linux/drivers/gpu/drm/amd/amdkfd/cwsr_trap_handler_gfx8.asm
Jay Cornwall a60d811b2b drm/amdkfd: Fix race between scheduler and context restore
The scheduler may raise SQ_WAVE_STATUS.SPI_PRIO via SQ_CMD before
context restore has completed. Restoring SPI_PRIO=0 after this point
may cause context save to fail as the lower priority wavefronts
are not selected for execution among spin-waiting wavefronts.

Leave SPI_PRIO at its SPI-initialized or scheduler-raised value.

v2: Also fix race with exception handler

Signed-off-by: Jay Cornwall <Jay.Cornwall@amd.com>
Reviewed-by: Felix Kuehling <Felix.Kuehling@amd.com>
Signed-off-by: Felix Kuehling <Felix.Kuehling@amd.com>
Acked-by: Christian König <christian.koenig@amd.com>
Signed-off-by: Oded Gabbay <oded.gabbay@gmail.com>
2018-07-11 22:32:46 -04:00

1149 lines
60 KiB
NASM

/*
* Copyright 2015-2017 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
/* To compile this assembly code:
* PROJECT=vi ./sp3 cwsr_trap_handler_gfx8.asm -hex tmp.hex
*/
/* HW (VI) source code for CWSR trap handler */
/* Version 18 + multiple trap handler */
// this performance-optimal version was originally from Seven Xu at SRDC
// Revison #18 --...
/* Rev History
** #1. Branch from gc dv. //gfxip/gfx8/main/src/test/suites/block/cs/sr/cs_trap_handler.sp3#1,#50, #51, #52-53(Skip, Already Fixed by PV), #54-56(merged),#57-58(mergerd, skiped-already fixed by PV)
** #4. SR Memory Layout:
** 1. VGPR-SGPR-HWREG-{LDS}
** 2. tba_hi.bits.26 - reconfigured as the first wave in tg bits, for defer Save LDS for a threadgroup.. performance concern..
** #5. Update: 1. Accurate g8sr_ts_save_d timestamp
** #6. Update: 1. Fix s_barrier usage; 2. VGPR s/r using swizzle buffer?(NoNeed, already matched the swizzle pattern, more investigation)
** #7. Update: 1. don't barrier if noLDS
** #8. Branch: 1. Branch to ver#0, which is very similar to gc dv version
** 2. Fix SQ issue by s_sleep 2
** #9. Update: 1. Fix scc restore failed issue, restore wave_status at last
** 2. optimize s_buffer save by burst 16sgprs...
** #10. Update 1. Optimize restore sgpr by busrt 16 sgprs.
** #11. Update 1. Add 2 more timestamp for debug version
** #12. Update 1. Add VGPR SR using DWx4, some case improve and some case drop performance
** #13. Integ 1. Always use MUBUF for PV trap shader...
** #14. Update 1. s_buffer_store soft clause...
** #15. Update 1. PERF - sclar write with glc:0/mtype0 to allow L2 combine. perf improvement a lot.
** #16. Update 1. PRRF - UNROLL LDS_DMA got 2500cycle save in IP tree
** #17. Update 1. FUNC - LDS_DMA has issues while ATC, replace with ds_read/buffer_store for save part[TODO restore part]
** 2. PERF - Save LDS before save VGPR to cover LDS save long latency...
** #18. Update 1. FUNC - Implicitly estore STATUS.VCCZ, which is not writable by s_setreg_b32
** 2. FUNC - Handle non-CWSR traps
*/
var G8SR_WDMEM_HWREG_OFFSET = 0
var G8SR_WDMEM_SGPR_OFFSET = 128 // in bytes
// Keep definition same as the app shader, These 2 time stamps are part of the app shader... Should before any Save and after restore.
var G8SR_DEBUG_TIMESTAMP = 0
var G8SR_DEBUG_TS_SAVE_D_OFFSET = 40*4 // ts_save_d timestamp offset relative to SGPR_SR_memory_offset
var s_g8sr_ts_save_s = s[34:35] // save start
var s_g8sr_ts_sq_save_msg = s[36:37] // The save shader send SAVEWAVE msg to spi
var s_g8sr_ts_spi_wrexec = s[38:39] // the SPI write the sr address to SQ
var s_g8sr_ts_save_d = s[40:41] // save end
var s_g8sr_ts_restore_s = s[42:43] // restore start
var s_g8sr_ts_restore_d = s[44:45] // restore end
var G8SR_VGPR_SR_IN_DWX4 = 0
var G8SR_SAVE_BUF_RSRC_WORD1_STRIDE_DWx4 = 0x00100000 // DWx4 stride is 4*4Bytes
var G8SR_RESTORE_BUF_RSRC_WORD1_STRIDE_DWx4 = G8SR_SAVE_BUF_RSRC_WORD1_STRIDE_DWx4
/*************************************************************************/
/* control on how to run the shader */
/*************************************************************************/
//any hack that needs to be made to run this code in EMU (either because various EMU code are not ready or no compute save & restore in EMU run)
var EMU_RUN_HACK = 0
var EMU_RUN_HACK_RESTORE_NORMAL = 0
var EMU_RUN_HACK_SAVE_NORMAL_EXIT = 0
var EMU_RUN_HACK_SAVE_SINGLE_WAVE = 0
var EMU_RUN_HACK_SAVE_FIRST_TIME = 0 //for interrupted restore in which the first save is through EMU_RUN_HACK
var EMU_RUN_HACK_SAVE_FIRST_TIME_TBA_LO = 0 //for interrupted restore in which the first save is through EMU_RUN_HACK
var EMU_RUN_HACK_SAVE_FIRST_TIME_TBA_HI = 0 //for interrupted restore in which the first save is through EMU_RUN_HACK
var SAVE_LDS = 1
var WG_BASE_ADDR_LO = 0x9000a000
var WG_BASE_ADDR_HI = 0x0
var WAVE_SPACE = 0x5000 //memory size that each wave occupies in workgroup state mem
var CTX_SAVE_CONTROL = 0x0
var CTX_RESTORE_CONTROL = CTX_SAVE_CONTROL
var SIM_RUN_HACK = 0 //any hack that needs to be made to run this code in SIM (either because various RTL code are not ready or no compute save & restore in RTL run)
var SGPR_SAVE_USE_SQC = 1 //use SQC D$ to do the write
var USE_MTBUF_INSTEAD_OF_MUBUF = 0 //because TC EMU currently asserts on 0 of // overload DFMT field to carry 4 more bits of stride for MUBUF opcodes
var SWIZZLE_EN = 0 //whether we use swizzled buffer addressing
/**************************************************************************/
/* variables */
/**************************************************************************/
var SQ_WAVE_STATUS_INST_ATC_SHIFT = 23
var SQ_WAVE_STATUS_INST_ATC_MASK = 0x00800000
var SQ_WAVE_STATUS_SPI_PRIO_SHIFT = 1
var SQ_WAVE_STATUS_SPI_PRIO_MASK = 0x00000006
var SQ_WAVE_STATUS_PRE_SPI_PRIO_SHIFT = 0
var SQ_WAVE_STATUS_PRE_SPI_PRIO_SIZE = 1
var SQ_WAVE_STATUS_POST_SPI_PRIO_SHIFT = 3
var SQ_WAVE_STATUS_POST_SPI_PRIO_SIZE = 29
var SQ_WAVE_LDS_ALLOC_LDS_SIZE_SHIFT = 12
var SQ_WAVE_LDS_ALLOC_LDS_SIZE_SIZE = 9
var SQ_WAVE_GPR_ALLOC_VGPR_SIZE_SHIFT = 8
var SQ_WAVE_GPR_ALLOC_VGPR_SIZE_SIZE = 6
var SQ_WAVE_GPR_ALLOC_SGPR_SIZE_SHIFT = 24
var SQ_WAVE_GPR_ALLOC_SGPR_SIZE_SIZE = 3 //FIXME sq.blk still has 4 bits at this time while SQ programming guide has 3 bits
var SQ_WAVE_TRAPSTS_SAVECTX_MASK = 0x400
var SQ_WAVE_TRAPSTS_EXCE_MASK = 0x1FF // Exception mask
var SQ_WAVE_TRAPSTS_SAVECTX_SHIFT = 10
var SQ_WAVE_TRAPSTS_MEM_VIOL_MASK = 0x100
var SQ_WAVE_TRAPSTS_MEM_VIOL_SHIFT = 8
var SQ_WAVE_TRAPSTS_PRE_SAVECTX_MASK = 0x3FF
var SQ_WAVE_TRAPSTS_PRE_SAVECTX_SHIFT = 0x0
