linux/drivers/net/ethernet/realtek/r8169_main.c
Heiner Kallweit 89fbd26cca r8169: fix firmware not resetting tp->ocp_base
Typically the firmware takes care that tp->ocp_base is reset to its
default value. That's not the case (at least) for RTL8117.
As a result subsequent PHY access reads/writes the wrong page and
the link is broken. Fix this be resetting tp->ocp_base explicitly.

Fixes: 229c1e0dfd ("r8169: load firmware for RTL8168fp/RTL8117")
Reported-by: Aaron Ma <mapengyu@gmail.com>
Tested-by: Aaron Ma <mapengyu@gmail.com>
Signed-off-by: Heiner Kallweit <hkallweit1@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-06-20 17:31:26 -07:00

5459 lines
140 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* r8169.c: RealTek 8169/8168/8101 ethernet driver.
*
* Copyright (c) 2002 ShuChen <shuchen@realtek.com.tw>
* Copyright (c) 2003 - 2007 Francois Romieu <romieu@fr.zoreil.com>
* Copyright (c) a lot of people too. Please respect their work.
*
* See MAINTAINERS file for support contact information.
*/
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/ethtool.h>
#include <linux/phy.h>
#include <linux/if_vlan.h>
#include <linux/in.h>
#include <linux/io.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/interrupt.h>
#include <linux/dma-mapping.h>
#include <linux/pm_runtime.h>
#include <linux/bitfield.h>
#include <linux/prefetch.h>
#include <linux/ipv6.h>
#include <net/ip6_checksum.h>
#include "r8169.h"
#include "r8169_firmware.h"
#define MODULENAME "r8169"
#define FIRMWARE_8168D_1 "rtl_nic/rtl8168d-1.fw"
#define FIRMWARE_8168D_2 "rtl_nic/rtl8168d-2.fw"
#define FIRMWARE_8168E_1 "rtl_nic/rtl8168e-1.fw"
#define FIRMWARE_8168E_2 "rtl_nic/rtl8168e-2.fw"
#define FIRMWARE_8168E_3 "rtl_nic/rtl8168e-3.fw"
#define FIRMWARE_8168F_1 "rtl_nic/rtl8168f-1.fw"
#define FIRMWARE_8168F_2 "rtl_nic/rtl8168f-2.fw"
#define FIRMWARE_8105E_1 "rtl_nic/rtl8105e-1.fw"
#define FIRMWARE_8402_1 "rtl_nic/rtl8402-1.fw"
#define FIRMWARE_8411_1 "rtl_nic/rtl8411-1.fw"
#define FIRMWARE_8411_2 "rtl_nic/rtl8411-2.fw"
#define FIRMWARE_8106E_1 "rtl_nic/rtl8106e-1.fw"
#define FIRMWARE_8106E_2 "rtl_nic/rtl8106e-2.fw"
#define FIRMWARE_8168G_2 "rtl_nic/rtl8168g-2.fw"
#define FIRMWARE_8168G_3 "rtl_nic/rtl8168g-3.fw"
#define FIRMWARE_8168H_1 "rtl_nic/rtl8168h-1.fw"
#define FIRMWARE_8168H_2 "rtl_nic/rtl8168h-2.fw"
#define FIRMWARE_8168FP_3 "rtl_nic/rtl8168fp-3.fw"
#define FIRMWARE_8107E_1 "rtl_nic/rtl8107e-1.fw"
#define FIRMWARE_8107E_2 "rtl_nic/rtl8107e-2.fw"
#define FIRMWARE_8125A_3 "rtl_nic/rtl8125a-3.fw"
/* Maximum number of multicast addresses to filter (vs. Rx-all-multicast).
The RTL chips use a 64 element hash table based on the Ethernet CRC. */
#define MC_FILTER_LIMIT 32
#define TX_DMA_BURST 7 /* Maximum PCI burst, '7' is unlimited */
#define InterFrameGap 0x03 /* 3 means InterFrameGap = the shortest one */
#define R8169_REGS_SIZE 256
#define R8169_RX_BUF_SIZE (SZ_16K - 1)
#define NUM_TX_DESC 64 /* Number of Tx descriptor registers */
#define NUM_RX_DESC 256U /* Number of Rx descriptor registers */
#define R8169_TX_RING_BYTES (NUM_TX_DESC * sizeof(struct TxDesc))
#define R8169_RX_RING_BYTES (NUM_RX_DESC * sizeof(struct RxDesc))
#define OCP_STD_PHY_BASE 0xa400
#define RTL_CFG_NO_GBIT 1
/* write/read MMIO register */
#define RTL_W8(tp, reg, val8) writeb((val8), tp->mmio_addr + (reg))
#define RTL_W16(tp, reg, val16) writew((val16), tp->mmio_addr + (reg))
#define RTL_W32(tp, reg, val32) writel((val32), tp->mmio_addr + (reg))
#define RTL_R8(tp, reg) readb(tp->mmio_addr + (reg))
#define RTL_R16(tp, reg) readw(tp->mmio_addr + (reg))
#define RTL_R32(tp, reg) readl(tp->mmio_addr + (reg))
#define JUMBO_4K (4 * SZ_1K - VLAN_ETH_HLEN - ETH_FCS_LEN)
#define JUMBO_6K (6 * SZ_1K - VLAN_ETH_HLEN - ETH_FCS_LEN)
#define JUMBO_7K (7 * SZ_1K - VLAN_ETH_HLEN - ETH_FCS_LEN)
#define JUMBO_9K (9 * SZ_1K - VLAN_ETH_HLEN - ETH_FCS_LEN)
static const struct {
const char *name;
const char *fw_name;
} rtl_chip_infos[] = {
/* PCI devices. */
[RTL_GIGA_MAC_VER_02] = {"RTL8169s" },
[RTL_GIGA_MAC_VER_03] = {"RTL8110s" },
[RTL_GIGA_MAC_VER_04] = {"RTL8169sb/8110sb" },
[RTL_GIGA_MAC_VER_05] = {"RTL8169sc/8110sc" },
[RTL_GIGA_MAC_VER_06] = {"RTL8169sc/8110sc" },
/* PCI-E devices. */
[RTL_GIGA_MAC_VER_07] = {"RTL8102e" },
[RTL_GIGA_MAC_VER_08] = {"RTL8102e" },
[RTL_GIGA_MAC_VER_09] = {"RTL8102e/RTL8103e" },
[RTL_GIGA_MAC_VER_10] = {"RTL8101e" },
[RTL_GIGA_MAC_VER_11] = {"RTL8168b/8111b" },
[RTL_GIGA_MAC_VER_12] = {"RTL8168b/8111b" },
[RTL_GIGA_MAC_VER_13] = {"RTL8101e" },
[RTL_GIGA_MAC_VER_14] = {"RTL8100e" },
[RTL_GIGA_MAC_VER_15] = {"RTL8100e" },
[RTL_GIGA_MAC_VER_16] = {"RTL8101e" },
[RTL_GIGA_MAC_VER_17] = {"RTL8168b/8111b" },
[RTL_GIGA_MAC_VER_18] = {"RTL8168cp/8111cp" },
[RTL_GIGA_MAC_VER_19] = {"RTL8168c/8111c" },
[RTL_GIGA_MAC_VER_20] = {"RTL8168c/8111c" },
[RTL_GIGA_MAC_VER_21] = {"RTL8168c/8111c" },
[RTL_GIGA_MAC_VER_22] = {"RTL8168c/8111c" },
[RTL_GIGA_MAC_VER_23] = {"RTL8168cp/8111cp" },
[RTL_GIGA_MAC_VER_24] = {"RTL8168cp/8111cp" },
[RTL_GIGA_MAC_VER_25] = {"RTL8168d/8111d", FIRMWARE_8168D_1},
[RTL_GIGA_MAC_VER_26] = {"RTL8168d/8111d", FIRMWARE_8168D_2},
[RTL_GIGA_MAC_VER_27] = {"RTL8168dp/8111dp" },
[RTL_GIGA_MAC_VER_28] = {"RTL8168dp/8111dp" },
[RTL_GIGA_MAC_VER_29] = {"RTL8105e", FIRMWARE_8105E_1},
[RTL_GIGA_MAC_VER_30] = {"RTL8105e", FIRMWARE_8105E_1},
[RTL_GIGA_MAC_VER_31] = {"RTL8168dp/8111dp" },
[RTL_GIGA_MAC_VER_32] = {"RTL8168e/8111e", FIRMWARE_8168E_1},
[RTL_GIGA_MAC_VER_33] = {"RTL8168e/8111e", FIRMWARE_8168E_2},
[RTL_GIGA_MAC_VER_34] = {"RTL8168evl/8111evl", FIRMWARE_8168E_3},
[RTL_GIGA_MAC_VER_35] = {"RTL8168f/8111f", FIRMWARE_8168F_1},
[RTL_GIGA_MAC_VER_36] = {"RTL8168f/8111f", FIRMWARE_8168F_2},
[RTL_GIGA_MAC_VER_37] = {"RTL8402", FIRMWARE_8402_1 },
[RTL_GIGA_MAC_VER_38] = {"RTL8411", FIRMWARE_8411_1 },
[RTL_GIGA_MAC_VER_39] = {"RTL8106e", FIRMWARE_8106E_1},
[RTL_GIGA_MAC_VER_40] = {"RTL8168g/8111g", FIRMWARE_8168G_2},
[RTL_GIGA_MAC_VER_41] = {"RTL8168g/8111g" },
[RTL_GIGA_MAC_VER_42] = {"RTL8168gu/8111gu", FIRMWARE_8168G_3},
[RTL_GIGA_MAC_VER_43] = {"RTL8106eus", FIRMWARE_8106E_2},
[RTL_GIGA_MAC_VER_44] = {"RTL8411b", FIRMWARE_8411_2 },
[RTL_GIGA_MAC_VER_45] = {"RTL8168h/8111h", FIRMWARE_8168H_1},
[RTL_GIGA_MAC_VER_46] = {"RTL8168h/8111h", FIRMWARE_8168H_2},
[RTL_GIGA_MAC_VER_47] = {"RTL8107e", FIRMWARE_8107E_1},
[RTL_GIGA_MAC_VER_48] = {"RTL8107e", FIRMWARE_8107E_2},
[RTL_GIGA_MAC_VER_49] = {"RTL8168ep/8111ep" },
[RTL_GIGA_MAC_VER_50] = {"RTL8168ep/8111ep" },
[RTL_GIGA_MAC_VER_51] = {"RTL8168ep/8111ep" },
[RTL_GIGA_MAC_VER_52] = {"RTL8168fp/RTL8117", FIRMWARE_8168FP_3},
[RTL_GIGA_MAC_VER_60] = {"RTL8125" },
[RTL_GIGA_MAC_VER_61] = {"RTL8125", FIRMWARE_8125A_3},
};
static const struct pci_device_id rtl8169_pci_tbl[] = {
{ PCI_VDEVICE(REALTEK, 0x2502) },
{ PCI_VDEVICE(REALTEK, 0x2600) },
{ PCI_VDEVICE(REALTEK, 0x8129) },
{ PCI_VDEVICE(REALTEK, 0x8136), RTL_CFG_NO_GBIT },
{ PCI_VDEVICE(REALTEK, 0x8161) },
{ PCI_VDEVICE(REALTEK, 0x8167) },
{ PCI_VDEVICE(REALTEK, 0x8168) },
{ PCI_VDEVICE(NCUBE, 0x8168) },
{ PCI_VDEVICE(REALTEK, 0x8169) },
{ PCI_VENDOR_ID_DLINK, 0x4300,
PCI_VENDOR_ID_DLINK, 0x4b10, 0, 0 },
{ PCI_VDEVICE(DLINK, 0x4300) },
{ PCI_VDEVICE(DLINK, 0x4302) },
{ PCI_VDEVICE(AT, 0xc107) },
{ PCI_VDEVICE(USR, 0x0116) },
{ PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0024 },
{ 0x0001, 0x8168, PCI_ANY_ID, 0x2410 },
{ PCI_VDEVICE(REALTEK, 0x8125) },
{ PCI_VDEVICE(REALTEK, 0x3000) },
{}
};
MODULE_DEVICE_TABLE(pci, rtl8169_pci_tbl);
enum rtl_registers {
MAC0 = 0, /* Ethernet hardware address. */
MAC4 = 4,
MAR0 = 8, /* Multicast filter. */
CounterAddrLow = 0x10,
CounterAddrHigh = 0x14,
TxDescStartAddrLow = 0x20,
TxDescStartAddrHigh = 0x24,
TxHDescStartAddrLow = 0x28,
TxHDescStartAddrHigh = 0x2c,
FLASH = 0x30,
ERSR = 0x36,
ChipCmd = 0x37,
TxPoll = 0x38,
IntrMask = 0x3c,
IntrStatus = 0x3e,
TxConfig = 0x40,
#define TXCFG_AUTO_FIFO (1 << 7) /* 8111e-vl */
#define TXCFG_EMPTY (1 << 11) /* 8111e-vl */
RxConfig = 0x44,
#define RX128_INT_EN (1 << 15) /* 8111c and later */
#define RX_MULTI_EN (1 << 14) /* 8111c only */
#define RXCFG_FIFO_SHIFT 13
/* No threshold before first PCI xfer */
#define RX_FIFO_THRESH (7 << RXCFG_FIFO_SHIFT)
#define RX_EARLY_OFF (1 << 11)
#define RXCFG_DMA_SHIFT 8
/* Unlimited maximum PCI burst. */
#define RX_DMA_BURST (7 << RXCFG_DMA_SHIFT)
Cfg9346 = 0x50,
Config0 = 0x51,
Config1 = 0x52,
Config2 = 0x53,
#define PME_SIGNAL (1 << 5) /* 8168c and later */
Config3 = 0x54,
Config4 = 0x55,
Config5 = 0x56,
PHYAR = 0x60,
PHYstatus = 0x6c,
RxMaxSize = 0xda,
CPlusCmd = 0xe0,
IntrMitigate = 0xe2,
#define RTL_COALESCE_TX_USECS GENMASK(15, 12)
#define RTL_COALESCE_TX_FRAMES GENMASK(11, 8)
#define RTL_COALESCE_RX_USECS GENMASK(7, 4)
#define RTL_COALESCE_RX_FRAMES GENMASK(3, 0)
#define RTL_COALESCE_T_MAX 0x0fU
#define RTL_COALESCE_FRAME_MAX (RTL_COALESCE_T_MAX * 4)
RxDescAddrLow = 0xe4,
RxDescAddrHigh = 0xe8,
EarlyTxThres = 0xec, /* 8169. Unit of 32 bytes. */
#define NoEarlyTx 0x3f /* Max value : no early transmit. */
MaxTxPacketSize = 0xec, /* 8101/8168. Unit of 128 bytes. */
#define TxPacketMax (8064 >> 7)
#define EarlySize 0x27
FuncEvent = 0xf0,
FuncEventMask = 0xf4,
FuncPresetState = 0xf8,
IBCR0 = 0xf8,
IBCR2 = 0xf9,
IBIMR0 = 0xfa,
IBISR0 = 0xfb,
FuncForceEvent = 0xfc,
};
enum rtl8168_8101_registers {
CSIDR = 0x64,
CSIAR = 0x68,
#define CSIAR_FLAG 0x80000000
#define CSIAR_WRITE_CMD 0x80000000
