linux/drivers/crypto/ccree/cc_cipher.c
Eric Biggers 674f368a95 crypto: remove CRYPTO_TFM_RES_BAD_KEY_LEN
The CRYPTO_TFM_RES_BAD_KEY_LEN flag was apparently meant as a way to
make the ->setkey() functions provide more information about errors.

However, no one actually checks for this flag, which makes it pointless.

Also, many algorithms fail to set this flag when given a bad length key.
Reviewing just the generic implementations, this is the case for
aes-fixed-time, cbcmac, echainiv, nhpoly1305, pcrypt, rfc3686, rfc4309,
rfc7539, rfc7539esp, salsa20, seqiv, and xcbc.  But there are probably
many more in arch/*/crypto/ and drivers/crypto/.

Some algorithms can even set this flag when the key is the correct
length.  For example, authenc and authencesn set it when the key payload
is malformed in any way (not just a bad length), the atmel-sha and ccree
drivers can set it if a memory allocation fails, and the chelsio driver
sets it for bad auth tag lengths, not just bad key lengths.

So even if someone actually wanted to start checking this flag (which
seems unlikely, since it's been unused for a long time), there would be
a lot of work needed to get it working correctly.  But it would probably
be much better to go back to the drawing board and just define different
return values, like -EINVAL if the key is invalid for the algorithm vs.
-EKEYREJECTED if the key was rejected by a policy like "no weak keys".
That would be much simpler, less error-prone, and easier to test.

So just remove this flag.

Signed-off-by: Eric Biggers <ebiggers@google.com>
Reviewed-by: Horia Geantă <horia.geanta@nxp.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2020-01-09 11:30:53 +08:00

1699 lines
46 KiB
C

// SPDX-License-Identifier: GPL-2.0
/* Copyright (C) 2012-2019 ARM Limited (or its affiliates). */
#include <linux/kernel.h>
#include <linux/module.h>
#include <crypto/algapi.h>
#include <crypto/internal/skcipher.h>
#include <crypto/internal/des.h>
#include <crypto/xts.h>
#include <crypto/sm4.h>
#include <crypto/scatterwalk.h>
#include "cc_driver.h"
#include "cc_lli_defs.h"
#include "cc_buffer_mgr.h"
#include "cc_cipher.h"
#include "cc_request_mgr.h"
#define MAX_SKCIPHER_SEQ_LEN 6
#define template_skcipher template_u.skcipher
struct cc_cipher_handle {
struct list_head alg_list;
};
struct cc_user_key_info {
u8 *key;
dma_addr_t key_dma_addr;
};
struct cc_hw_key_info {
enum cc_hw_crypto_key key1_slot;
enum cc_hw_crypto_key key2_slot;
};
struct cc_cpp_key_info {
u8 slot;
enum cc_cpp_alg alg;
};
enum cc_key_type {
CC_UNPROTECTED_KEY, /* User key */
CC_HW_PROTECTED_KEY, /* HW (FDE) key */
CC_POLICY_PROTECTED_KEY, /* CPP key */
CC_INVALID_PROTECTED_KEY /* Invalid key */
};
struct cc_cipher_ctx {
struct cc_drvdata *drvdata;
int keylen;
int key_round_number;
int cipher_mode;
int flow_mode;
unsigned int flags;
enum cc_key_type key_type;
struct cc_user_key_info user;
union {
struct cc_hw_key_info hw;
struct cc_cpp_key_info cpp;
};
struct crypto_shash *shash_tfm;
};
static void cc_cipher_complete(struct device *dev, void *cc_req, int err);
static inline enum cc_key_type cc_key_type(struct crypto_tfm *tfm)
{
struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
return ctx_p->key_type;
}
static int validate_keys_sizes(struct cc_cipher_ctx *ctx_p, u32 size)
{
switch (ctx_p->flow_mode) {
case S_DIN_to_AES:
switch (size) {
case CC_AES_128_BIT_KEY_SIZE:
case CC_AES_192_BIT_KEY_SIZE:
if (ctx_p->cipher_mode != DRV_CIPHER_XTS &&
ctx_p->cipher_mode != DRV_CIPHER_ESSIV &&
ctx_p->cipher_mode != DRV_CIPHER_BITLOCKER)
return 0;
break;
case CC_AES_256_BIT_KEY_SIZE:
return 0;
case (CC_AES_192_BIT_KEY_SIZE * 2):
case (CC_AES_256_BIT_KEY_SIZE * 2):
if (ctx_p->cipher_mode == DRV_CIPHER_XTS ||
ctx_p->cipher_mode == DRV_CIPHER_ESSIV ||
ctx_p->cipher_mode == DRV_CIPHER_BITLOCKER)
return 0;
break;
default:
break;
}
break;
case S_DIN_to_DES:
if (size == DES3_EDE_KEY_SIZE || size == DES_KEY_SIZE)
return 0;
break;
case S_DIN_to_SM4:
if (size == SM4_KEY_SIZE)
return 0;
default:
break;
}
return -EINVAL;
}
static int validate_data_size(struct cc_cipher_ctx *ctx_p,
unsigned int size)
{
switch (ctx_p->flow_mode) {
case S_DIN_to_AES:
switch (ctx_p->cipher_mode) {
case DRV_CIPHER_XTS:
case DRV_CIPHER_CBC_CTS:
if (size >= AES_BLOCK_SIZE)
return 0;
break;
case DRV_CIPHER_OFB:
case DRV_CIPHER_CTR:
return 0;
case DRV_CIPHER_ECB:
case DRV_CIPHER_CBC:
case DRV_CIPHER_ESSIV:
case DRV_CIPHER_BITLOCKER:
if (IS_ALIGNED(size, AES_BLOCK_SIZE))
return 0;
break;
default:
break;
}
break;
case S_DIN_to_DES:
if (IS_ALIGNED(size, DES_BLOCK_SIZE))
return 0;
break;
case S_DIN_to_SM4:
switch (ctx_p->cipher_mode) {
case DRV_CIPHER_CTR:
return 0;
case DRV_CIPHER_ECB:
case DRV_CIPHER_CBC:
if (IS_ALIGNED(size, SM4_BLOCK_SIZE))
return 0;
default:
break;
}
default:
break;
}
return -EINVAL;
}
static int cc_cipher_init(struct crypto_tfm *tfm)
{
struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
struct cc_crypto_alg *cc_alg =
container_of(tfm->__crt_alg, struct cc_crypto_alg,
skcipher_alg.base);
struct device *dev = drvdata_to_dev(cc_alg->drvdata);
unsigned int max_key_buf_size = cc_alg->skcipher_alg.max_keysize;
int rc = 0;
dev_dbg(dev, "Initializing context @%p for %s\n", ctx_p,
crypto_tfm_alg_name(tfm));
crypto_skcipher_set_reqsize(__crypto_skcipher_cast(tfm),
sizeof(struct cipher_req_ctx));
ctx_p->cipher_mode = cc_alg->cipher_mode;
ctx_p->flow_mode = cc_alg->flow_mode;
ctx_p->drvdata = cc_alg->drvdata;
/* Allocate key buffer, cache line aligned */
ctx_p->user.key = kmalloc(max_key_buf_size, GFP_KERNEL);
if (!ctx_p->user.key)
return -ENOMEM;
dev_dbg(dev, "Allocated key buffer in context. key=@%p\n",
ctx_p->user.key);
/* Map key buffer */
ctx_p->user.key_dma_addr = dma_map_single(dev, (void *)ctx_p->user.key,
max_key_buf_size,