var SQ_WAVE_TRAPSTS_PRE_SAVECTX_SIZE = 10
var SQ_WAVE_TRAPSTS_POST_SAVECTX_MASK = 0xFFFFF800
var SQ_WAVE_TRAPSTS_POST_SAVECTX_SHIFT = 11
var SQ_WAVE_TRAPSTS_POST_SAVECTX_SIZE = 21
var SQ_WAVE_IB_STS_RCNT_SHIFT = 16 //FIXME
var SQ_WAVE_IB_STS_RCNT_SIZE = 4 //FIXME
var SQ_WAVE_IB_STS_FIRST_REPLAY_SHIFT = 15 //FIXME
var SQ_WAVE_IB_STS_FIRST_REPLAY_SIZE = 1 //FIXME
var SQ_WAVE_IB_STS_RCNT_FIRST_REPLAY_MASK_NEG = 0x00007FFF //FIXME
var SQ_BUF_RSRC_WORD1_ATC_SHIFT = 24
var SQ_BUF_RSRC_WORD3_MTYPE_SHIFT = 27
/* Save */
var S_SAVE_BUF_RSRC_WORD1_STRIDE = 0x00040000 //stride is 4 bytes
var S_SAVE_BUF_RSRC_WORD3_MISC = 0x00807FAC //SQ_SEL_X/Y/Z/W, BUF_NUM_FORMAT_FLOAT, (0 for MUBUF stride[17:14] when ADD_TID_ENABLE and BUF_DATA_FORMAT_32 for MTBUF), ADD_TID_ENABLE
var S_SAVE_SPI_INIT_ATC_MASK = 0x08000000 //bit[27]: ATC bit
var S_SAVE_SPI_INIT_ATC_SHIFT = 27
var S_SAVE_SPI_INIT_MTYPE_MASK = 0x70000000 //bit[30:28]: Mtype
var S_SAVE_SPI_INIT_MTYPE_SHIFT = 28
var S_SAVE_SPI_INIT_FIRST_WAVE_MASK = 0x04000000 //bit[26]: FirstWaveInTG
var S_SAVE_SPI_INIT_FIRST_WAVE_SHIFT = 26
var S_SAVE_PC_HI_RCNT_SHIFT = 28 //FIXME check with Brian to ensure all fields other than PC[47:0] can be used
var S_SAVE_PC_HI_RCNT_MASK = 0xF0000000 //FIXME
var S_SAVE_PC_HI_FIRST_REPLAY_SHIFT = 27 //FIXME
var S_SAVE_PC_HI_FIRST_REPLAY_MASK = 0x08000000 //FIXME
var s_save_spi_init_lo = exec_lo
var s_save_spi_init_hi = exec_hi
//tba_lo and tba_hi need to be saved/restored
var s_save_pc_lo = ttmp0 //{TTMP1, TTMP0} = {3'h0,pc_rewind[3:0], HT[0],trapID[7:0], PC[47:0]}
var s_save_pc_hi = ttmp1
var s_save_exec_lo = ttmp2
var s_save_exec_hi = ttmp3
var s_save_status = ttmp4
var s_save_trapsts = ttmp5 //not really used until the end of the SAVE routine
var s_save_xnack_mask_lo = ttmp6
var s_save_xnack_mask_hi = ttmp7
var s_save_buf_rsrc0 = ttmp8
var s_save_buf_rsrc1 = ttmp9
var s_save_buf_rsrc2 = ttmp10
var s_save_buf_rsrc3 = ttmp11
var s_save_mem_offset = tma_lo
var s_save_alloc_size = s_save_trapsts //conflict
var s_save_tmp = s_save_buf_rsrc2 //shared with s_save_buf_rsrc2 (conflict: should not use mem access with s_save_tmp at the same time)
var s_save_m0 = tma_hi
/* Restore */
var S_RESTORE_BUF_RSRC_WORD1_STRIDE = S_SAVE_BUF_RSRC_WORD1_STRIDE
var S_RESTORE_BUF_RSRC_WORD3_MISC = S_SAVE_BUF_RSRC_WORD3_MISC
var S_RESTORE_SPI_INIT_ATC_MASK = 0x08000000 //bit[27]: ATC bit
var S_RESTORE_SPI_INIT_ATC_SHIFT = 27
var S_RESTORE_SPI_INIT_MTYPE_MASK = 0x70000000 //bit[30:28]: Mtype
var S_RESTORE_SPI_INIT_MTYPE_SHIFT = 28
var S_RESTORE_SPI_INIT_FIRST_WAVE_MASK = 0x04000000 //bit[26]: FirstWaveInTG
var S_RESTORE_SPI_INIT_FIRST_WAVE_SHIFT = 26
var S_RESTORE_PC_HI_RCNT_SHIFT = S_SAVE_PC_HI_RCNT_SHIFT
var S_RESTORE_PC_HI_RCNT_MASK = S_SAVE_PC_HI_RCNT_MASK
var S_RESTORE_PC_HI_FIRST_REPLAY_SHIFT = S_SAVE_PC_HI_FIRST_REPLAY_SHIFT
var S_RESTORE_PC_HI_FIRST_REPLAY_MASK = S_SAVE_PC_HI_FIRST_REPLAY_MASK
var s_restore_spi_init_lo = exec_lo
var s_restore_spi_init_hi = exec_hi
var s_restore_mem_offset = ttmp2
var s_restore_alloc_size = ttmp3
var s_restore_tmp = ttmp6 //tba_lo/hi need to be restored
var s_restore_mem_offset_save = s_restore_tmp //no conflict
var s_restore_m0 = s_restore_alloc_size //no conflict
var s_restore_mode = ttmp7
var s_restore_pc_lo = ttmp0
var s_restore_pc_hi = ttmp1
var s_restore_exec_lo = tma_lo //no conflict
var s_restore_exec_hi = tma_hi //no conflict
var s_restore_status = ttmp4
var s_restore_trapsts = ttmp5
var s_restore_xnack_mask_lo = xnack_mask_lo
var s_restore_xnack_mask_hi = xnack_mask_hi
var s_restore_buf_rsrc0 = ttmp8
var s_restore_buf_rsrc1 = ttmp9
var s_restore_buf_rsrc2 = ttmp10
var s_restore_buf_rsrc3 = ttmp11
/**************************************************************************/
/* trap handler entry points */
/**************************************************************************/
/* Shader Main*/
shader main
asic(VI)
type(CS)
if ((EMU_RUN_HACK) && (!EMU_RUN_HACK_RESTORE_NORMAL)) //hack to use trap_id for determining save/restore
//FIXME VCCZ un-init assertion s_getreg_b32 s_save_status, hwreg(HW_REG_STATUS) //save STATUS since we will change SCC
s_and_b32 s_save_tmp, s_save_pc_hi, 0xffff0000 //change SCC
s_cmp_eq_u32 s_save_tmp, 0x007e0000 //Save: trap_id = 0x7e. Restore: trap_id = 0x7f.
s_cbranch_scc0 L_JUMP_TO_RESTORE //do not need to recover STATUS here since we are going to RESTORE
//FIXME s_setreg_b32 hwreg(HW_REG_STATUS), s_save_status //need to recover STATUS since we are going to SAVE
s_branch L_SKIP_RESTORE //NOT restore, SAVE actually
else
s_branch L_SKIP_RESTORE //NOT restore. might be a regular trap or save
end
L_JUMP_TO_RESTORE:
s_branch L_RESTORE //restore
L_SKIP_RESTORE:
s_getreg_b32 s_save_status, hwreg(HW_REG_STATUS) //save STATUS since we will change SCC
s_andn2_b32 s_save_status, s_save_status, SQ_WAVE_STATUS_SPI_PRIO_MASK //check whether this is for save
s_getreg_b32 s_save_trapsts, hwreg(HW_REG_TRAPSTS)
s_and_b32 s_save_trapsts, s_save_trapsts, SQ_WAVE_TRAPSTS_SAVECTX_MASK //check whether this is for save
s_cbranch_scc1 L_SAVE //this is the operation for save
// ********* Handle non-CWSR traps *******************
if (!EMU_RUN_HACK)
/* read tba and tma for next level trap handler, ttmp4 is used as s_save_status */
s_load_dwordx4 [ttmp8,ttmp9,ttmp10, ttmp11], [tma_lo,tma_hi], 0
s_waitcnt lgkmcnt(0)
s_or_b32 ttmp7, ttmp8, ttmp9
s_cbranch_scc0 L_NO_NEXT_TRAP //next level trap handler not been set
set_status_without_spi_prio(s_save_status, ttmp2) //restore HW status(SCC)
s_setpc_b64 [ttmp8,ttmp9] //jump to next level trap handler
L_NO_NEXT_TRAP:
s_getreg_b32 s_save_trapsts, hwreg(HW_REG_TRAPSTS)
s_and_b32 s_save_trapsts, s_save_trapsts, SQ_WAVE_TRAPSTS_EXCE_MASK // Check whether it is an exception
s_cbranch_scc1 L_EXCP_CASE // Exception, jump back to the shader program directly.
s_add_u32 ttmp0, ttmp0, 4 // S_TRAP case, add 4 to ttmp0
s_addc_u32 ttmp1, ttmp1, 0
L_EXCP_CASE:
s_and_b32 ttmp1, ttmp1, 0xFFFF
set_status_without_spi_prio(s_save_status, ttmp2) //restore HW status(SCC)
s_rfe_b64 [ttmp0, ttmp1]
end
// ********* End handling of non-CWSR traps *******************
/**************************************************************************/
/* save routine */
/**************************************************************************/
L_SAVE:
if G8SR_DEBUG_TIMESTAMP
s_memrealtime s_g8sr_ts_save_s
s_waitcnt lgkmcnt(0) //FIXME, will cause xnack??