#define CSIAR_BYTE_ENABLE 0x0000f000
#define CSIAR_ADDR_MASK 0x00000fff
PMCH = 0x6f,
EPHYAR = 0x80,
#define EPHYAR_FLAG 0x80000000
#define EPHYAR_WRITE_CMD 0x80000000
#define EPHYAR_REG_MASK 0x1f
#define EPHYAR_REG_SHIFT 16
#define EPHYAR_DATA_MASK 0xffff
DLLPR = 0xd0,
#define PFM_EN (1 << 6)
#define TX_10M_PS_EN (1 << 7)
DBG_REG = 0xd1,
#define FIX_NAK_1 (1 << 4)
#define FIX_NAK_2 (1 << 3)
TWSI = 0xd2,
MCU = 0xd3,
#define NOW_IS_OOB (1 << 7)
#define TX_EMPTY (1 << 5)
#define RX_EMPTY (1 << 4)
#define RXTX_EMPTY (TX_EMPTY | RX_EMPTY)
#define EN_NDP (1 << 3)
#define EN_OOB_RESET (1 << 2)
#define LINK_LIST_RDY (1 << 1)
EFUSEAR = 0xdc,
#define EFUSEAR_FLAG 0x80000000
#define EFUSEAR_WRITE_CMD 0x80000000
#define EFUSEAR_READ_CMD 0x00000000
#define EFUSEAR_REG_MASK 0x03ff
#define EFUSEAR_REG_SHIFT 8
#define EFUSEAR_DATA_MASK 0xff
MISC_1 = 0xf2,
#define PFM_D3COLD_EN (1 << 6)
};
enum rtl8168_registers {
LED_FREQ = 0x1a,
EEE_LED = 0x1b,
ERIDR = 0x70,
ERIAR = 0x74,
#define ERIAR_FLAG 0x80000000
#define ERIAR_WRITE_CMD 0x80000000
#define ERIAR_READ_CMD 0x00000000
#define ERIAR_ADDR_BYTE_ALIGN 4
#define ERIAR_TYPE_SHIFT 16
#define ERIAR_EXGMAC (0x00 << ERIAR_TYPE_SHIFT)
#define ERIAR_MSIX (0x01 << ERIAR_TYPE_SHIFT)
#define ERIAR_ASF (0x02 << ERIAR_TYPE_SHIFT)
#define ERIAR_OOB (0x02 << ERIAR_TYPE_SHIFT)
#define ERIAR_MASK_SHIFT 12
#define ERIAR_MASK_0001 (0x1 << ERIAR_MASK_SHIFT)
#define ERIAR_MASK_0011 (0x3 << ERIAR_MASK_SHIFT)
#define ERIAR_MASK_0100 (0x4 << ERIAR_MASK_SHIFT)
#define ERIAR_MASK_0101 (0x5 << ERIAR_MASK_SHIFT)
#define ERIAR_MASK_1111 (0xf << ERIAR_MASK_SHIFT)
EPHY_RXER_NUM = 0x7c,
OCPDR = 0xb0, /* OCP GPHY access */
#define OCPDR_WRITE_CMD 0x80000000
#define OCPDR_READ_CMD 0x00000000
#define OCPDR_REG_MASK 0x7f
#define OCPDR_GPHY_REG_SHIFT 16
#define OCPDR_DATA_MASK 0xffff
OCPAR = 0xb4,
#define OCPAR_FLAG 0x80000000
#define OCPAR_GPHY_WRITE_CMD 0x8000f060
#define OCPAR_GPHY_READ_CMD 0x0000f060
GPHY_OCP = 0xb8,
RDSAR1 = 0xd0, /* 8168c only. Undocumented on 8168dp */
MISC = 0xf0, /* 8168e only. */
#define TXPLA_RST (1 << 29)
#define DISABLE_LAN_EN (1 << 23) /* Enable GPIO pin */
#define PWM_EN (1 << 22)
#define RXDV_GATED_EN (1 << 19)
#define EARLY_TALLY_EN (1 << 16)
};
enum rtl8125_registers {
IntrMask_8125 = 0x38,
IntrStatus_8125 = 0x3c,
TxPoll_8125 = 0x90,
MAC0_BKP = 0x19e0,
};
#define RX_VLAN_INNER_8125 BIT(22)
#define RX_VLAN_OUTER_8125 BIT(23)
#define RX_VLAN_8125 (RX_VLAN_INNER_8125 | RX_VLAN_OUTER_8125)
#define RX_FETCH_DFLT_8125 (8 << 27)
enum rtl_register_content {
/* InterruptStatusBits */
SYSErr = 0x8000,
PCSTimeout = 0x4000,
SWInt = 0x0100,
TxDescUnavail = 0x0080,
RxFIFOOver = 0x0040,
LinkChg = 0x0020,
RxOverflow = 0x0010,
TxErr = 0x0008,
TxOK = 0x0004,
RxErr = 0x0002,
RxOK = 0x0001,
/* RxStatusDesc */
RxRWT = (1 << 22),
RxRES = (1 << 21),
RxRUNT = (1 << 20),
RxCRC = (1 << 19),
/* ChipCmdBits */
StopReq = 0x80,
CmdReset = 0x10,
CmdRxEnb = 0x08,
CmdTxEnb = 0x04,
RxBufEmpty = 0x01,
/* TXPoll register p.5 */
HPQ = 0x80, /* Poll cmd on the high prio queue */
NPQ = 0x40, /* Poll cmd on the low prio queue */
FSWInt = 0x01, /* Forced software interrupt */
/* Cfg9346Bits */
Cfg9346_Lock = 0x00,
Cfg9346_Unlock = 0xc0,
/* rx_mode_bits */
AcceptErr = 0x20,
AcceptRunt = 0x10,
#define RX_CONFIG_ACCEPT_ERR_MASK 0x30
AcceptBroadcast = 0x08,
AcceptMulticast = 0x04,
AcceptMyPhys = 0x02,
AcceptAllPhys = 0x01,
#define RX_CONFIG_ACCEPT_OK_MASK 0x0f
#define RX_CONFIG_ACCEPT_MASK 0x3f
/* TxConfigBits */
TxInterFrameGapShift = 24,
TxDMAShift = 8, /* DMA burst value (0-7) is shift this many bits */
/* Config1 register p.24 */
LEDS1 = (1 << 7),
LEDS0 = (1 << 6),
Speed_down = (1 << 4),
MEMMAP = (1 << 3),
IOMAP = (1 << 2),
VPD = (1 << 1),
PMEnable = (1 << 0), /* Power Management Enable */
/* Config2 register p. 25 */
ClkReqEn = (1 << 7), /* Clock Request Enable */
MSIEnable = (1 << 5), /* 8169 only. Reserved in the 8168. */
PCI_Clock_66MHz = 0x01,
PCI_Clock_33MHz = 0x00,
/* Config3 register p.25 */
MagicPacket = (1 << 5), /* Wake up when receives a Magic Packet */
LinkUp = (1 << 4), /* Wake up when the cable connection is re-established */
Jumbo_En0 = (1 << 2), /* 8168 only. Reserved in the 8168b */
Rdy_to_L23 = (1 << 1), /* L23 Enable */
Beacon_en = (1 << 0), /* 8168 only. Reserved in the 8168b */
/* Config4 register */
Jumbo_En1 = (1 << 1), /* 8168 only. Reserved in the 8168b */
/* Config5 register p.27 */
BWF = (1 << 6), /* Accept Broadcast wakeup frame */
MWF = (1 << 5), /* Accept Multicast wakeup frame */
UWF = (1 << 4), /* Accept Unicast wakeup frame */
Spi_en = (1 << 3),
LanWake = (1 << 1), /* LanWake enable/disable */
PMEStatus = (1 << 0), /* PME status can be reset by PCI RST# */
ASPM_en = (1 << 0), /* ASPM enable */
/* CPlusCmd p.31 */
EnableBist = (1 << 15), // 8168 8101
Mac_dbgo_oe = (1 << 14), // 8168 8101
EnAnaPLL = (1 << 14), // 8169
Normal_mode = (1 << 13), // unused
Force_half_dup = (1 << 12), // 8168 8101
Force_rxflow_en = (1 << 11), // 8168 8101
Force_txflow_en = (1 << 10), // 8168 8101
Cxpl_dbg_sel = (1 << 9), // 8168 8101
ASF = (1 << 8), // 8168 8101
PktCntrDisable = (1 << 7), // 8168 8101
Mac_dbgo_sel = 0x001c, // 8168
RxVlan = (1 << 6),
RxChkSum = (1 << 5),
PCIDAC = (1 << 4),
PCIMulRW = (1 << 3),
#define INTT_MASK GENMASK(1, 0)
#define CPCMD_MASK (Normal_mode | RxVlan | RxChkSum | INTT_MASK)
/* rtl8169_PHYstatus */
TBI_Enable = 0x80,
TxFlowCtrl = 0x40,
RxFlowCtrl = 0x20,
_1000bpsF = 0x10,
_100bps = 0x08,
_10bps = 0x04,
LinkStatus = 0x02,
FullDup = 0x01,
/* ResetCounterCommand */
CounterReset = 0x1,
/* DumpCounterCommand */
CounterDump = 0x8,
/* magic enable v2 */
MagicPacket_v2 = (1 << 16), /* Wake up when receives a Magic Packet */
};
enum rtl_desc_bit {
/* First doubleword. */
DescOwn = (1 << 31), /* Descriptor is owned by NIC */
RingEnd = (1 << 30), /* End of descriptor ring */
FirstFrag = (1 << 29), /* First segment of a packet */
LastFrag = (1 << 28), /* Final segment of a packet */
};
/* Generic case. */
enum rtl_tx_desc_bit {
/* First doubleword. */
TD_LSO = (1 << 27), /* Large Send Offload */
#define TD_MSS_MAX 0x07ffu /* MSS value */
/* Second doubleword. */
TxVlanTag = (1 << 17), /* Add VLAN tag */
};
/* 8169, 8168b and 810x except 8102e. */
enum rtl_tx_desc_bit_0 {
/* First doubleword. */
#define TD0_MSS_SHIFT 16 /* MSS position (11 bits) */
TD0_TCP_CS = (1 << 16), /* Calculate TCP/IP checksum */
TD0_UDP_CS = (1 << 17), /* Calculate UDP/IP checksum */
TD0_IP_CS = (1 << 18), /* Calculate IP checksum */
};
/* 8102e, 8168c and beyond. */
enum rtl_tx_desc_bit_1 {
/* First doubleword. */
TD1_GTSENV4 = (1 << 26), /* Giant Send for IPv4 */
TD1_GTSENV6 = (1 << 25), /* Giant Send for IPv6 */
#define GTTCPHO_SHIFT 18
#define GTTCPHO_MAX 0x7f
/* Second doubleword. */
#define TCPHO_SHIFT 18
#define TCPHO_MAX 0x3ff
#define TD1_MSS_SHIFT 18 /* MSS position (11 bits) */
TD1_IPv6_CS = (1 << 28), /* Calculate IPv6 checksum */
TD1_IPv4_CS = (1 << 29), /* Calculate IPv4 checksum */
TD1_TCP_CS = (1 << 30), /* Calculate TCP/IP checksum */
TD1_UDP_CS = (1 << 31), /* Calculate UDP/IP checksum */
};
enum rtl_rx_desc_bit {
/* Rx private */
PID1 = (1 << 18), /* Protocol ID bit 1/2 */
PID0 = (1 << 17), /* Protocol ID bit 0/2 */
#define RxProtoUDP (PID1)
#define RxProtoTCP (PID0)
#define RxProtoIP (PID1 | PID0)
#define RxProtoMask RxProtoIP
IPFail = (1 << 16), /* IP checksum failed */
UDPFail = (1 << 15), /* UDP/IP checksum failed */
TCPFail = (1 << 14), /* TCP/IP checksum failed */
RxVlanTag = (1 << 16), /* VLAN tag available */
};
#define RsvdMask 0x3fffc000
#define RTL_GSO_MAX_SIZE_V1 32000
#define RTL_GSO_MAX_SEGS_V1 24
#define RTL_GSO_MAX_SIZE_V2 64000
#define RTL_GSO_MAX_SEGS_V2 64
struct TxDesc {
__le32 opts1;
__le32 opts2;
__le64 addr;
};
struct RxDesc {
__le32 opts1;
__le32 opts2;
__le64 addr;
};
struct ring_info {
struct sk_buff *skb;
u32 len;
};
struct rtl8169_counters {
__le64 tx_packets;
__le64 rx_packets;
__le64 tx_errors;
__le32 rx_errors;
__le16 rx_missed;
__le16 align_errors;
__le32 tx_one_collision;
__le32 tx_multi_collision;
__le64 rx_unicast;
__le64 rx_broadcast;
__le32 rx_multicast;
__le16 tx_aborted;
__le16 tx_underun;
};
struct rtl8169_tc_offsets {
bool inited;
__le64 tx_errors;
__le32 tx_multi_collision;
__le16 tx_aborted;
__le16 rx_missed;
};
enum rtl_flag {
RTL_FLAG_TASK_ENABLED = 0,
RTL_FLAG_TASK_RESET_PENDING,
RTL_FLAG_MAX
};
struct rtl8169_stats {
u64 packets;
u64 bytes;
struct u64_stats_sync syncp;
};
struct rtl8169_private {
void __iomem *mmio_addr; /* memory map physical address */
struct pci_dev *pci_dev;
struct net_device *dev;
struct phy_device *phydev;
struct napi_struct napi;
enum mac_version mac_version;
u32 cur_rx; /* Index into the Rx descriptor buffer of next Rx pkt. */
u32 cur_tx; /* Index into the Tx descriptor buffer of next Rx pkt. */
u32 dirty_tx;
struct rtl8169_stats rx_stats;
struct rtl8169_stats tx_stats;
struct TxDesc *TxDescArray; /* 256-aligned Tx descriptor ring */
struct RxDesc *RxDescArray; /* 256-aligned Rx descriptor ring */
dma_addr_t TxPhyAddr;
dma_addr_t RxPhyAddr;
struct page *Rx_databuff[NUM_RX_DESC]; /* Rx data buffers */
struct ring_info tx_skb[NUM_TX_DESC]; /* Tx data buffers */
u16 cp_cmd;
u32 irq_mask;
struct clk *clk;
struct {
DECLARE_BITMAP(flags, RTL_FLAG_MAX);
struct mutex mutex;
struct work_struct work;
} wk;
unsigned irq_enabled:1;
unsigned supports_gmii:1;
