linux/fs/kernfs/dir.c
Tejun Heo c525aaddc3 kernfs: s/sysfs/kernfs/ in various data structures
kernfs has just been separated out from sysfs and we're already in
full conflict mode.  Nothing can make the situation any worse.  Let's
take the chance to name things properly.

This patch performs the following renames.

* s/sysfs_open_dirent/kernfs_open_node/
* s/sysfs_open_file/kernfs_open_file/
* s/sysfs_inode_attrs/kernfs_iattrs/
* s/sysfs_addrm_cxt/kernfs_addrm_cxt/
* s/sysfs_super_info/kernfs_super_info/
* s/sysfs_info()/kernfs_info()/
* s/sysfs_open_dirent_lock/kernfs_open_node_lock/
* s/sysfs_open_file_mutex/kernfs_open_file_mutex/
* s/sysfs_of()/kernfs_of()/

This patch is strictly rename only and doesn't introduce any
functional difference.

Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-12-11 17:39:20 -08:00

1017 lines
24 KiB
C

/*
* fs/kernfs/dir.c - kernfs directory implementation
*
* Copyright (c) 2001-3 Patrick Mochel
* Copyright (c) 2007 SUSE Linux Products GmbH
* Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
*
* This file is released under the GPLv2.
*/
#include <linux/fs.h>
#include <linux/namei.h>
#include <linux/idr.h>
#include <linux/slab.h>
#include <linux/security.h>
#include <linux/hash.h>
#include "kernfs-internal.h"
DEFINE_MUTEX(sysfs_mutex);
#define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb)
/**
* sysfs_name_hash
* @name: Null terminated string to hash
* @ns: Namespace tag to hash
*
* Returns 31 bit hash of ns + name (so it fits in an off_t )
*/
static unsigned int sysfs_name_hash(const char *name, const void *ns)
{
unsigned long hash = init_name_hash();
unsigned int len = strlen(name);
while (len--)
hash = partial_name_hash(*name++, hash);
hash = (end_name_hash(hash) ^ hash_ptr((void *)ns, 31));
hash &= 0x7fffffffU;
/* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */
if (hash < 1)
hash += 2;
if (hash >= INT_MAX)
hash = INT_MAX - 1;
return hash;
}
static int sysfs_name_compare(unsigned int hash, const char *name,
const void *ns, const struct kernfs_node *kn)
{
if (hash != kn->hash)
return hash - kn->hash;
if (ns != kn->ns)
return ns - kn->ns;
return strcmp(name, kn->name);
}
static int sysfs_sd_compare(const struct kernfs_node *left,
const struct kernfs_node *right)
{
return sysfs_name_compare(left->hash, left->name, left->ns, right);
}
/**
* sysfs_link_sibling - link kernfs_node into sibling rbtree
* @kn: kernfs_node of interest
*
* Link @kn into its sibling rbtree which starts from
* @kn->parent->dir.children.
*
* Locking:
* mutex_lock(sysfs_mutex)
*
* RETURNS:
* 0 on susccess -EEXIST on failure.
*/
static int sysfs_link_sibling(struct kernfs_node *kn)
{
struct rb_node **node = &kn->parent->dir.children.rb_node;
struct rb_node *parent = NULL;
if (sysfs_type(kn) == SYSFS_DIR)
kn->parent->dir.subdirs++;
while (*node) {
struct kernfs_node *pos;
int result;
pos = rb_to_kn(*node);
parent = *node;
result = sysfs_sd_compare(kn, pos);
if (result < 0)
node = &pos->rb.rb_left;
else if (result > 0)
node = &pos->rb.rb_right;
else
return -EEXIST;
}
/* add new node and rebalance the tree */
rb_link_node(&kn->rb, parent, node);
rb_insert_color(&kn->rb, &kn->parent->dir.children);
return 0;
}
/**
* sysfs_unlink_sibling - unlink kernfs_node from sibling rbtree
* @kn: kernfs_node of interest
*
* Unlink @kn from its sibling rbtree which starts from
* kn->parent->dir.children.