end
//check whether there is mem_viol
s_getreg_b32 s_save_trapsts, hwreg(HW_REG_TRAPSTS)
s_and_b32 s_save_trapsts, s_save_trapsts, SQ_WAVE_TRAPSTS_MEM_VIOL_MASK
s_cbranch_scc0 L_NO_PC_REWIND
//if so, need rewind PC assuming GDS operation gets NACKed
s_mov_b32 s_save_tmp, 0 //clear mem_viol bit
s_setreg_b32 hwreg(HW_REG_TRAPSTS, SQ_WAVE_TRAPSTS_MEM_VIOL_SHIFT, 1), s_save_tmp //clear mem_viol bit
s_and_b32 s_save_pc_hi, s_save_pc_hi, 0x0000ffff //pc[47:32]
s_sub_u32 s_save_pc_lo, s_save_pc_lo, 8 //pc[31:0]-8
s_subb_u32 s_save_pc_hi, s_save_pc_hi, 0x0 // -scc
L_NO_PC_REWIND:
s_mov_b32 s_save_tmp, 0 //clear saveCtx bit
s_setreg_b32 hwreg(HW_REG_TRAPSTS, SQ_WAVE_TRAPSTS_SAVECTX_SHIFT, 1), s_save_tmp //clear saveCtx bit
s_mov_b32 s_save_xnack_mask_lo, xnack_mask_lo //save XNACK_MASK
s_mov_b32 s_save_xnack_mask_hi, xnack_mask_hi //save XNACK must before any memory operation
s_getreg_b32 s_save_tmp, hwreg(HW_REG_IB_STS, SQ_WAVE_IB_STS_RCNT_SHIFT, SQ_WAVE_IB_STS_RCNT_SIZE) //save RCNT
s_lshl_b32 s_save_tmp, s_save_tmp, S_SAVE_PC_HI_RCNT_SHIFT
s_or_b32 s_save_pc_hi, s_save_pc_hi, s_save_tmp
s_getreg_b32 s_save_tmp, hwreg(HW_REG_IB_STS, SQ_WAVE_IB_STS_FIRST_REPLAY_SHIFT, SQ_WAVE_IB_STS_FIRST_REPLAY_SIZE) //save FIRST_REPLAY
s_lshl_b32 s_save_tmp, s_save_tmp, S_SAVE_PC_HI_FIRST_REPLAY_SHIFT
s_or_b32 s_save_pc_hi, s_save_pc_hi, s_save_tmp
s_getreg_b32 s_save_tmp, hwreg(HW_REG_IB_STS) //clear RCNT and FIRST_REPLAY in IB_STS
s_and_b32 s_save_tmp, s_save_tmp, SQ_WAVE_IB_STS_RCNT_FIRST_REPLAY_MASK_NEG
s_setreg_b32 hwreg(HW_REG_IB_STS), s_save_tmp
/* inform SPI the readiness and wait for SPI's go signal */
s_mov_b32 s_save_exec_lo, exec_lo //save EXEC and use EXEC for the go signal from SPI
s_mov_b32 s_save_exec_hi, exec_hi
s_mov_b64 exec, 0x0 //clear EXEC to get ready to receive
if G8SR_DEBUG_TIMESTAMP
s_memrealtime s_g8sr_ts_sq_save_msg
s_waitcnt lgkmcnt(0)
end
if (EMU_RUN_HACK)
else
s_sendmsg sendmsg(MSG_SAVEWAVE) //send SPI a message and wait for SPI's write to EXEC
end
// Set SPI_PRIO=2 to avoid starving instruction fetch in the waves we're waiting for.
s_or_b32 s_save_tmp, s_save_status, (2 << SQ_WAVE_STATUS_SPI_PRIO_SHIFT)
s_setreg_b32 hwreg(HW_REG_STATUS), s_save_tmp
L_SLEEP:
s_sleep 0x2 // sleep 1 (64clk) is not enough for 8 waves per SIMD, which will cause SQ hang, since the 7,8th wave could not get arbit to exec inst, while other waves are stuck into the sleep-loop and waiting for wrexec!=0
if (EMU_RUN_HACK)
else
s_cbranch_execz L_SLEEP
end
if G8SR_DEBUG_TIMESTAMP
s_memrealtime s_g8sr_ts_spi_wrexec
s_waitcnt lgkmcnt(0)
end
/* setup Resource Contants */
if ((EMU_RUN_HACK) && (!EMU_RUN_HACK_SAVE_SINGLE_WAVE))
//calculate wd_addr using absolute thread id
v_readlane_b32 s_save_tmp, v9, 0
s_lshr_b32 s_save_tmp, s_save_tmp, 6
s_mul_i32 s_save_tmp, s_save_tmp, WAVE_SPACE
s_add_i32 s_save_spi_init_lo, s_save_tmp, WG_BASE_ADDR_LO
s_mov_b32 s_save_spi_init_hi, WG_BASE_ADDR_HI
s_and_b32 s_save_spi_init_hi, s_save_spi_init_hi, CTX_SAVE_CONTROL
else
end
if ((EMU_RUN_HACK) && (EMU_RUN_HACK_SAVE_SINGLE_WAVE))
s_add_i32 s_save_spi_init_lo, s_save_tmp, WG_BASE_ADDR_LO
s_mov_b32 s_save_spi_init_hi, WG_BASE_ADDR_HI
s_and_b32 s_save_spi_init_hi, s_save_spi_init_hi, CTX_SAVE_CONTROL
else
end
s_mov_b32 s_save_buf_rsrc0, s_save_spi_init_lo //base_addr_lo
s_and_b32 s_save_buf_rsrc1, s_save_spi_init_hi, 0x0000FFFF //base_addr_hi
s_or_b32 s_save_buf_rsrc1, s_save_buf_rsrc1, S_SAVE_BUF_RSRC_WORD1_STRIDE
s_mov_b32 s_save_buf_rsrc2, 0 //NUM_RECORDS initial value = 0 (in bytes) although not neccessarily inited
s_mov_b32 s_save_buf_rsrc3, S_SAVE_BUF_RSRC_WORD3_MISC
s_and_b32 s_save_tmp, s_save_spi_init_hi, S_SAVE_SPI_INIT_ATC_MASK
s_lshr_b32 s_save_tmp, s_save_tmp, (S_SAVE_SPI_INIT_ATC_SHIFT-SQ_BUF_RSRC_WORD1_ATC_SHIFT) //get ATC bit into position
s_or_b32 s_save_buf_rsrc3, s_save_buf_rsrc3, s_save_tmp //or ATC
s_and_b32 s_save_tmp, s_save_spi_init_hi, S_SAVE_SPI_INIT_MTYPE_MASK
s_lshr_b32 s_save_tmp, s_save_tmp, (S_SAVE_SPI_INIT_MTYPE_SHIFT-SQ_BUF_RSRC_WORD3_MTYPE_SHIFT) //get MTYPE bits into position
s_or_b32 s_save_buf_rsrc3, s_save_buf_rsrc3, s_save_tmp //or MTYPE
//FIXME right now s_save_m0/s_save_mem_offset use tma_lo/tma_hi (might need to save them before using them?)
s_mov_b32 s_save_m0, m0 //save M0
/* global mem offset */
s_mov_b32 s_save_mem_offset, 0x0 //mem offset initial value = 0
/* save HW registers */
//////////////////////////////
L_SAVE_HWREG:
// HWREG SR memory offset : size(VGPR)+size(SGPR)
get_vgpr_size_bytes(s_save_mem_offset)
get_sgpr_size_bytes(s_save_tmp)
s_add_u32 s_save_mem_offset, s_save_mem_offset, s_save_tmp
s_mov_b32 s_save_buf_rsrc2, 0x4 //NUM_RECORDS in bytes
if (SWIZZLE_EN)
s_add_u32 s_save_buf_rsrc2, s_save_buf_rsrc2, 0x0 //FIXME need to use swizzle to enable bounds checking?
else
s_mov_b32 s_save_buf_rsrc2, 0x1000000 //NUM_RECORDS in bytes
end
write_hwreg_to_mem(s_save_m0, s_save_buf_rsrc0, s_save_mem_offset) //M0
if ((EMU_RUN_HACK) && (EMU_RUN_HACK_SAVE_FIRST_TIME))
s_add_u32 s_save_pc_lo, s_save_pc_lo, 4 //pc[31:0]+4
s_addc_u32 s_save_pc_hi, s_save_pc_hi, 0x0 //carry bit over
s_mov_b32 tba_lo, EMU_RUN_HACK_SAVE_FIRST_TIME_TBA_LO
s_mov_b32 tba_hi, EMU_RUN_HACK_SAVE_FIRST_TIME_TBA_HI
end
write_hwreg_to_mem(s_save_pc_lo, s_save_buf_rsrc0, s_save_mem_offset) //PC
write_hwreg_to_mem(s_save_pc_hi, s_save_buf_rsrc0, s_save_mem_offset)
write_hwreg_to_mem(s_save_exec_lo, s_save_buf_rsrc0, s_save_mem_offset) //EXEC
write_hwreg_to_mem(s_save_exec_hi, s_save_buf_rsrc0, s_save_mem_offset)
write_hwreg_to_mem(s_save_status, s_save_buf_rsrc0, s_save_mem_offset) //STATUS
//s_save_trapsts conflicts with s_save_alloc_size
s_getreg_b32 s_save_trapsts, hwreg(HW_REG_TRAPSTS)
write_hwreg_to_mem(s_save_trapsts, s_save_buf_rsrc0, s_save_mem_offset) //TRAPSTS
write_hwreg_to_mem(s_save_xnack_mask_lo, s_save_buf_rsrc0, s_save_mem_offset) //XNACK_MASK_LO
write_hwreg_to_mem(s_save_xnack_mask_hi, s_save_buf_rsrc0, s_save_mem_offset) //XNACK_MASK_HI
//use s_save_tmp would introduce conflict here between s_save_tmp and s_save_buf_rsrc2
s_getreg_b32 s_save_m0, hwreg(HW_REG_MODE) //MODE
write_hwreg_to_mem(s_save_m0, s_save_buf_rsrc0, s_save_mem_offset)
write_hwreg_to_mem(tba_lo, s_save_buf_rsrc0, s_save_mem_offset) //TBA_LO
write_hwreg_to_mem(tba_hi, s_save_buf_rsrc0, s_save_mem_offset) //TBA_HI
/* the first wave in the threadgroup */
// save fist_wave bits in tba_hi unused bit.26
s_and_b32 s_save_tmp, s_save_spi_init_hi, S_SAVE_SPI_INIT_FIRST_WAVE_MASK // extract fisrt wave bit
//s_or_b32 tba_hi, s_save_tmp, tba_hi // save first wave bit to tba_hi.bits[26]
s_mov_b32 s_save_exec_hi, 0x0
s_or_b32 s_save_exec_hi, s_save_tmp, s_save_exec_hi // save first wave bit to s_save_exec_hi.bits[26]
/* save SGPRs */
// Save SGPR before LDS save, then the s0 to s4 can be used during LDS save...
