_band band);
void il_set_rxon_ht(struct il_priv *il, struct il_ht_config *ht_conf);
bool il_is_ht40_tx_allowed(struct il_priv *il,
struct ieee80211_sta_ht_cap *ht_cap);
void il_connection_init_rx_config(struct il_priv *il);
void il_set_rate(struct il_priv *il);
int il_set_decrypted_flag(struct il_priv *il, struct ieee80211_hdr *hdr,
u32 decrypt_res, struct ieee80211_rx_status *stats);
void il_irq_handle_error(struct il_priv *il);
int il_mac_add_interface(struct ieee80211_hw *hw, struct ieee80211_vif *vif);
void il_mac_remove_interface(struct ieee80211_hw *hw,
struct ieee80211_vif *vif);
int il_mac_change_interface(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
enum nl80211_iftype newtype, bool newp2p);
void il_mac_flush(struct ieee80211_hw *hw, u32 queues, bool drop);
int il_alloc_txq_mem(struct il_priv *il);
void il_free_txq_mem(struct il_priv *il);
#ifdef CONFIG_IWLEGACY_DEBUGFS
extern void il_update_stats(struct il_priv *il, bool is_tx, __le16 fc, u16 len);
#else
static inline void
il_update_stats(struct il_priv *il, bool is_tx, __le16 fc, u16 len)
{
}
#endif
/*****************************************************
* Handlers
***************************************************/
void il_hdl_pm_sleep(struct il_priv *il, struct il_rx_buf *rxb);
void il_hdl_pm_debug_stats(struct il_priv *il, struct il_rx_buf *rxb);
void il_hdl_error(struct il_priv *il, struct il_rx_buf *rxb);
void il_hdl_csa(struct il_priv *il, struct il_rx_buf *rxb);
/*****************************************************
* RX
******************************************************/
void il_cmd_queue_unmap(struct il_priv *il);
void il_cmd_queue_free(struct il_priv *il);
int il_rx_queue_alloc(struct il_priv *il);
void il_rx_queue_update_write_ptr(struct il_priv *il, struct il_rx_queue *q);
int il_rx_queue_space(const struct il_rx_queue *q);
void il_tx_cmd_complete(struct il_priv *il, struct il_rx_buf *rxb);
void il_hdl_spectrum_measurement(struct il_priv *il, struct il_rx_buf *rxb);
void il_recover_from_stats(struct il_priv *il, struct il_rx_pkt *pkt);
void il_chswitch_done(struct il_priv *il, bool is_success);
/*****************************************************
* TX
******************************************************/
extern void il_txq_update_write_ptr(struct il_priv *il, struct il_tx_queue *txq);
extern int il_tx_queue_init(struct il_priv *il, u32 txq_id);
extern void il_tx_queue_reset(struct il_priv *il, u32 txq_id);
extern void il_tx_queue_unmap(struct il_priv *il, int txq_id);
extern void il_tx_queue_free(struct il_priv *il, int txq_id);
extern void il_setup_watchdog(struct il_priv *il);
/*****************************************************
* TX power
****************************************************/
int il_set_tx_power(struct il_priv *il, s8 tx_power, bool force);
/*******************************************************************************
* Rate
******************************************************************************/
u8 il_get_lowest_plcp(struct il_priv *il);
/*******************************************************************************
* Scanning
******************************************************************************/
void il_init_scan_params(struct il_priv *il);
int il_scan_cancel(struct il_priv *il);
int il_scan_cancel_timeout(struct il_priv *il, unsigned long ms);
void il_force_scan_end(struct il_priv *il);
int il_mac_hw_scan(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
struct cfg80211_scan_request *req);
void il_internal_short_hw_scan(struct il_priv *il);
int il_force_reset(struct il_priv *il, bool external);
u16 il_fill_probe_req(struct il_priv *il, struct ieee80211_mgmt *frame,
const u8 *ta, const u8 *ie, int ie_len, int left);
void il_setup_rx_scan_handlers(struct il_priv *il);
u16 il_get_active_dwell_time(struct il_priv *il, enum ieee80211_band band,
u8 n_probes);
u16 il_get_passive_dwell_time(struct il_priv *il, enum ieee80211_band band,
struct ieee80211_vif *vif);
void il_setup_scan_deferred_work(struct il_priv *il);
void il_cancel_scan_deferred_work(struct il_priv *il);
/* For faster active scanning, scan will move to the next channel if fewer than
* PLCP_QUIET_THRESH packets are heard on this channel within
* ACTIVE_QUIET_TIME after sending probe request. This shortens the dwell
* time if it's a quiet channel (nothing responded to our probe, and there's
* no other traffic).