*
* Locking:
* mutex_lock(sysfs_mutex)
*/
static void sysfs_unlink_sibling(struct kernfs_node *kn)
{
if (sysfs_type(kn) == SYSFS_DIR)
kn->parent->dir.subdirs--;
rb_erase(&kn->rb, &kn->parent->dir.children);
}
/**
* sysfs_get_active - get an active reference to kernfs_node
* @kn: kernfs_node to get an active reference to
*
* Get an active reference of @kn. This function is noop if @kn
* is NULL.
*
* RETURNS:
* Pointer to @kn on success, NULL on failure.
*/
struct kernfs_node *sysfs_get_active(struct kernfs_node *kn)
{
if (unlikely(!kn))
return NULL;
if (!atomic_inc_unless_negative(&kn->active))
return NULL;
if (kn->flags & SYSFS_FLAG_LOCKDEP)
rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_);
return kn;
}
/**
* sysfs_put_active - put an active reference to kernfs_node
* @kn: kernfs_node to put an active reference to
*
* Put an active reference to @kn. This function is noop if @kn
* is NULL.
*/
void sysfs_put_active(struct kernfs_node *kn)
{
int v;
if (unlikely(!kn))
return;
if (kn->flags & SYSFS_FLAG_LOCKDEP)
rwsem_release(&kn->dep_map, 1, _RET_IP_);
v = atomic_dec_return(&kn->active);
if (likely(v != SD_DEACTIVATED_BIAS))
return;
/*
* atomic_dec_return() is a mb(), we'll always see the updated
* kn->u.completion.
*/
complete(kn->u.completion);
}
/**
* sysfs_deactivate - deactivate kernfs_node
* @kn: kernfs_node to deactivate
*
* Deny new active references and drain existing ones.
*/
static void sysfs_deactivate(struct kernfs_node *kn)
{
DECLARE_COMPLETION_ONSTACK(wait);
int v;
BUG_ON(!(kn->flags & SYSFS_FLAG_REMOVED));
if (!(sysfs_type(kn) & SYSFS_ACTIVE_REF))
return;
kn->u.completion = (void *)&wait;
rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_);
/* atomic_add_return() is a mb(), put_active() will always see
* the updated kn->u.completion.
*/
v = atomic_add_return(SD_DEACTIVATED_BIAS, &kn->active);
if (v != SD_DEACTIVATED_BIAS) {
lock_contended(&kn->dep_map, _RET_IP_);
wait_for_completion(&wait);
}
lock_acquired(&kn->dep_map, _RET_IP_);
rwsem_release(&kn->dep_map, 1, _RET_IP_);
}
/**
* kernfs_get - get a reference count on a kernfs_node
* @kn: the target kernfs_node
*/
void kernfs_get(struct kernfs_node *kn)
{
if (kn) {
WARN_ON(!atomic_read(&kn->count));
atomic_inc(&kn->count);
}
}
EXPORT_SYMBOL_GPL(kernfs_get);
/**
* kernfs_put - put a reference count on a kernfs_node
* @kn: the target kernfs_node
*
* Put a reference count of @kn and destroy it if it reached zero.
*/
void kernfs_put(struct kernfs_node *kn)
{
struct kernfs_node *parent;
struct kernfs_root *root;
if (!kn || !atomic_dec_and_test(&kn->count))
return;
root = kernfs_root(kn);
repeat:
/* Moving/renaming is always done while holding reference.
* kn->parent won't change beneath us.