//////////////////////////////
// SGPR SR memory offset : size(VGPR)
get_vgpr_size_bytes(s_save_mem_offset)
// TODO, change RSRC word to rearrange memory layout for SGPRS
s_getreg_b32 s_save_alloc_size, hwreg(HW_REG_GPR_ALLOC,SQ_WAVE_GPR_ALLOC_SGPR_SIZE_SHIFT,SQ_WAVE_GPR_ALLOC_SGPR_SIZE_SIZE) //spgr_size
s_add_u32 s_save_alloc_size, s_save_alloc_size, 1
s_lshl_b32 s_save_alloc_size, s_save_alloc_size, 4 //Number of SGPRs = (sgpr_size + 1) * 16 (non-zero value)
if (SGPR_SAVE_USE_SQC)
s_lshl_b32 s_save_buf_rsrc2, s_save_alloc_size, 2 //NUM_RECORDS in bytes
else
s_lshl_b32 s_save_buf_rsrc2, s_save_alloc_size, 8 //NUM_RECORDS in bytes (64 threads)
end
if (SWIZZLE_EN)
s_add_u32 s_save_buf_rsrc2, s_save_buf_rsrc2, 0x0 //FIXME need to use swizzle to enable bounds checking?
else
s_mov_b32 s_save_buf_rsrc2, 0x1000000 //NUM_RECORDS in bytes
end
// backup s_save_buf_rsrc0,1 to s_save_pc_lo/hi, since write_16sgpr_to_mem function will change the rsrc0
//s_mov_b64 s_save_pc_lo, s_save_buf_rsrc0
s_mov_b64 s_save_xnack_mask_lo, s_save_buf_rsrc0
s_add_u32 s_save_buf_rsrc0, s_save_buf_rsrc0, s_save_mem_offset
s_addc_u32 s_save_buf_rsrc1, s_save_buf_rsrc1, 0
s_mov_b32 m0, 0x0 //SGPR initial index value =0
L_SAVE_SGPR_LOOP:
// SGPR is allocated in 16 SGPR granularity
s_movrels_b64 s0, s0 //s0 = s[0+m0], s1 = s[1+m0]
s_movrels_b64 s2, s2 //s2 = s[2+m0], s3 = s[3+m0]
s_movrels_b64 s4, s4 //s4 = s[4+m0], s5 = s[5+m0]
s_movrels_b64 s6, s6 //s6 = s[6+m0], s7 = s[7+m0]
s_movrels_b64 s8, s8 //s8 = s[8+m0], s9 = s[9+m0]
s_movrels_b64 s10, s10 //s10 = s[10+m0], s11 = s[11+m0]
s_movrels_b64 s12, s12 //s12 = s[12+m0], s13 = s[13+m0]
s_movrels_b64 s14, s14 //s14 = s[14+m0], s15 = s[15+m0]
write_16sgpr_to_mem(s0, s_save_buf_rsrc0, s_save_mem_offset) //PV: the best performance should be using s_buffer_store_dwordx4
s_add_u32 m0, m0, 16 //next sgpr index
s_cmp_lt_u32 m0, s_save_alloc_size //scc = (m0 < s_save_alloc_size) ? 1 : 0
s_cbranch_scc1 L_SAVE_SGPR_LOOP //SGPR save is complete?
// restore s_save_buf_rsrc0,1
//s_mov_b64 s_save_buf_rsrc0, s_save_pc_lo
s_mov_b64 s_save_buf_rsrc0, s_save_xnack_mask_lo
/* save first 4 VGPR, then LDS save could use */
// each wave will alloc 4 vgprs at least...
/////////////////////////////////////////////////////////////////////////////////////
s_mov_b32 s_save_mem_offset, 0
s_mov_b32 exec_lo, 0xFFFFFFFF //need every thread from now on
s_mov_b32 exec_hi, 0xFFFFFFFF
if (SWIZZLE_EN)
s_add_u32 s_save_buf_rsrc2, s_save_buf_rsrc2, 0x0 //FIXME need to use swizzle to enable bounds checking?
else
s_mov_b32 s_save_buf_rsrc2, 0x1000000 //NUM_RECORDS in bytes
end
// VGPR Allocated in 4-GPR granularity
if G8SR_VGPR_SR_IN_DWX4
// the const stride for DWx4 is 4*4 bytes
s_and_b32 s_save_buf_rsrc1, s_save_buf_rsrc1, 0x0000FFFF // reset const stride to 0
s_or_b32 s_save_buf_rsrc1, s_save_buf_rsrc1, G8SR_SAVE_BUF_RSRC_WORD1_STRIDE_DWx4 // const stride to 4*4 bytes
buffer_store_dwordx4 v0, v0, s_save_buf_rsrc0, s_save_mem_offset slc:1 glc:1
s_and_b32 s_save_buf_rsrc1, s_save_buf_rsrc1, 0x0000FFFF // reset const stride to 0
s_or_b32 s_save_buf_rsrc1, s_save_buf_rsrc1, S_SAVE_BUF_RSRC_WORD1_STRIDE // reset const stride to 4 bytes
else
buffer_store_dword v0, v0, s_save_buf_rsrc0, s_save_mem_offset slc:1 glc:1
buffer_store_dword v1, v0, s_save_buf_rsrc0, s_save_mem_offset slc:1 glc:1 offset:256
buffer_store_dword v2, v0, s_save_buf_rsrc0, s_save_mem_offset slc:1 glc:1 offset:256*2
buffer_store_dword v3, v0, s_save_buf_rsrc0, s_save_mem_offset slc:1 glc:1 offset:256*3
end
/* save LDS */
//////////////////////////////
L_SAVE_LDS:
// Change EXEC to all threads...
s_mov_b32 exec_lo, 0xFFFFFFFF //need every thread from now on
s_mov_b32 exec_hi, 0xFFFFFFFF
s_getreg_b32 s_save_alloc_size, hwreg(HW_REG_LDS_ALLOC,SQ_WAVE_LDS_ALLOC_LDS_SIZE_SHIFT,SQ_WAVE_LDS_ALLOC_LDS_SIZE_SIZE) //lds_size
s_and_b32 s_save_alloc_size, s_save_alloc_size, 0xFFFFFFFF //lds_size is zero?
s_cbranch_scc0 L_SAVE_LDS_DONE //no lds used? jump to L_SAVE_DONE
s_barrier //LDS is used? wait for other waves in the same TG
//s_and_b32 s_save_tmp, tba_hi, S_SAVE_SPI_INIT_FIRST_WAVE_MASK //exec is still used here
s_and_b32 s_save_tmp, s_save_exec_hi, S_SAVE_SPI_INIT_FIRST_WAVE_MASK //exec is still used here
s_cbranch_scc0 L_SAVE_LDS_DONE
// first wave do LDS save;
s_lshl_b32 s_save_alloc_size, s_save_alloc_size, 6 //LDS size in dwords = lds_size * 64dw
s_lshl_b32 s_save_alloc_size, s_save_alloc_size, 2 //LDS size in bytes
s_mov_b32 s_save_buf_rsrc2, s_save_alloc_size //NUM_RECORDS in bytes
// LDS at offset: size(VGPR)+SIZE(SGPR)+SIZE(HWREG)
//
get_vgpr_size_bytes(s_save_mem_offset)
get_sgpr_size_bytes(s_save_tmp)
s_add_u32 s_save_mem_offset, s_save_mem_offset, s_save_tmp
s_add_u32 s_save_mem_offset, s_save_mem_offset, get_hwreg_size_bytes()
if (SWIZZLE_EN)
s_add_u32 s_save_buf_rsrc2, s_save_buf_rsrc2, 0x0 //FIXME need to use swizzle to enable bounds checking?
else
s_mov_b32 s_save_buf_rsrc2, 0x1000000 //NUM_RECORDS in bytes
end
s_mov_b32 m0, 0x0 //lds_offset initial value = 0
var LDS_DMA_ENABLE = 0
var UNROLL = 0
if UNROLL==0 && LDS_DMA_ENABLE==1
s_mov_b32 s3, 256*2
s_nop 0
s_nop 0
s_nop 0
L_SAVE_LDS_LOOP:
//TODO: looks the 2 buffer_store/load clause for s/r will hurt performance.???