DMA_TO_DEVICE);
if (dma_mapping_error(dev, ctx_p->user.key_dma_addr)) {
dev_err(dev, "Mapping Key %u B at va=%pK for DMA failed\n",
max_key_buf_size, ctx_p->user.key);
return -ENOMEM;
}
dev_dbg(dev, "Mapped key %u B at va=%pK to dma=%pad\n",
max_key_buf_size, ctx_p->user.key, &ctx_p->user.key_dma_addr);
if (ctx_p->cipher_mode == DRV_CIPHER_ESSIV) {
/* Alloc hash tfm for essiv */
ctx_p->shash_tfm = crypto_alloc_shash("sha256-generic", 0, 0);
if (IS_ERR(ctx_p->shash_tfm)) {
dev_err(dev, "Error allocating hash tfm for ESSIV.\n");
return PTR_ERR(ctx_p->shash_tfm);
}
}
return rc;
}
static void cc_cipher_exit(struct crypto_tfm *tfm)
{
struct crypto_alg *alg = tfm->__crt_alg;
struct cc_crypto_alg *cc_alg =
container_of(alg, struct cc_crypto_alg,
skcipher_alg.base);
unsigned int max_key_buf_size = cc_alg->skcipher_alg.max_keysize;
struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
struct device *dev = drvdata_to_dev(ctx_p->drvdata);
dev_dbg(dev, "Clearing context @%p for %s\n",
crypto_tfm_ctx(tfm), crypto_tfm_alg_name(tfm));
if (ctx_p->cipher_mode == DRV_CIPHER_ESSIV) {
/* Free hash tfm for essiv */
crypto_free_shash(ctx_p->shash_tfm);
ctx_p->shash_tfm = NULL;
}
/* Unmap key buffer */
dma_unmap_single(dev, ctx_p->user.key_dma_addr, max_key_buf_size,
DMA_TO_DEVICE);
dev_dbg(dev, "Unmapped key buffer key_dma_addr=%pad\n",
&ctx_p->user.key_dma_addr);
/* Free key buffer in context */
kzfree(ctx_p->user.key);
dev_dbg(dev, "Free key buffer in context. key=@%p\n", ctx_p->user.key);
}
struct tdes_keys {
u8 key1[DES_KEY_SIZE];
u8 key2[DES_KEY_SIZE];
u8 key3[DES_KEY_SIZE];
};
static enum cc_hw_crypto_key cc_slot_to_hw_key(u8 slot_num)
{
switch (slot_num) {
case 0:
return KFDE0_KEY;
case 1:
return KFDE1_KEY;
case 2:
return KFDE2_KEY;
case 3:
return KFDE3_KEY;
}
return END_OF_KEYS;
}
static u8 cc_slot_to_cpp_key(u8 slot_num)
{
return (slot_num - CC_FIRST_CPP_KEY_SLOT);
}
static inline enum cc_key_type cc_slot_to_key_type(u8 slot_num)
{
if (slot_num >= CC_FIRST_HW_KEY_SLOT && slot_num <= CC_LAST_HW_KEY_SLOT)
return CC_HW_PROTECTED_KEY;
else if (slot_num >= CC_FIRST_CPP_KEY_SLOT &&
slot_num <= CC_LAST_CPP_KEY_SLOT)
return CC_POLICY_PROTECTED_KEY;
else
return CC_INVALID_PROTECTED_KEY;
}
static int cc_cipher_sethkey(struct crypto_skcipher *sktfm, const u8 *key,
unsigned int keylen)
{
struct crypto_tfm *tfm = crypto_skcipher_tfm(sktfm);
struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
struct device *dev = drvdata_to_dev(ctx_p->drvdata);
struct cc_hkey_info hki;
dev_dbg(dev, "Setting HW key in context @%p for %s. keylen=%u\n",
ctx_p, crypto_tfm_alg_name(tfm), keylen);
dump_byte_array("key", (u8 *)key, keylen);
/* STAT_PHASE_0: Init and sanity checks */
/* This check the size of the protected key token */
if (keylen != sizeof(hki)) {
dev_err(dev, "Unsupported protected key size %d.\n", keylen);
return -EINVAL;
}
memcpy(&hki, key, keylen);
/* The real key len for crypto op is the size of the HW key
* referenced by the HW key slot, not the hardware key token
*/
keylen = hki.keylen;
if (validate_keys_sizes(ctx_p, keylen)) {
dev_err(dev, "Unsupported key size %d.\n", keylen);
return -EINVAL;
}
ctx_p->keylen = keylen;
switch (cc_slot_to_key_type(hki.hw_key1)) {
case CC_HW_PROTECTED_KEY:
if (ctx_p->flow_mode == S_DIN_to_SM4) {
dev_err(dev, "Only AES HW protected keys are supported\n");
return -EINVAL;
}
ctx_p->hw.key1_slot = cc_slot_to_hw_key(hki.hw_key1);
if (ctx_p->hw.key1_slot == END_OF_KEYS) {
dev_err(dev, "Unsupported hw key1 number (%d)\n",
hki.hw_key1);
return -EINVAL;
}
if (ctx_p->cipher_mode == DRV_CIPHER_XTS ||
ctx_p->cipher_mode == DRV_CIPHER_ESSIV ||
ctx_p->cipher_mode == DRV_CIPHER_BITLOCKER) {
if (hki.hw_key1 == hki.hw_key2) {
dev_err(dev, "Illegal hw key numbers (%d,%d)\n",
hki.hw_key1, hki.hw_key2);
return -EINVAL;
}
ctx_p->hw.key2_slot = cc_slot_to_hw_key(hki.hw_key2);
if (ctx_p->hw.key2_slot == END_OF_KEYS) {
dev_err(dev, "Unsupported hw key2 number (%d)\n",
hki.hw_key2);
return -EINVAL;
}
}
ctx_p->key_type = CC_HW_PROTECTED_KEY;
dev_dbg(dev, "HW protected key %d/%d set\n.",
ctx_p->hw.key1_slot, ctx_p->hw.key2_slot);
break;
case CC_POLICY_PROTECTED_KEY:
if (ctx_p->drvdata->hw_rev < CC_HW_REV_713) {
dev_err(dev, "CPP keys not supported in this hardware revision.\n");
return -EINVAL;
}
if (ctx_p->cipher_mode != DRV_CIPHER_CBC &&
ctx_p->cipher_mode != DRV_CIPHER_CTR) {
dev_err(dev, "CPP keys only supported in CBC or CTR modes.\n");
return -EINVAL;
}
ctx_p->cpp.slot = cc_slot_to_cpp_key(hki.hw_key1);
if (ctx_p->flow_mode == S_DIN_to_AES)
ctx_p->cpp.alg = CC_CPP_AES;
else /* Must be SM4 since due to sethkey registration */
ctx_p->cpp.alg = CC_CPP_SM4;
ctx_p->key_type = CC_POLICY_PROTECTED_KEY;
dev_dbg(dev, "policy protected key alg: %d slot: %d.\n",
ctx_p->cpp.alg, ctx_p->cpp.slot);
break;
default:
dev_err(dev, "Unsupported protected key (%d)\n", hki.hw_key1);
return -EINVAL;
}
return 0;
}
static int cc_cipher_setkey(struct crypto_skcipher *sktfm, const u8 *key,
unsigned int keylen)
{
struct crypto_tfm *tfm = crypto_skcipher_tfm(sktfm);
struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
struct device *dev = drvdata_to_dev(ctx_p->drvdata);
struct cc_crypto_alg *cc_alg =
container_of(tfm->__crt_alg, struct cc_crypto_alg,
skcipher_alg.base);
unsigned int max_key_buf_size = cc_alg->skcipher_alg.max_keysize;
dev_dbg(dev, "Setting key in context @%p for %s. keylen=%u\n",
ctx_p, crypto_tfm_alg_name(tfm), keylen);
dump_byte_array("key", (u8 *)key, keylen);
/* STAT_PHASE_0: Init and sanity checks */
if (validate_keys_sizes(ctx_p, keylen)) {
dev_err(dev, "Unsupported key size %d.\n", keylen);
return -EINVAL;
}
ctx_p->key_type = CC_UNPROTECTED_KEY;
/*
* Verify DES weak keys
* Note that we're dropping the expanded key since the
* HW does the expansion on its own.