unsigned aspm_manageable:1;
dma_addr_t counters_phys_addr;
struct rtl8169_counters *counters;
struct rtl8169_tc_offsets tc_offset;
u32 saved_wolopts;
int eee_adv;
const char *fw_name;
struct rtl_fw *rtl_fw;
u32 ocp_base;
};
typedef void (*rtl_generic_fct)(struct rtl8169_private *tp);
MODULE_AUTHOR("Realtek and the Linux r8169 crew <netdev@vger.kernel.org>");
MODULE_DESCRIPTION("RealTek RTL-8169 Gigabit Ethernet driver");
MODULE_SOFTDEP("pre: realtek");
MODULE_LICENSE("GPL");
MODULE_FIRMWARE(FIRMWARE_8168D_1);
MODULE_FIRMWARE(FIRMWARE_8168D_2);
MODULE_FIRMWARE(FIRMWARE_8168E_1);
MODULE_FIRMWARE(FIRMWARE_8168E_2);
MODULE_FIRMWARE(FIRMWARE_8168E_3);
MODULE_FIRMWARE(FIRMWARE_8105E_1);
MODULE_FIRMWARE(FIRMWARE_8168F_1);
MODULE_FIRMWARE(FIRMWARE_8168F_2);
MODULE_FIRMWARE(FIRMWARE_8402_1);
MODULE_FIRMWARE(FIRMWARE_8411_1);
MODULE_FIRMWARE(FIRMWARE_8411_2);
MODULE_FIRMWARE(FIRMWARE_8106E_1);
MODULE_FIRMWARE(FIRMWARE_8106E_2);
MODULE_FIRMWARE(FIRMWARE_8168G_2);
MODULE_FIRMWARE(FIRMWARE_8168G_3);
MODULE_FIRMWARE(FIRMWARE_8168H_1);
MODULE_FIRMWARE(FIRMWARE_8168H_2);
MODULE_FIRMWARE(FIRMWARE_8168FP_3);
MODULE_FIRMWARE(FIRMWARE_8107E_1);
MODULE_FIRMWARE(FIRMWARE_8107E_2);
MODULE_FIRMWARE(FIRMWARE_8125A_3);
static inline struct device *tp_to_dev(struct rtl8169_private *tp)
{
return &tp->pci_dev->dev;
}
static void rtl_lock_work(struct rtl8169_private *tp)
{
mutex_lock(&tp->wk.mutex);
}
static void rtl_unlock_work(struct rtl8169_private *tp)
{
mutex_unlock(&tp->wk.mutex);
}
static void rtl_lock_config_regs(struct rtl8169_private *tp)
{
RTL_W8(tp, Cfg9346, Cfg9346_Lock);
}
static void rtl_unlock_config_regs(struct rtl8169_private *tp)
{
RTL_W8(tp, Cfg9346, Cfg9346_Unlock);
}
static void rtl_pci_commit(struct rtl8169_private *tp)
{
/* Read an arbitrary register to commit a preceding PCI write */
RTL_R8(tp, ChipCmd);
}
static bool rtl_is_8125(struct rtl8169_private *tp)
{
return tp->mac_version >= RTL_GIGA_MAC_VER_60;
}
static bool rtl_is_8168evl_up(struct rtl8169_private *tp)
{
return tp->mac_version >= RTL_GIGA_MAC_VER_34 &&
tp->mac_version != RTL_GIGA_MAC_VER_39 &&
tp->mac_version <= RTL_GIGA_MAC_VER_52;
}
static bool rtl_supports_eee(struct rtl8169_private *tp)
{
return tp->mac_version >= RTL_GIGA_MAC_VER_34 &&
tp->mac_version != RTL_GIGA_MAC_VER_37 &&
tp->mac_version != RTL_GIGA_MAC_VER_39;
}
static void rtl_read_mac_from_reg(struct rtl8169_private *tp, u8 *mac, int reg)
{
int i;
for (i = 0; i < ETH_ALEN; i++)
mac[i] = RTL_R8(tp, reg + i);
}
struct rtl_cond {
bool (*check)(struct rtl8169_private *);
const char *msg;
};
static bool rtl_loop_wait(struct rtl8169_private *tp, const struct rtl_cond *c,
unsigned long usecs, int n, bool high)
{
int i;
for (i = 0; i < n; i++) {
if (c->check(tp) == high)
return true;
fsleep(usecs);
}
if (net_ratelimit())
netdev_err(tp->dev, "%s == %d (loop: %d, delay: %lu).\n",
c->msg, !high, n, usecs);
return false;
}
static bool rtl_loop_wait_high(struct rtl8169_private *tp,
const struct rtl_cond *c,
unsigned long d, int n)
{
return rtl_loop_wait(tp, c, d, n, true);
}
static bool rtl_loop_wait_low(struct rtl8169_private *tp,
const struct rtl_cond *c,
unsigned long d, int n)
{
return rtl_loop_wait(tp, c, d, n, false);
}
#define DECLARE_RTL_COND(name) \
static bool name ## _check(struct rtl8169_private *); \
\
static const struct rtl_cond name = { \
.check = name ## _check, \
.msg = #name \
}; \
\
static bool name ## _check(struct rtl8169_private *tp)
static bool rtl_ocp_reg_failure(struct rtl8169_private *tp, u32 reg)
{
if (reg & 0xffff0001) {
if (net_ratelimit())
netdev_err(tp->dev, "Invalid ocp reg %x!\n", reg);
return true;
}
return false;
}
DECLARE_RTL_COND(rtl_ocp_gphy_cond)
{
return RTL_R32(tp, GPHY_OCP) & OCPAR_FLAG;
}
static void r8168_phy_ocp_write(struct rtl8169_private *tp, u32 reg, u32 data)
{
if (rtl_ocp_reg_failure(tp, reg))
return;
RTL_W32(tp, GPHY_OCP, OCPAR_FLAG | (reg << 15) | data);
rtl_loop_wait_low(tp, &rtl_ocp_gphy_cond, 25, 10);
}
static int r8168_phy_ocp_read(struct rtl8169_private *tp, u32 reg)
{
if (rtl_ocp_reg_failure(tp, reg))
return 0;
RTL_W32(tp, GPHY_OCP, reg << 15);
return rtl_loop_wait_high(tp, &rtl_ocp_gphy_cond, 25, 10) ?
(RTL_R32(tp, GPHY_OCP) & 0xffff) : -ETIMEDOUT;
}
static void r8168_mac_ocp_write(struct rtl8169_private *tp, u32 reg, u32 data)
{
if (rtl_ocp_reg_failure(tp, reg))
return;
RTL_W32(tp, OCPDR, OCPAR_FLAG | (reg << 15) | data);
}
static u16 r8168_mac_ocp_read(struct rtl8169_private *tp, u32 reg)
{
if (rtl_ocp_reg_failure(tp, reg))
return 0;
RTL_W32(tp, OCPDR, reg << 15);
return RTL_R32(tp, OCPDR);
}
static void r8168_mac_ocp_modify(struct rtl8169_private *tp, u32 reg, u16 mask,
u16 set)
{
u16 data = r8168_mac_ocp_read(tp, reg);
r8168_mac_ocp_write(tp, reg, (data & ~mask) | set);
}
static void r8168g_mdio_write(struct rtl8169_private *tp, int reg, int value)
{
if (reg == 0x1f) {
tp->ocp_base = value ? value << 4 : OCP_STD_PHY_BASE;
return;
}
if (tp->ocp_base != OCP_STD_PHY_BASE)
reg -= 0x10;
r8168_phy_ocp_write(tp, tp->ocp_base + reg * 2, value);
}
static int r8168g_mdio_read(struct rtl8169_private *tp, int reg)
{
if (reg == 0x1f)
return tp->ocp_base == OCP_STD_PHY_BASE ? 0 : tp->ocp_base >> 4;
if (tp->ocp_base != OCP_STD_PHY_BASE)
reg -= 0x10;
return r8168_phy_ocp_read(tp, tp->ocp_base + reg * 2);
}
static void mac_mcu_write(struct rtl8169_private *tp, int reg, int value)
{
if (reg == 0x1f) {
tp->ocp_base = value << 4;
return;
}
r8168_mac_ocp_write(tp, tp->ocp_base + reg, value);
}
static int mac_mcu_read(struct rtl8169_private *tp, int reg)
{
return r8168_mac_ocp_read(tp, tp->ocp_base + reg);
}
DECLARE_RTL_COND(rtl_phyar_cond)
{
return RTL_R32(tp, PHYAR) & 0x80000000;
}
static void r8169_mdio_write(struct rtl8169_private *tp, int reg, int value)
{
RTL_W32(tp, PHYAR, 0x80000000 | (reg & 0x1f) << 16 | (value & 0xffff));
rtl_loop_wait_low(tp, &rtl_phyar_cond, 25, 20);
/*
* According to hardware specs a 20us delay is required after write
* complete indication, but before sending next command.
*/
udelay(20);
}
static int r8169_mdio_read(struct rtl8169_private *tp, int reg)
{
int value;
RTL_W32(tp, PHYAR, 0x0 | (reg & 0x1f) << 16);
value = rtl_loop_wait_high(tp, &rtl_phyar_cond, 25, 20) ?
RTL_R32(tp, PHYAR) & 0xffff : -ETIMEDOUT;
/*
* According to hardware specs a 20us delay is required after read
* complete indication, but before sending next command.
*/
udelay(20);
return value;
}
DECLARE_RTL_COND(rtl_ocpar_cond)
{
return RTL_R32(tp, OCPAR) & OCPAR_FLAG;
}
static void r8168dp_1_mdio_access(struct rtl8169_private *tp, int reg, u32 data)
{
RTL_W32(tp, OCPDR, data | ((reg & OCPDR_REG_MASK) << OCPDR_GPHY_REG_SHIFT));
RTL_W32(tp, OCPAR, OCPAR_GPHY_WRITE_CMD);
RTL_W32(tp, EPHY_RXER_NUM, 0);
rtl_loop_wait_low(tp, &rtl_ocpar_cond, 1000, 100);
}
static void r8168dp_1_mdio_write(struct rtl8169_private *tp, int reg, int value)
{
r8168dp_1_mdio_access(tp, reg,
OCPDR_WRITE_CMD | (value & OCPDR_DATA_MASK));
}
static int r8168dp_1_mdio_read(struct rtl8169_private *tp, int reg)
{
r8168dp_1_mdio_access(tp, reg, OCPDR_READ_CMD);
mdelay(1);
RTL_W32(tp, OCPAR, OCPAR_GPHY_READ_CMD);
RTL_W32(tp, EPHY_RXER_NUM, 0);
return rtl_loop_wait_high(tp, &rtl_ocpar_cond, 1000, 100) ?
RTL_R32(tp, OCPDR) & OCPDR_DATA_MASK : -ETIMEDOUT;
}
#define R8168DP_1_MDIO_ACCESS_BIT 0x00020000
static void r8168dp_2_mdio_start(struct rtl8169_private *tp)
{
RTL_W32(tp, 0xd0, RTL_R32(tp, 0xd0) & ~R8168DP_1_MDIO_ACCESS_BIT);
}
static void r8168dp_2_mdio_stop(struct rtl8169_private *tp)
{
RTL_W32(tp, 0xd0, RTL_R32(tp, 0xd0) | R8168DP_1_MDIO_ACCESS_BIT);
}
static void r8168dp_2_mdio_write(struct rtl8169_private *tp, int reg, int value)
{
r8168dp_2_mdio_start(tp);
r8169_mdio_write(tp, reg, value);
r8168dp_2_mdio_stop(tp);
}
static int r8168dp_2_mdio_read(struct rtl8169_private *tp, int reg)
{
int value;
/* Work around issue with chip reporting wrong PHY ID */
if (reg == MII_PHYSID2)
return 0xc912;
r8168dp_2_mdio_start(tp);
value = r8169_mdio_read(tp, reg);
r8168dp_2_mdio_stop(tp);
return value;
}
static void rtl_writephy(struct rtl8169_private *tp, int location, int val)
{
switch (tp->mac_version) {
case RTL_GIGA_MAC_VER_27:
r8168dp_1_mdio_write(tp, location, val);
break;
case RTL_GIGA_MAC_VER_28:
case RTL_GIGA_MAC_VER_31:
r8168dp_2_mdio_write(tp, location, val);
break;
case RTL_GIGA_MAC_VER_40 ... RTL_GIGA_MAC_VER_61:
r8168g_mdio_write(tp, location, val);
break;
default:
r8169_mdio_write(tp, location, val);
break;
}
}
static int rtl_readphy(struct rtl8169_private *tp, int location)
{
switch (tp->mac_version) {
case RTL_GIGA_MAC_VER_27:
return r8168dp_1_mdio_read(tp, location);
case RTL_GIGA_MAC_VER_28:
case RTL_GIGA_MAC_VER_31:
return r8168dp_2_mdio_read(tp, location);
case RTL_GIGA_MAC_VER_40 ... RTL_GIGA_MAC_VER_61:
return r8168g_mdio_read(tp, location);
default:
return r8169_mdio_read(tp, location);
}
}
DECLARE_RTL_COND(rtl_ephyar_cond)
{
return RTL_R32(tp, EPHYAR) & EPHYAR_FLAG;
}
static void rtl_ephy_write(struct rtl8169_private *tp, int reg_addr, int value)
{
RTL_W32(tp, EPHYAR, EPHYAR_WRITE_CMD | (value & EPHYAR_DATA_MASK) |
(reg_addr & EPHYAR_REG_MASK) << EPHYAR_REG_SHIFT);
rtl_loop_wait_low(tp, &rtl_ephyar_cond, 10, 100);
udelay(10);
}
static u16 rtl_ephy_read(struct rtl8169_private *tp, int reg_addr)
{
RTL_W32(tp, EPHYAR, (reg_addr & EPHYAR_REG_MASK) << EPHYAR_REG_SHIFT);
return rtl_loop_wait_high(tp, &rtl_ephyar_cond, 10, 100) ?