if (SAVE_LDS) //SPI always alloc LDS space in 128DW granularity
buffer_store_lds_dword s_save_buf_rsrc0, s_save_mem_offset lds:1 // first 64DW
buffer_store_lds_dword s_save_buf_rsrc0, s_save_mem_offset lds:1 offset:256 // second 64DW
end
s_add_u32 m0, m0, s3 //every buffer_store_lds does 256 bytes
s_add_u32 s_save_mem_offset, s_save_mem_offset, s3 //mem offset increased by 256 bytes
s_cmp_lt_u32 m0, s_save_alloc_size //scc=(m0 < s_save_alloc_size) ? 1 : 0
s_cbranch_scc1 L_SAVE_LDS_LOOP //LDS save is complete?
elsif LDS_DMA_ENABLE==1 && UNROLL==1 // UNROOL , has ichace miss
// store from higest LDS address to lowest
s_mov_b32 s3, 256*2
s_sub_u32 m0, s_save_alloc_size, s3
s_add_u32 s_save_mem_offset, s_save_mem_offset, m0
s_lshr_b32 s_save_alloc_size, s_save_alloc_size, 9 // how many 128 trunks...
s_sub_u32 s_save_alloc_size, 128, s_save_alloc_size // store from higheset addr to lowest
s_mul_i32 s_save_alloc_size, s_save_alloc_size, 6*4 // PC offset increment, each LDS save block cost 6*4 Bytes instruction
s_add_u32 s_save_alloc_size, s_save_alloc_size, 3*4 //2is the below 2 inst...//s_addc and s_setpc
s_nop 0
s_nop 0
s_nop 0 //pad 3 dw to let LDS_DMA align with 64Bytes
s_getpc_b64 s[0:1] // reuse s[0:1], since s[0:1] already saved
s_add_u32 s0, s0,s_save_alloc_size
s_addc_u32 s1, s1, 0
s_setpc_b64 s[0:1]
for var i =0; i< 128; i++
// be careful to make here a 64Byte aligned address, which could improve performance...
buffer_store_lds_dword s_save_buf_rsrc0, s_save_mem_offset lds:1 offset:0 // first 64DW
buffer_store_lds_dword s_save_buf_rsrc0, s_save_mem_offset lds:1 offset:256 // second 64DW
if i!=127
s_sub_u32 m0, m0, s3 // use a sgpr to shrink 2DW-inst to 1DW inst to improve performance , i.e. pack more LDS_DMA inst to one Cacheline
s_sub_u32 s_save_mem_offset, s_save_mem_offset, s3
end
end
else // BUFFER_STORE
v_mbcnt_lo_u32_b32 v2, 0xffffffff, 0x0
v_mbcnt_hi_u32_b32 v3, 0xffffffff, v2 // tid
v_mul_i32_i24 v2, v3, 8 // tid*8
v_mov_b32 v3, 256*2
s_mov_b32 m0, 0x10000
s_mov_b32 s0, s_save_buf_rsrc3
s_and_b32 s_save_buf_rsrc3, s_save_buf_rsrc3, 0xFF7FFFFF // disable add_tid
s_or_b32 s_save_buf_rsrc3, s_save_buf_rsrc3, 0x58000 //DFMT
L_SAVE_LDS_LOOP_VECTOR:
ds_read_b64 v[0:1], v2 //x =LDS[a], byte address
s_waitcnt lgkmcnt(0)
buffer_store_dwordx2 v[0:1], v2, s_save_buf_rsrc0, s_save_mem_offset offen:1 glc:1 slc:1
// s_waitcnt vmcnt(0)
v_add_u32 v2, vcc[0:1], v2, v3
v_cmp_lt_u32 vcc[0:1], v2, s_save_alloc_size
s_cbranch_vccnz L_SAVE_LDS_LOOP_VECTOR
// restore rsrc3
s_mov_b32 s_save_buf_rsrc3, s0
end
L_SAVE_LDS_DONE:
/* save VGPRs - set the Rest VGPRs */
//////////////////////////////////////////////////////////////////////////////////////
L_SAVE_VGPR:
// VGPR SR memory offset: 0
// TODO rearrange the RSRC words to use swizzle for VGPR save...
s_mov_b32 s_save_mem_offset, (0+256*4) // for the rest VGPRs
s_mov_b32 exec_lo, 0xFFFFFFFF //need every thread from now on
s_mov_b32 exec_hi, 0xFFFFFFFF
s_getreg_b32 s_save_alloc_size, hwreg(HW_REG_GPR_ALLOC,SQ_WAVE_GPR_ALLOC_VGPR_SIZE_SHIFT,SQ_WAVE_GPR_ALLOC_VGPR_SIZE_SIZE) //vpgr_size
s_add_u32 s_save_alloc_size, s_save_alloc_size, 1
s_lshl_b32 s_save_alloc_size, s_save_alloc_size, 2 //Number of VGPRs = (vgpr_size + 1) * 4 (non-zero value) //FIXME for GFX, zero is possible
s_lshl_b32 s_save_buf_rsrc2, s_save_alloc_size, 8 //NUM_RECORDS in bytes (64 threads*4)
if (SWIZZLE_EN)
s_add_u32 s_save_buf_rsrc2, s_save_buf_rsrc2, 0x0 //FIXME need to use swizzle to enable bounds checking?
else
s_mov_b32 s_save_buf_rsrc2, 0x1000000 //NUM_RECORDS in bytes
end
// VGPR Allocated in 4-GPR granularity
if G8SR_VGPR_SR_IN_DWX4
// the const stride for DWx4 is 4*4 bytes
s_and_b32 s_save_buf_rsrc1, s_save_buf_rsrc1, 0x0000FFFF // reset const stride to 0
s_or_b32 s_save_buf_rsrc1, s_save_buf_rsrc1, G8SR_SAVE_BUF_RSRC_WORD1_STRIDE_DWx4 // const stride to 4*4 bytes
s_mov_b32 m0, 4 // skip first 4 VGPRs
s_cmp_lt_u32 m0, s_save_alloc_size
s_cbranch_scc0 L_SAVE_VGPR_LOOP_END // no more vgprs
s_set_gpr_idx_on m0, 0x1 // This will change M0
s_add_u32 s_save_alloc_size, s_save_alloc_size, 0x1000 // because above inst change m0
L_SAVE_VGPR_LOOP:
v_mov_b32 v0, v0 // v0 = v[0+m0]
v_mov_b32 v1, v1
v_mov_b32 v2, v2
v_mov_b32 v3, v3
buffer_store_dwordx4 v0, v0, s_save_buf_rsrc0, s_save_mem_offset slc:1 glc:1
s_add_u32 m0, m0, 4
s_add_u32 s_save_mem_offset, s_save_mem_offset, 256*4
s_cmp_lt_u32 m0, s_save_alloc_size
s_cbranch_scc1 L_SAVE_VGPR_LOOP //VGPR save is complete?
s_set_gpr_idx_off
L_SAVE_VGPR_LOOP_END:
s_and_b32 s_save_buf_rsrc1, s_save_buf_rsrc1, 0x0000FFFF // reset const stride to 0
s_or_b32 s_save_buf_rsrc1, s_save_buf_rsrc1, S_SAVE_BUF_RSRC_WORD1_STRIDE // reset const stride to 4 bytes
else
// VGPR store using dw burst
s_mov_b32 m0, 0x4 //VGPR initial index value =0
s_cmp_lt_u32 m0, s_save_alloc_size
s_cbranch_scc0 L_SAVE_VGPR_END
s_set_gpr_idx_on m0, 0x1 //M0[7:0] = M0[7:0] and M0[15:12] = 0x1
s_add_u32 s_save_alloc_size, s_save_alloc_size, 0x1000 //add 0x1000 since we compare m0 against it later
L_SAVE_VGPR_LOOP:
v_mov_b32 v0, v0 //v0 = v[0+m0]
v_mov_b32 v1, v1 //v0 = v[0+m0]
v_mov_b32 v2, v2 //v0 = v[0+m0]
v_mov_b32 v3, v3 //v0 = v[0+m0]
if(USE_MTBUF_INSTEAD_OF_MUBUF)
tbuffer_store_format_x v0, v0, s_save_buf_rsrc0, s_save_mem_offset format:BUF_NUM_FORMAT_FLOAT format: BUF_DATA_FORMAT_32 slc:1 glc:1
else
buffer_store_dword v0, v0, s_save_buf_rsrc0, s_save_mem_offset slc:1 glc:1
buffer_store_dword v1, v0, s_save_buf_rsrc0, s_save_mem_offset slc:1 glc:1 offset:256
buffer_store_dword v2, v0, s_save_buf_rsrc0, s_save_mem_offset slc:1 glc:1 offset:256*2
buffer_store_dword v3, v0, s_save_buf_rsrc0, s_save_mem_offset slc:1 glc:1 offset:256*3
end
s_add_u32 m0, m0, 4 //next vgpr index
s_add_u32 s_save_mem_offset, s_save_mem_offset, 256*4 //every buffer_store_dword does 256 bytes
s_cmp_lt_u32 m0, s_save_alloc_size //scc = (m0 < s_save_alloc_size) ? 1 : 0
s_cbranch_scc1 L_SAVE_VGPR_LOOP //VGPR save is complete?
s_set_gpr_idx_off
end
L_SAVE_VGPR_END:
/* S_PGM_END_SAVED */ //FIXME graphics ONLY
if ((EMU_RUN_HACK) && (!EMU_RUN_HACK_SAVE_NORMAL_EXIT))
s_and_b32 s_save_pc_hi, s_save_pc_hi, 0x0000ffff //pc[47:32]
s_add_u32 s_save_pc_lo, s_save_pc_lo, 4 //pc[31:0]+4
s_addc_u32 s_save_pc_hi, s_save_pc_hi, 0x0 //carry bit over
s_rfe_b64 s_save_pc_lo //Return to the main shader program
else
end
// Save Done timestamp
if G8SR_DEBUG_TIMESTAMP
s_memrealtime s_g8sr_ts_save_d
// SGPR SR memory offset : size(VGPR)
get_vgpr_size_bytes(s_save_mem_offset)
s_add_u32 s_save_mem_offset, s_save_mem_offset, G8SR_DEBUG_TS_SAVE_D_OFFSET
s_waitcnt lgkmcnt(0) //FIXME, will cause xnack??