*/
if (ctx_p->flow_mode == S_DIN_to_DES) {
if ((keylen == DES3_EDE_KEY_SIZE &&
verify_skcipher_des3_key(sktfm, key)) ||
verify_skcipher_des_key(sktfm, key)) {
dev_dbg(dev, "weak DES key");
return -EINVAL;
}
}
if (ctx_p->cipher_mode == DRV_CIPHER_XTS &&
xts_check_key(tfm, key, keylen)) {
dev_dbg(dev, "weak XTS key");
return -EINVAL;
}
/* STAT_PHASE_1: Copy key to ctx */
dma_sync_single_for_cpu(dev, ctx_p->user.key_dma_addr,
max_key_buf_size, DMA_TO_DEVICE);
memcpy(ctx_p->user.key, key, keylen);
if (keylen == 24)
memset(ctx_p->user.key + 24, 0, CC_AES_KEY_SIZE_MAX - 24);
if (ctx_p->cipher_mode == DRV_CIPHER_ESSIV) {
/* sha256 for key2 - use sw implementation */
int key_len = keylen >> 1;
int err;
SHASH_DESC_ON_STACK(desc, ctx_p->shash_tfm);
desc->tfm = ctx_p->shash_tfm;
err = crypto_shash_digest(desc, ctx_p->user.key, key_len,
ctx_p->user.key + key_len);
if (err) {
dev_err(dev, "Failed to hash ESSIV key.\n");
return err;
}
}
dma_sync_single_for_device(dev, ctx_p->user.key_dma_addr,
max_key_buf_size, DMA_TO_DEVICE);
ctx_p->keylen = keylen;
dev_dbg(dev, "return safely");
return 0;
}
static int cc_out_setup_mode(struct cc_cipher_ctx *ctx_p)
{
switch (ctx_p->flow_mode) {
case S_DIN_to_AES:
return S_AES_to_DOUT;
case S_DIN_to_DES:
return S_DES_to_DOUT;
case S_DIN_to_SM4:
return S_SM4_to_DOUT;
default:
return ctx_p->flow_mode;
}
}
static void cc_setup_readiv_desc(struct crypto_tfm *tfm,
struct cipher_req_ctx *req_ctx,
unsigned int ivsize, struct cc_hw_desc desc[],
unsigned int *seq_size)
{
struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
struct device *dev = drvdata_to_dev(ctx_p->drvdata);
int cipher_mode = ctx_p->cipher_mode;
int flow_mode = cc_out_setup_mode(ctx_p);
int direction = req_ctx->gen_ctx.op_type;
dma_addr_t iv_dma_addr = req_ctx->gen_ctx.iv_dma_addr;
if (ctx_p->key_type == CC_POLICY_PROTECTED_KEY)
return;
switch (cipher_mode) {
case DRV_CIPHER_ECB:
break;
case DRV_CIPHER_CBC:
case DRV_CIPHER_CBC_CTS:
case DRV_CIPHER_CTR:
case DRV_CIPHER_OFB:
/* Read next IV */
hw_desc_init(&desc[*seq_size]);
set_dout_dlli(&desc[*seq_size], iv_dma_addr, ivsize, NS_BIT, 1);
set_cipher_config0(&desc[*seq_size], direction);
set_flow_mode(&desc[*seq_size], flow_mode);
set_cipher_mode(&desc[*seq_size], cipher_mode);
if (cipher_mode == DRV_CIPHER_CTR ||
cipher_mode == DRV_CIPHER_OFB) {
set_setup_mode(&desc[*seq_size], SETUP_WRITE_STATE1);
} else {
set_setup_mode(&desc[*seq_size], SETUP_WRITE_STATE0);
}
set_queue_last_ind(ctx_p->drvdata, &desc[*seq_size]);
(*seq_size)++;
break;
case DRV_CIPHER_XTS:
case DRV_CIPHER_ESSIV:
case DRV_CIPHER_BITLOCKER:
/* IV */
hw_desc_init(&desc[*seq_size]);
set_setup_mode(&desc[*seq_size], SETUP_WRITE_STATE1);
set_cipher_mode(&desc[*seq_size], cipher_mode);
set_cipher_config0(&desc[*seq_size], direction);
set_flow_mode(&desc[*seq_size], flow_mode);
set_dout_dlli(&desc[*seq_size], iv_dma_addr, CC_AES_BLOCK_SIZE,
NS_BIT, 1);
set_queue_last_ind(ctx_p->drvdata, &desc[*seq_size]);
(*seq_size)++;
break;
default:
dev_err(dev, "Unsupported cipher mode (%d)\n", cipher_mode);
}
}
static void cc_setup_state_desc(struct crypto_tfm *tfm,
struct cipher_req_ctx *req_ctx,
unsigned int ivsize, unsigned int nbytes,
struct cc_hw_desc desc[],
unsigned int *seq_size)
{
struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
struct device *dev = drvdata_to_dev(ctx_p->drvdata);
int cipher_mode = ctx_p->cipher_mode;
int flow_mode = ctx_p->flow_mode;
int direction = req_ctx->gen_ctx.op_type;
dma_addr_t key_dma_addr = ctx_p->user.key_dma_addr;
unsigned int key_len = ctx_p->keylen;
dma_addr_t iv_dma_addr = req_ctx->gen_ctx.iv_dma_addr;
unsigned int du_size = nbytes;
struct cc_crypto_alg *cc_alg =
container_of(tfm->__crt_alg, struct cc_crypto_alg,
skcipher_alg.base);
if (cc_alg->data_unit)
du_size = cc_alg->data_unit;
switch (cipher_mode) {
case DRV_CIPHER_ECB:
break;
case DRV_CIPHER_CBC:
case DRV_CIPHER_CBC_CTS:
case DRV_CIPHER_CTR:
case DRV_CIPHER_OFB:
/* Load IV */
hw_desc_init(&desc[*seq_size]);
set_din_type(&desc[*seq_size], DMA_DLLI, iv_dma_addr, ivsize,
NS_BIT);
set_cipher_config0(&desc[*seq_size], direction);
set_flow_mode(&desc[*seq_size], flow_mode);
set_cipher_mode(&desc[*seq_size], cipher_mode);
if (cipher_mode == DRV_CIPHER_CTR ||
cipher_mode == DRV_CIPHER_OFB) {
set_setup_mode(&desc[*seq_size], SETUP_LOAD_STATE1);
} else {
set_setup_mode(&desc[*seq_size], SETUP_LOAD_STATE0);
}
(*seq_size)++;
break;
case DRV_CIPHER_XTS:
case DRV_CIPHER_ESSIV:
case DRV_CIPHER_BITLOCKER:
/* load XEX key */
hw_desc_init(&desc[*seq_size]);
set_cipher_mode(&desc[*seq_size], cipher_mode);
set_cipher_config0(&desc[*seq_size], direction);
if (cc_key_type(tfm) == CC_HW_PROTECTED_KEY) {
set_hw_crypto_key(&desc[*seq_size],
ctx_p->hw.key2_slot);
} else {
set_din_type(&desc[*seq_size], DMA_DLLI,
(key_dma_addr + (key_len / 2)),
(key_len / 2), NS_BIT);
}
set_xex_data_unit_size(&desc[*seq_size], du_size);
set_flow_mode(&desc[*seq_size], S_DIN_to_AES2);
set_key_size_aes(&desc[*seq_size], (key_len / 2));
set_setup_mode(&desc[*seq_size], SETUP_LOAD_XEX_KEY);
(*seq_size)++;
/* Load IV */
hw_desc_init(&desc[*seq_size]);
set_setup_mode(&desc[*seq_size], SETUP_LOAD_STATE1);
set_cipher_mode(&desc[*seq_size], cipher_mode);
set_cipher_config0(&desc[*seq_size], direction);
set_key_size_aes(&desc[*seq_size], (key_len / 2));
set_flow_mode(&desc[*seq_size], flow_mode);
set_din_type(&desc[*seq_size], DMA_DLLI, iv_dma_addr,
CC_AES_BLOCK_SIZE, NS_BIT);
(*seq_size)++;
break;
default:
dev_err(dev, "Unsupported cipher mode (%d)\n", cipher_mode);
}
}
static int cc_out_flow_mode(struct cc_cipher_ctx *ctx_p)
{
switch (ctx_p->flow_mode) {
case S_DIN_to_AES:
return DIN_AES_DOUT;
case S_DIN_to_DES:
return DIN_DES_DOUT;
case S_DIN_to_SM4:
return DIN_SM4_DOUT;
default:
return ctx_p->flow_mode;
}
}
static void cc_setup_key_desc(struct crypto_tfm *tfm,
struct cipher_req_ctx *req_ctx,
unsigned int nbytes, struct cc_hw_desc desc[],
unsigned int *seq_size)
{
struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
struct device *dev = drvdata_to_dev(ctx_p->drvdata);
int cipher_mode = ctx_p->cipher_mode;
int flow_mode = ctx_p->flow_mode;
int direction = req_ctx->gen_ctx.op_type;
dma_addr_t key_dma_addr = ctx_p->user.key_dma_addr;
unsigned int key_len = ctx_p->keylen;
unsigned int din_size;
switch (cipher_mode) {
case DRV_CIPHER_CBC:
case DRV_CIPHER_CBC_CTS:
case DRV_CIPHER_CTR:
case DRV_CIPHER_OFB:
case DRV_CIPHER_ECB:
/* Load key */
hw_desc_init(&desc[*seq_size]);
set_cipher_mode(&desc[*seq_size], cipher_mode);
set_cipher_config0(&desc[*seq_size], direction);
if (cc_key_type(tfm) == CC_POLICY_PROTECTED_KEY) {
/* We use the AES key size coding for all CPP algs */
set_key_size_aes(&desc[*seq_size], key_len);
set_cpp_crypto_key(&desc[*seq_size], ctx_p->cpp.slot);
flow_mode = cc_out_flow_mode(ctx_p);
} else {
if (flow_mode == S_DIN_to_AES) {
if (cc_key_type(tfm) == CC_HW_PROTECTED_KEY) {
set_hw_crypto_key(&desc[*seq_size],
ctx_p->hw.key1_slot);
} else {
/* CC_POLICY_UNPROTECTED_KEY
* Invalid keys are filtered out in
* sethkey()
*/
din_size = (key_len == 24) ?