* Disable "quiet" feature by setting PLCP_QUIET_THRESH to 0. */
#define IL_ACTIVE_QUIET_TIME cpu_to_le16(10) /* msec */
#define IL_PLCP_QUIET_THRESH cpu_to_le16(1) /* packets */
#define IL_SCAN_CHECK_WATCHDOG (HZ * 7)
/*****************************************************
* S e n d i n g H o s t C o m m a n d s *
*****************************************************/
const char *il_get_cmd_string(u8 cmd);
int __must_check il_send_cmd_sync(struct il_priv *il, struct il_host_cmd *cmd);
int il_send_cmd(struct il_priv *il, struct il_host_cmd *cmd);
int __must_check il_send_cmd_pdu(struct il_priv *il, u8 id, u16 len,
const void *data);
int il_send_cmd_pdu_async(struct il_priv *il, u8 id, u16 len, const void *data,
void (*callback) (struct il_priv *il,
struct il_device_cmd *cmd,
struct il_rx_pkt *pkt));
int il_enqueue_hcmd(struct il_priv *il, struct il_host_cmd *cmd);
/*****************************************************
* PCI *
*****************************************************/
void il_bg_watchdog(unsigned long data);
u32 il_usecs_to_beacons(struct il_priv *il, u32 usec, u32 beacon_interval);
__le32 il_add_beacon_time(struct il_priv *il, u32 base, u32 addon,
u32 beacon_interval);
#ifdef CONFIG_PM_SLEEP
extern const struct dev_pm_ops il_pm_ops;
#define IL_LEGACY_PM_OPS (&il_pm_ops)
#else /* !CONFIG_PM_SLEEP */
#define IL_LEGACY_PM_OPS NULL
#endif /* !CONFIG_PM_SLEEP */
/*****************************************************
* Error Handling Debugging
******************************************************/
void il4965_dump_nic_error_log(struct il_priv *il);
#ifdef CONFIG_IWLEGACY_DEBUG
void il_print_rx_config_cmd(struct il_priv *il);
#else
static inline void
il_print_rx_config_cmd(struct il_priv *il)
{
}
#endif
void il_clear_isr_stats(struct il_priv *il);
/*****************************************************
* GEOS
******************************************************/
int il_init_geos(struct il_priv *il);
void il_free_geos(struct il_priv *il);
/*************** DRIVER STATUS FUNCTIONS *****/
#define S_HCMD_ACTIVE 0 /* host command in progress */
/* 1 is unused (used to be S_HCMD_SYNC_ACTIVE) */
#define S_INT_ENABLED 2
#define S_RFKILL 3
#define S_CT_KILL 4
#define S_INIT 5
#define S_ALIVE 6
#define S_READY 7
#define S_TEMPERATURE 8
#define S_GEO_CONFIGURED 9
#define S_EXIT_PENDING 10
#define S_STATS 12
#define S_SCANNING 13
#define S_SCAN_ABORTING 14
#define S_SCAN_HW 15
#define S_POWER_PMI 16
#define S_FW_ERROR 17
#define S_CHANNEL_SWITCH_PENDING 18
static inline int
il_is_ready(struct il_priv *il)
{
/* The adapter is 'ready' if READY and GEO_CONFIGURED bits are
* set but EXIT_PENDING is not */
return test_bit(S_READY, &il->status) &&
test_bit(S_GEO_CONFIGURED, &il->status) &&
!test_bit(S_EXIT_PENDING, &il->status);
}
static inline int
il_is_alive(struct il_priv *il)
{
return test_bit(S_ALIVE, &il->status);
}
static inline int
il_is_init(struct il_priv *il)
{
return test_bit(S_INIT, &il->status);
}
static inline int
il_is_rfkill(struct il_priv *il)
{
return test_bit(S_RFKILL, &il->status);
}
static inline int
il_is_ctkill(struct il_priv *il)
{
return test_bit(S_CT_KILL, &il->status);
}
static inline int
il_is_ready_rf(struct il_priv *il)
{
if (il_is_rfkill(il))
return 0;
return il_is_ready(il);
}
extern void il_send_bt_config(struct il_priv *il);
extern int il_send_stats_request(struct il_priv *il, u8 flags, bool clear);
extern void il_apm_stop(struct il_priv *il);
extern void _il_apm_stop(struct il_priv *il);
int il_apm_init(struct il_priv *il);
int il_send_rxon_timing(struct il_priv *il);
static inline int
il_send_rxon_assoc(struct il_priv *il)
{
return il->ops->rxon_assoc(il);
}
static inline int
il_commit_rxon(struct il_priv *il)
{
return il->ops->commit_rxon(il);
}
static inline const struct ieee80211_supported_band *
il_get_hw_mode(struct il_priv *il, enum ieee80211_band band)
{
return il->hw->wiphy->bands[band];
}
/* mac80211 handlers */
int il_mac_config(struct ieee80211_hw *hw, u32 changed);
void il_mac_reset_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif);
void il_mac_bss_info_changed(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
struct ieee80211_bss_conf *bss_conf, u32 changes);
void il_tx_cmd_protection(struct il_priv *il, struct ieee80211_tx_info *info,
__le16 fc, __le32 *tx_flags);
irqreturn_t il_isr(int irq, void *data);
extern void il_set_bit(struct il_priv *p, u32 r, u32 m);
extern void il_clear_bit(struct il_priv *p, u32 r, u32 m);
extern bool _il_grab_nic_access(struct il_priv *il);
extern int _il_poll_bit(struct il_priv *il, u32 addr, u32 bits, u32 mask, int timeout);
extern int il_poll_bit(struct il_priv *il, u32 addr, u32 mask, int timeout);
extern u32 il_rd_prph(struct il_priv *il, u32 reg);
extern void il_wr_prph(struct il_priv *il, u32 addr, u32 val);
extern u32 il_read_targ_mem(struct il_priv *il, u32 addr);
extern void il_write_targ_mem(struct il_priv *il, u32 addr, u32 val);
static inline void
_il_write8(struct il_priv *il, u32 ofs, u8 val)
{
writeb(val, il->hw_base + ofs);
}
#define il_write8(il, ofs, val) _il_write8(il, ofs, val)
static inline void
_il_wr(struct il_priv *il, u32 ofs, u32 val)
{
writel(val, il->hw_base + ofs);
}
static inline u32
_il_rd(struct il_priv *il, u32 ofs)
{
return readl(il->hw_base + ofs);
}
static inline void
_il_clear_bit(struct il_priv *il, u32 reg, u32 mask)
{
_il_wr(il, reg, _il_rd(il, reg) & ~mask);
}
static inline void
_il_set_bit(struct il_priv *il, u32 reg, u32 mask)
{
_il_wr(il, reg, _il_rd(il, reg) | mask);
}
static inline void
_il_release_nic_access(struct il_priv *il)
{
_il_clear_bit(il, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
/*
* In above we are reading CSR_GP_CNTRL register, what will flush any
* previous writes, but still want write, which clear MAC_ACCESS_REQ
* bit, be performed on PCI bus before any other writes scheduled on
* different CPUs (after we drop reg_lock).