// Need reset rsrc2??
s_mov_b32 m0, s_save_mem_offset
s_mov_b32 s_save_buf_rsrc2, 0x1000000 //NUM_RECORDS in bytes
s_buffer_store_dwordx2 s_g8sr_ts_save_d, s_save_buf_rsrc0, m0 glc:1
end
s_branch L_END_PGM
/**************************************************************************/
/* restore routine */
/**************************************************************************/
L_RESTORE:
/* Setup Resource Contants */
if ((EMU_RUN_HACK) && (!EMU_RUN_HACK_RESTORE_NORMAL))
//calculate wd_addr using absolute thread id
v_readlane_b32 s_restore_tmp, v9, 0
s_lshr_b32 s_restore_tmp, s_restore_tmp, 6
s_mul_i32 s_restore_tmp, s_restore_tmp, WAVE_SPACE
s_add_i32 s_restore_spi_init_lo, s_restore_tmp, WG_BASE_ADDR_LO
s_mov_b32 s_restore_spi_init_hi, WG_BASE_ADDR_HI
s_and_b32 s_restore_spi_init_hi, s_restore_spi_init_hi, CTX_RESTORE_CONTROL
else
end
if G8SR_DEBUG_TIMESTAMP
s_memrealtime s_g8sr_ts_restore_s
s_waitcnt lgkmcnt(0) //FIXME, will cause xnack??
// tma_lo/hi are sgpr 110, 111, which will not used for 112 SGPR allocated case...
s_mov_b32 s_restore_pc_lo, s_g8sr_ts_restore_s[0]
s_mov_b32 s_restore_pc_hi, s_g8sr_ts_restore_s[1] //backup ts to ttmp0/1, sicne exec will be finally restored..
end
s_mov_b32 s_restore_buf_rsrc0, s_restore_spi_init_lo //base_addr_lo
s_and_b32 s_restore_buf_rsrc1, s_restore_spi_init_hi, 0x0000FFFF //base_addr_hi
s_or_b32 s_restore_buf_rsrc1, s_restore_buf_rsrc1, S_RESTORE_BUF_RSRC_WORD1_STRIDE
s_mov_b32 s_restore_buf_rsrc2, 0 //NUM_RECORDS initial value = 0 (in bytes)
s_mov_b32 s_restore_buf_rsrc3, S_RESTORE_BUF_RSRC_WORD3_MISC
s_and_b32 s_restore_tmp, s_restore_spi_init_hi, S_RESTORE_SPI_INIT_ATC_MASK
s_lshr_b32 s_restore_tmp, s_restore_tmp, (S_RESTORE_SPI_INIT_ATC_SHIFT-SQ_BUF_RSRC_WORD1_ATC_SHIFT) //get ATC bit into position
s_or_b32 s_restore_buf_rsrc3, s_restore_buf_rsrc3, s_restore_tmp //or ATC
s_and_b32 s_restore_tmp, s_restore_spi_init_hi, S_RESTORE_SPI_INIT_MTYPE_MASK
s_lshr_b32 s_restore_tmp, s_restore_tmp, (S_RESTORE_SPI_INIT_MTYPE_SHIFT-SQ_BUF_RSRC_WORD3_MTYPE_SHIFT) //get MTYPE bits into position
s_or_b32 s_restore_buf_rsrc3, s_restore_buf_rsrc3, s_restore_tmp //or MTYPE
/* global mem offset */
// s_mov_b32 s_restore_mem_offset, 0x0 //mem offset initial value = 0
/* the first wave in the threadgroup */
s_and_b32 s_restore_tmp, s_restore_spi_init_hi, S_RESTORE_SPI_INIT_FIRST_WAVE_MASK
s_cbranch_scc0 L_RESTORE_VGPR
/* restore LDS */
//////////////////////////////
L_RESTORE_LDS:
s_mov_b32 exec_lo, 0xFFFFFFFF //need every thread from now on //be consistent with SAVE although can be moved ahead
s_mov_b32 exec_hi, 0xFFFFFFFF
s_getreg_b32 s_restore_alloc_size, hwreg(HW_REG_LDS_ALLOC,SQ_WAVE_LDS_ALLOC_LDS_SIZE_SHIFT,SQ_WAVE_LDS_ALLOC_LDS_SIZE_SIZE) //lds_size
s_and_b32 s_restore_alloc_size, s_restore_alloc_size, 0xFFFFFFFF //lds_size is zero?
s_cbranch_scc0 L_RESTORE_VGPR //no lds used? jump to L_RESTORE_VGPR
s_lshl_b32 s_restore_alloc_size, s_restore_alloc_size, 6 //LDS size in dwords = lds_size * 64dw
s_lshl_b32 s_restore_alloc_size, s_restore_alloc_size, 2 //LDS size in bytes
s_mov_b32 s_restore_buf_rsrc2, s_restore_alloc_size //NUM_RECORDS in bytes
// LDS at offset: size(VGPR)+SIZE(SGPR)+SIZE(HWREG)
//
get_vgpr_size_bytes(s_restore_mem_offset)
get_sgpr_size_bytes(s_restore_tmp)
s_add_u32 s_restore_mem_offset, s_restore_mem_offset, s_restore_tmp
s_add_u32 s_restore_mem_offset, s_restore_mem_offset, get_hwreg_size_bytes() //FIXME, Check if offset overflow???
if (SWIZZLE_EN)
s_add_u32 s_restore_buf_rsrc2, s_restore_buf_rsrc2, 0x0 //FIXME need to use swizzle to enable bounds checking?
else
s_mov_b32 s_restore_buf_rsrc2, 0x1000000 //NUM_RECORDS in bytes
end
s_mov_b32 m0, 0x0 //lds_offset initial value = 0
L_RESTORE_LDS_LOOP:
if (SAVE_LDS)
buffer_load_dword v0, v0, s_restore_buf_rsrc0, s_restore_mem_offset lds:1 // first 64DW
buffer_load_dword v0, v0, s_restore_buf_rsrc0, s_restore_mem_offset lds:1 offset:256 // second 64DW
end
s_add_u32 m0, m0, 256*2 // 128 DW
s_add_u32 s_restore_mem_offset, s_restore_mem_offset, 256*2 //mem offset increased by 128DW
s_cmp_lt_u32 m0, s_restore_alloc_size //scc=(m0 < s_restore_alloc_size) ? 1 : 0
s_cbranch_scc1 L_RESTORE_LDS_LOOP //LDS restore is complete?
/* restore VGPRs */
//////////////////////////////
L_RESTORE_VGPR:
// VGPR SR memory offset : 0
s_mov_b32 s_restore_mem_offset, 0x0
s_mov_b32 exec_lo, 0xFFFFFFFF //need every thread from now on //be consistent with SAVE although can be moved ahead
s_mov_b32 exec_hi, 0xFFFFFFFF
s_getreg_b32 s_restore_alloc_size, hwreg(HW_REG_GPR_ALLOC,SQ_WAVE_GPR_ALLOC_VGPR_SIZE_SHIFT,SQ_WAVE_GPR_ALLOC_VGPR_SIZE_SIZE) //vpgr_size
s_add_u32 s_restore_alloc_size, s_restore_alloc_size, 1
s_lshl_b32 s_restore_alloc_size, s_restore_alloc_size, 2 //Number of VGPRs = (vgpr_size + 1) * 4 (non-zero value)
s_lshl_b32 s_restore_buf_rsrc2, s_restore_alloc_size, 8 //NUM_RECORDS in bytes (64 threads*4)
if (SWIZZLE_EN)
s_add_u32 s_restore_buf_rsrc2, s_restore_buf_rsrc2, 0x0 //FIXME need to use swizzle to enable bounds checking?