AES_MAX_KEY_SIZE : key_len;
set_din_type(&desc[*seq_size], DMA_DLLI,
key_dma_addr, din_size,
NS_BIT);
}
set_key_size_aes(&desc[*seq_size], key_len);
} else {
/*des*/
set_din_type(&desc[*seq_size], DMA_DLLI,
key_dma_addr, key_len, NS_BIT);
set_key_size_des(&desc[*seq_size], key_len);
}
set_setup_mode(&desc[*seq_size], SETUP_LOAD_KEY0);
}
set_flow_mode(&desc[*seq_size], flow_mode);
(*seq_size)++;
break;
case DRV_CIPHER_XTS:
case DRV_CIPHER_ESSIV:
case DRV_CIPHER_BITLOCKER:
/* Load AES key */
hw_desc_init(&desc[*seq_size]);
set_cipher_mode(&desc[*seq_size], cipher_mode);
set_cipher_config0(&desc[*seq_size], direction);
if (cc_key_type(tfm) == CC_HW_PROTECTED_KEY) {
set_hw_crypto_key(&desc[*seq_size],
ctx_p->hw.key1_slot);
} else {
set_din_type(&desc[*seq_size], DMA_DLLI, key_dma_addr,
(key_len / 2), NS_BIT);
}
set_key_size_aes(&desc[*seq_size], (key_len / 2));
set_flow_mode(&desc[*seq_size], flow_mode);
set_setup_mode(&desc[*seq_size], SETUP_LOAD_KEY0);
(*seq_size)++;
break;
default:
dev_err(dev, "Unsupported cipher mode (%d)\n", cipher_mode);
}
}
static void cc_setup_mlli_desc(struct crypto_tfm *tfm,
struct cipher_req_ctx *req_ctx,
struct scatterlist *dst, struct scatterlist *src,
unsigned int nbytes, void *areq,
struct cc_hw_desc desc[], unsigned int *seq_size)
{
struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
struct device *dev = drvdata_to_dev(ctx_p->drvdata);
if (req_ctx->dma_buf_type == CC_DMA_BUF_MLLI) {
/* bypass */
dev_dbg(dev, " bypass params addr %pad length 0x%X addr 0x%08X\n",
&req_ctx->mlli_params.mlli_dma_addr,
req_ctx->mlli_params.mlli_len,
(unsigned int)ctx_p->drvdata->mlli_sram_addr);
hw_desc_init(&desc[*seq_size]);
set_din_type(&desc[*seq_size], DMA_DLLI,
req_ctx->mlli_params.mlli_dma_addr,
req_ctx->mlli_params.mlli_len, NS_BIT);
set_dout_sram(&desc[*seq_size],
ctx_p->drvdata->mlli_sram_addr,
req_ctx->mlli_params.mlli_len);
set_flow_mode(&desc[*seq_size], BYPASS);
(*seq_size)++;
}
}
static void cc_setup_flow_desc(struct crypto_tfm *tfm,
struct cipher_req_ctx *req_ctx,
struct scatterlist *dst, struct scatterlist *src,
unsigned int nbytes, struct cc_hw_desc desc[],
unsigned int *seq_size)
{
struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
struct device *dev = drvdata_to_dev(ctx_p->drvdata);
unsigned int flow_mode = cc_out_flow_mode(ctx_p);
bool last_desc = (ctx_p->key_type == CC_POLICY_PROTECTED_KEY ||
ctx_p->cipher_mode == DRV_CIPHER_ECB);
/* Process */
if (req_ctx->dma_buf_type == CC_DMA_BUF_DLLI) {
dev_dbg(dev, " data params addr %pad length 0x%X\n",
&sg_dma_address(src), nbytes);
dev_dbg(dev, " data params addr %pad length 0x%X\n",
&sg_dma_address(dst), nbytes);
hw_desc_init(&desc[*seq_size]);
set_din_type(&desc[*seq_size], DMA_DLLI, sg_dma_address(src),
nbytes, NS_BIT);
set_dout_dlli(&desc[*seq_size], sg_dma_address(dst),
nbytes, NS_BIT, (!last_desc ? 0 : 1));
if (last_desc)
set_queue_last_ind(ctx_p->drvdata, &desc[*seq_size]);
set_flow_mode(&desc[*seq_size], flow_mode);
(*seq_size)++;
} else {
hw_desc_init(&desc[*seq_size]);
set_din_type(&desc[*seq_size], DMA_MLLI,
ctx_p->drvdata->mlli_sram_addr,
req_ctx->in_mlli_nents, NS_BIT);
if (req_ctx->out_nents == 0) {
dev_dbg(dev, " din/dout params addr 0x%08X addr 0x%08X\n",
(unsigned int)ctx_p->drvdata->mlli_sram_addr,
(unsigned int)ctx_p->drvdata->mlli_sram_addr);
set_dout_mlli(&desc[*seq_size],
ctx_p->drvdata->mlli_sram_addr,
req_ctx->in_mlli_nents, NS_BIT,
(!last_desc ? 0 : 1));
} else {
dev_dbg(dev, " din/dout params addr 0x%08X addr 0x%08X\n",
(unsigned int)ctx_p->drvdata->mlli_sram_addr,
(unsigned int)ctx_p->drvdata->mlli_sram_addr +
(u32)LLI_ENTRY_BYTE_SIZE * req_ctx->in_nents);
set_dout_mlli(&desc[*seq_size],
(ctx_p->drvdata->mlli_sram_addr +
(LLI_ENTRY_BYTE_SIZE *
req_ctx->in_mlli_nents)),
req_ctx->out_mlli_nents, NS_BIT,
(!last_desc ? 0 : 1));
}
if (last_desc)
set_queue_last_ind(ctx_p->drvdata, &desc[*seq_size]);
set_flow_mode(&desc[*seq_size], flow_mode);
(*seq_size)++;
}
}
static void cc_cipher_complete(struct device *dev, void *cc_req, int err)
{
struct skcipher_request *req = (struct skcipher_request *)cc_req;
struct scatterlist *dst = req->dst;
struct scatterlist *src = req->src;
struct cipher_req_ctx *req_ctx = skcipher_request_ctx(req);
struct crypto_skcipher *sk_tfm = crypto_skcipher_reqtfm(req);
unsigned int ivsize = crypto_skcipher_ivsize(sk_tfm);
if (err != -EINPROGRESS) {
/* Not a BACKLOG notification */
cc_unmap_cipher_request(dev, req_ctx, ivsize, src, dst);
memcpy(req->iv, req_ctx->iv, ivsize);
kzfree(req_ctx->iv);
}
skcipher_request_complete(req, err);
}
static int cc_cipher_process(struct skcipher_request *req,
enum drv_crypto_direction direction)
{
struct crypto_skcipher *sk_tfm = crypto_skcipher_reqtfm(req);
struct crypto_tfm *tfm = crypto_skcipher_tfm(sk_tfm);
struct cipher_req_ctx *req_ctx = skcipher_request_ctx(req);
unsigned int ivsize = crypto_skcipher_ivsize(sk_tfm);
struct scatterlist *dst = req->dst;
struct scatterlist *src = req->src;
unsigned int nbytes = req->cryptlen;
void *iv = req->iv;
struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
struct device *dev = drvdata_to_dev(ctx_p->drvdata);
struct cc_hw_desc desc[MAX_SKCIPHER_SEQ_LEN];
struct cc_crypto_req cc_req = {};
int rc;
unsigned int seq_len = 0;
gfp_t flags = cc_gfp_flags(&req->base);
dev_dbg(dev, "%s req=%p iv=%p nbytes=%d\n",
((direction == DRV_CRYPTO_DIRECTION_ENCRYPT) ?