*/
mmiowb();
}
static inline u32
il_rd(struct il_priv *il, u32 reg)
{
u32 value;
unsigned long reg_flags;
spin_lock_irqsave(&il->reg_lock, reg_flags);
_il_grab_nic_access(il);
value = _il_rd(il, reg);
_il_release_nic_access(il);
spin_unlock_irqrestore(&il->reg_lock, reg_flags);
return value;
}
static inline void
il_wr(struct il_priv *il, u32 reg, u32 value)
{
unsigned long reg_flags;
spin_lock_irqsave(&il->reg_lock, reg_flags);
if (likely(_il_grab_nic_access(il))) {
_il_wr(il, reg, value);
_il_release_nic_access(il);
}
spin_unlock_irqrestore(&il->reg_lock, reg_flags);
}
static inline u32
_il_rd_prph(struct il_priv *il, u32 reg)
{
_il_wr(il, HBUS_TARG_PRPH_RADDR, reg | (3 << 24));
return _il_rd(il, HBUS_TARG_PRPH_RDAT);
}
static inline void
_il_wr_prph(struct il_priv *il, u32 addr, u32 val)
{
_il_wr(il, HBUS_TARG_PRPH_WADDR, ((addr & 0x0000FFFF) | (3 << 24)));
_il_wr(il, HBUS_TARG_PRPH_WDAT, val);
}
static inline void
il_set_bits_prph(struct il_priv *il, u32 reg, u32 mask)
{
unsigned long reg_flags;
spin_lock_irqsave(&il->reg_lock, reg_flags);
if (likely(_il_grab_nic_access(il))) {
_il_wr_prph(il, reg, (_il_rd_prph(il, reg) | mask));
_il_release_nic_access(il);
}
spin_unlock_irqrestore(&il->reg_lock, reg_flags);
}
static inline void
il_set_bits_mask_prph(struct il_priv *il, u32 reg, u32 bits, u32 mask)
{
unsigned long reg_flags;
spin_lock_irqsave(&il->reg_lock, reg_flags);
if (likely(_il_grab_nic_access(il))) {
_il_wr_prph(il, reg, ((_il_rd_prph(il, reg) & mask) | bits));
_il_release_nic_access(il);
}
spin_unlock_irqrestore(&il->reg_lock, reg_flags);
}
static inline void
il_clear_bits_prph(struct il_priv *il, u32 reg, u32 mask)
{
unsigned long reg_flags;
u32 val;
spin_lock_irqsave(&il->reg_lock, reg_flags);
if (likely(_il_grab_nic_access(il))) {
val = _il_rd_prph(il, reg);
_il_wr_prph(il, reg, (val & ~mask));
_il_release_nic_access(il);
}
spin_unlock_irqrestore(&il->reg_lock, reg_flags);
}
#define HW_KEY_DYNAMIC 0
#define HW_KEY_DEFAULT 1
#define IL_STA_DRIVER_ACTIVE BIT(0) /* driver entry is active */
#define IL_STA_UCODE_ACTIVE BIT(1) /* ucode entry is active */
#define IL_STA_UCODE_INPROGRESS BIT(2) /* ucode entry is in process of
being activated */
#define IL_STA_LOCAL BIT(3) /* station state not directed by mac80211;
(this is for the IBSS BSSID stations) */
#define IL_STA_BCAST BIT(4) /* this station is the special bcast station */
void il_restore_stations(struct il_priv *il);
void il_clear_ucode_stations(struct il_priv *il);
void il_dealloc_bcast_stations(struct il_priv *il);
int il_get_free_ucode_key_idx(struct il_priv *il);
int il_send_add_sta(struct il_priv *il, struct il_addsta_cmd *sta, u8 flags);
int il_add_station_common(struct il_priv *il, const u8 *addr, bool is_ap,
struct ieee80211_sta *sta, u8 *sta_id_r);
int il_remove_station(struct il_priv *il, const u8 sta_id, const u8 * addr);
int il_mac_sta_remove(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
struct ieee80211_sta *sta);
u8 il_prep_station(struct il_priv *il, const u8 *addr, bool is_ap,
struct ieee80211_sta *sta);
int il_send_lq_cmd(struct il_priv *il, struct il_link_quality_cmd *lq,
u8 flags, bool init);
/**
* il_clear_driver_stations - clear knowledge of all stations from driver
* @il: iwl il struct
*
* This is called during il_down() to make sure that in the case
* we're coming there from a hardware restart mac80211 will be
* able to reconfigure stations -- if we're getting there in the
* normal down flow then the stations will already be cleared.
*/
static inline void
il_clear_driver_stations(struct il_priv *il)
{
unsigned long flags;
spin_lock_irqsave(&il->sta_lock, flags);
memset(il->stations, 0, sizeof(il->stations));
il->num_stations = 0;
il->ucode_key_table = 0;
spin_unlock_irqrestore(&il->sta_lock, flags);
}
static inline int
il_sta_id(struct ieee80211_sta *sta)
{
if (WARN_ON(!sta))
return IL_INVALID_STATION;
return ((struct il_station_priv_common *)sta->drv_priv)->sta_id;
}
/**
* il_sta_id_or_broadcast - return sta_id or broadcast sta
* @il: iwl il
* @context: the current context
* @sta: mac80211 station
*
* In certain circumstances mac80211 passes a station pointer
* that may be %NULL, for example during TX or key setup. In
* that case, we need to use the broadcast station, so this
* inline wraps that pattern.
*/
static inline int
il_sta_id_or_broadcast(struct il_priv *il, struct ieee80211_sta *sta)
{
int sta_id;
if (!sta)
return il->hw_params.bcast_id;
sta_id = il_sta_id(sta);
/*
* mac80211 should not be passing a partially
* initialised station!
*/
WARN_ON(sta_id == IL_INVALID_STATION);
return sta_id;
}
/**
* il_queue_inc_wrap - increment queue idx, wrap back to beginning
* @idx -- current idx
* @n_bd -- total number of entries in queue (must be power of 2)
*/
static inline int
il_queue_inc_wrap(int idx, int n_bd)
{
return ++idx & (n_bd - 1);
}
/**
* il_queue_dec_wrap - decrement queue idx, wrap back to end
* @idx -- current idx
* @n_bd -- total number of entries in queue (must be power of 2)
*/
static inline int
il_queue_dec_wrap(int idx, int n_bd)
{
return --idx & (n_bd - 1);
}
/* TODO: Move fw_desc functions to iwl-pci.ko */
static inline void
il_free_fw_desc(struct pci_dev *pci_dev, struct fw_desc *desc)
{
if (desc->v_addr)
dma_free_coherent(&pci_dev->dev, desc->len, desc->v_addr,
desc->p_addr);
desc->v_addr = NULL;
desc->len = 0;
}
static inline int
il_alloc_fw_desc(struct pci_dev *pci_dev, struct fw_desc *desc)
{
if (!desc->len) {
desc->v_addr = NULL;
return -EINVAL;