else
s_mov_b32 s_restore_buf_rsrc2, 0x1000000 //NUM_RECORDS in bytes
end
if G8SR_VGPR_SR_IN_DWX4
get_vgpr_size_bytes(s_restore_mem_offset)
s_sub_u32 s_restore_mem_offset, s_restore_mem_offset, 256*4
// the const stride for DWx4 is 4*4 bytes
s_and_b32 s_restore_buf_rsrc1, s_restore_buf_rsrc1, 0x0000FFFF // reset const stride to 0
s_or_b32 s_restore_buf_rsrc1, s_restore_buf_rsrc1, G8SR_RESTORE_BUF_RSRC_WORD1_STRIDE_DWx4 // const stride to 4*4 bytes
s_mov_b32 m0, s_restore_alloc_size
s_set_gpr_idx_on m0, 0x8 // Note.. This will change m0
L_RESTORE_VGPR_LOOP:
buffer_load_dwordx4 v0, v0, s_restore_buf_rsrc0, s_restore_mem_offset slc:1 glc:1
s_waitcnt vmcnt(0)
s_sub_u32 m0, m0, 4
v_mov_b32 v0, v0 // v[0+m0] = v0
v_mov_b32 v1, v1
v_mov_b32 v2, v2
v_mov_b32 v3, v3
s_sub_u32 s_restore_mem_offset, s_restore_mem_offset, 256*4
s_cmp_eq_u32 m0, 0x8000
s_cbranch_scc0 L_RESTORE_VGPR_LOOP
s_set_gpr_idx_off
s_and_b32 s_restore_buf_rsrc1, s_restore_buf_rsrc1, 0x0000FFFF // reset const stride to 0
s_or_b32 s_restore_buf_rsrc1, s_restore_buf_rsrc1, S_RESTORE_BUF_RSRC_WORD1_STRIDE // const stride to 4*4 bytes
else
// VGPR load using dw burst
s_mov_b32 s_restore_mem_offset_save, s_restore_mem_offset // restore start with v1, v0 will be the last
s_add_u32 s_restore_mem_offset, s_restore_mem_offset, 256*4
s_mov_b32 m0, 4 //VGPR initial index value = 1
s_set_gpr_idx_on m0, 0x8 //M0[7:0] = M0[7:0] and M0[15:12] = 0x8
s_add_u32 s_restore_alloc_size, s_restore_alloc_size, 0x8000 //add 0x8000 since we compare m0 against it later
L_RESTORE_VGPR_LOOP:
if(USE_MTBUF_INSTEAD_OF_MUBUF)
tbuffer_load_format_x v0, v0, s_restore_buf_rsrc0, s_restore_mem_offset format:BUF_NUM_FORMAT_FLOAT format: BUF_DATA_FORMAT_32 slc:1 glc:1
else
buffer_load_dword v0, v0, s_restore_buf_rsrc0, s_restore_mem_offset slc:1 glc:1
buffer_load_dword v1, v0, s_restore_buf_rsrc0, s_restore_mem_offset slc:1 glc:1 offset:256
buffer_load_dword v2, v0, s_restore_buf_rsrc0, s_restore_mem_offset slc:1 glc:1 offset:256*2
buffer_load_dword v3, v0, s_restore_buf_rsrc0, s_restore_mem_offset slc:1 glc:1 offset:256*3
end
s_waitcnt vmcnt(0) //ensure data ready
v_mov_b32 v0, v0 //v[0+m0] = v0
v_mov_b32 v1, v1
v_mov_b32 v2, v2
v_mov_b32 v3, v3
s_add_u32 m0, m0, 4 //next vgpr index
s_add_u32 s_restore_mem_offset, s_restore_mem_offset, 256*4 //every buffer_load_dword does 256 bytes
s_cmp_lt_u32 m0, s_restore_alloc_size //scc = (m0 < s_restore_alloc_size) ? 1 : 0
s_cbranch_scc1 L_RESTORE_VGPR_LOOP //VGPR restore (except v0) is complete?
s_set_gpr_idx_off
/* VGPR restore on v0 */
if(USE_MTBUF_INSTEAD_OF_MUBUF)
tbuffer_load_format_x v0, v0, s_restore_buf_rsrc0, s_restore_mem_offset_save format:BUF_NUM_FORMAT_FLOAT format: BUF_DATA_FORMAT_32 slc:1 glc:1
else
buffer_load_dword v0, v0, s_restore_buf_rsrc0, s_restore_mem_offset_save slc:1 glc:1
buffer_load_dword v1, v0, s_restore_buf_rsrc0, s_restore_mem_offset_save slc:1 glc:1 offset:256
buffer_load_dword v2, v0, s_restore_buf_rsrc0, s_restore_mem_offset_save slc:1 glc:1 offset:256*2
buffer_load_dword v3, v0, s_restore_buf_rsrc0, s_restore_mem_offset_save slc:1 glc:1 offset:256*3
end
end
/* restore SGPRs */
//////////////////////////////
// SGPR SR memory offset : size(VGPR)
get_vgpr_size_bytes(s_restore_mem_offset)
get_sgpr_size_bytes(s_restore_tmp)
s_add_u32 s_restore_mem_offset, s_restore_mem_offset, s_restore_tmp
s_sub_u32 s_restore_mem_offset, s_restore_mem_offset, 16*4 // restore SGPR from S[n] to S[0], by 16 sgprs group
// TODO, change RSRC word to rearrange memory layout for SGPRS
s_getreg_b32 s_restore_alloc_size, hwreg(HW_REG_GPR_ALLOC,SQ_WAVE_GPR_ALLOC_SGPR_SIZE_SHIFT,SQ_WAVE_GPR_ALLOC_SGPR_SIZE_SIZE) //spgr_size
s_add_u32 s_restore_alloc_size, s_restore_alloc_size, 1
s_lshl_b32 s_restore_alloc_size, s_restore_alloc_size, 4 //Number of SGPRs = (sgpr_size + 1) * 16 (non-zero value)
if (SGPR_SAVE_USE_SQC)
s_lshl_b32 s_restore_buf_rsrc2, s_restore_alloc_size, 2 //NUM_RECORDS in bytes
else
s_lshl_b32 s_restore_buf_rsrc2, s_restore_alloc_size, 8 //NUM_RECORDS in bytes (64 threads)
end
if (SWIZZLE_EN)
s_add_u32 s_restore_buf_rsrc2, s_restore_buf_rsrc2, 0x0 //FIXME need to use swizzle to enable bounds checking?
else
s_mov_b32 s_restore_buf_rsrc2, 0x1000000 //NUM_RECORDS in bytes
end
/* If 112 SGPRs ar allocated, 4 sgprs are not used TBA(108,109),TMA(110,111),
However, we are safe to restore these 4 SGPRs anyway, since TBA,TMA will later be restored by HWREG
*/
s_mov_b32 m0, s_restore_alloc_size
L_RESTORE_SGPR_LOOP:
read_16sgpr_from_mem(s0, s_restore_buf_rsrc0, s_restore_mem_offset) //PV: further performance improvement can be made
s_waitcnt lgkmcnt(0) //ensure data ready
s_sub_u32 m0, m0, 16 // Restore from S[n] to S[0]
s_movreld_b64 s0, s0 //s[0+m0] = s0
s_movreld_b64 s2, s2
s_movreld_b64 s4, s4
s_movreld_b64 s6, s6
s_movreld_b64 s8, s8
s_movreld_b64 s10, s10
s_movreld_b64 s12, s12
s_movreld_b64 s14, s14
s_cmp_eq_u32 m0, 0 //scc = (m0 < s_restore_alloc_size) ? 1 : 0
s_cbranch_scc0 L_RESTORE_SGPR_LOOP //SGPR restore (except s0) is complete?
/* restore HW registers */
//////////////////////////////
L_RESTORE_HWREG:
if G8SR_DEBUG_TIMESTAMP
s_mov_b32 s_g8sr_ts_restore_s[0], s_restore_pc_lo
s_mov_b32 s_g8sr_ts_restore_s[1], s_restore_pc_hi
end
// HWREG SR memory offset : size(VGPR)+size(SGPR)
get_vgpr_size_bytes(s_restore_mem_offset)
get_sgpr_size_bytes(s_restore_tmp)
s_add_u32 s_restore_mem_offset, s_restore_mem_offset, s_restore_tmp
s_mov_b32 s_restore_buf_rsrc2, 0x4 //NUM_RECORDS in bytes
if (SWIZZLE_EN)
s_add_u32 s_restore_buf_rsrc2, s_restore_buf_rsrc2, 0x0 //FIXME need to use swizzle to enable bounds checking?