"Encrypt" : "Decrypt"), req, iv, nbytes);
/* STAT_PHASE_0: Init and sanity checks */
/* TODO: check data length according to mode */
if (validate_data_size(ctx_p, nbytes)) {
dev_err(dev, "Unsupported data size %d.\n", nbytes);
rc = -EINVAL;
goto exit_process;
}
if (nbytes == 0) {
/* No data to process is valid */
rc = 0;
goto exit_process;
}
/* The IV we are handed may be allocted from the stack so
* we must copy it to a DMAable buffer before use.
*/
req_ctx->iv = kmemdup(iv, ivsize, flags);
if (!req_ctx->iv) {
rc = -ENOMEM;
goto exit_process;
}
/* Setup request structure */
cc_req.user_cb = (void *)cc_cipher_complete;
cc_req.user_arg = (void *)req;
/* Setup CPP operation details */
if (ctx_p->key_type == CC_POLICY_PROTECTED_KEY) {
cc_req.cpp.is_cpp = true;
cc_req.cpp.alg = ctx_p->cpp.alg;
cc_req.cpp.slot = ctx_p->cpp.slot;
}
/* Setup request context */
req_ctx->gen_ctx.op_type = direction;
/* STAT_PHASE_1: Map buffers */
rc = cc_map_cipher_request(ctx_p->drvdata, req_ctx, ivsize, nbytes,
req_ctx->iv, src, dst, flags);
if (rc) {
dev_err(dev, "map_request() failed\n");
goto exit_process;
}
/* STAT_PHASE_2: Create sequence */
/* Setup IV and XEX key used */
cc_setup_state_desc(tfm, req_ctx, ivsize, nbytes, desc, &seq_len);
/* Setup MLLI line, if needed */
cc_setup_mlli_desc(tfm, req_ctx, dst, src, nbytes, req, desc, &seq_len);
/* Setup key */
cc_setup_key_desc(tfm, req_ctx, nbytes, desc, &seq_len);
/* Data processing */
cc_setup_flow_desc(tfm, req_ctx, dst, src, nbytes, desc, &seq_len);
/* Read next IV */
cc_setup_readiv_desc(tfm, req_ctx, ivsize, desc, &seq_len);
/* STAT_PHASE_3: Lock HW and push sequence */
rc = cc_send_request(ctx_p->drvdata, &cc_req, desc, seq_len,
&req->base);
if (rc != -EINPROGRESS && rc != -EBUSY) {
/* Failed to send the request or request completed
* synchronously
*/
cc_unmap_cipher_request(dev, req_ctx, ivsize, src, dst);
}
exit_process:
if (rc != -EINPROGRESS && rc != -EBUSY) {
kzfree(req_ctx->iv);
}
return rc;
}
static int cc_cipher_encrypt(struct skcipher_request *req)
{
struct cipher_req_ctx *req_ctx = skcipher_request_ctx(req);
memset(req_ctx, 0, sizeof(*req_ctx));
return cc_cipher_process(req, DRV_CRYPTO_DIRECTION_ENCRYPT);
}
static int cc_cipher_decrypt(struct skcipher_request *req)
{
struct cipher_req_ctx *req_ctx = skcipher_request_ctx(req);
memset(req_ctx, 0, sizeof(*req_ctx));
return cc_cipher_process(req, DRV_CRYPTO_DIRECTION_DECRYPT);
}
/* Block cipher alg */
static const struct cc_alg_template skcipher_algs[] = {
{
.name = "xts(paes)",
.driver_name = "xts-paes-ccree",
.blocksize = 1,
.template_skcipher = {
.setkey = cc_cipher_sethkey,
.encrypt = cc_cipher_encrypt,
.decrypt = cc_cipher_decrypt,
.min_keysize = CC_HW_KEY_SIZE,
.max_keysize = CC_HW_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
},
.cipher_mode = DRV_CIPHER_XTS,
.flow_mode = S_DIN_to_AES,
.min_hw_rev = CC_HW_REV_630,
.std_body = CC_STD_NIST,
.sec_func = true,
},
{
.name = "xts512(paes)",
.driver_name = "xts-paes-du512-ccree",
.blocksize = 1,
.template_skcipher = {
.setkey = cc_cipher_sethkey,
.encrypt = cc_cipher_encrypt,
.decrypt = cc_cipher_decrypt,
.min_keysize = CC_HW_KEY_SIZE,
.max_keysize = CC_HW_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
},
.cipher_mode = DRV_CIPHER_XTS,
.flow_mode = S_DIN_to_AES,
.data_unit = 512,
.min_hw_rev = CC_HW_REV_712,
.std_body = CC_STD_NIST,
.sec_func = true,
},
{
.name = "xts4096(paes)",
.driver_name = "xts-paes-du4096-ccree",
.blocksize = 1,
.template_skcipher = {
.setkey = cc_cipher_sethkey,
.encrypt = cc_cipher_encrypt,
.decrypt = cc_cipher_decrypt,
.min_keysize = CC_HW_KEY_SIZE,
.max_keysize = CC_HW_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
},
.cipher_mode = DRV_CIPHER_XTS,
.flow_mode = S_DIN_to_AES,
.data_unit = 4096,
.min_hw_rev = CC_HW_REV_712,
.std_body = CC_STD_NIST,
.sec_func = true,
},
{
.name = "essiv(paes)",
.driver_name = "essiv-paes-ccree",
.blocksize = AES_BLOCK_SIZE,
.template_skcipher = {
.setkey = cc_cipher_sethkey,
.encrypt = cc_cipher_encrypt,
.decrypt = cc_cipher_decrypt,
.min_keysize = CC_HW_KEY_SIZE,
.max_keysize = CC_HW_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
},
.cipher_mode = DRV_CIPHER_ESSIV,
.flow_mode = S_DIN_to_AES,
.min_hw_rev = CC_HW_REV_712,
.std_body = CC_STD_NIST,
.sec_func = true,
},
{
.name = "essiv512(paes)",
.driver_name = "essiv-paes-du512-ccree",
.blocksize = AES_BLOCK_SIZE,
.template_skcipher = {
.setkey = cc_cipher_sethkey,
.encrypt = cc_cipher_encrypt,
.decrypt = cc_cipher_decrypt,
.min_keysize = CC_HW_KEY_SIZE,
.max_keysize = CC_HW_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
},
.cipher_mode = DRV_CIPHER_ESSIV,
.flow_mode = S_DIN_to_AES,
.data_unit = 512,
.min_hw_rev = CC_HW_REV_712,
.std_body = CC_STD_NIST,
.sec_func = true,
},
{
.name = "essiv4096(paes)",
.driver_name = "essiv-paes-du4096-ccree",
.blocksize = AES_BLOCK_SIZE,
.template_skcipher = {
.setkey = cc_cipher_sethkey,
.encrypt = cc_cipher_encrypt,
.decrypt = cc_cipher_decrypt,
.min_keysize = CC_HW_KEY_SIZE,
.max_keysize = CC_HW_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
},
.cipher_mode = DRV_CIPHER_ESSIV,
.flow_mode = S_DIN_to_AES,
.data_unit = 4096,
.min_hw_rev = CC_HW_REV_712,
.std_body = CC_STD_NIST,
.sec_func = true,
},
{
.name = "bitlocker(paes)",