}
desc->v_addr = dma_alloc_coherent(&pci_dev->dev, desc->len,
&desc->p_addr, GFP_KERNEL);
return (desc->v_addr != NULL) ? 0 : -ENOMEM;
}
/*
* we have 8 bits used like this:
*
* 7 6 5 4 3 2 1 0
* | | | | | | | |
* | | | | | | +-+-------- AC queue (0-3)
* | | | | | |
* | +-+-+-+-+------------ HW queue ID
* |
* +---------------------- unused
*/
static inline void
il_set_swq_id(struct il_tx_queue *txq, u8 ac, u8 hwq)
{
BUG_ON(ac > 3); /* only have 2 bits */
BUG_ON(hwq > 31); /* only use 5 bits */
txq->swq_id = (hwq << 2) | ac;
}
static inline void
_il_wake_queue(struct il_priv *il, u8 ac)
{
if (atomic_dec_return(&il->queue_stop_count[ac]) <= 0)
ieee80211_wake_queue(il->hw, ac);
}
static inline void
_il_stop_queue(struct il_priv *il, u8 ac)
{
if (atomic_inc_return(&il->queue_stop_count[ac]) > 0)
ieee80211_stop_queue(il->hw, ac);
}
static inline void
il_wake_queue(struct il_priv *il, struct il_tx_queue *txq)
{
u8 queue = txq->swq_id;
u8 ac = queue & 3;
u8 hwq = (queue >> 2) & 0x1f;
if (test_and_clear_bit(hwq, il->queue_stopped))
_il_wake_queue(il, ac);
}
static inline void
il_stop_queue(struct il_priv *il, struct il_tx_queue *txq)
{
u8 queue = txq->swq_id;
u8 ac = queue & 3;
u8 hwq = (queue >> 2) & 0x1f;
if (!test_and_set_bit(hwq, il->queue_stopped))
_il_stop_queue(il, ac);
}
static inline void
il_wake_queues_by_reason(struct il_priv *il, int reason)
{
u8 ac;
if (test_and_clear_bit(reason, &il->stop_reason))
for (ac = 0; ac < 4; ac++)
_il_wake_queue(il, ac);
}
static inline void
il_stop_queues_by_reason(struct il_priv *il, int reason)
{
u8 ac;
if (!test_and_set_bit(reason, &il->stop_reason))
for (ac = 0; ac < 4; ac++)
_il_stop_queue(il, ac);
}
#ifdef ieee80211_stop_queue
#undef ieee80211_stop_queue
#endif
#define ieee80211_stop_queue DO_NOT_USE_ieee80211_stop_queue
#ifdef ieee80211_wake_queue
#undef ieee80211_wake_queue
#endif
#define ieee80211_wake_queue DO_NOT_USE_ieee80211_wake_queue
static inline void
il_disable_interrupts(struct il_priv *il)
{
clear_bit(S_INT_ENABLED, &il->status);
/* disable interrupts from uCode/NIC to host */
_il_wr(il, CSR_INT_MASK, 0x00000000);
/* acknowledge/clear/reset any interrupts still pending
* from uCode or flow handler (Rx/Tx DMA) */
_il_wr(il, CSR_INT, 0xffffffff);
_il_wr(il, CSR_FH_INT_STATUS, 0xffffffff);
}
static inline void
il_enable_rfkill_int(struct il_priv *il)
{
_il_wr(il, CSR_INT_MASK, CSR_INT_BIT_RF_KILL);
}
static inline void
il_enable_interrupts(struct il_priv *il)
{
set_bit(S_INT_ENABLED, &il->status);
_il_wr(il, CSR_INT_MASK, il->inta_mask);
}
/**
* il_beacon_time_mask_low - mask of lower 32 bit of beacon time
* @il -- pointer to il_priv data structure
* @tsf_bits -- number of bits need to shift for masking)
*/
static inline u32
il_beacon_time_mask_low(struct il_priv *il, u16 tsf_bits)
{
return (1 << tsf_bits) - 1;
}
/**
* il_beacon_time_mask_high - mask of higher 32 bit of beacon time
* @il -- pointer to il_priv data structure
* @tsf_bits -- number of bits need to shift for masking)
*/
static inline u32
il_beacon_time_mask_high(struct il_priv *il, u16 tsf_bits)
{
return ((1 << (32 - tsf_bits)) - 1) << tsf_bits;
}
/**
* struct il_rb_status - reseve buffer status host memory mapped FH registers
*
* @closed_rb_num [0:11] - Indicates the idx of the RB which was closed
* @closed_fr_num [0:11] - Indicates the idx of the RX Frame which was closed
* @finished_rb_num [0:11] - Indicates the idx of the current RB
* in which the last frame was written to
* @finished_fr_num [0:11] - Indicates the idx of the RX Frame
* which was transferred
*/
struct il_rb_status {
__le16 closed_rb_num;
__le16 closed_fr_num;
__le16 finished_rb_num;
__le16 finished_fr_nam;
__le32 __unused; /* 3945 only */
} __packed;
#define TFD_QUEUE_SIZE_MAX 256
#define TFD_QUEUE_SIZE_BC_DUP 64
#define TFD_QUEUE_BC_SIZE (TFD_QUEUE_SIZE_MAX + TFD_QUEUE_SIZE_BC_DUP)
#define IL_TX_DMA_MASK DMA_BIT_MASK(36)
#define IL_NUM_OF_TBS 20
static inline u8
il_get_dma_hi_addr(dma_addr_t addr)
{
return (sizeof(addr) > sizeof(u32) ? (addr >> 16) >> 16 : 0) & 0xF;
}
/**
* struct il_tfd_tb transmit buffer descriptor within transmit frame descriptor
*
* This structure contains dma address and length of transmission address
*
* @lo: low [31:0] portion of the dma address of TX buffer every even is
* unaligned on 16 bit boundary
* @hi_n_len: 0-3 [35:32] portion of dma
* 4-15 length of the tx buffer
*/
struct il_tfd_tb {
__le32 lo;
__le16 hi_n_len;
} __packed;
/**
* struct il_tfd
*
* Transmit Frame Descriptor (TFD)
*
* @ __reserved1[3] reserved
* @ num_tbs 0-4 number of active tbs
* 5 reserved
* 6-7 padding (not used)
* @ tbs[20] transmit frame buffer descriptors
* @ __pad padding
*
* Each Tx queue uses a circular buffer of 256 TFDs stored in host DRAM.
* Both driver and device share these circular buffers, each of which must be
* contiguous 256 TFDs x 128 bytes-per-TFD = 32 KBytes
*
* Driver must indicate the physical address of the base of each
* circular buffer via the FH49_MEM_CBBC_QUEUE registers.
*
* Each TFD contains pointer/size information for up to 20 data buffers
* in host DRAM. These buffers collectively contain the (one) frame described
* by the TFD. Each buffer must be a single contiguous block of memory within
* itself, but buffers may be scattered in host DRAM. Each buffer has max size
* of (4K - 4). The concatenates all of a TFD's buffers into a single
* Tx frame, up to 8 KBytes in size.
*
* A maximum of 255 (not 256!) TFDs may be on a queue waiting for Tx.