else
s_mov_b32 s_restore_buf_rsrc2, 0x1000000 //NUM_RECORDS in bytes
end
read_hwreg_from_mem(s_restore_m0, s_restore_buf_rsrc0, s_restore_mem_offset) //M0
read_hwreg_from_mem(s_restore_pc_lo, s_restore_buf_rsrc0, s_restore_mem_offset) //PC
read_hwreg_from_mem(s_restore_pc_hi, s_restore_buf_rsrc0, s_restore_mem_offset)
read_hwreg_from_mem(s_restore_exec_lo, s_restore_buf_rsrc0, s_restore_mem_offset) //EXEC
read_hwreg_from_mem(s_restore_exec_hi, s_restore_buf_rsrc0, s_restore_mem_offset)
read_hwreg_from_mem(s_restore_status, s_restore_buf_rsrc0, s_restore_mem_offset) //STATUS
read_hwreg_from_mem(s_restore_trapsts, s_restore_buf_rsrc0, s_restore_mem_offset) //TRAPSTS
read_hwreg_from_mem(xnack_mask_lo, s_restore_buf_rsrc0, s_restore_mem_offset) //XNACK_MASK_LO
read_hwreg_from_mem(xnack_mask_hi, s_restore_buf_rsrc0, s_restore_mem_offset) //XNACK_MASK_HI
read_hwreg_from_mem(s_restore_mode, s_restore_buf_rsrc0, s_restore_mem_offset) //MODE
read_hwreg_from_mem(tba_lo, s_restore_buf_rsrc0, s_restore_mem_offset) //TBA_LO
read_hwreg_from_mem(tba_hi, s_restore_buf_rsrc0, s_restore_mem_offset) //TBA_HI
s_waitcnt lgkmcnt(0) //from now on, it is safe to restore STATUS and IB_STS
//for normal save & restore, the saved PC points to the next inst to execute, no adjustment needs to be made, otherwise:
if ((EMU_RUN_HACK) && (!EMU_RUN_HACK_RESTORE_NORMAL))
s_add_u32 s_restore_pc_lo, s_restore_pc_lo, 8 //pc[31:0]+8 //two back-to-back s_trap are used (first for save and second for restore)
s_addc_u32 s_restore_pc_hi, s_restore_pc_hi, 0x0 //carry bit over
end
if ((EMU_RUN_HACK) && (EMU_RUN_HACK_RESTORE_NORMAL))
s_add_u32 s_restore_pc_lo, s_restore_pc_lo, 4 //pc[31:0]+4 // save is hack through s_trap but restore is normal
s_addc_u32 s_restore_pc_hi, s_restore_pc_hi, 0x0 //carry bit over
end
s_mov_b32 m0, s_restore_m0
s_mov_b32 exec_lo, s_restore_exec_lo
s_mov_b32 exec_hi, s_restore_exec_hi
s_and_b32 s_restore_m0, SQ_WAVE_TRAPSTS_PRE_SAVECTX_MASK, s_restore_trapsts
s_setreg_b32 hwreg(HW_REG_TRAPSTS, SQ_WAVE_TRAPSTS_PRE_SAVECTX_SHIFT, SQ_WAVE_TRAPSTS_PRE_SAVECTX_SIZE), s_restore_m0
s_and_b32 s_restore_m0, SQ_WAVE_TRAPSTS_POST_SAVECTX_MASK, s_restore_trapsts
s_lshr_b32 s_restore_m0, s_restore_m0, SQ_WAVE_TRAPSTS_POST_SAVECTX_SHIFT
s_setreg_b32 hwreg(HW_REG_TRAPSTS, SQ_WAVE_TRAPSTS_POST_SAVECTX_SHIFT, SQ_WAVE_TRAPSTS_POST_SAVECTX_SIZE), s_restore_m0
//s_setreg_b32 hwreg(HW_REG_TRAPSTS), s_restore_trapsts //don't overwrite SAVECTX bit as it may be set through external SAVECTX during restore
s_setreg_b32 hwreg(HW_REG_MODE), s_restore_mode
//reuse s_restore_m0 as a temp register
s_and_b32 s_restore_m0, s_restore_pc_hi, S_SAVE_PC_HI_RCNT_MASK
s_lshr_b32 s_restore_m0, s_restore_m0, S_SAVE_PC_HI_RCNT_SHIFT
s_lshl_b32 s_restore_m0, s_restore_m0, SQ_WAVE_IB_STS_RCNT_SHIFT
s_mov_b32 s_restore_tmp, 0x0 //IB_STS is zero
s_or_b32 s_restore_tmp, s_restore_tmp, s_restore_m0
s_and_b32 s_restore_m0, s_restore_pc_hi, S_SAVE_PC_HI_FIRST_REPLAY_MASK
s_lshr_b32 s_restore_m0, s_restore_m0, S_SAVE_PC_HI_FIRST_REPLAY_SHIFT
s_lshl_b32 s_restore_m0, s_restore_m0, SQ_WAVE_IB_STS_FIRST_REPLAY_SHIFT
s_or_b32 s_restore_tmp, s_restore_tmp, s_restore_m0
s_and_b32 s_restore_m0, s_restore_status, SQ_WAVE_STATUS_INST_ATC_MASK
s_lshr_b32 s_restore_m0, s_restore_m0, SQ_WAVE_STATUS_INST_ATC_SHIFT
s_setreg_b32 hwreg(HW_REG_IB_STS), s_restore_tmp
s_and_b32 s_restore_pc_hi, s_restore_pc_hi, 0x0000ffff //pc[47:32] //Do it here in order not to affect STATUS
s_and_b64 exec, exec, exec // Restore STATUS.EXECZ, not writable by s_setreg_b32
s_and_b64 vcc, vcc, vcc // Restore STATUS.VCCZ, not writable by s_setreg_b32
set_status_without_spi_prio(s_restore_status, s_restore_tmp) // SCC is included, which is changed by previous salu
s_barrier //barrier to ensure the readiness of LDS before access attempts from any other wave in the same TG //FIXME not performance-optimal at this time
if G8SR_DEBUG_TIMESTAMP
s_memrealtime s_g8sr_ts_restore_d
s_waitcnt lgkmcnt(0)
end
// s_rfe_b64 s_restore_pc_lo //Return to the main shader program and resume execution
s_rfe_restore_b64 s_restore_pc_lo, s_restore_m0 // s_restore_m0[0] is used to set STATUS.inst_atc
/**************************************************************************/
/* the END */
/**************************************************************************/
L_END_PGM:
s_endpgm
end
/**************************************************************************/
/* the helper functions */
/**************************************************************************/
//Only for save hwreg to mem
function write_hwreg_to_mem(s, s_rsrc, s_mem_offset)
s_mov_b32 exec_lo, m0 //assuming exec_lo is not needed anymore from this point on
s_mov_b32 m0, s_mem_offset
s_buffer_store_dword s, s_rsrc, m0 glc:1
s_add_u32 s_mem_offset, s_mem_offset, 4
s_mov_b32 m0, exec_lo
end
// HWREG are saved before SGPRs, so all HWREG could be use.
function write_16sgpr_to_mem(s, s_rsrc, s_mem_offset)
s_buffer_store_dwordx4 s[0], s_rsrc, 0 glc:1
s_buffer_store_dwordx4 s[4], s_rsrc, 16 glc:1
s_buffer_store_dwordx4 s[8], s_rsrc, 32 glc:1
s_buffer_store_dwordx4 s[12], s_rsrc, 48 glc:1
s_add_u32 s_rsrc[0], s_rsrc[0], 4*16
s_addc_u32 s_rsrc[1], s_rsrc[1], 0x0 // +scc
end
function read_hwreg_from_mem(s, s_rsrc, s_mem_offset)
s_buffer_load_dword s, s_rsrc, s_mem_offset glc:1
s_add_u32 s_mem_offset, s_mem_offset, 4
end
function read_16sgpr_from_mem(s, s_rsrc, s_mem_offset)
s_buffer_load_dwordx16 s, s_rsrc, s_mem_offset glc:1
s_sub_u32 s_mem_offset, s_mem_offset, 4*16
end
function get_lds_size_bytes(s_lds_size_byte)
// SQ LDS granularity is 64DW, while PGM_RSRC2.lds_size is in granularity 128DW
s_getreg_b32 s_lds_size_byte, hwreg(HW_REG_LDS_ALLOC, SQ_WAVE_LDS_ALLOC_LDS_SIZE_SHIFT, SQ_WAVE_LDS_ALLOC_LDS_SIZE_SIZE) // lds_size
s_lshl_b32 s_lds_size_byte, s_lds_size_byte, 8 //LDS size in dwords = lds_size * 64 *4Bytes // granularity 64DW
end
function get_vgpr_size_bytes(s_vgpr_size_byte)
s_getreg_b32 s_vgpr_size_byte, hwreg(HW_REG_GPR_ALLOC,SQ_WAVE_GPR_ALLOC_VGPR_SIZE_SHIFT,SQ_WAVE_GPR_ALLOC_VGPR_SIZE_SIZE) //vpgr_size
s_add_u32 s_vgpr_size_byte, s_vgpr_size_byte, 1
s_lshl_b32 s_vgpr_size_byte, s_vgpr_size_byte, (2+8) //Number of VGPRs = (vgpr_size + 1) * 4 * 64 * 4 (non-zero value) //FIXME for GFX, zero is possible
end
function get_sgpr_size_bytes(s_sgpr_size_byte)
s_getreg_b32 s_sgpr_size_byte, hwreg(HW_REG_GPR_ALLOC,SQ_WAVE_GPR_ALLOC_SGPR_SIZE_SHIFT,SQ_WAVE_GPR_ALLOC_SGPR_SIZE_SIZE) //spgr_size
s_add_u32 s_sgpr_size_byte, s_sgpr_size_byte, 1
s_lshl_b32 s_sgpr_size_byte, s_sgpr_size_byte, 6 //Number of SGPRs = (sgpr_size + 1) * 16 *4 (non-zero value)
end
function get_hwreg_size_bytes
return 128 //HWREG size 128 bytes
end
function set_status_without_spi_prio(status, tmp)
// Do not restore STATUS.SPI_PRIO since scheduler may have raised it.
s_lshr_b32 tmp, status, SQ_WAVE_STATUS_POST_SPI_PRIO_SHIFT
s_setreg_b32 hwreg(HW_REG_STATUS, SQ_WAVE_STATUS_POST_SPI_PRIO_SHIFT, SQ_WAVE_STATUS_POST_SPI_PRIO_SIZE), tmp
s_nop 0x2 // avoid S_SETREG => S_SETREG hazard
s_setreg_b32 hwreg(HW_REG_STATUS, SQ_WAVE_STATUS_PRE_SPI_PRIO_SHIFT, SQ_WAVE_STATUS_PRE_SPI_PRIO_SIZE), status
end