*/
parent = kn->parent;
WARN(!(kn->flags & SYSFS_FLAG_REMOVED),
"sysfs: free using entry: %s/%s\n",
parent ? parent->name : "", kn->name);
if (sysfs_type(kn) == SYSFS_KOBJ_LINK)
kernfs_put(kn->symlink.target_kn);
if (sysfs_type(kn) & SYSFS_COPY_NAME)
kfree(kn->name);
if (kn->iattr) {
if (kn->iattr->ia_secdata)
security_release_secctx(kn->iattr->ia_secdata,
kn->iattr->ia_secdata_len);
simple_xattrs_free(&kn->iattr->xattrs);
}
kfree(kn->iattr);
ida_simple_remove(&root->ino_ida, kn->ino);
kmem_cache_free(sysfs_dir_cachep, kn);
kn = parent;
if (kn) {
if (atomic_dec_and_test(&kn->count))
goto repeat;
} else {
/* just released the root kn, free @root too */
ida_destroy(&root->ino_ida);
kfree(root);
}
}
EXPORT_SYMBOL_GPL(kernfs_put);
static int sysfs_dentry_delete(const struct dentry *dentry)
{
struct kernfs_node *kn = dentry->d_fsdata;
return !(kn && !(kn->flags & SYSFS_FLAG_REMOVED));
}
static int sysfs_dentry_revalidate(struct dentry *dentry, unsigned int flags)
{
struct kernfs_node *kn;
if (flags & LOOKUP_RCU)
return -ECHILD;
kn = dentry->d_fsdata;
mutex_lock(&sysfs_mutex);
/* The sysfs dirent has been deleted */
if (kn->flags & SYSFS_FLAG_REMOVED)
goto out_bad;
/* The sysfs dirent has been moved? */
if (dentry->d_parent->d_fsdata != kn->parent)
goto out_bad;
/* The sysfs dirent has been renamed */
if (strcmp(dentry->d_name.name, kn->name) != 0)
goto out_bad;
/* The sysfs dirent has been moved to a different namespace */
if (kn->parent && kernfs_ns_enabled(kn->parent) &&
kernfs_info(dentry->d_sb)->ns != kn->ns)
goto out_bad;
mutex_unlock(&sysfs_mutex);
out_valid:
return 1;
out_bad:
/* Remove the dentry from the dcache hashes.
* If this is a deleted dentry we use d_drop instead of d_delete
* so sysfs doesn't need to cope with negative dentries.
*
* If this is a dentry that has simply been renamed we
* use d_drop to remove it from the dcache lookup on its
* old parent. If this dentry persists later when a lookup
* is performed at its new name the dentry will be readded
* to the dcache hashes.
*/
mutex_unlock(&sysfs_mutex);
/* If we have submounts we must allow the vfs caches
* to lie about the state of the filesystem to prevent
* leaks and other nasty things.
*/
if (check_submounts_and_drop(dentry) != 0)
goto out_valid;
return 0;
}
static void sysfs_dentry_release(struct dentry *dentry)
{
kernfs_put(dentry->d_fsdata);
}
const struct dentry_operations sysfs_dentry_ops = {
.d_revalidate = sysfs_dentry_revalidate,
.d_delete = sysfs_dentry_delete,
.d_release = sysfs_dentry_release,
};
struct kernfs_node *sysfs_new_dirent(struct kernfs_root *root,
const char *name, umode_t mode, int type)
{
char *dup_name = NULL;
struct kernfs_node *kn;
int ret;
if (type & SYSFS_COPY_NAME) {
name = dup_name = kstrdup(name, GFP_KERNEL);
if (!name)
return NULL;
}
kn = kmem_cache_zalloc(sysfs_dir_cachep, GFP_KERNEL);
if (!kn)
goto err_out1;
ret = ida_simple_get(&root->ino_ida, 1, 0, GFP_KERNEL);
if (ret < 0)
goto err_out2;
kn->ino = ret;
atomic_set(&kn->count, 1);
atomic_set(&kn->active, 0);
kn->name = name;
kn->mode = mode;
kn->flags = type | SYSFS_FLAG_REMOVED;
return kn;
err_out2:
kmem_cache_free(sysfs_dir_cachep, kn);
err_out1:
kfree(dup_name);
return NULL;
}
/**
* sysfs_addrm_start - prepare for kernfs_node add/remove
* @acxt: pointer to kernfs_addrm_cxt to be used
*
* This function is called when the caller is about to add or remove
* kernfs_node. This function acquires sysfs_mutex. @acxt is used to
* keep and pass context to other addrm functions.
*
* LOCKING:
* Kernel thread context (may sleep). sysfs_mutex is locked on
* return.
*/
void sysfs_addrm_start(struct kernfs_addrm_cxt *acxt)
__acquires(sysfs_mutex)
{
memset(acxt, 0, sizeof(*acxt));
mutex_lock(&sysfs_mutex);
}
/**
* sysfs_add_one - add kernfs_node to parent without warning
* @acxt: addrm context to use
* @kn: kernfs_node to be added
* @parent: the parent kernfs_node to add @kn to
*
* Get @parent and set @kn->parent to it and increment nlink of the
* parent inode if @kn is a directory and link into the children list
* of the parent.