RTL_R32(tp, EPHYAR) & EPHYAR_DATA_MASK : ~0;
}
static void r8168fp_adjust_ocp_cmd(struct rtl8169_private *tp, u32 *cmd, int type)
{
/* based on RTL8168FP_OOBMAC_BASE in vendor driver */
if (tp->mac_version == RTL_GIGA_MAC_VER_52 && type == ERIAR_OOB)
*cmd |= 0x7f0 << 18;
}
DECLARE_RTL_COND(rtl_eriar_cond)
{
return RTL_R32(tp, ERIAR) & ERIAR_FLAG;
}
static void _rtl_eri_write(struct rtl8169_private *tp, int addr, u32 mask,
u32 val, int type)
{
u32 cmd = ERIAR_WRITE_CMD | type | mask | addr;
BUG_ON((addr & 3) || (mask == 0));
RTL_W32(tp, ERIDR, val);
r8168fp_adjust_ocp_cmd(tp, &cmd, type);
RTL_W32(tp, ERIAR, cmd);
rtl_loop_wait_low(tp, &rtl_eriar_cond, 100, 100);
}
static void rtl_eri_write(struct rtl8169_private *tp, int addr, u32 mask,
u32 val)
{
_rtl_eri_write(tp, addr, mask, val, ERIAR_EXGMAC);
}
static u32 _rtl_eri_read(struct rtl8169_private *tp, int addr, int type)
{
u32 cmd = ERIAR_READ_CMD | type | ERIAR_MASK_1111 | addr;
r8168fp_adjust_ocp_cmd(tp, &cmd, type);
RTL_W32(tp, ERIAR, cmd);
return rtl_loop_wait_high(tp, &rtl_eriar_cond, 100, 100) ?
RTL_R32(tp, ERIDR) : ~0;
}
static u32 rtl_eri_read(struct rtl8169_private *tp, int addr)
{
return _rtl_eri_read(tp, addr, ERIAR_EXGMAC);
}
static void rtl_w0w1_eri(struct rtl8169_private *tp, int addr, u32 p, u32 m)
{
u32 val = rtl_eri_read(tp, addr);
rtl_eri_write(tp, addr, ERIAR_MASK_1111, (val & ~m) | p);
}
static void rtl_eri_set_bits(struct rtl8169_private *tp, int addr, u32 p)
{
rtl_w0w1_eri(tp, addr, p, 0);
}
static void rtl_eri_clear_bits(struct rtl8169_private *tp, int addr, u32 m)
{
rtl_w0w1_eri(tp, addr, 0, m);
}
static u32 r8168dp_ocp_read(struct rtl8169_private *tp, u16 reg)
{
RTL_W32(tp, OCPAR, 0x0fu << 12 | (reg & 0x0fff));
return rtl_loop_wait_high(tp, &rtl_ocpar_cond, 100, 20) ?
RTL_R32(tp, OCPDR) : ~0;
}
static u32 r8168ep_ocp_read(struct rtl8169_private *tp, u16 reg)
{
return _rtl_eri_read(tp, reg, ERIAR_OOB);
}
static void r8168dp_ocp_write(struct rtl8169_private *tp, u8 mask, u16 reg,
u32 data)
{
RTL_W32(tp, OCPDR, data);
RTL_W32(tp, OCPAR, OCPAR_FLAG | ((u32)mask & 0x0f) << 12 | (reg & 0x0fff));
rtl_loop_wait_low(tp, &rtl_ocpar_cond, 100, 20);
}
static void r8168ep_ocp_write(struct rtl8169_private *tp, u8 mask, u16 reg,
u32 data)
{
_rtl_eri_write(tp, reg, ((u32)mask & 0x0f) << ERIAR_MASK_SHIFT,
data, ERIAR_OOB);
}
static void r8168dp_oob_notify(struct rtl8169_private *tp, u8 cmd)
{
rtl_eri_write(tp, 0xe8, ERIAR_MASK_0001, cmd);
r8168dp_ocp_write(tp, 0x1, 0x30, 0x00000001);
}
#define OOB_CMD_RESET 0x00
#define OOB_CMD_DRIVER_START 0x05
#define OOB_CMD_DRIVER_STOP 0x06
static u16 rtl8168_get_ocp_reg(struct rtl8169_private *tp)
{
return (tp->mac_version == RTL_GIGA_MAC_VER_31) ? 0xb8 : 0x10;
}
DECLARE_RTL_COND(rtl_dp_ocp_read_cond)
{
u16 reg;
reg = rtl8168_get_ocp_reg(tp);
return r8168dp_ocp_read(tp, reg) & 0x00000800;
}
DECLARE_RTL_COND(rtl_ep_ocp_read_cond)
{
return r8168ep_ocp_read(tp, 0x124) & 0x00000001;
}
DECLARE_RTL_COND(rtl_ocp_tx_cond)
{
return RTL_R8(tp, IBISR0) & 0x20;
}
static void rtl8168ep_stop_cmac(struct rtl8169_private *tp)
{
RTL_W8(tp, IBCR2, RTL_R8(tp, IBCR2) & ~0x01);
rtl_loop_wait_high(tp, &rtl_ocp_tx_cond, 50000, 2000);
RTL_W8(tp, IBISR0, RTL_R8(tp, IBISR0) | 0x20);
RTL_W8(tp, IBCR0, RTL_R8(tp, IBCR0) & ~0x01);
}
static void rtl8168dp_driver_start(struct rtl8169_private *tp)
{
r8168dp_oob_notify(tp, OOB_CMD_DRIVER_START);
rtl_loop_wait_high(tp, &rtl_dp_ocp_read_cond, 10000, 10);
}
static void rtl8168ep_driver_start(struct rtl8169_private *tp)
{
r8168ep_ocp_write(tp, 0x01, 0x180, OOB_CMD_DRIVER_START);
r8168ep_ocp_write(tp, 0x01, 0x30, r8168ep_ocp_read(tp, 0x30) | 0x01);
rtl_loop_wait_high(tp, &rtl_ep_ocp_read_cond, 10000, 10);
}
static void rtl8168_driver_start(struct rtl8169_private *tp)
{
switch (tp->mac_version) {
case RTL_GIGA_MAC_VER_27:
case RTL_GIGA_MAC_VER_28:
case RTL_GIGA_MAC_VER_31:
rtl8168dp_driver_start(tp);
break;
case RTL_GIGA_MAC_VER_49 ... RTL_GIGA_MAC_VER_52:
rtl8168ep_driver_start(tp);
break;
default:
BUG();
break;
}
}
static void rtl8168dp_driver_stop(struct rtl8169_private *tp)
{
r8168dp_oob_notify(tp, OOB_CMD_DRIVER_STOP);
rtl_loop_wait_low(tp, &rtl_dp_ocp_read_cond, 10000, 10);
}
static void rtl8168ep_driver_stop(struct rtl8169_private *tp)
{
rtl8168ep_stop_cmac(tp);
r8168ep_ocp_write(tp, 0x01, 0x180, OOB_CMD_DRIVER_STOP);
r8168ep_ocp_write(tp, 0x01, 0x30, r8168ep_ocp_read(tp, 0x30) | 0x01);
rtl_loop_wait_low(tp, &rtl_ep_ocp_read_cond, 10000, 10);
}
static void rtl8168_driver_stop(struct rtl8169_private *tp)
{
switch (tp->mac_version) {
case RTL_GIGA_MAC_VER_27:
case RTL_GIGA_MAC_VER_28:
case RTL_GIGA_MAC_VER_31:
rtl8168dp_driver_stop(tp);
break;
case RTL_GIGA_MAC_VER_49 ... RTL_GIGA_MAC_VER_52:
rtl8168ep_driver_stop(tp);
break;
default:
BUG();
break;
}
}
static bool r8168dp_check_dash(struct rtl8169_private *tp)
{
u16 reg = rtl8168_get_ocp_reg(tp);
return !!(r8168dp_ocp_read(tp, reg) & 0x00008000);
}
static bool r8168ep_check_dash(struct rtl8169_private *tp)
{
return r8168ep_ocp_read(tp, 0x128) & 0x00000001;
}
static bool r8168_check_dash(struct rtl8169_private *tp)
{
switch (tp->mac_version) {
case RTL_GIGA_MAC_VER_27:
case RTL_GIGA_MAC_VER_28:
case RTL_GIGA_MAC_VER_31:
return r8168dp_check_dash(tp);
case RTL_GIGA_MAC_VER_49 ... RTL_GIGA_MAC_VER_52:
return r8168ep_check_dash(tp);
default:
return false;
}
}
static void rtl_reset_packet_filter(struct rtl8169_private *tp)
{
rtl_eri_clear_bits(tp, 0xdc, BIT(0));
rtl_eri_set_bits(tp, 0xdc, BIT(0));
}
DECLARE_RTL_COND(rtl_efusear_cond)
{
return RTL_R32(tp, EFUSEAR) & EFUSEAR_FLAG;
}
u8 rtl8168d_efuse_read(struct rtl8169_private *tp, int reg_addr)
{
RTL_W32(tp, EFUSEAR, (reg_addr & EFUSEAR_REG_MASK) << EFUSEAR_REG_SHIFT);
return rtl_loop_wait_high(tp, &rtl_efusear_cond, 100, 300) ?
RTL_R32(tp, EFUSEAR) & EFUSEAR_DATA_MASK : ~0;
}
static u32 rtl_get_events(struct rtl8169_private *tp)
{
if (rtl_is_8125(tp))
return RTL_R32(tp, IntrStatus_8125);
else
return RTL_R16(tp, IntrStatus);
}
static void rtl_ack_events(struct rtl8169_private *tp, u32 bits)
{
if (rtl_is_8125(tp))
RTL_W32(tp, IntrStatus_8125, bits);
else
RTL_W16(tp, IntrStatus, bits);
}
static void rtl_irq_disable(struct rtl8169_private *tp)
{
if (rtl_is_8125(tp))
RTL_W32(tp, IntrMask_8125, 0);
else
RTL_W16(tp, IntrMask, 0);
tp->irq_enabled = 0;
}
static void rtl_irq_enable(struct rtl8169_private *tp)
{
tp->irq_enabled = 1;
if (rtl_is_8125(tp))
RTL_W32(tp, IntrMask_8125, tp->irq_mask);
else
RTL_W16(tp, IntrMask, tp->irq_mask);
}
static void rtl8169_irq_mask_and_ack(struct rtl8169_private *tp)
{
rtl_irq_disable(tp);
rtl_ack_events(tp, 0xffffffff);
rtl_pci_commit(tp);
}
static void rtl_link_chg_patch(struct rtl8169_private *tp)
{
struct phy_device *phydev = tp->phydev;
if (tp->mac_version == RTL_GIGA_MAC_VER_34 ||
tp->mac_version == RTL_GIGA_MAC_VER_38) {
if (phydev->speed == SPEED_1000) {
rtl_eri_write(tp, 0x1bc, ERIAR_MASK_1111, 0x00000011);
rtl_eri_write(tp, 0x1dc, ERIAR_MASK_1111, 0x00000005);
} else if (phydev->speed == SPEED_100) {
rtl_eri_write(tp, 0x1bc, ERIAR_MASK_1111, 0x0000001f);
rtl_eri_write(tp, 0x1dc, ERIAR_MASK_1111, 0x00000005);
} else {
rtl_eri_write(tp, 0x1bc, ERIAR_MASK_1111, 0x0000001f);
rtl_eri_write(tp, 0x1dc, ERIAR_MASK_1111, 0x0000003f);
}
rtl_reset_packet_filter(tp);
} else if (tp->mac_version == RTL_GIGA_MAC_VER_35 ||
tp->mac_version == RTL_GIGA_MAC_VER_36) {
if (phydev->speed == SPEED_1000) {
rtl_eri_write(tp, 0x1bc, ERIAR_MASK_1111, 0x00000011);
rtl_eri_write(tp, 0x1dc, ERIAR_MASK_1111, 0x00000005);
} else {
rtl_eri_write(tp, 0x1bc, ERIAR_MASK_1111, 0x0000001f);
rtl_eri_write(tp, 0x1dc, ERIAR_MASK_1111, 0x0000003f);
}
} else if (tp->mac_version == RTL_GIGA_MAC_VER_37) {
if (phydev->speed == SPEED_10) {
rtl_eri_write(tp, 0x1d0, ERIAR_MASK_0011, 0x4d02);
rtl_eri_write(tp, 0x1dc, ERIAR_MASK_0011, 0x0060a);
} else {
rtl_eri_write(tp, 0x1d0, ERIAR_MASK_0011, 0x0000);
}
}
}
#define WAKE_ANY (WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_BCAST | WAKE_MCAST)
static void rtl8169_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
{
struct rtl8169_private *tp = netdev_priv(dev);
rtl_lock_work(tp);
wol->supported = WAKE_ANY;
wol->wolopts = tp->saved_wolopts;
rtl_unlock_work(tp);
}
static void __rtl8169_set_wol(struct rtl8169_private *tp, u32 wolopts)
{
static const struct {
u32 opt;
u16 reg;
u8 mask;
} cfg[] = {
{ WAKE_PHY, Config3, LinkUp },
{ WAKE_UCAST, Config5, UWF },
{ WAKE_BCAST, Config5, BWF },
{ WAKE_MCAST, Config5, MWF },
{ WAKE_ANY, Config5, LanWake },
{ WAKE_MAGIC, Config3, MagicPacket }
};
unsigned int i, tmp = ARRAY_SIZE(cfg);
u8 options;
rtl_unlock_config_regs(tp);
if (rtl_is_8168evl_up(tp)) {
tmp--;
if (wolopts & WAKE_MAGIC)
rtl_eri_set_bits(tp, 0x0dc, MagicPacket_v2);
else
rtl_eri_clear_bits(tp, 0x0dc, MagicPacket_v2);
} else if (rtl_is_8125(tp)) {
tmp--;
if (wolopts & WAKE_MAGIC)
r8168_mac_ocp_modify(tp, 0xc0b6, 0, BIT(0));
else
r8168_mac_ocp_modify(tp, 0xc0b6, BIT(0), 0);
}
for (i = 0; i < tmp; i++) {
options = RTL_R8(tp, cfg[i].reg) & ~cfg[i].mask;
if (wolopts & cfg[i].opt)
options |= cfg[i].mask;
RTL_W8(tp, cfg[i].reg, options);
}
switch (tp->mac_version) {
case RTL_GIGA_MAC_VER_02 ... RTL_GIGA_MAC_VER_06:
options = RTL_R8(tp, Config1) & ~PMEnable;
if (wolopts)
options |= PMEnable;
RTL_W8(tp, Config1, options);
break;
case RTL_GIGA_MAC_VER_34:
case RTL_GIGA_MAC_VER_37:
case RTL_GIGA_MAC_VER_39 ... RTL_GIGA_MAC_VER_61:
options = RTL_R8(tp, Config2) & ~PME_SIGNAL;
if (wolopts)
options |= PME_SIGNAL;
RTL_W8(tp, Config2, options);
break;
default:
break;
}
rtl_lock_config_regs(tp);
device_set_wakeup_enable(tp_to_dev(tp), wolopts);
tp->dev->wol_enabled = wolopts ? 1 : 0;
}
static int rtl8169_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
{
struct rtl8169_private *tp = netdev_priv(dev);
struct device *d = tp_to_dev(tp);
if (wol->wolopts & ~WAKE_ANY)
return -EINVAL;
pm_runtime_get_noresume(d);
rtl_lock_work(tp);
tp->saved_wolopts = wol->wolopts;
if (pm_runtime_active(d))
__rtl8169_set_wol(tp, tp->saved_wolopts);
rtl_unlock_work(tp);
pm_runtime_put_noidle(d);
return 0;
}
static void rtl8169_get_drvinfo(struct net_device *dev,
struct ethtool_drvinfo *info)
{
struct rtl8169_private *tp = netdev_priv(dev);
struct rtl_fw *rtl_fw = tp->rtl_fw;
strlcpy(info->driver, MODULENAME, sizeof(info->driver));
strlcpy(info->bus_info, pci_name(tp->pci_dev), sizeof(info->bus_info));
BUILD_BUG_ON(sizeof(info->fw_version) < sizeof(rtl_fw->version));
if (rtl_fw)
strlcpy(info->fw_version, rtl_fw->version,
sizeof(info->fw_version));
}
static int rtl8169_get_regs_len(struct net_device *dev)
{
return R8169_REGS_SIZE;
}
static netdev_features_t rtl8169_fix_features(struct net_device *dev,
netdev_features_t features)
{
struct rtl8169_private *tp = netdev_priv(dev);
if (dev->mtu > TD_MSS_MAX)
features &= ~NETIF_F_ALL_TSO;
if (dev->mtu > ETH_DATA_LEN &&
tp->mac_version > RTL_GIGA_MAC_VER_06)
features &= ~(NETIF_F_CSUM_MASK | NETIF_F_ALL_TSO);
return features;
}
static void rtl_set_rx_config_features(struct rtl8169_private *tp,
netdev_features_t features)
{
u32 rx_config = RTL_R32(tp, RxConfig);
if (features & NETIF_F_RXALL)
rx_config |= RX_CONFIG_ACCEPT_ERR_MASK;
else
rx_config &= ~RX_CONFIG_ACCEPT_ERR_MASK;
if (rtl_is_8125(tp)) {
if (features & NETIF_F_HW_VLAN_CTAG_RX)
rx_config |= RX_VLAN_8125;
else
rx_config &= ~RX_VLAN_8125;
}
RTL_W32(tp, RxConfig, rx_config);
}
static int rtl8169_set_features(struct net_device *dev,
netdev_features_t features)
{
struct rtl8169_private *tp = netdev_priv(dev);
rtl_lock_work(tp);
rtl_set_rx_config_features(tp, features);
if (features & NETIF_F_RXCSUM)
tp->cp_cmd |= RxChkSum;
else
tp->cp_cmd &= ~RxChkSum;
if (!rtl_is_8125(tp)) {
if (features & NETIF_F_HW_VLAN_CTAG_RX)
tp->cp_cmd |= RxVlan;
else
tp->cp_cmd &= ~RxVlan;
}
RTL_W16(tp, CPlusCmd, tp->cp_cmd);
rtl_pci_commit(tp);
rtl_unlock_work(tp);
return 0;
}
static inline u32 rtl8169_tx_vlan_tag(struct sk_buff *skb)
{
return (skb_vlan_tag_present(skb)) ?