*/
struct il_tfd {
u8 __reserved1[3];
u8 num_tbs;
struct il_tfd_tb tbs[IL_NUM_OF_TBS];
__le32 __pad;
} __packed;
/* PCI registers */
#define PCI_CFG_RETRY_TIMEOUT 0x041
struct il_rate_info {
u8 plcp; /* uCode API: RATE_6M_PLCP, etc. */
u8 plcp_siso; /* uCode API: RATE_SISO_6M_PLCP, etc. */
u8 plcp_mimo2; /* uCode API: RATE_MIMO2_6M_PLCP, etc. */
u8 ieee; /* MAC header: RATE_6M_IEEE, etc. */
u8 prev_ieee; /* previous rate in IEEE speeds */
u8 next_ieee; /* next rate in IEEE speeds */
u8 prev_rs; /* previous rate used in rs algo */
u8 next_rs; /* next rate used in rs algo */
u8 prev_rs_tgg; /* previous rate used in TGG rs algo */
u8 next_rs_tgg; /* next rate used in TGG rs algo */
};
struct il3945_rate_info {
u8 plcp; /* uCode API: RATE_6M_PLCP, etc. */
u8 ieee; /* MAC header: RATE_6M_IEEE, etc. */
u8 prev_ieee; /* previous rate in IEEE speeds */
u8 next_ieee; /* next rate in IEEE speeds */
u8 prev_rs; /* previous rate used in rs algo */
u8 next_rs; /* next rate used in rs algo */
u8 prev_rs_tgg; /* previous rate used in TGG rs algo */
u8 next_rs_tgg; /* next rate used in TGG rs algo */
u8 table_rs_idx; /* idx in rate scale table cmd */
u8 prev_table_rs; /* prev in rate table cmd */
};
/*
* These serve as idxes into
* struct il_rate_info il_rates[RATE_COUNT];
*/
enum {
RATE_1M_IDX = 0,
RATE_2M_IDX,
RATE_5M_IDX,
RATE_11M_IDX,
RATE_6M_IDX,
RATE_9M_IDX,
RATE_12M_IDX,
RATE_18M_IDX,
RATE_24M_IDX,
RATE_36M_IDX,
RATE_48M_IDX,
RATE_54M_IDX,
RATE_60M_IDX,
RATE_COUNT,
RATE_COUNT_LEGACY = RATE_COUNT - 1, /* Excluding 60M */
RATE_COUNT_3945 = RATE_COUNT - 1,
RATE_INVM_IDX = RATE_COUNT,
RATE_INVALID = RATE_COUNT,
};
enum {
RATE_6M_IDX_TBL = 0,
RATE_9M_IDX_TBL,
RATE_12M_IDX_TBL,
RATE_18M_IDX_TBL,
RATE_24M_IDX_TBL,
RATE_36M_IDX_TBL,
RATE_48M_IDX_TBL,
RATE_54M_IDX_TBL,
RATE_1M_IDX_TBL,
RATE_2M_IDX_TBL,
RATE_5M_IDX_TBL,
RATE_11M_IDX_TBL,
RATE_INVM_IDX_TBL = RATE_INVM_IDX - 1,
};
enum {
IL_FIRST_OFDM_RATE = RATE_6M_IDX,
IL39_LAST_OFDM_RATE = RATE_54M_IDX,
IL_LAST_OFDM_RATE = RATE_60M_IDX,
IL_FIRST_CCK_RATE = RATE_1M_IDX,
IL_LAST_CCK_RATE = RATE_11M_IDX,
};
/* #define vs. enum to keep from defaulting to 'large integer' */
#define RATE_6M_MASK (1 << RATE_6M_IDX)
#define RATE_9M_MASK (1 << RATE_9M_IDX)
#define RATE_12M_MASK (1 << RATE_12M_IDX)
#define RATE_18M_MASK (1 << RATE_18M_IDX)
#define RATE_24M_MASK (1 << RATE_24M_IDX)
#define RATE_36M_MASK (1 << RATE_36M_IDX)
#define RATE_48M_MASK (1 << RATE_48M_IDX)
#define RATE_54M_MASK (1 << RATE_54M_IDX)
#define RATE_60M_MASK (1 << RATE_60M_IDX)
#define RATE_1M_MASK (1 << RATE_1M_IDX)
#define RATE_2M_MASK (1 << RATE_2M_IDX)
#define RATE_5M_MASK (1 << RATE_5M_IDX)
#define RATE_11M_MASK (1 << RATE_11M_IDX)
/* uCode API values for legacy bit rates, both OFDM and CCK */
enum {
RATE_6M_PLCP = 13,
RATE_9M_PLCP = 15,
RATE_12M_PLCP = 5,
RATE_18M_PLCP = 7,
RATE_24M_PLCP = 9,
RATE_36M_PLCP = 11,
RATE_48M_PLCP = 1,
RATE_54M_PLCP = 3,
RATE_60M_PLCP = 3, /*FIXME:RS:should be removed */
RATE_1M_PLCP = 10,
RATE_2M_PLCP = 20,
RATE_5M_PLCP = 55,
RATE_11M_PLCP = 110,
/*FIXME:RS:add RATE_LEGACY_INVM_PLCP = 0, */
};
/* uCode API values for OFDM high-throughput (HT) bit rates */
enum {
RATE_SISO_6M_PLCP = 0,
RATE_SISO_12M_PLCP = 1,
RATE_SISO_18M_PLCP = 2,
RATE_SISO_24M_PLCP = 3,
RATE_SISO_36M_PLCP = 4,
RATE_SISO_48M_PLCP = 5,
RATE_SISO_54M_PLCP = 6,
RATE_SISO_60M_PLCP = 7,
RATE_MIMO2_6M_PLCP = 0x8,
RATE_MIMO2_12M_PLCP = 0x9,
RATE_MIMO2_18M_PLCP = 0xa,
RATE_MIMO2_24M_PLCP = 0xb,
RATE_MIMO2_36M_PLCP = 0xc,
RATE_MIMO2_48M_PLCP = 0xd,
RATE_MIMO2_54M_PLCP = 0xe,
RATE_MIMO2_60M_PLCP = 0xf,
RATE_SISO_INVM_PLCP,
RATE_MIMO2_INVM_PLCP = RATE_SISO_INVM_PLCP,
};
/* MAC header values for bit rates */
enum {
RATE_6M_IEEE = 12,
RATE_9M_IEEE = 18,
RATE_12M_IEEE = 24,
RATE_18M_IEEE = 36,
RATE_24M_IEEE = 48,
RATE_36M_IEEE = 72,
RATE_48M_IEEE = 96,
RATE_54M_IEEE = 108,
RATE_60M_IEEE = 120,
RATE_1M_IEEE = 2,
RATE_2M_IEEE = 4,
RATE_5M_IEEE = 11,
RATE_11M_IEEE = 22,
};