.driver_name = "bitlocker-paes-ccree",
.blocksize = AES_BLOCK_SIZE,
.template_skcipher = {
.setkey = cc_cipher_sethkey,
.encrypt = cc_cipher_encrypt,
.decrypt = cc_cipher_decrypt,
.min_keysize = CC_HW_KEY_SIZE,
.max_keysize = CC_HW_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
},
.cipher_mode = DRV_CIPHER_BITLOCKER,
.flow_mode = S_DIN_to_AES,
.min_hw_rev = CC_HW_REV_712,
.std_body = CC_STD_NIST,
.sec_func = true,
},
{
.name = "bitlocker512(paes)",
.driver_name = "bitlocker-paes-du512-ccree",
.blocksize = AES_BLOCK_SIZE,
.template_skcipher = {
.setkey = cc_cipher_sethkey,
.encrypt = cc_cipher_encrypt,
.decrypt = cc_cipher_decrypt,
.min_keysize = CC_HW_KEY_SIZE,
.max_keysize = CC_HW_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
},
.cipher_mode = DRV_CIPHER_BITLOCKER,
.flow_mode = S_DIN_to_AES,
.data_unit = 512,
.min_hw_rev = CC_HW_REV_712,
.std_body = CC_STD_NIST,
.sec_func = true,
},
{
.name = "bitlocker4096(paes)",
.driver_name = "bitlocker-paes-du4096-ccree",
.blocksize = AES_BLOCK_SIZE,
.template_skcipher = {
.setkey = cc_cipher_sethkey,
.encrypt = cc_cipher_encrypt,
.decrypt = cc_cipher_decrypt,
.min_keysize = CC_HW_KEY_SIZE,
.max_keysize = CC_HW_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
},
.cipher_mode = DRV_CIPHER_BITLOCKER,
.flow_mode = S_DIN_to_AES,
.data_unit = 4096,
.min_hw_rev = CC_HW_REV_712,
.std_body = CC_STD_NIST,
.sec_func = true,
},
{
.name = "ecb(paes)",
.driver_name = "ecb-paes-ccree",
.blocksize = AES_BLOCK_SIZE,
.template_skcipher = {
.setkey = cc_cipher_sethkey,
.encrypt = cc_cipher_encrypt,
.decrypt = cc_cipher_decrypt,
.min_keysize = CC_HW_KEY_SIZE,
.max_keysize = CC_HW_KEY_SIZE,
.ivsize = 0,
},
.cipher_mode = DRV_CIPHER_ECB,
.flow_mode = S_DIN_to_AES,
.min_hw_rev = CC_HW_REV_712,
.std_body = CC_STD_NIST,
.sec_func = true,
},
{
.name = "cbc(paes)",
.driver_name = "cbc-paes-ccree",
.blocksize = AES_BLOCK_SIZE,
.template_skcipher = {
.setkey = cc_cipher_sethkey,
.encrypt = cc_cipher_encrypt,
.decrypt = cc_cipher_decrypt,
.min_keysize = CC_HW_KEY_SIZE,
.max_keysize = CC_HW_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
},
.cipher_mode = DRV_CIPHER_CBC,
.flow_mode = S_DIN_to_AES,
.min_hw_rev = CC_HW_REV_712,
.std_body = CC_STD_NIST,
.sec_func = true,
},
{
.name = "ofb(paes)",
.driver_name = "ofb-paes-ccree",
.blocksize = AES_BLOCK_SIZE,
.template_skcipher = {
.setkey = cc_cipher_sethkey,
.encrypt = cc_cipher_encrypt,
.decrypt = cc_cipher_decrypt,
.min_keysize = CC_HW_KEY_SIZE,
.max_keysize = CC_HW_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
},
.cipher_mode = DRV_CIPHER_OFB,
.flow_mode = S_DIN_to_AES,
.min_hw_rev = CC_HW_REV_712,
.std_body = CC_STD_NIST,
.sec_func = true,
},
{
.name = "cts(cbc(paes))",
.driver_name = "cts-cbc-paes-ccree",
.blocksize = AES_BLOCK_SIZE,
.template_skcipher = {
.setkey = cc_cipher_sethkey,
.encrypt = cc_cipher_encrypt,
.decrypt = cc_cipher_decrypt,
.min_keysize = CC_HW_KEY_SIZE,
.max_keysize = CC_HW_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
},
.cipher_mode = DRV_CIPHER_CBC_CTS,
.flow_mode = S_DIN_to_AES,
.min_hw_rev = CC_HW_REV_712,
.std_body = CC_STD_NIST,
.sec_func = true,
},
{
.name = "ctr(paes)",
.driver_name = "ctr-paes-ccree",
.blocksize = 1,
.template_skcipher = {
.setkey = cc_cipher_sethkey,
.encrypt = cc_cipher_encrypt,
.decrypt = cc_cipher_decrypt,
.min_keysize = CC_HW_KEY_SIZE,
.max_keysize = CC_HW_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
},
.cipher_mode = DRV_CIPHER_CTR,
.flow_mode = S_DIN_to_AES,
.min_hw_rev = CC_HW_REV_712,
.std_body = CC_STD_NIST,
.sec_func = true,
},
{
.name = "xts(aes)",
.driver_name = "xts-aes-ccree",
.blocksize = 1,
.template_skcipher = {
.setkey = cc_cipher_setkey,
.encrypt = cc_cipher_encrypt,
.decrypt = cc_cipher_decrypt,
.min_keysize = AES_MIN_KEY_SIZE * 2,
.max_keysize = AES_MAX_KEY_SIZE * 2,
.ivsize = AES_BLOCK_SIZE,
},
.cipher_mode = DRV_CIPHER_XTS,
.flow_mode = S_DIN_to_AES,
.min_hw_rev = CC_HW_REV_630,
.std_body = CC_STD_NIST,
},
{
.name = "xts512(aes)",
.driver_name = "xts-aes-du512-ccree",
.blocksize = 1,
.template_skcipher = {
.setkey = cc_cipher_setkey,
.encrypt = cc_cipher_encrypt,
.decrypt = cc_cipher_decrypt,
.min_keysize = AES_MIN_KEY_SIZE * 2,
.max_keysize = AES_MAX_KEY_SIZE * 2,
.ivsize = AES_BLOCK_SIZE,
},
.cipher_mode = DRV_CIPHER_XTS,
.flow_mode = S_DIN_to_AES,
.data_unit = 512,
.min_hw_rev = CC_HW_REV_712,
.std_body = CC_STD_NIST,
},
{
.name = "xts4096(aes)",
.driver_name = "xts-aes-du4096-ccree",
.blocksize = 1,
.template_skcipher = {
.setkey = cc_cipher_setkey,
.encrypt = cc_cipher_encrypt,
.decrypt = cc_cipher_decrypt,
.min_keysize = AES_MIN_KEY_SIZE * 2,
.max_keysize = AES_MAX_KEY_SIZE * 2,
.ivsize = AES_BLOCK_SIZE,
},
.cipher_mode = DRV_CIPHER_XTS,
.flow_mode = S_DIN_to_AES,
.data_unit = 4096,
.min_hw_rev = CC_HW_REV_712,
.std_body = CC_STD_NIST,
},
{
.name = "essiv(aes)",
.driver_name = "essiv-aes-ccree",
.blocksize = AES_BLOCK_SIZE,
.template_skcipher = {
.setkey = cc_cipher_setkey,
.encrypt = cc_cipher_encrypt,
.decrypt = cc_cipher_decrypt,
.min_keysize = AES_MIN_KEY_SIZE * 2,
.max_keysize = AES_MAX_KEY_SIZE * 2,
.ivsize = AES_BLOCK_SIZE,
},
.cipher_mode = DRV_CIPHER_ESSIV,
.flow_mode = S_DIN_to_AES,
.min_hw_rev = CC_HW_REV_712,
.std_body = CC_STD_NIST,
},
{
.name = "essiv512(aes)",