TxVlanTag | swab16(skb_vlan_tag_get(skb)) : 0x00;
}
static void rtl8169_rx_vlan_tag(struct RxDesc *desc, struct sk_buff *skb)
{
u32 opts2 = le32_to_cpu(desc->opts2);
if (opts2 & RxVlanTag)
__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), swab16(opts2 & 0xffff));
}
static void rtl8169_get_regs(struct net_device *dev, struct ethtool_regs *regs,
void *p)
{
struct rtl8169_private *tp = netdev_priv(dev);
u32 __iomem *data = tp->mmio_addr;
u32 *dw = p;
int i;
rtl_lock_work(tp);
for (i = 0; i < R8169_REGS_SIZE; i += 4)
memcpy_fromio(dw++, data++, 4);
rtl_unlock_work(tp);
}
static const char rtl8169_gstrings[][ETH_GSTRING_LEN] = {
"tx_packets",
"rx_packets",
"tx_errors",
"rx_errors",
"rx_missed",
"align_errors",
"tx_single_collisions",
"tx_multi_collisions",
"unicast",
"broadcast",
"multicast",
"tx_aborted",
"tx_underrun",
};
static int rtl8169_get_sset_count(struct net_device *dev, int sset)
{
switch (sset) {
case ETH_SS_STATS:
return ARRAY_SIZE(rtl8169_gstrings);
default:
return -EOPNOTSUPP;
}
}
DECLARE_RTL_COND(rtl_counters_cond)
{
return RTL_R32(tp, CounterAddrLow) & (CounterReset | CounterDump);
}
static void rtl8169_do_counters(struct rtl8169_private *tp, u32 counter_cmd)
{
dma_addr_t paddr = tp->counters_phys_addr;
u32 cmd;
RTL_W32(tp, CounterAddrHigh, (u64)paddr >> 32);
rtl_pci_commit(tp);
cmd = (u64)paddr & DMA_BIT_MASK(32);
RTL_W32(tp, CounterAddrLow, cmd);
RTL_W32(tp, CounterAddrLow, cmd | counter_cmd);
rtl_loop_wait_low(tp, &rtl_counters_cond, 10, 1000);
}
static void rtl8169_reset_counters(struct rtl8169_private *tp)
{
/*
* Versions prior to RTL_GIGA_MAC_VER_19 don't support resetting the
* tally counters.
*/
if (tp->mac_version >= RTL_GIGA_MAC_VER_19)
rtl8169_do_counters(tp, CounterReset);
}
static void rtl8169_update_counters(struct rtl8169_private *tp)
{
u8 val = RTL_R8(tp, ChipCmd);
/*
* Some chips are unable to dump tally counters when the receiver
* is disabled. If 0xff chip may be in a PCI power-save state.
*/
if (val & CmdRxEnb && val != 0xff)
rtl8169_do_counters(tp, CounterDump);
}
static void rtl8169_init_counter_offsets(struct rtl8169_private *tp)
{
struct rtl8169_counters *counters = tp->counters;
/*
* rtl8169_init_counter_offsets is called from rtl_open. On chip
* versions prior to RTL_GIGA_MAC_VER_19 the tally counters are only
* reset by a power cycle, while the counter values collected by the
* driver are reset at every driver unload/load cycle.
*
* To make sure the HW values returned by @get_stats64 match the SW
* values, we collect the initial values at first open(*) and use them
* as offsets to normalize the values returned by @get_stats64.
*
* (*) We can't call rtl8169_init_counter_offsets from rtl_init_one
* for the reason stated in rtl8169_update_counters; CmdRxEnb is only
* set at open time by rtl_hw_start.
*/
if (tp->tc_offset.inited)
return;
rtl8169_reset_counters(tp);
rtl8169_update_counters(tp);
tp->tc_offset.tx_errors = counters->tx_errors;
tp->tc_offset.tx_multi_collision = counters->tx_multi_collision;
tp->tc_offset.tx_aborted = counters->tx_aborted;
tp->tc_offset.rx_missed = counters->rx_missed;
tp->tc_offset.inited = true;
}
static void rtl8169_get_ethtool_stats(struct net_device *dev,
struct ethtool_stats *stats, u64 *data)
{
struct rtl8169_private *tp = netdev_priv(dev);
struct device *d = tp_to_dev(tp);
struct rtl8169_counters *counters = tp->counters;
ASSERT_RTNL();
pm_runtime_get_noresume(d);
if (pm_runtime_active(d))
rtl8169_update_counters(tp);
pm_runtime_put_noidle(d);
data[0] = le64_to_cpu(counters->tx_packets);
data[1] = le64_to_cpu(counters->rx_packets);
data[2] = le64_to_cpu(counters->tx_errors);
data[3] = le32_to_cpu(counters->rx_errors);
data[4] = le16_to_cpu(counters->rx_missed);
data[5] = le16_to_cpu(counters->align_errors);
data[6] = le32_to_cpu(counters->tx_one_collision);
data[7] = le32_to_cpu(counters->tx_multi_collision);
data[8] = le64_to_cpu(counters->rx_unicast);
data[9] = le64_to_cpu(counters->rx_broadcast);
data[10] = le32_to_cpu(counters->rx_multicast);
data[11] = le16_to_cpu(counters->tx_aborted);
data[12] = le16_to_cpu(counters->tx_underun);
}
static void rtl8169_get_strings(struct net_device *dev, u32 stringset, u8 *data)
{
switch(stringset) {
case ETH_SS_STATS:
memcpy(data, *rtl8169_gstrings, sizeof(rtl8169_gstrings));
break;
}
}
/*
* Interrupt coalescing
*
* > 1 - the availability of the IntrMitigate (0xe2) register through the
* > 8169, 8168 and 810x line of chipsets
*
* 8169, 8168, and 8136(810x) serial chipsets support it.
*
* > 2 - the Tx timer unit at gigabit speed
*
* The unit of the timer depends on both the speed and the setting of CPlusCmd
* (0xe0) bit 1 and bit 0.
*
* For 8169
* bit[1:0] \ speed 1000M 100M 10M
* 0 0 320ns 2.56us 40.96us
* 0 1 2.56us 20.48us 327.7us
* 1 0 5.12us 40.96us 655.4us
* 1 1 10.24us 81.92us 1.31ms
*
* For the other
* bit[1:0] \ speed 1000M 100M 10M
* 0 0 5us 2.56us 40.96us
* 0 1 40us 20.48us 327.7us
* 1 0 80us 40.96us 655.4us
* 1 1 160us 81.92us 1.31ms
*/
/* rx/tx scale factors for all CPlusCmd[0:1] cases */
struct rtl_coalesce_info {
u32 speed;
u32 scale_nsecs[4];
};
/* produce array with base delay *1, *8, *8*2, *8*2*2 */
#define COALESCE_DELAY(d) { (d), 8 * (d), 16 * (d), 32 * (d) }
static const struct rtl_coalesce_info rtl_coalesce_info_8169[] = {
{ SPEED_10, COALESCE_DELAY(40960) },
{ SPEED_100, COALESCE_DELAY(2560) },
{ SPEED_1000, COALESCE_DELAY(320) },
{ 0 },
};
static const struct rtl_coalesce_info rtl_coalesce_info_8168_8136[] = {
{ SPEED_10, COALESCE_DELAY(40960) },
{ SPEED_100, COALESCE_DELAY(2560) },
{ SPEED_1000, COALESCE_DELAY(5000) },
{ 0 },
};
#undef COALESCE_DELAY
/* get rx/tx scale vector corresponding to current speed */
static const struct rtl_coalesce_info *
rtl_coalesce_info(struct rtl8169_private *tp)
{
const struct rtl_coalesce_info *ci;
if (tp->mac_version <= RTL_GIGA_MAC_VER_06)
ci = rtl_coalesce_info_8169;
else
ci = rtl_coalesce_info_8168_8136;
for (; ci->speed; ci++) {
if (tp->phydev->speed == ci->speed)
return ci;
}
return ERR_PTR(-ELNRNG);
}
static int rtl_get_coalesce(struct net_device *dev, struct ethtool_coalesce *ec)
{
struct rtl8169_private *tp = netdev_priv(dev);
const struct rtl_coalesce_info *ci;
u32 scale, c_us, c_fr;
u16 intrmit;
if (rtl_is_8125(tp))
return -EOPNOTSUPP;
memset(ec, 0, sizeof(*ec));
/* get rx/tx scale corresponding to current speed and CPlusCmd[0:1] */
ci = rtl_coalesce_info(tp);
if (IS_ERR(ci))
return PTR_ERR(ci);
scale = ci->scale_nsecs[tp->cp_cmd & INTT_MASK];
intrmit = RTL_R16(tp, IntrMitigate);
c_us = FIELD_GET(RTL_COALESCE_TX_USECS, intrmit);
ec->tx_coalesce_usecs = DIV_ROUND_UP(c_us * scale, 1000);
c_fr = FIELD_GET(RTL_COALESCE_TX_FRAMES, intrmit);
/* ethtool_coalesce states usecs and max_frames must not both be 0 */
ec->tx_max_coalesced_frames = (c_us || c_fr) ? c_fr * 4 : 1;
c_us = FIELD_GET(RTL_COALESCE_RX_USECS, intrmit);
ec->rx_coalesce_usecs = DIV_ROUND_UP(c_us * scale, 1000);
c_fr = FIELD_GET(RTL_COALESCE_RX_FRAMES, intrmit);
ec->rx_max_coalesced_frames = (c_us || c_fr) ? c_fr * 4 : 1;
return 0;
}
/* choose appropriate scale factor and CPlusCmd[0:1] for (speed, usec) */
static int rtl_coalesce_choose_scale(struct rtl8169_private *tp, u32 usec,
u16 *cp01)
{
const struct rtl_coalesce_info *ci;
u16 i;
ci = rtl_coalesce_info(tp);
if (IS_ERR(ci))
return PTR_ERR(ci);
for (i = 0; i < 4; i++) {
if (usec <= ci->scale_nsecs[i] * RTL_COALESCE_T_MAX / 1000U) {
*cp01 = i;
return ci->scale_nsecs[i];
}
}
return -ERANGE;
}
static int rtl_set_coalesce(struct net_device *dev, struct ethtool_coalesce *ec)
{
struct rtl8169_private *tp = netdev_priv(dev);
u32 tx_fr = ec->tx_max_coalesced_frames;
u32 rx_fr = ec->rx_max_coalesced_frames;
u32 coal_usec_max, units;
u16 w = 0, cp01 = 0;
int scale;
if (rtl_is_8125(tp))
return -EOPNOTSUPP;
if (rx_fr > RTL_COALESCE_FRAME_MAX || tx_fr > RTL_COALESCE_FRAME_MAX)
return -ERANGE;
coal_usec_max = max(ec->rx_coalesce_usecs, ec->tx_coalesce_usecs);
scale = rtl_coalesce_choose_scale(tp, coal_usec_max, &cp01);
if (scale < 0)
return scale;
/* Accept max_frames=1 we returned in rtl_get_coalesce. Accept it
* not only when usecs=0 because of e.g. the following scenario:
*
* - both rx_usecs=0 & rx_frames=0 in hardware (no delay on RX)
* - rtl_get_coalesce returns rx_usecs=0, rx_frames=1
* - then user does `ethtool -C eth0 rx-usecs 100`
*
* Since ethtool sends to kernel whole ethtool_coalesce settings,
* if we want to ignore rx_frames then it has to be set to 0.