#define IL_CCK_BASIC_RATES_MASK \
(RATE_1M_MASK | \
RATE_2M_MASK)
#define IL_CCK_RATES_MASK \
(IL_CCK_BASIC_RATES_MASK | \
RATE_5M_MASK | \
RATE_11M_MASK)
#define IL_OFDM_BASIC_RATES_MASK \
(RATE_6M_MASK | \
RATE_12M_MASK | \
RATE_24M_MASK)
#define IL_OFDM_RATES_MASK \
(IL_OFDM_BASIC_RATES_MASK | \
RATE_9M_MASK | \
RATE_18M_MASK | \
RATE_36M_MASK | \
RATE_48M_MASK | \
RATE_54M_MASK)
#define IL_BASIC_RATES_MASK \
(IL_OFDM_BASIC_RATES_MASK | \
IL_CCK_BASIC_RATES_MASK)
#define RATES_MASK ((1 << RATE_COUNT) - 1)
#define RATES_MASK_3945 ((1 << RATE_COUNT_3945) - 1)
#define IL_INVALID_VALUE -1
#define IL_MIN_RSSI_VAL -100
#define IL_MAX_RSSI_VAL 0
/* These values specify how many Tx frame attempts before
* searching for a new modulation mode */
#define IL_LEGACY_FAILURE_LIMIT 160
#define IL_LEGACY_SUCCESS_LIMIT 480
#define IL_LEGACY_TBL_COUNT 160
#define IL_NONE_LEGACY_FAILURE_LIMIT 400
#define IL_NONE_LEGACY_SUCCESS_LIMIT 4500
#define IL_NONE_LEGACY_TBL_COUNT 1500
/* Success ratio (ACKed / attempted tx frames) values (perfect is 128 * 100) */
#define IL_RS_GOOD_RATIO 12800 /* 100% */
#define RATE_SCALE_SWITCH 10880 /* 85% */
#define RATE_HIGH_TH 10880 /* 85% */
#define RATE_INCREASE_TH 6400 /* 50% */
#define RATE_DECREASE_TH 1920 /* 15% */
/* possible actions when in legacy mode */
#define IL_LEGACY_SWITCH_ANTENNA1 0
#define IL_LEGACY_SWITCH_ANTENNA2 1
#define IL_LEGACY_SWITCH_SISO 2
#define IL_LEGACY_SWITCH_MIMO2_AB 3
#define IL_LEGACY_SWITCH_MIMO2_AC 4
#define IL_LEGACY_SWITCH_MIMO2_BC 5
/* possible actions when in siso mode */
#define IL_SISO_SWITCH_ANTENNA1 0
#define IL_SISO_SWITCH_ANTENNA2 1
#define IL_SISO_SWITCH_MIMO2_AB 2
#define IL_SISO_SWITCH_MIMO2_AC 3
#define IL_SISO_SWITCH_MIMO2_BC 4
#define IL_SISO_SWITCH_GI 5
/* possible actions when in mimo mode */
#define IL_MIMO2_SWITCH_ANTENNA1 0
#define IL_MIMO2_SWITCH_ANTENNA2 1
#define IL_MIMO2_SWITCH_SISO_A 2
#define IL_MIMO2_SWITCH_SISO_B 3
#define IL_MIMO2_SWITCH_SISO_C 4
#define IL_MIMO2_SWITCH_GI 5
#define IL_MAX_SEARCH IL_MIMO2_SWITCH_GI
#define IL_ACTION_LIMIT 3 /* # possible actions */
#define LQ_SIZE 2 /* 2 mode tables: "Active" and "Search" */
/* load per tid defines for A-MPDU activation */
#define IL_AGG_TPT_THREHOLD 0
#define IL_AGG_LOAD_THRESHOLD 10
#define IL_AGG_ALL_TID 0xff
#define TID_QUEUE_CELL_SPACING 50 /*mS */
#define TID_QUEUE_MAX_SIZE 20
#define TID_ROUND_VALUE 5 /* mS */
#define TID_MAX_LOAD_COUNT 8
#define TID_MAX_TIME_DIFF ((TID_QUEUE_MAX_SIZE - 1) * TID_QUEUE_CELL_SPACING)
#define TIME_WRAP_AROUND(x, y) (((y) > (x)) ? (y) - (x) : (0-(x)) + (y))
extern const struct il_rate_info il_rates[RATE_COUNT];
enum il_table_type {
LQ_NONE,
LQ_G, /* legacy types */
LQ_A,
LQ_SISO, /* high-throughput types */
LQ_MIMO2,
LQ_MAX,
};
#define is_legacy(tbl) ((tbl) == LQ_G || (tbl) == LQ_A)
#define is_siso(tbl) ((tbl) == LQ_SISO)
#define is_mimo2(tbl) ((tbl) == LQ_MIMO2)
#define is_mimo(tbl) (is_mimo2(tbl))
#define is_Ht(tbl) (is_siso(tbl) || is_mimo(tbl))
#define is_a_band(tbl) ((tbl) == LQ_A)
#define is_g_and(tbl) ((tbl) == LQ_G)
#define ANT_NONE 0x0
#define ANT_A BIT(0)
#define ANT_B BIT(1)
#define ANT_AB (ANT_A | ANT_B)
#define ANT_C BIT(2)
#define ANT_AC (ANT_A | ANT_C)
#define ANT_BC (ANT_B | ANT_C)
#define ANT_ABC (ANT_AB | ANT_C)
#define IL_MAX_MCS_DISPLAY_SIZE 12
struct il_rate_mcs_info {
char mbps[IL_MAX_MCS_DISPLAY_SIZE];
char mcs[IL_MAX_MCS_DISPLAY_SIZE];
};
/**
* struct il_rate_scale_data -- tx success history for one rate
*/
struct il_rate_scale_data {
u64 data; /* bitmap of successful frames */
s32 success_counter; /* number of frames successful */
s32 success_ratio; /* per-cent * 128 */
s32 counter; /* number of frames attempted */
s32 average_tpt; /* success ratio * expected throughput */
unsigned long stamp;
};
/**
* struct il_scale_tbl_info -- tx params and success history for all rates
*
* There are two of these in struct il_lq_sta,
* one for "active", and one for "search".