.driver_name = "essiv-aes-du512-ccree",
.blocksize = AES_BLOCK_SIZE,
.template_skcipher = {
.setkey = cc_cipher_setkey,
.encrypt = cc_cipher_encrypt,
.decrypt = cc_cipher_decrypt,
.min_keysize = AES_MIN_KEY_SIZE * 2,
.max_keysize = AES_MAX_KEY_SIZE * 2,
.ivsize = AES_BLOCK_SIZE,
},
.cipher_mode = DRV_CIPHER_ESSIV,
.flow_mode = S_DIN_to_AES,
.data_unit = 512,
.min_hw_rev = CC_HW_REV_712,
.std_body = CC_STD_NIST,
},
{
.name = "essiv4096(aes)",
.driver_name = "essiv-aes-du4096-ccree",
.blocksize = AES_BLOCK_SIZE,
.template_skcipher = {
.setkey = cc_cipher_setkey,
.encrypt = cc_cipher_encrypt,
.decrypt = cc_cipher_decrypt,
.min_keysize = AES_MIN_KEY_SIZE * 2,
.max_keysize = AES_MAX_KEY_SIZE * 2,
.ivsize = AES_BLOCK_SIZE,
},
.cipher_mode = DRV_CIPHER_ESSIV,
.flow_mode = S_DIN_to_AES,
.data_unit = 4096,
.min_hw_rev = CC_HW_REV_712,
.std_body = CC_STD_NIST,
},
{
.name = "bitlocker(aes)",
.driver_name = "bitlocker-aes-ccree",
.blocksize = AES_BLOCK_SIZE,
.template_skcipher = {
.setkey = cc_cipher_setkey,
.encrypt = cc_cipher_encrypt,
.decrypt = cc_cipher_decrypt,
.min_keysize = AES_MIN_KEY_SIZE * 2,
.max_keysize = AES_MAX_KEY_SIZE * 2,
.ivsize = AES_BLOCK_SIZE,
},
.cipher_mode = DRV_CIPHER_BITLOCKER,
.flow_mode = S_DIN_to_AES,
.min_hw_rev = CC_HW_REV_712,
.std_body = CC_STD_NIST,
},
{
.name = "bitlocker512(aes)",
.driver_name = "bitlocker-aes-du512-ccree",
.blocksize = AES_BLOCK_SIZE,
.template_skcipher = {
.setkey = cc_cipher_setkey,
.encrypt = cc_cipher_encrypt,
.decrypt = cc_cipher_decrypt,
.min_keysize = AES_MIN_KEY_SIZE * 2,
.max_keysize = AES_MAX_KEY_SIZE * 2,
.ivsize = AES_BLOCK_SIZE,
},
.cipher_mode = DRV_CIPHER_BITLOCKER,
.flow_mode = S_DIN_to_AES,
.data_unit = 512,
.min_hw_rev = CC_HW_REV_712,
.std_body = CC_STD_NIST,
},
{
.name = "bitlocker4096(aes)",
.driver_name = "bitlocker-aes-du4096-ccree",
.blocksize = AES_BLOCK_SIZE,
.template_skcipher = {
.setkey = cc_cipher_setkey,
.encrypt = cc_cipher_encrypt,
.decrypt = cc_cipher_decrypt,
.min_keysize = AES_MIN_KEY_SIZE * 2,
.max_keysize = AES_MAX_KEY_SIZE * 2,
.ivsize = AES_BLOCK_SIZE,
},
.cipher_mode = DRV_CIPHER_BITLOCKER,
.flow_mode = S_DIN_to_AES,
.data_unit = 4096,
.min_hw_rev = CC_HW_REV_712,
.std_body = CC_STD_NIST,
},
{
.name = "ecb(aes)",
.driver_name = "ecb-aes-ccree",
.blocksize = AES_BLOCK_SIZE,
.template_skcipher = {
.setkey = cc_cipher_setkey,
.encrypt = cc_cipher_encrypt,
.decrypt = cc_cipher_decrypt,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = 0,
},
.cipher_mode = DRV_CIPHER_ECB,
.flow_mode = S_DIN_to_AES,
.min_hw_rev = CC_HW_REV_630,
.std_body = CC_STD_NIST,
},
{
.name = "cbc(aes)",
.driver_name = "cbc-aes-ccree",
.blocksize = AES_BLOCK_SIZE,
.template_skcipher = {
.setkey = cc_cipher_setkey,
.encrypt = cc_cipher_encrypt,
.decrypt = cc_cipher_decrypt,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
},
.cipher_mode = DRV_CIPHER_CBC,
.flow_mode = S_DIN_to_AES,
.min_hw_rev = CC_HW_REV_630,
.std_body = CC_STD_NIST,
},
{
.name = "ofb(aes)",
.driver_name = "ofb-aes-ccree",
.blocksize = AES_BLOCK_SIZE,
.template_skcipher = {
.setkey = cc_cipher_setkey,
.encrypt = cc_cipher_encrypt,
.decrypt = cc_cipher_decrypt,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
},
.cipher_mode = DRV_CIPHER_OFB,
.flow_mode = S_DIN_to_AES,
.min_hw_rev = CC_HW_REV_630,
.std_body = CC_STD_NIST,
},
{
.name = "cts(cbc(aes))",
.driver_name = "cts-cbc-aes-ccree",
.blocksize = AES_BLOCK_SIZE,
.template_skcipher = {
.setkey = cc_cipher_setkey,
.encrypt = cc_cipher_encrypt,
.decrypt = cc_cipher_decrypt,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
},
.cipher_mode = DRV_CIPHER_CBC_CTS,
.flow_mode = S_DIN_to_AES,
.min_hw_rev = CC_HW_REV_630,
.std_body = CC_STD_NIST,
},
{
.name = "ctr(aes)",
.driver_name = "ctr-aes-ccree",
.blocksize = 1,
.template_skcipher = {
.setkey = cc_cipher_setkey,
.encrypt = cc_cipher_encrypt,
.decrypt = cc_cipher_decrypt,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
},
.cipher_mode = DRV_CIPHER_CTR,
.flow_mode = S_DIN_to_AES,
.min_hw_rev = CC_HW_REV_630,
.std_body = CC_STD_NIST,
},
{
.name = "cbc(des3_ede)",
.driver_name = "cbc-3des-ccree",
.blocksize = DES3_EDE_BLOCK_SIZE,
.template_skcipher = {
.setkey = cc_cipher_setkey,
.encrypt = cc_cipher_encrypt,
.decrypt = cc_cipher_decrypt,
.min_keysize = DES3_EDE_KEY_SIZE,
.max_keysize = DES3_EDE_KEY_SIZE,
.ivsize = DES3_EDE_BLOCK_SIZE,
},
.cipher_mode = DRV_CIPHER_CBC,
.flow_mode = S_DIN_to_DES,
.min_hw_rev = CC_HW_REV_630,
.std_body = CC_STD_NIST,
},
{
.name = "ecb(des3_ede)",
.driver_name = "ecb-3des-ccree",
.blocksize = DES3_EDE_BLOCK_SIZE,
.template_skcipher = {
.setkey = cc_cipher_setkey,
.encrypt = cc_cipher_encrypt,
.decrypt = cc_cipher_decrypt,
.min_keysize = DES3_EDE_KEY_SIZE,
.max_keysize = DES3_EDE_KEY_SIZE,
.ivsize = 0,
},
.cipher_mode = DRV_CIPHER_ECB,
.flow_mode = S_DIN_to_DES,
.min_hw_rev = CC_HW_REV_630,
.std_body = CC_STD_NIST,
},
{
.name = "cbc(des)",
.driver_name = "cbc-des-ccree",
.blocksize = DES_BLOCK_SIZE,
.template_skcipher = {
.setkey = cc_cipher_setkey,
.encrypt = cc_cipher_encrypt,
.decrypt = cc_cipher_decrypt,
.min_keysize = DES_KEY_SIZE,
.max_keysize = DES_KEY_SIZE,
.ivsize = DES_BLOCK_SIZE,
},
.cipher_mode = DRV_CIPHER_CBC,
.flow_mode = S_DIN_to_DES,
.min_hw_rev = CC_HW_REV_630,
.std_body = CC_STD_NIST,
},
{
.name = "ecb(des)",