*/
if (rx_fr == 1)
rx_fr = 0;
if (tx_fr == 1)
tx_fr = 0;
/* HW requires time limit to be set if frame limit is set */
if ((tx_fr && !ec->tx_coalesce_usecs) ||
(rx_fr && !ec->rx_coalesce_usecs))
return -EINVAL;
w |= FIELD_PREP(RTL_COALESCE_TX_FRAMES, DIV_ROUND_UP(tx_fr, 4));
w |= FIELD_PREP(RTL_COALESCE_RX_FRAMES, DIV_ROUND_UP(rx_fr, 4));
units = DIV_ROUND_UP(ec->tx_coalesce_usecs * 1000U, scale);
w |= FIELD_PREP(RTL_COALESCE_TX_USECS, units);
units = DIV_ROUND_UP(ec->rx_coalesce_usecs * 1000U, scale);
w |= FIELD_PREP(RTL_COALESCE_RX_USECS, units);
rtl_lock_work(tp);
RTL_W16(tp, IntrMitigate, w);
/* Meaning of PktCntrDisable bit changed from RTL8168e-vl */
if (rtl_is_8168evl_up(tp)) {
if (!rx_fr && !tx_fr)
/* disable packet counter */
tp->cp_cmd |= PktCntrDisable;
else
tp->cp_cmd &= ~PktCntrDisable;
}
tp->cp_cmd = (tp->cp_cmd & ~INTT_MASK) | cp01;
RTL_W16(tp, CPlusCmd, tp->cp_cmd);
rtl_pci_commit(tp);
rtl_unlock_work(tp);
return 0;
}
static int rtl8169_get_eee(struct net_device *dev, struct ethtool_eee *data)
{
struct rtl8169_private *tp = netdev_priv(dev);
struct device *d = tp_to_dev(tp);
int ret;
if (!rtl_supports_eee(tp))
return -EOPNOTSUPP;
pm_runtime_get_noresume(d);
if (!pm_runtime_active(d)) {
ret = -EOPNOTSUPP;
} else {
ret = phy_ethtool_get_eee(tp->phydev, data);
}
pm_runtime_put_noidle(d);
return ret;
}
static int rtl8169_set_eee(struct net_device *dev, struct ethtool_eee *data)
{
struct rtl8169_private *tp = netdev_priv(dev);
struct device *d = tp_to_dev(tp);
int ret;
if (!rtl_supports_eee(tp))
return -EOPNOTSUPP;
pm_runtime_get_noresume(d);
if (!pm_runtime_active(d)) {
ret = -EOPNOTSUPP;
goto out;
}
ret = phy_ethtool_set_eee(tp->phydev, data);
if (!ret)
tp->eee_adv = phy_read_mmd(dev->phydev, MDIO_MMD_AN,
MDIO_AN_EEE_ADV);
out:
pm_runtime_put_noidle(d);
return ret;
}
static const struct ethtool_ops rtl8169_ethtool_ops = {
.supported_coalesce_params = ETHTOOL_COALESCE_USECS |
ETHTOOL_COALESCE_MAX_FRAMES,
.get_drvinfo = rtl8169_get_drvinfo,
.get_regs_len = rtl8169_get_regs_len,
.get_link = ethtool_op_get_link,
.get_coalesce = rtl_get_coalesce,
.set_coalesce = rtl_set_coalesce,
.get_regs = rtl8169_get_regs,
.get_wol = rtl8169_get_wol,
.set_wol = rtl8169_set_wol,
.get_strings = rtl8169_get_strings,
.get_sset_count = rtl8169_get_sset_count,
.get_ethtool_stats = rtl8169_get_ethtool_stats,
.get_ts_info = ethtool_op_get_ts_info,
.nway_reset = phy_ethtool_nway_reset,
.get_eee = rtl8169_get_eee,
.set_eee = rtl8169_set_eee,
.get_link_ksettings = phy_ethtool_get_link_ksettings,
.set_link_ksettings = phy_ethtool_set_link_ksettings,
};
static void rtl_enable_eee(struct rtl8169_private *tp)
{
struct phy_device *phydev = tp->phydev;
int adv;
/* respect EEE advertisement the user may have set */
if (tp->eee_adv >= 0)
adv = tp->eee_adv;
else
adv = phy_read_mmd(phydev, MDIO_MMD_PCS, MDIO_PCS_EEE_ABLE);
if (adv >= 0)
phy_write_mmd(phydev, MDIO_MMD_AN, MDIO_AN_EEE_ADV, adv);
}
static enum mac_version rtl8169_get_mac_version(u16 xid, bool gmii)
{
/*
* The driver currently handles the 8168Bf and the 8168Be identically
* but they can be identified more specifically through the test below
* if needed:
*
* (RTL_R32(tp, TxConfig) & 0x700000) == 0x500000 ? 8168Bf : 8168Be
*
* Same thing for the 8101Eb and the 8101Ec:
*
* (RTL_R32(tp, TxConfig) & 0x700000) == 0x200000 ? 8101Eb : 8101Ec
*/
static const struct rtl_mac_info {
u16 mask;
u16 val;
enum mac_version ver;
} mac_info[] = {
/* 8125 family. */
{ 0x7cf, 0x608, RTL_GIGA_MAC_VER_60 },
{ 0x7c8, 0x608, RTL_GIGA_MAC_VER_61 },
/* RTL8117 */
{ 0x7cf, 0x54a, RTL_GIGA_MAC_VER_52 },
/* 8168EP family. */
{ 0x7cf, 0x502, RTL_GIGA_MAC_VER_51 },
{ 0x7cf, 0x501, RTL_GIGA_MAC_VER_50 },
{ 0x7cf, 0x500, RTL_GIGA_MAC_VER_49 },
/* 8168H family. */
{ 0x7cf, 0x541, RTL_GIGA_MAC_VER_46 },
{ 0x7cf, 0x540, RTL_GIGA_MAC_VER_45 },
/* 8168G family. */
{ 0x7cf, 0x5c8, RTL_GIGA_MAC_VER_44 },
{ 0x7cf, 0x509, RTL_GIGA_MAC_VER_42 },
{ 0x7cf, 0x4c1, RTL_GIGA_MAC_VER_41 },
{ 0x7cf, 0x4c0, RTL_GIGA_MAC_VER_40 },
/* 8168F family. */
{ 0x7c8, 0x488, RTL_GIGA_MAC_VER_38 },
{ 0x7cf, 0x481, RTL_GIGA_MAC_VER_36 },
{ 0x7cf, 0x480, RTL_GIGA_MAC_VER_35 },
/* 8168E family. */
{ 0x7c8, 0x2c8, RTL_GIGA_MAC_VER_34 },
{ 0x7cf, 0x2c1, RTL_GIGA_MAC_VER_32 },
{ 0x7c8, 0x2c0, RTL_GIGA_MAC_VER_33 },
/* 8168D family. */
{ 0x7cf, 0x281, RTL_GIGA_MAC_VER_25 },
{ 0x7c8, 0x280, RTL_GIGA_MAC_VER_26 },
/* 8168DP family. */
{ 0x7cf, 0x288, RTL_GIGA_MAC_VER_27 },
{ 0x7cf, 0x28a, RTL_GIGA_MAC_VER_28 },
{ 0x7cf, 0x28b, RTL_GIGA_MAC_VER_31 },
/* 8168C family. */
{ 0x7cf, 0x3c9, RTL_GIGA_MAC_VER_23 },
{ 0x7cf, 0x3c8, RTL_GIGA_MAC_VER_18 },
{ 0x7c8, 0x3c8, RTL_GIGA_MAC_VER_24 },
{ 0x7cf, 0x3c0, RTL_GIGA_MAC_VER_19 },
{ 0x7cf, 0x3c2, RTL_GIGA_MAC_VER_20 },
{ 0x7cf, 0x3c3, RTL_GIGA_MAC_VER_21 },
{ 0x7c8, 0x3c0, RTL_GIGA_MAC_VER_22 },
/* 8168B family. */
{ 0x7cf, 0x380, RTL_GIGA_MAC_VER_12 },
{ 0x7c8, 0x380, RTL_GIGA_MAC_VER_17 },
{ 0x7c8, 0x300, RTL_GIGA_MAC_VER_11 },
/* 8101 family. */
{ 0x7c8, 0x448, RTL_GIGA_MAC_VER_39 },
{ 0x7c8, 0x440, RTL_GIGA_MAC_VER_37 },
{ 0x7cf, 0x409, RTL_GIGA_MAC_VER_29 },
{ 0x7c8, 0x408, RTL_GIGA_MAC_VER_30 },
{ 0x7cf, 0x349, RTL_GIGA_MAC_VER_08 },
{ 0x7cf, 0x249, RTL_GIGA_MAC_VER_08 },
{ 0x7cf, 0x348, RTL_GIGA_MAC_VER_07 },
{ 0x7cf, 0x248, RTL_GIGA_MAC_VER_07 },
{ 0x7cf, 0x340, RTL_GIGA_MAC_VER_13 },
/* RTL8401, reportedly works if treated as RTL8101e */
{ 0x7cf, 0x240, RTL_GIGA_MAC_VER_13 },
{ 0x7cf, 0x343, RTL_GIGA_MAC_VER_10 },
{ 0x7cf, 0x342, RTL_GIGA_MAC_VER_16 },
{ 0x7c8, 0x348, RTL_GIGA_MAC_VER_09 },
{ 0x7c8, 0x248, RTL_GIGA_MAC_VER_09 },
{ 0x7c8, 0x340, RTL_GIGA_MAC_VER_16 },
/* FIXME: where did these entries come from ? -- FR */
{ 0xfc8, 0x388, RTL_GIGA_MAC_VER_15 },
{ 0xfc8, 0x308, RTL_GIGA_MAC_VER_14 },
/* 8110 family. */
{ 0xfc8, 0x980, RTL_GIGA_MAC_VER_06 },
{ 0xfc8, 0x180, RTL_GIGA_MAC_VER_05 },
{ 0xfc8, 0x100, RTL_GIGA_MAC_VER_04 },
{ 0xfc8, 0x040, RTL_GIGA_MAC_VER_03 },
{ 0xfc8, 0x008, RTL_GIGA_MAC_VER_02 },
/* Catch-all */
{ 0x000, 0x000, RTL_GIGA_MAC_NONE }
};
const struct rtl_mac_info *p = mac_info;
enum mac_version ver;
while ((xid & p->mask) != p->val)
p++;
ver = p->ver;
if (ver != RTL_GIGA_MAC_NONE && !gmii) {
if (ver == RTL_GIGA_MAC_VER_42)
ver = RTL_GIGA_MAC_VER_43;
else if (ver == RTL_GIGA_MAC_VER_45)
ver = RTL_GIGA_MAC_VER_47;
else if (ver == RTL_GIGA_MAC_VER_46)
ver = RTL_GIGA_MAC_VER_48;
}
return ver;
}
static void rtl_release_firmware(struct rtl8169_private *tp)
{
if (tp->rtl_fw) {
rtl_fw_release_firmware(tp->rtl_fw);
kfree(tp->rtl_fw);
tp->rtl_fw = NULL;
}
}
void r8169_apply_firmware(struct rtl8169_private *tp)
{
/* TODO: release firmware if rtl_fw_write_firmware signals failure. */
if (tp->rtl_fw) {
rtl_fw_write_firmware(tp, tp->rtl_fw);
/* At least one firmware doesn't reset tp->ocp_base. */
tp->ocp_base = OCP_STD_PHY_BASE;
}
}
static void rtl8168_config_eee_mac(struct rtl8169_private *tp)
{
/* Adjust EEE LED frequency */
if (tp->mac_version != RTL_GIGA_MAC_VER_38)
RTL_W8(tp, EEE_LED, RTL_R8(tp, EEE_LED) & ~0x07);
rtl_eri_set_bits(tp, 0x1b0, 0x0003);
}
static void rtl8125_config_eee_mac(struct rtl8169_private *tp)
{
r8168_mac_ocp_modify(tp, 0xe040, 0, BIT(1) | BIT(0));
r8168_mac_ocp_modify(tp, 0xeb62, 0, BIT(2) | BIT(1));
}
static void rtl_rar_exgmac_set(struct rtl8169_private *tp, u8 *addr)
{
const u16 w[] = {
addr[0] | (addr[1] << 8),
addr[2] | (addr[3] << 8),
addr[4] | (addr[5] << 8)
};
rtl_eri_write(tp, 0xe0, ERIAR_MASK_1111, w[0] | (w[1] << 16));
rtl_eri_write(tp, 0xe4, ERIAR_MASK_1111, w[2]);
rtl_eri_write(tp, 0xf0, ERIAR_MASK_1111, w[0] << 16);
rtl_eri_write(tp, 0xf4, ERIAR_MASK_1111, w[1] | (w[2] << 16));
}
u16 rtl8168h_2_get_adc_bias_ioffset(struct rtl8169_private *tp)
{
u16 data1, data2, ioffset;
r8168_mac_ocp_write(tp, 0xdd02, 0x807d);
data1 = r8168_mac_ocp_read(tp, 0xdd02);
data2 = r8168_mac_ocp_read(tp, 0xdd00);
ioffset = (data2 >> 1) & 0x7ff8;
ioffset |= data2 & 0x0007;
if (data1 & BIT(7))
ioffset |= BIT(15);
return ioffset;
}
static void rtl_schedule_task(struct rtl8169_private *tp, enum rtl_flag flag)
{
set_bit(flag, tp->wk.flags);
schedule_work(&tp->wk.work);
}
static void rtl8169_init_phy(struct rtl8169_private *tp)
{
r8169_hw_phy_config(tp, tp->phydev, tp->mac_version);
if (tp->mac_version <= RTL_GIGA_MAC_VER_06) {
pci_write_config_byte(tp->pci_dev, PCI_LATENCY_TIMER, 0x40);
pci_write_config_byte(tp->pci_dev, PCI_CACHE_LINE_SIZE, 0x08);
/* set undocumented MAC Reg C+CR Offset 0x82h */
RTL_W8(tp, 0x82, 0x01);
}
if (tp->mac_version == RTL_GIGA_MAC_VER_05 &&
tp->pci_dev->subsystem_vendor == PCI_VENDOR_ID_GIGABYTE &&
tp->pci_dev->subsystem_device == 0xe000)