*
* This function should be called between calls to
* sysfs_addrm_start() and sysfs_addrm_finish() and should be
* passed the same @acxt as passed to sysfs_addrm_start().
*
* LOCKING:
* Determined by sysfs_addrm_start().
*
* RETURNS:
* 0 on success, -EEXIST if entry with the given name already
* exists.
*/
int sysfs_add_one(struct kernfs_addrm_cxt *acxt, struct kernfs_node *kn,
struct kernfs_node *parent)
{
bool has_ns = kernfs_ns_enabled(parent);
struct kernfs_iattrs *ps_iattr;
int ret;
if (has_ns != (bool)kn->ns) {
WARN(1, KERN_WARNING "sysfs: ns %s in '%s' for '%s'\n",
has_ns ? "required" : "invalid", parent->name, kn->name);
return -EINVAL;
}
if (sysfs_type(parent) != SYSFS_DIR)
return -EINVAL;
kn->hash = sysfs_name_hash(kn->name, kn->ns);
kn->parent = parent;
kernfs_get(parent);
ret = sysfs_link_sibling(kn);
if (ret)
return ret;
/* Update timestamps on the parent */
ps_iattr = parent->iattr;
if (ps_iattr) {
struct iattr *ps_iattrs = &ps_iattr->ia_iattr;
ps_iattrs->ia_ctime = ps_iattrs->ia_mtime = CURRENT_TIME;
}
/* Mark the entry added into directory tree */
kn->flags &= ~SYSFS_FLAG_REMOVED;
return 0;
}
/**
* sysfs_remove_one - remove kernfs_node from parent
* @acxt: addrm context to use
* @kn: kernfs_node to be removed
*
* Mark @kn removed and drop nlink of parent inode if @kn is a
* directory. @kn is unlinked from the children list.
*
* This function should be called between calls to
* sysfs_addrm_start() and sysfs_addrm_finish() and should be
* passed the same @acxt as passed to sysfs_addrm_start().
*
* LOCKING:
* Determined by sysfs_addrm_start().
*/
static void sysfs_remove_one(struct kernfs_addrm_cxt *acxt,
struct kernfs_node *kn)
{
struct kernfs_iattrs *ps_iattr;
/*
* Removal can be called multiple times on the same node. Only the
* first invocation is effective and puts the base ref.
*/
if (kn->flags & SYSFS_FLAG_REMOVED)
return;
if (kn->parent) {
sysfs_unlink_sibling(kn);
/* Update timestamps on the parent */
ps_iattr = kn->parent->iattr;
if (ps_iattr) {
ps_iattr->ia_iattr.ia_ctime = CURRENT_TIME;
ps_iattr->ia_iattr.ia_mtime = CURRENT_TIME;
}
}
kn->flags |= SYSFS_FLAG_REMOVED;
kn->u.removed_list = acxt->removed;
acxt->removed = kn;
}
/**
* sysfs_addrm_finish - finish up kernfs_node add/remove
* @acxt: addrm context to finish up
*
* Finish up kernfs_node add/remove. Resources acquired by
* sysfs_addrm_start() are released and removed kernfs_nodes are
* cleaned up.
*
* LOCKING:
* sysfs_mutex is released.
*/
void sysfs_addrm_finish(struct kernfs_addrm_cxt *acxt)
__releases(sysfs_mutex)
{
/* release resources acquired by sysfs_addrm_start() */
mutex_unlock(&sysfs_mutex);
/* kill removed kernfs_nodes */
while (acxt->removed) {
struct kernfs_node *kn = acxt->removed;
acxt->removed = kn->u.removed_list;
sysfs_deactivate(kn);
sysfs_unmap_bin_file(kn);
kernfs_put(kn);
}
}
/**
* kernfs_find_ns - find kernfs_node with the given name
* @parent: kernfs_node to search under
* @name: name to look for
* @ns: the namespace tag to use
*
* Look for kernfs_node with name @name under @parent. Returns pointer to
* the found kernfs_node on success, %NULL on failure.