.driver_name = "ecb-des-ccree",
.blocksize = DES_BLOCK_SIZE,
.template_skcipher = {
.setkey = cc_cipher_setkey,
.encrypt = cc_cipher_encrypt,
.decrypt = cc_cipher_decrypt,
.min_keysize = DES_KEY_SIZE,
.max_keysize = DES_KEY_SIZE,
.ivsize = 0,
},
.cipher_mode = DRV_CIPHER_ECB,
.flow_mode = S_DIN_to_DES,
.min_hw_rev = CC_HW_REV_630,
.std_body = CC_STD_NIST,
},
{
.name = "cbc(sm4)",
.driver_name = "cbc-sm4-ccree",
.blocksize = SM4_BLOCK_SIZE,
.template_skcipher = {
.setkey = cc_cipher_setkey,
.encrypt = cc_cipher_encrypt,
.decrypt = cc_cipher_decrypt,
.min_keysize = SM4_KEY_SIZE,
.max_keysize = SM4_KEY_SIZE,
.ivsize = SM4_BLOCK_SIZE,
},
.cipher_mode = DRV_CIPHER_CBC,
.flow_mode = S_DIN_to_SM4,
.min_hw_rev = CC_HW_REV_713,
.std_body = CC_STD_OSCCA,
},
{
.name = "ecb(sm4)",
.driver_name = "ecb-sm4-ccree",
.blocksize = SM4_BLOCK_SIZE,
.template_skcipher = {
.setkey = cc_cipher_setkey,
.encrypt = cc_cipher_encrypt,
.decrypt = cc_cipher_decrypt,
.min_keysize = SM4_KEY_SIZE,
.max_keysize = SM4_KEY_SIZE,
.ivsize = 0,
},
.cipher_mode = DRV_CIPHER_ECB,
.flow_mode = S_DIN_to_SM4,
.min_hw_rev = CC_HW_REV_713,
.std_body = CC_STD_OSCCA,
},
{
.name = "ctr(sm4)",
.driver_name = "ctr-sm4-ccree",
.blocksize = SM4_BLOCK_SIZE,
.template_skcipher = {
.setkey = cc_cipher_setkey,
.encrypt = cc_cipher_encrypt,
.decrypt = cc_cipher_decrypt,
.min_keysize = SM4_KEY_SIZE,
.max_keysize = SM4_KEY_SIZE,
.ivsize = SM4_BLOCK_SIZE,
},
.cipher_mode = DRV_CIPHER_CTR,
.flow_mode = S_DIN_to_SM4,
.min_hw_rev = CC_HW_REV_713,
.std_body = CC_STD_OSCCA,
},
{
.name = "cbc(psm4)",
.driver_name = "cbc-psm4-ccree",
.blocksize = SM4_BLOCK_SIZE,
.template_skcipher = {
.setkey = cc_cipher_sethkey,
.encrypt = cc_cipher_encrypt,
.decrypt = cc_cipher_decrypt,
.min_keysize = CC_HW_KEY_SIZE,
.max_keysize = CC_HW_KEY_SIZE,
.ivsize = SM4_BLOCK_SIZE,
},
.cipher_mode = DRV_CIPHER_CBC,
.flow_mode = S_DIN_to_SM4,
.min_hw_rev = CC_HW_REV_713,
.std_body = CC_STD_OSCCA,
.sec_func = true,
},
{
.name = "ctr(psm4)",
.driver_name = "ctr-psm4-ccree",
.blocksize = SM4_BLOCK_SIZE,
.template_skcipher = {
.setkey = cc_cipher_sethkey,
.encrypt = cc_cipher_encrypt,
.decrypt = cc_cipher_decrypt,
.min_keysize = CC_HW_KEY_SIZE,
.max_keysize = CC_HW_KEY_SIZE,
.ivsize = SM4_BLOCK_SIZE,
},
.cipher_mode = DRV_CIPHER_CTR,
.flow_mode = S_DIN_to_SM4,
.min_hw_rev = CC_HW_REV_713,
.std_body = CC_STD_OSCCA,
.sec_func = true,
},
};
static struct cc_crypto_alg *cc_create_alg(const struct cc_alg_template *tmpl,
struct device *dev)
{
struct cc_crypto_alg *t_alg;
struct skcipher_alg *alg;
t_alg = kzalloc(sizeof(*t_alg), GFP_KERNEL);
if (!t_alg)
return ERR_PTR(-ENOMEM);
alg = &t_alg->skcipher_alg;
memcpy(alg, &tmpl->template_skcipher, sizeof(*alg));
snprintf(alg->base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
snprintf(alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
tmpl->driver_name);
alg->base.cra_module = THIS_MODULE;
alg->base.cra_priority = CC_CRA_PRIO;
alg->base.cra_blocksize = tmpl->blocksize;
alg->base.cra_alignmask = 0;
alg->base.cra_ctxsize = sizeof(struct cc_cipher_ctx);
alg->base.cra_init = cc_cipher_init;
alg->base.cra_exit = cc_cipher_exit;
alg->base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY;
t_alg->cipher_mode = tmpl->cipher_mode;
t_alg->flow_mode = tmpl->flow_mode;
t_alg->data_unit = tmpl->data_unit;
return t_alg;
}
int cc_cipher_free(struct cc_drvdata *drvdata)
{
struct cc_crypto_alg *t_alg, *n;
struct cc_cipher_handle *cipher_handle = drvdata->cipher_handle;
if (cipher_handle) {
/* Remove registered algs */
list_for_each_entry_safe(t_alg, n, &cipher_handle->alg_list,
entry) {
crypto_unregister_skcipher(&t_alg->skcipher_alg);
list_del(&t_alg->entry);
kfree(t_alg);
}
kfree(cipher_handle);
drvdata->cipher_handle = NULL;
}
return 0;
}
int cc_cipher_alloc(struct cc_drvdata *drvdata)
{
struct cc_cipher_handle *cipher_handle;
struct cc_crypto_alg *t_alg;
struct device *dev = drvdata_to_dev(drvdata);
int rc = -ENOMEM;
int alg;
cipher_handle = kmalloc(sizeof(*cipher_handle), GFP_KERNEL);
if (!cipher_handle)
return -ENOMEM;
INIT_LIST_HEAD(&cipher_handle->alg_list);
drvdata->cipher_handle = cipher_handle;
/* Linux crypto */
dev_dbg(dev, "Number of algorithms = %zu\n",
ARRAY_SIZE(skcipher_algs));
for (alg = 0; alg < ARRAY_SIZE(skcipher_algs); alg++) {
if ((skcipher_algs[alg].min_hw_rev > drvdata->hw_rev) ||
!(drvdata->std_bodies & skcipher_algs[alg].std_body) ||
(drvdata->sec_disabled && skcipher_algs[alg].sec_func))
continue;
dev_dbg(dev, "creating %s\n", skcipher_algs[alg].driver_name);
t_alg = cc_create_alg(&skcipher_algs[alg], dev);
if (IS_ERR(t_alg)) {
rc = PTR_ERR(t_alg);
dev_err(dev, "%s alg allocation failed\n",
skcipher_algs[alg].driver_name);
goto fail0;
}
t_alg->drvdata = drvdata;
dev_dbg(dev, "registering %s\n",
skcipher_algs[alg].driver_name);
rc = crypto_register_skcipher(&t_alg->skcipher_alg);
dev_dbg(dev, "%s alg registration rc = %x\n",
t_alg->skcipher_alg.base.cra_driver_name, rc);
if (rc) {
dev_err(dev, "%s alg registration failed\n",
t_alg->skcipher_alg.base.cra_driver_name);
kfree(t_alg);
goto fail0;
} else {
list_add_tail(&t_alg->entry,
&cipher_handle->alg_list);
dev_dbg(dev, "Registered %s\n",
t_alg->skcipher_alg.base.cra_driver_name);
}
}
return 0;
fail0:
cc_cipher_free(drvdata);
return rc;
}