phy_write_paged(tp->phydev, 0x0001, 0x10, 0xf01b);
/* We may have called phy_speed_down before */
phy_speed_up(tp->phydev);
if (rtl_supports_eee(tp))
rtl_enable_eee(tp);
genphy_soft_reset(tp->phydev);
}
static void rtl_rar_set(struct rtl8169_private *tp, u8 *addr)
{
rtl_lock_work(tp);
rtl_unlock_config_regs(tp);
RTL_W32(tp, MAC4, addr[4] | addr[5] << 8);
rtl_pci_commit(tp);
RTL_W32(tp, MAC0, addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24);
rtl_pci_commit(tp);
if (tp->mac_version == RTL_GIGA_MAC_VER_34)
rtl_rar_exgmac_set(tp, addr);
rtl_lock_config_regs(tp);
rtl_unlock_work(tp);
}
static int rtl_set_mac_address(struct net_device *dev, void *p)
{
struct rtl8169_private *tp = netdev_priv(dev);
struct device *d = tp_to_dev(tp);
int ret;
ret = eth_mac_addr(dev, p);
if (ret)
return ret;
pm_runtime_get_noresume(d);
if (pm_runtime_active(d))
rtl_rar_set(tp, dev->dev_addr);
pm_runtime_put_noidle(d);
return 0;
}
static void rtl_wol_suspend_quirk(struct rtl8169_private *tp)
{
switch (tp->mac_version) {
case RTL_GIGA_MAC_VER_25:
case RTL_GIGA_MAC_VER_26:
case RTL_GIGA_MAC_VER_29:
case RTL_GIGA_MAC_VER_30:
case RTL_GIGA_MAC_VER_32:
case RTL_GIGA_MAC_VER_33:
case RTL_GIGA_MAC_VER_34:
case RTL_GIGA_MAC_VER_37 ... RTL_GIGA_MAC_VER_61:
RTL_W32(tp, RxConfig, RTL_R32(tp, RxConfig) |
AcceptBroadcast | AcceptMulticast | AcceptMyPhys);
break;
default:
break;
}
}
static void rtl_pll_power_down(struct rtl8169_private *tp)
{
if (r8168_check_dash(tp))
return;
if (tp->mac_version == RTL_GIGA_MAC_VER_32 ||
tp->mac_version == RTL_GIGA_MAC_VER_33)
rtl_ephy_write(tp, 0x19, 0xff64);
if (device_may_wakeup(tp_to_dev(tp))) {
phy_speed_down(tp->phydev, false);
rtl_wol_suspend_quirk(tp);
return;
}
switch (tp->mac_version) {
case RTL_GIGA_MAC_VER_25 ... RTL_GIGA_MAC_VER_33:
case RTL_GIGA_MAC_VER_37:
case RTL_GIGA_MAC_VER_39:
case RTL_GIGA_MAC_VER_43:
case RTL_GIGA_MAC_VER_44:
case RTL_GIGA_MAC_VER_45:
case RTL_GIGA_MAC_VER_46:
case RTL_GIGA_MAC_VER_47:
case RTL_GIGA_MAC_VER_48:
case RTL_GIGA_MAC_VER_50:
case RTL_GIGA_MAC_VER_51:
case RTL_GIGA_MAC_VER_52:
case RTL_GIGA_MAC_VER_60:
case RTL_GIGA_MAC_VER_61:
RTL_W8(tp, PMCH, RTL_R8(tp, PMCH) & ~0x80);
break;
case RTL_GIGA_MAC_VER_40:
case RTL_GIGA_MAC_VER_41:
case RTL_GIGA_MAC_VER_49:
rtl_eri_clear_bits(tp, 0x1a8, 0xfc000000);
RTL_W8(tp, PMCH, RTL_R8(tp, PMCH) & ~0x80);
break;
default:
break;
}
}
static void rtl_pll_power_up(struct rtl8169_private *tp)
{
switch (tp->mac_version) {
case RTL_GIGA_MAC_VER_25 ... RTL_GIGA_MAC_VER_33:
case RTL_GIGA_MAC_VER_37:
case RTL_GIGA_MAC_VER_39:
case RTL_GIGA_MAC_VER_43:
RTL_W8(tp, PMCH, RTL_R8(tp, PMCH) | 0x80);
break;
case RTL_GIGA_MAC_VER_44:
case RTL_GIGA_MAC_VER_45:
case RTL_GIGA_MAC_VER_46:
case RTL_GIGA_MAC_VER_47:
case RTL_GIGA_MAC_VER_48:
case RTL_GIGA_MAC_VER_50:
case RTL_GIGA_MAC_VER_51:
case RTL_GIGA_MAC_VER_52:
case RTL_GIGA_MAC_VER_60:
case RTL_GIGA_MAC_VER_61:
RTL_W8(tp, PMCH, RTL_R8(tp, PMCH) | 0xc0);
break;
case RTL_GIGA_MAC_VER_40:
case RTL_GIGA_MAC_VER_41:
case RTL_GIGA_MAC_VER_49:
RTL_W8(tp, PMCH, RTL_R8(tp, PMCH) | 0xc0);
rtl_eri_set_bits(tp, 0x1a8, 0xfc000000);
break;
default:
break;
}
phy_resume(tp->phydev);
}
static void rtl_init_rxcfg(struct rtl8169_private *tp)
{
switch (tp->mac_version) {
case RTL_GIGA_MAC_VER_02 ... RTL_GIGA_MAC_VER_06:
case RTL_GIGA_MAC_VER_10 ... RTL_GIGA_MAC_VER_17:
RTL_W32(tp, RxConfig, RX_FIFO_THRESH | RX_DMA_BURST);
break;
case RTL_GIGA_MAC_VER_18 ... RTL_GIGA_MAC_VER_24:
case RTL_GIGA_MAC_VER_34 ... RTL_GIGA_MAC_VER_36:
case RTL_GIGA_MAC_VER_38:
RTL_W32(tp, RxConfig, RX128_INT_EN | RX_MULTI_EN | RX_DMA_BURST);
break;
case RTL_GIGA_MAC_VER_40 ... RTL_GIGA_MAC_VER_52:
RTL_W32(tp, RxConfig, RX128_INT_EN | RX_MULTI_EN | RX_DMA_BURST | RX_EARLY_OFF);
break;
case RTL_GIGA_MAC_VER_60 ... RTL_GIGA_MAC_VER_61:
RTL_W32(tp, RxConfig, RX_FETCH_DFLT_8125 | RX_DMA_BURST);
break;
default:
RTL_W32(tp, RxConfig, RX128_INT_EN | RX_DMA_BURST);
break;
}
}
static void rtl8169_init_ring_indexes(struct rtl8169_private *tp)
{
tp->dirty_tx = tp->cur_tx = tp->cur_rx = 0;
}
static void r8168c_hw_jumbo_enable(struct rtl8169_private *tp)
{
RTL_W8(tp, Config3, RTL_R8(tp, Config3) | Jumbo_En0);
RTL_W8(tp, Config4, RTL_R8(tp, Config4) | Jumbo_En1);
}
static void r8168c_hw_jumbo_disable(struct rtl8169_private *tp)
{
RTL_W8(tp, Config3, RTL_R8(tp, Config3) & ~Jumbo_En0);
RTL_W8(tp, Config4, RTL_R8(tp, Config4) & ~Jumbo_En1);
}
static void r8168dp_hw_jumbo_enable(struct rtl8169_private *tp)
{
RTL_W8(tp, Config3, RTL_R8(tp, Config3) | Jumbo_En0);
}
static void r8168dp_hw_jumbo_disable(struct rtl8169_private *tp)
{
RTL_W8(tp, Config3, RTL_R8(tp, Config3) & ~Jumbo_En0);
}
static void r8168e_hw_jumbo_enable(struct rtl8169_private *tp)
{
RTL_W8(tp, MaxTxPacketSize, 0x3f);
RTL_W8(tp, Config3, RTL_R8(tp, Config3) | Jumbo_En0);
RTL_W8(tp, Config4, RTL_R8(tp, Config4) | 0x01);
}
static void r8168e_hw_jumbo_disable(struct rtl8169_private *tp)
{
RTL_W8(tp, MaxTxPacketSize, 0x0c);
RTL_W8(tp, Config3, RTL_R8(tp, Config3) & ~Jumbo_En0);
RTL_W8(tp, Config4, RTL_R8(tp, Config4) & ~0x01);
}
static void r8168b_1_hw_jumbo_enable(struct rtl8169_private *tp)
{
RTL_W8(tp, Config4, RTL_R8(tp, Config4) | (1 << 0));
}
static void r8168b_1_hw_jumbo_disable(struct rtl8169_private *tp)
{
RTL_W8(tp, Config4, RTL_R8(tp, Config4) & ~(1 << 0));
}
static void rtl_jumbo_config(struct rtl8169_private *tp)
{
bool jumbo = tp->dev->mtu > ETH_DATA_LEN;
rtl_unlock_config_regs(tp);
switch (tp->mac_version) {
case RTL_GIGA_MAC_VER_12:
case RTL_GIGA_MAC_VER_17:
if (jumbo) {
pcie_set_readrq(tp->pci_dev, 512);
r8168b_1_hw_jumbo_enable(tp);
} else {
r8168b_1_hw_jumbo_disable(tp);
}
break;
case RTL_GIGA_MAC_VER_18 ... RTL_GIGA_MAC_VER_26:
if (jumbo) {
pcie_set_readrq(tp->pci_dev, 512);
r8168c_hw_jumbo_enable(tp);
} else {
r8168c_hw_jumbo_disable(tp);
}
break;
case RTL_GIGA_MAC_VER_27 ... RTL_GIGA_MAC_VER_28:
if (jumbo)
r8168dp_hw_jumbo_enable(tp);
else
r8168dp_hw_jumbo_disable(tp);
break;
case RTL_GIGA_MAC_VER_31 ... RTL_GIGA_MAC_VER_33:
if (jumbo) {
pcie_set_readrq(tp->pci_dev, 512);
r8168e_hw_jumbo_enable(tp);
} else {
r8168e_hw_jumbo_disable(tp);
}
break;
default:
break;
}
rtl_lock_config_regs(tp);
if (!jumbo && pci_is_pcie(tp->pci_dev) && tp->supports_gmii)
pcie_set_readrq(tp->pci_dev, 4096);
}
DECLARE_RTL_COND(rtl_chipcmd_cond)
{
return RTL_R8(tp, ChipCmd) & CmdReset;
}
static void rtl_hw_reset(struct rtl8169_private *tp)
{
RTL_W8(tp, ChipCmd, CmdReset);
rtl_loop_wait_low(tp, &rtl_chipcmd_cond, 100, 100);
}
static void rtl_request_firmware(struct rtl8169_private *tp)
{
struct rtl_fw *rtl_fw;
/* firmware loaded already or no firmware available */
if (tp->rtl_fw || !tp->fw_name)
return;
rtl_fw = kzalloc(sizeof(*rtl_fw), GFP_KERNEL);
if (!rtl_fw)
return;
rtl_fw->phy_write = rtl_writephy;
rtl_fw->phy_read = rtl_readphy;
rtl_fw->mac_mcu_write = mac_mcu_write;
rtl_fw->mac_mcu_read = mac_mcu_read;
rtl_fw->fw_name = tp->fw_name;
rtl_fw->dev = tp_to_dev(tp);
if (rtl_fw_request_firmware(rtl_fw))
kfree(rtl_fw);
else
tp->rtl_fw = rtl_fw;
}
static void rtl_rx_close(struct rtl8169_private *tp)
{
RTL_W32(tp, RxConfig, RTL_R32(tp, RxConfig) & ~RX_CONFIG_ACCEPT_MASK);
}
DECLARE_RTL_COND(rtl_npq_cond)
{
return RTL_R8(tp, TxPoll) & NPQ;
}
DECLARE_RTL_COND(rtl_txcfg_empty_cond)
{
return RTL_R32(tp, TxConfig) & TXCFG_EMPTY;
}
DECLARE_RTL_COND(rtl_rxtx_empty_cond)
{
return (RTL_R8(tp, MCU) & RXTX_EMPTY) == RXTX_EMPTY;
}
static void rtl_wait_txrx_fifo_empty(struct rtl8169_private *tp)
{
switch (tp->mac_version) {
case RTL_GIGA_MAC_VER_40 ... RTL_GIGA_MAC_VER_52:
rtl_loop_wait_high(tp, &rtl_txcfg_empty_cond, 100, 42);
rtl_loop_wait_high(tp, &rtl_rxtx_empty_cond, 100, 42);
break;
case RTL_GIGA_MAC_VER_60 ... RTL_GIGA_MAC_VER_61:
rtl_loop_wait_high(tp, &rtl_rxtx_empty_cond, 100, 42);
break;
default:
break;
}
}
static void rtl_enable_rxdvgate(struct rtl8169_private *tp)
{
RTL_W32(tp, MISC, RTL_R32(tp, MISC) | RXDV_GATED_EN);
fsleep(2000);
rtl_wait_txrx_fifo_empty(tp);
}
static void rtl_set_tx_config_registers(struct rtl8169_private *tp)
{
u32 val = TX_DMA_BURST << TxDMAShift |
InterFrameGap << TxInterFrameGapShift;
if (rtl_is_8168evl_up(tp))
val |= TXCFG_AUTO_FIFO;
RTL_W32(tp, TxConfig, val);
}
static void rtl_set_rx_max_size(struct rtl8169_private *tp)
{
/* Low hurts. Let's disable the filtering. */
RTL_W16(tp, RxMaxSize, R8169_RX_BUF_SIZE + 1);
}
static void rtl_set_rx_tx_desc_registers(struct rtl8169_private *tp)
{
/*
* Magic spell: some iop3xx ARM board needs the TxDescAddrHigh
* register to be written before TxDescAddrLow to work.
* Switching from MMIO to I/O access fixes the issue as well.