*/
static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent,
const unsigned char *name,
const void *ns)
{
struct rb_node *node = parent->dir.children.rb_node;
bool has_ns = kernfs_ns_enabled(parent);
unsigned int hash;
lockdep_assert_held(&sysfs_mutex);
if (has_ns != (bool)ns) {
WARN(1, KERN_WARNING "sysfs: ns %s in '%s' for '%s'\n",
has_ns ? "required" : "invalid", parent->name, name);
return NULL;
}
hash = sysfs_name_hash(name, ns);
while (node) {
struct kernfs_node *kn;
int result;
kn = rb_to_kn(node);
result = sysfs_name_compare(hash, name, ns, kn);
if (result < 0)
node = node->rb_left;
else if (result > 0)
node = node->rb_right;
else
return kn;
}
return NULL;
}
/**
* kernfs_find_and_get_ns - find and get kernfs_node with the given name
* @parent: kernfs_node to search under
* @name: name to look for
* @ns: the namespace tag to use
*
* Look for kernfs_node with name @name under @parent and get a reference
* if found. This function may sleep and returns pointer to the found
* kernfs_node on success, %NULL on failure.
*/
struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent,
const char *name, const void *ns)
{
struct kernfs_node *kn;
mutex_lock(&sysfs_mutex);
kn = kernfs_find_ns(parent, name, ns);
kernfs_get(kn);
mutex_unlock(&sysfs_mutex);
return kn;
}
EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns);
/**
* kernfs_create_root - create a new kernfs hierarchy
* @priv: opaque data associated with the new directory
*
* Returns the root of the new hierarchy on success, ERR_PTR() value on
* failure.
*/
struct kernfs_root *kernfs_create_root(void *priv)
{
struct kernfs_root *root;
struct kernfs_node *kn;
root = kzalloc(sizeof(*root), GFP_KERNEL);
if (!root)
return ERR_PTR(-ENOMEM);
ida_init(&root->ino_ida);
kn = sysfs_new_dirent(root, "", S_IFDIR | S_IRUGO | S_IXUGO, SYSFS_DIR);
if (!kn) {
ida_destroy(&root->ino_ida);
kfree(root);
return ERR_PTR(-ENOMEM);
}
kn->flags &= ~SYSFS_FLAG_REMOVED;
kn->priv = priv;
kn->dir.root = root;
root->kn = kn;
return root;
}
/**
* kernfs_destroy_root - destroy a kernfs hierarchy
* @root: root of the hierarchy to destroy
*
* Destroy the hierarchy anchored at @root by removing all existing
* directories and destroying @root.
*/
void kernfs_destroy_root(struct kernfs_root *root)
{
kernfs_remove(root->kn); /* will also free @root */
}
/**
* kernfs_create_dir_ns - create a directory
* @parent: parent in which to create a new directory
* @name: name of the new directory
* @priv: opaque data associated with the new directory
* @ns: optional namespace tag of the directory
*
* Returns the created node on success, ERR_PTR() value on failure.
*/
struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent,
const char *name, void *priv,
const void *ns)
{
umode_t mode = S_IFDIR | S_IRWXU | S_IRUGO | S_IXUGO;
struct kernfs_addrm_cxt acxt;
struct kernfs_node *kn;
int rc;
/* allocate */
kn = sysfs_new_dirent(kernfs_root(parent), name, mode, SYSFS_DIR);
if (!kn)
return ERR_PTR(-ENOMEM);
kn->dir.root = parent->dir.root;
kn->ns = ns;
kn->priv = priv;
/* link in */
sysfs_addrm_start(&acxt);
rc = sysfs_add_one(&acxt, kn, parent);
sysfs_addrm_finish(&acxt);
if (!rc)
return kn;
kernfs_put(kn);
return ERR_PTR(rc);
}
static struct dentry *sysfs_lookup(struct inode *dir, struct dentry *dentry,
unsigned int flags)
{
struct dentry *ret = NULL;
struct kernfs_node *parent = dentry->d_parent->d_fsdata;
struct kernfs_node *kn;
struct inode *inode;
const void *ns = NULL;
mutex_lock(&sysfs_mutex);
if (kernfs_ns_enabled(parent))
ns = kernfs_info(dir->i_sb)->ns;
kn = kernfs_find_ns(parent, dentry->d_name.name, ns);
/* no such entry */
if (!kn) {
ret = ERR_PTR(-ENOENT);
goto out_unlock;
}
kernfs_get(kn);
dentry->d_fsdata = kn;
/* attach dentry and inode */
inode = sysfs_get_inode(dir->i_sb, kn);
if (!inode) {