*/
struct il_scale_tbl_info {
enum il_table_type lq_type;
u8 ant_type;
u8 is_SGI; /* 1 = short guard interval */
u8 is_ht40; /* 1 = 40 MHz channel width */
u8 is_dup; /* 1 = duplicated data streams */
u8 action; /* change modulation; IL_[LEGACY/SISO/MIMO]_SWITCH_* */
u8 max_search; /* maximun number of tables we can search */
s32 *expected_tpt; /* throughput metrics; expected_tpt_G, etc. */
u32 current_rate; /* rate_n_flags, uCode API format */
struct il_rate_scale_data win[RATE_COUNT]; /* rate histories */
};
struct il_traffic_load {
unsigned long time_stamp; /* age of the oldest stats */
u32 packet_count[TID_QUEUE_MAX_SIZE]; /* packet count in this time
* slice */
u32 total; /* total num of packets during the
* last TID_MAX_TIME_DIFF */
u8 queue_count; /* number of queues that has
* been used since the last cleanup */
u8 head; /* start of the circular buffer */
};
/**
* struct il_lq_sta -- driver's rate scaling ilate structure
*
* Pointer to this gets passed back and forth between driver and mac80211.
*/
struct il_lq_sta {
u8 active_tbl; /* idx of active table, range 0-1 */
u8 enable_counter; /* indicates HT mode */
u8 stay_in_tbl; /* 1: disallow, 0: allow search for new mode */
u8 search_better_tbl; /* 1: currently trying alternate mode */
s32 last_tpt;
/* The following determine when to search for a new mode */
u32 table_count_limit;
u32 max_failure_limit; /* # failed frames before new search */
u32 max_success_limit; /* # successful frames before new search */
u32 table_count;
u32 total_failed; /* total failed frames, any/all rates */
u32 total_success; /* total successful frames, any/all rates */
u64 flush_timer; /* time staying in mode before new search */
u8 action_counter; /* # mode-switch actions tried */
u8 is_green;
u8 is_dup;
enum ieee80211_band band;
/* The following are bitmaps of rates; RATE_6M_MASK, etc. */
u32 supp_rates;
u16 active_legacy_rate;
u16 active_siso_rate;
u16 active_mimo2_rate;
s8 max_rate_idx; /* Max rate set by user */
u8 missed_rate_counter;
struct il_link_quality_cmd lq;
struct il_scale_tbl_info lq_info[LQ_SIZE]; /* "active", "search" */
struct il_traffic_load load[TID_MAX_LOAD_COUNT];
u8 tx_agg_tid_en;
#ifdef CONFIG_MAC80211_DEBUGFS
struct dentry *rs_sta_dbgfs_scale_table_file;
struct dentry *rs_sta_dbgfs_stats_table_file;
struct dentry *rs_sta_dbgfs_rate_scale_data_file;
struct dentry *rs_sta_dbgfs_tx_agg_tid_en_file;
u32 dbg_fixed_rate;
#endif
struct il_priv *drv;
/* used to be in sta_info */
int last_txrate_idx;
/* last tx rate_n_flags */
u32 last_rate_n_flags;
/* packets destined for this STA are aggregated */
u8 is_agg;
};
/*
* il_station_priv: Driver's ilate station information
*
* When mac80211 creates a station it reserves some space (hw->sta_data_size)
* in the structure for use by driver. This structure is places in that
* space.
*
* The common struct MUST be first because it is shared between
* 3945 and 4965!
*/
struct il_station_priv {
struct il_station_priv_common common;
struct il_lq_sta lq_sta;
atomic_t pending_frames;
bool client;
bool asleep;
};
static inline u8
il4965_num_of_ant(u8 m)
{
return !!(m & ANT_A) + !!(m & ANT_B) + !!(m & ANT_C);
}
static inline u8
il4965_first_antenna(u8 mask)
{
if (mask & ANT_A)
return ANT_A;
if (mask & ANT_B)
return ANT_B;
return ANT_C;
}
/**
* il3945_rate_scale_init - Initialize the rate scale table based on assoc info
*
* The specific throughput table used is based on the type of network
* the associated with, including A, B, G, and G w/ TGG protection
*/
extern void il3945_rate_scale_init(struct ieee80211_hw *hw, s32 sta_id);
/* Initialize station's rate scaling information after adding station */
extern void il4965_rs_rate_init(struct il_priv *il, struct ieee80211_sta *sta,
u8 sta_id);
extern void il3945_rs_rate_init(struct il_priv *il, struct ieee80211_sta *sta,
u8 sta_id);
/**
* il_rate_control_register - Register the rate control algorithm callbacks
*
* Since the rate control algorithm is hardware specific, there is no need
* or reason to place it as a stand alone module. The driver can call
* il_rate_control_register in order to register the rate control callbacks
* with the mac80211 subsystem. This should be performed prior to calling
* ieee80211_register_hw
*
*/
extern int il4965_rate_control_register(void);
extern int il3945_rate_control_register(void);
/**
* il_rate_control_unregister - Unregister the rate control callbacks
*
* This should be called after calling ieee80211_unregister_hw, but before
* the driver is unloaded.
*/
extern void il4965_rate_control_unregister(void);
extern void il3945_rate_control_unregister(void);
extern int il_power_update_mode(struct il_priv *il, bool force);
extern void il_power_initialize(struct il_priv *il);
extern u32 il_debug_level;
#ifdef CONFIG_IWLEGACY_DEBUG
/*
* il_get_debug_level: Return active debug level for device
*
* Using sysfs it is possible to set per device debug level. This debug
* level will be used if set, otherwise the global debug level which can be
* set via module parameter is used.
*/
static inline u32
il_get_debug_level(struct il_priv *il)
{
if (il->debug_level)
return il->debug_level;
else
return il_debug_level;
}
#else
static inline u32
il_get_debug_level(struct il_priv *il)
{
return il_debug_level;
}
#endif
#define il_print_hex_error(il, p, len) \
do { \
print_hex_dump(KERN_ERR, "iwl data: ", \
DUMP_PREFIX_OFFSET, 16, 1, p, len, 1); \
} while (0)
#ifdef CONFIG_IWLEGACY_DEBUG
#define IL_DBG(level, fmt, args...) \
do { \
if (il_get_debug_level(il) & level) \
dev_err(&il->hw->wiphy->dev, "%c %s " fmt, \
in_interrupt() ? 'I' : 'U', __func__ , ##args); \
} while (0)
#define il_print_hex_dump(il, level, p, len) \
do { \
if (il_get_debug_level(il) & level) \
print_hex_dump(KERN_DEBUG, "iwl data: ", \
DUMP_PREFIX_OFFSET, 16, 1, p, len, 1); \
} while (0)
#else
#define IL_DBG(level, fmt, args...)
static inline void
il_print_hex_dump(struct il_priv *il, int level, const void *p, u32 len)
{
}
#endif /* CONFIG_IWLEGACY_DEBUG */
#ifdef CONFIG_IWLEGACY_DEBUGFS
int il_dbgfs_register(struct il_priv *il, const char *name);
void il_dbgfs_unregister(struct il_priv *il);
#else
static inline int
il_dbgfs_register(struct il_priv *il, const char *name)
{
return 0;
}
static inline void
il_dbgfs_unregister(struct il_priv *il)
{
}
#endif /* CONFIG_IWLEGACY_DEBUGFS */
/*
* To use the debug system:
*
* If you are defining a new debug classification, simply add it to the #define
* list here in the form of
*
* #define IL_DL_xxxx VALUE
*
* where xxxx should be the name of the classification (for example, WEP).
*
* You then need to either add a IL_xxxx_DEBUG() macro definition for your
* classification, or use IL_DBG(IL_DL_xxxx, ...) whenever you want
* to send output to that classification.
*
* The active debug levels can be accessed via files
*
* /sys/module/iwl4965/parameters/debug
* /sys/module/iwl3945/parameters/debug
* /sys/class/net/wlan0/device/debug_level
*
* when CONFIG_IWLEGACY_DEBUG=y.
*/
/* 0x0000000F - 0x00000001 */
#define IL_DL_INFO (1 << 0)
#define IL_DL_MAC80211 (1 << 1)
#define IL_DL_HCMD (1 << 2)
#define IL_DL_STATE (1 << 3)
/* 0x000000F0 - 0x00000010 */
#define IL_DL_MACDUMP (1 << 4)
#define IL_DL_HCMD_DUMP (1 << 5)
#define IL_DL_EEPROM (1 << 6)
#define IL_DL_RADIO (1 << 7)
/* 0x00000F00 - 0x00000100 */
#define IL_DL_POWER (1 << 8)
#define IL_DL_TEMP (1 << 9)
#define IL_DL_NOTIF (1 << 10)
#define IL_DL_SCAN (1 << 11)
/* 0x0000F000 - 0x00001000 */
#define IL_DL_ASSOC (1 << 12)
#define IL_DL_DROP (1 << 13)
#define IL_DL_TXPOWER (1 << 14)
#define IL_DL_AP (1 << 15)
/* 0x000F0000 - 0x00010000 */
#define IL_DL_FW (1 << 16)
#define IL_DL_RF_KILL (1 << 17)
#define IL_DL_FW_ERRORS (1 << 18)
#define IL_DL_LED (1 << 19)
/* 0x00F00000 - 0x00100000 */
#define IL_DL_RATE (1 << 20)
#define IL_DL_CALIB (1 << 21)
#define IL_DL_WEP (1 << 22)
#define IL_DL_TX (1 << 23)
/* 0x0F000000 - 0x01000000 */
#define IL_DL_RX (1 << 24)
#define IL_DL_ISR (1 << 25)
#define IL_DL_HT (1 << 26)
/* 0xF0000000 - 0x10000000 */
#define IL_DL_11H (1 << 28)
#define IL_DL_STATS (1 << 29)
#define IL_DL_TX_REPLY (1 << 30)
#define IL_DL_QOS (1 << 31)
#define D_INFO(f, a...) IL_DBG(IL_DL_INFO, f, ## a)
#define D_MAC80211(f, a...) IL_DBG(IL_DL_MAC80211, f, ## a)
#define D_MACDUMP(f, a...) IL_DBG(IL_DL_MACDUMP, f, ## a)
#define D_TEMP(f, a...) IL_DBG(IL_DL_TEMP, f, ## a)
#define D_SCAN(f, a...) IL_DBG(IL_DL_SCAN, f, ## a)
#define D_RX(f, a...) IL_DBG(IL_DL_RX, f, ## a)
#define D_TX(f, a...) IL_DBG(IL_DL_TX, f, ## a)
#define D_ISR(f, a...) IL_DBG(IL_DL_ISR, f, ## a)
#define D_LED(f, a...) IL_DBG(IL_DL_LED, f, ## a)
#define D_WEP(f, a...) IL_DBG(IL_DL_WEP, f, ## a)
#define D_HC(f, a...) IL_DBG(IL_DL_HCMD, f, ## a)
#define D_HC_DUMP(f, a...) IL_DBG(IL_DL_HCMD_DUMP, f, ## a)
#define D_EEPROM(f, a...) IL_DBG(IL_DL_EEPROM, f, ## a)
#define D_CALIB(f, a...) IL_DBG(IL_DL_CALIB, f, ## a)
#define D_FW(f, a...) IL_DBG(IL_DL_FW, f, ## a)
#define D_RF_KILL(f, a...) IL_DBG(IL_DL_RF_KILL, f, ## a)
#define D_DROP(f, a...) IL_DBG(IL_DL_DROP, f, ## a)
#define D_AP(f, a...) IL_DBG(IL_DL_AP, f, ## a)
#define D_TXPOWER(f, a...) IL_DBG(IL_DL_TXPOWER, f, ## a)
#define D_RATE(f, a...) IL_DBG(IL_DL_RATE, f, ## a)
#define D_NOTIF(f, a...) IL_DBG(IL_DL_NOTIF, f, ## a)
#define D_ASSOC(f, a...) IL_DBG(IL_DL_ASSOC, f, ## a)
#define D_HT(f, a...) IL_DBG(IL_DL_HT, f, ## a)
#define D_STATS(f, a...) IL_DBG(IL_DL_STATS, f, ## a)
#define D_TX_REPLY(f, a...) IL_DBG(IL_DL_TX_REPLY, f, ## a)
#define D_QOS(f, a...) IL_DBG(IL_DL_QOS, f, ## a)
#define D_RADIO(f, a...) IL_DBG(IL_DL_RADIO, f, ## a)
#define D_POWER(f, a...) IL_DBG(IL_DL_POWER, f, ## a)
#define D_11H(f, a...) IL_DBG(IL_DL_11H, f, ## a)
#endif /* __il_core_h__ */