ret = ERR_PTR(-ENOMEM);
goto out_unlock;
}
/* instantiate and hash dentry */
ret = d_materialise_unique(dentry, inode);
out_unlock:
mutex_unlock(&sysfs_mutex);
return ret;
}
const struct inode_operations sysfs_dir_inode_operations = {
.lookup = sysfs_lookup,
.permission = sysfs_permission,
.setattr = sysfs_setattr,
.getattr = sysfs_getattr,
.setxattr = sysfs_setxattr,
.removexattr = sysfs_removexattr,
.getxattr = sysfs_getxattr,
.listxattr = sysfs_listxattr,
};
static struct kernfs_node *sysfs_leftmost_descendant(struct kernfs_node *pos)
{
struct kernfs_node *last;
while (true) {
struct rb_node *rbn;
last = pos;
if (sysfs_type(pos) != SYSFS_DIR)
break;
rbn = rb_first(&pos->dir.children);
if (!rbn)
break;
pos = rb_to_kn(rbn);
}
return last;
}
/**
* sysfs_next_descendant_post - find the next descendant for post-order walk
* @pos: the current position (%NULL to initiate traversal)
* @root: kernfs_node whose descendants to walk
*
* Find the next descendant to visit for post-order traversal of @root's
* descendants. @root is included in the iteration and the last node to be
* visited.
*/
static struct kernfs_node *sysfs_next_descendant_post(struct kernfs_node *pos,
struct kernfs_node *root)
{
struct rb_node *rbn;
lockdep_assert_held(&sysfs_mutex);
/* if first iteration, visit leftmost descendant which may be root */
if (!pos)
return sysfs_leftmost_descendant(root);
/* if we visited @root, we're done */
if (pos == root)
return NULL;
/* if there's an unvisited sibling, visit its leftmost descendant */
rbn = rb_next(&pos->rb);
if (rbn)
return sysfs_leftmost_descendant(rb_to_kn(rbn));
/* no sibling left, visit parent */
return pos->parent;
}
static void __kernfs_remove(struct kernfs_addrm_cxt *acxt,
struct kernfs_node *kn)
{
struct kernfs_node *pos, *next;
if (!kn)
return;
pr_debug("sysfs %s: removing\n", kn->name);
next = NULL;
do {
pos = next;
next = sysfs_next_descendant_post(pos, kn);
if (pos)
sysfs_remove_one(acxt, pos);
} while (next);
}
/**
* kernfs_remove - remove a kernfs_node recursively
* @kn: the kernfs_node to remove
*
* Remove @kn along with all its subdirectories and files.
*/
void kernfs_remove(struct kernfs_node *kn)
{
struct kernfs_addrm_cxt acxt;
sysfs_addrm_start(&acxt);
__kernfs_remove(&acxt, kn);
sysfs_addrm_finish(&acxt);
}
/**
* kernfs_remove_by_name_ns - find a kernfs_node by name and remove it
* @parent: parent of the target
* @name: name of the kernfs_node to remove
* @ns: namespace tag of the kernfs_node to remove
*
* Look for the kernfs_node with @name and @ns under @parent and remove it.
* Returns 0 on success, -ENOENT if such entry doesn't exist.
*/
int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name,
const void *ns)
{
struct kernfs_addrm_cxt acxt;
struct kernfs_node *kn;
if (!parent) {
WARN(1, KERN_WARNING "sysfs: can not remove '%s', no directory\n",
name);
return -ENOENT;
}
sysfs_addrm_start(&acxt);
kn = kernfs_find_ns(parent, name, ns);
if (kn)
__kernfs_remove(&acxt, kn);
sysfs_addrm_finish(&acxt);
if (kn)
return 0;
else
return -ENOENT;
}
/**
* kernfs_rename_ns - move and rename a kernfs_node
* @kn: target node
* @new_parent: new parent to put @sd under
* @new_name: new name
* @new_ns: new namespace tag
*/
int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent,
const char *new_name, const void *new_ns)
{
int error;
mutex_lock(&sysfs_mutex);
error = 0;
if ((kn->parent == new_parent) && (kn->ns == new_ns) &&
(strcmp(kn->name, new_name) == 0))
goto out; /* nothing to rename */
error = -EEXIST;
if (kernfs_find_ns(new_parent, new_name, new_ns))
goto out;
/* rename kernfs_node */
if (strcmp(kn->name, new_name) != 0) {
error = -ENOMEM;
new_name = kstrdup(new_name, GFP_KERNEL);
if (!new_name)
goto out;
kfree(kn->name);
kn->name = new_name;
}
/*
* Move to the appropriate place in the appropriate directories rbtree.
*/
sysfs_unlink_sibling(kn);
kernfs_get(new_parent);
kernfs_put(kn->parent);
kn->ns = new_ns;
kn->hash = sysfs_name_hash(kn->name, kn->ns);
kn->parent = new_parent;
sysfs_link_sibling(kn);
error = 0;
out:
mutex_unlock(&sysfs_mutex);
return error;
}
/* Relationship between s_mode and the DT_xxx types */
static inline unsigned char dt_type(struct kernfs_node *kn)
{
return (kn->mode >> 12) & 15;
}
static int sysfs_dir_release(struct inode *inode, struct file *filp)
{
kernfs_put(filp->private_data);
return 0;
}
static struct kernfs_node *sysfs_dir_pos(const void *ns,
struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos)
{
if (pos) {
int valid = !(pos->flags & SYSFS_FLAG_REMOVED) &&
pos->parent == parent && hash == pos->hash;
kernfs_put(pos);
if (!valid)
pos = NULL;
}
if (!pos && (hash > 1) && (hash < INT_MAX)) {
struct rb_node *node = parent->dir.children.rb_node;
while (node) {
pos = rb_to_kn(node);
if (hash < pos->hash)
node = node->rb_left;
else if (hash > pos->hash)
node = node->rb_right;
else
break;
}
}
/* Skip over entries in the wrong namespace */
while (pos && pos->ns != ns) {
struct rb_node *node = rb_next(&pos->rb);
if (!node)
pos = NULL;
else
pos = rb_to_kn(node);
}
return pos;
}
static struct kernfs_node *sysfs_dir_next_pos(const void *ns,
struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos)
{
pos = sysfs_dir_pos(ns, parent, ino, pos);
if (pos)
do {
struct rb_node *node = rb_next(&pos->rb);
if (!node)
pos = NULL;
else
pos = rb_to_kn(node);
} while (pos && pos->ns != ns);
return pos;
}
static int sysfs_readdir(struct file *file, struct dir_context *ctx)
{
struct dentry *dentry = file->f_path.dentry;
struct kernfs_node *parent = dentry->d_fsdata;
struct kernfs_node *pos = file->private_data;
const void *ns = NULL;
if (!dir_emit_dots(file, ctx))
return 0;
mutex_lock(&sysfs_mutex);
if (kernfs_ns_enabled(parent))
ns = kernfs_info(dentry->d_sb)->ns;
for (pos = sysfs_dir_pos(ns, parent, ctx->pos, pos);
pos;
pos = sysfs_dir_next_pos(ns, parent, ctx->pos, pos)) {
const char *name = pos->name;
unsigned int type = dt_type(pos);
int len = strlen(name);
ino_t ino = pos->ino;
ctx->pos = pos->hash;
file->private_data = pos;
kernfs_get(pos);
mutex_unlock(&sysfs_mutex);
if (!dir_emit(ctx, name, len, ino, type))
return 0;
mutex_lock(&sysfs_mutex);
}
mutex_unlock(&sysfs_mutex);
file->private_data = NULL;
ctx->pos = INT_MAX;
return 0;
}
static loff_t sysfs_dir_llseek(struct file *file, loff_t offset, int whence)
{
struct inode *inode = file_inode(file);
loff_t ret;
mutex_lock(&inode->i_mutex);
ret = generic_file_llseek(file, offset, whence);
mutex_unlock(&inode->i_mutex);
return ret;
}
const struct file_operations sysfs_dir_operations = {
.read = generic_read_dir,
.iterate = sysfs_readdir,
.release = sysfs_dir_release,
.llseek = sysfs_dir_llseek,
};