*/
RTL_W32(tp, TxDescStartAddrHigh, ((u64) tp->TxPhyAddr) >> 32);
RTL_W32(tp, TxDescStartAddrLow, ((u64) tp->TxPhyAddr) & DMA_BIT_MASK(32));
RTL_W32(tp, RxDescAddrHigh, ((u64) tp->RxPhyAddr) >> 32);
RTL_W32(tp, RxDescAddrLow, ((u64) tp->RxPhyAddr) & DMA_BIT_MASK(32));
}
static void rtl8169_set_magic_reg(struct rtl8169_private *tp)
{
u32 val;
if (tp->mac_version == RTL_GIGA_MAC_VER_05)
val = 0x000fff00;
else if (tp->mac_version == RTL_GIGA_MAC_VER_06)
val = 0x00ffff00;
else
return;
if (RTL_R8(tp, Config2) & PCI_Clock_66MHz)
val |= 0xff;
RTL_W32(tp, 0x7c, val);
}
static void rtl_set_rx_mode(struct net_device *dev)
{
u32 rx_mode = AcceptBroadcast | AcceptMyPhys | AcceptMulticast;
/* Multicast hash filter */
u32 mc_filter[2] = { 0xffffffff, 0xffffffff };
struct rtl8169_private *tp = netdev_priv(dev);
u32 tmp;
if (dev->flags & IFF_PROMISC) {
rx_mode |= AcceptAllPhys;
} else if (netdev_mc_count(dev) > MC_FILTER_LIMIT ||
dev->flags & IFF_ALLMULTI ||
tp->mac_version == RTL_GIGA_MAC_VER_35) {
/* accept all multicasts */
} else if (netdev_mc_empty(dev)) {
rx_mode &= ~AcceptMulticast;
} else {
struct netdev_hw_addr *ha;
mc_filter[1] = mc_filter[0] = 0;
netdev_for_each_mc_addr(ha, dev) {
u32 bit_nr = eth_hw_addr_crc(ha) >> 26;
mc_filter[bit_nr >> 5] |= BIT(bit_nr & 31);
}
if (tp->mac_version > RTL_GIGA_MAC_VER_06) {
tmp = mc_filter[0];
mc_filter[0] = swab32(mc_filter[1]);
mc_filter[1] = swab32(tmp);
}
}
RTL_W32(tp, MAR0 + 4, mc_filter[1]);
RTL_W32(tp, MAR0 + 0, mc_filter[0]);
tmp = RTL_R32(tp, RxConfig);
RTL_W32(tp, RxConfig, (tmp & ~RX_CONFIG_ACCEPT_OK_MASK) | rx_mode);
}
DECLARE_RTL_COND(rtl_csiar_cond)
{
return RTL_R32(tp, CSIAR) & CSIAR_FLAG;
}
static void rtl_csi_write(struct rtl8169_private *tp, int addr, int value)
{
u32 func = PCI_FUNC(tp->pci_dev->devfn);
RTL_W32(tp, CSIDR, value);
RTL_W32(tp, CSIAR, CSIAR_WRITE_CMD | (addr & CSIAR_ADDR_MASK) |
CSIAR_BYTE_ENABLE | func << 16);
rtl_loop_wait_low(tp, &rtl_csiar_cond, 10, 100);
}
static u32 rtl_csi_read(struct rtl8169_private *tp, int addr)
{
u32 func = PCI_FUNC(tp->pci_dev->devfn);
RTL_W32(tp, CSIAR, (addr & CSIAR_ADDR_MASK) | func << 16 |
CSIAR_BYTE_ENABLE);
return rtl_loop_wait_high(tp, &rtl_csiar_cond, 10, 100) ?
RTL_R32(tp, CSIDR) : ~0;
}
static void rtl_csi_access_enable(struct rtl8169_private *tp, u8 val)
{
struct pci_dev *pdev = tp->pci_dev;
u32 csi;
/* According to Realtek the value at config space address 0x070f
* controls the L0s/L1 entrance latency. We try standard ECAM access
* first and if it fails fall back to CSI.
*/
if (pdev->cfg_size > 0x070f &&
pci_write_config_byte(pdev, 0x070f, val) == PCIBIOS_SUCCESSFUL)
return;
netdev_notice_once(tp->dev,
"No native access to PCI extended config space, falling back to CSI\n");
csi = rtl_csi_read(tp, 0x070c) & 0x00ffffff;
rtl_csi_write(tp, 0x070c, csi | val << 24);
}
static void rtl_set_def_aspm_entry_latency(struct rtl8169_private *tp)
{
rtl_csi_access_enable(tp, 0x27);
}
struct ephy_info {
unsigned int offset;
u16 mask;
u16 bits;
};
static void __rtl_ephy_init(struct rtl8169_private *tp,
const struct ephy_info *e, int len)
{
u16 w;
while (len-- > 0) {
w = (rtl_ephy_read(tp, e->offset) & ~e->mask) | e->bits;
rtl_ephy_write(tp, e->offset, w);
e++;
}
}
#define rtl_ephy_init(tp, a) __rtl_ephy_init(tp, a, ARRAY_SIZE(a))
static void rtl_disable_clock_request(struct rtl8169_private *tp)
{
pcie_capability_clear_word(tp->pci_dev, PCI_EXP_LNKCTL,
PCI_EXP_LNKCTL_CLKREQ_EN);
}
static void rtl_enable_clock_request(struct rtl8169_private *tp)
{
pcie_capability_set_word(tp->pci_dev, PCI_EXP_LNKCTL,
PCI_EXP_LNKCTL_CLKREQ_EN);
}
static void rtl_pcie_state_l2l3_disable(struct rtl8169_private *tp)
{
/* work around an issue when PCI reset occurs during L2/L3 state */
RTL_W8(tp, Config3, RTL_R8(tp, Config3) & ~Rdy_to_L23);
}
static void rtl_hw_aspm_clkreq_enable(struct rtl8169_private *tp, bool enable)
{
/* Don't enable ASPM in the chip if OS can't control ASPM */
if (enable && tp->aspm_manageable) {
RTL_W8(tp, Config5, RTL_R8(tp, Config5) | ASPM_en);
RTL_W8(tp, Config2, RTL_R8(tp, Config2) | ClkReqEn);
} else {
RTL_W8(tp, Config2, RTL_R8(tp, Config2) & ~ClkReqEn);
RTL_W8(tp, Config5, RTL_R8(tp, Config5) & ~ASPM_en);
}
udelay(10);
}
static void rtl_set_fifo_size(struct rtl8169_private *tp, u16 rx_stat,
u16 tx_stat, u16 rx_dyn, u16 tx_dyn)
{
/* Usage of dynamic vs. static FIFO is controlled by bit
* TXCFG_AUTO_FIFO. Exact meaning of FIFO values isn't known.
*/
rtl_eri_write(tp, 0xc8, ERIAR_MASK_1111, (rx_stat << 16) | rx_dyn);
rtl_eri_write(tp, 0xe8, ERIAR_MASK_1111, (tx_stat << 16) | tx_dyn);
}
static void rtl8168g_set_pause_thresholds(struct rtl8169_private *tp,
u8 low, u8 high)
{
/* FIFO thresholds for pause flow control */
rtl_eri_write(tp, 0xcc, ERIAR_MASK_0001, low);
rtl_eri_write(tp, 0xd0, ERIAR_MASK_0001, high);
}
static void rtl_hw_start_8168b(struct rtl8169_private *tp)
{
RTL_W8(tp, Config3, RTL_R8(tp, Config3) & ~Beacon_en);
}
static void __rtl_hw_start_8168cp(struct rtl8169_private *tp)
{
RTL_W8(tp, Config1, RTL_R8(tp, Config1) | Speed_down);
RTL_W8(tp, Config3, RTL_R8(tp, Config3) & ~Beacon_en);
rtl_disable_clock_request(tp);
}
static void rtl_hw_start_8168cp_1(struct rtl8169_private *tp)
{
static const struct ephy_info e_info_8168cp[] = {
{ 0x01, 0, 0x0001 },
{ 0x02, 0x0800, 0x1000 },
{ 0x03, 0, 0x0042 },
{ 0x06, 0x0080, 0x0000 },
{ 0x07, 0, 0x2000 }
};
rtl_set_def_aspm_entry_latency(tp);
rtl_ephy_init(tp, e_info_8168cp);
__rtl_hw_start_8168cp(tp);
}
static void rtl_hw_start_8168cp_2(struct rtl8169_private *tp)
{
rtl_set_def_aspm_entry_latency(tp);
RTL_W8(tp, Config3, RTL_R8(tp, Config3) & ~Beacon_en);
}
static void rtl_hw_start_8168cp_3(struct rtl8169_private *tp)
{
rtl_set_def_aspm_entry_latency(tp);
RTL_W8(tp, Config3, RTL_R8(tp, Config3) & ~Beacon_en);
/* Magic. */
RTL_W8(tp, DBG_REG, 0x20);
}
static void rtl_hw_start_8168c_1(struct rtl8169_private *tp)
{
static const struct ephy_info e_info_8168c_1[] = {
{ 0x02, 0x0800, 0x1000 },
{ 0x03, 0, 0x0002 },
{ 0x06, 0x0080, 0x0000 }
};
rtl_set_def_aspm_entry_latency(tp);
RTL_W8(tp, DBG_REG, 0x06 | FIX_NAK_1 | FIX_NAK_2);
rtl_ephy_init(tp, e_info_8168c_1);
__rtl_hw_start_8168cp(tp);
}
static void rtl_hw_start_8168c_2(struct rtl8169_private *tp)
{
static const struct ephy_info e_info_8168c_2[] = {
{ 0x01, 0, 0x0001 },
{ 0x03, 0x0400, 0x0020 }
};
rtl_set_def_aspm_entry_latency(tp);
rtl_ephy_init(tp, e_info_8168c_2);
__rtl_hw_start_8168cp(tp);
}
static void rtl_hw_start_8168c_3(struct rtl8169_private *tp)
{
rtl_hw_start_8168c_2(tp);
}
static void rtl_hw_start_8168c_4(struct rtl8169_private *tp)
{
rtl_set_def_aspm_entry_latency(tp);
__rtl_hw_start_8168cp(tp);
}
static void rtl_hw_start_8168d(struct rtl8169_private *tp)
{
rtl_set_def_aspm_entry_latency(tp);
rtl_disable_clock_request(tp);
}
static void rtl_hw_start_8168d_4(struct rtl8169_private *tp)
{
static const struct ephy_info e_info_8168d_4[] = {
{ 0x0b, 0x0000, 0x0048 },
{ 0x19, 0x0020, 0x0050 },
{ 0x0c, 0x0100, 0x0020 },
{ 0x10, 0x0004, 0x0000 },
};
rtl_set_def_aspm_entry_latency(tp);
rtl_ephy_init(tp, e_info_8168d_4);
rtl_enable_clock_request(tp);
}
static void rtl_hw_start_8168e_1(struct rtl8169_private *tp)
{
static const struct ephy_info e_info_8168e_1[] = {
{ 0x00, 0x0200, 0x0100 },
{ 0x00, 0x0000, 0x0004 },
{ 0x06, 0x0002, 0x0001 },
{ 0x06, 0x0000, 0x0030 },
{ 0x07, 0x0000, 0x2000 },
{ 0x00, 0x0000, 0x0020 },
{ 0x03, 0x5800, 0x2000 },
{ 0x03, 0x0000, 0x0001 },
{ 0x01, 0x0800, 0x1000 },
{ 0x07, 0x0000, 0x4000 },
{ 0x1e, 0x0000, 0x2000 },
{ 0x19, 0xffff, 0xfe6c },
{ 0x0a, 0x0000, 0x0040 }
};
rtl_set_def_aspm_entry_latency(tp);
rtl_ephy_init(tp, e_info_8168e_1);
rtl_disable_clock_request(tp);
/* Reset tx FIFO pointer */
RTL_W32(tp, MISC, RTL_R32(tp, MISC) | TXPLA_RST);
RTL_W32(tp, MISC, RTL_R32(tp, MISC) & ~TXPLA_RST);
RTL_W8(tp, Config5, RTL_R8(tp, Config5) & ~Spi_en);
}
static void rtl_hw_start_8168e_2(struct rtl8169_private *tp)
{
static const struct ephy_info e_info_8168e_2[] = {
{ 0x09, 0x0000, 0x0080 },
{ 0x19, 0x0000, 0x0224 },
{ 0x00, 0x0000, 0x0004 },
{ 0x0c, 0x3df0, 0x0200 },
};
rtl_set_def_aspm_entry_latency(tp);
rtl_ephy_init(tp, e_info_8168e_2);
rtl_eri_write(tp, 0xc0, ERIAR_MASK_0011, 0x0000);
rtl_eri_write(tp, 0xb8, ERIAR_MASK_1111, 0x0000);
rtl_set_fifo_size(tp, 0x10, 0x10, 0x02, 0x06);
rtl_eri_set_bits(tp, 0x0d4, 0x1f00);
rtl_eri_set_bits(tp, 0x1d0, BIT(1));
rtl_reset_packet_filter(tp);
rtl_eri_set_bits(tp, 0x1b0, BIT(4));
rtl_eri_write(tp, 0xcc, ERIAR_MASK_1111, 0x00000050);
rtl_eri_write(tp, 0xd0, ERIAR_MASK_1111, 0x07ff0060);
rtl_disable_clock_request(tp);
RTL_W8(tp, MCU, RTL_R8(tp, MCU) & ~NOW_IS_OOB);
rtl8168_config_eee_mac(tp);
RTL_W8(tp, DLLPR, RTL_R8(tp, DLLPR) | PFM_EN);
RTL_W32(tp, MISC, RTL_R32(tp, MISC) | PWM_EN);
RTL_W8(tp, Config5, RTL_R8(tp, Config5) & ~Spi_en);
rtl_hw_aspm_clkreq_enable(tp, true);
}
static void rtl_hw_start_8168f(struct rtl8169_private *tp)
{
rtl_set_def_aspm_entry_latency(tp);
rtl_eri_write(tp, 0xc0, ERIAR_MASK_0011, 0x0000);
rtl_eri_write(tp, 0xb8, ERIAR_MASK_1111, 0x0000);
rtl_set_fifo_size(tp, 0x10, 0x10, 0x02, 0x06);
rtl_reset_packet_filter(tp);
rtl_eri_set_bits(tp, 0x1b0, BIT(4));
rtl_eri_set_bits(tp, 0x1d0, BIT(4) | BIT(1));
rtl_eri_write(tp, 0xcc, ERIAR_MASK_1111, 0x00000050);
rtl_eri_write(tp, 0xd0, ERIAR_MASK_1111, 0x00000060);
rtl_disable_clock_request(tp);
RTL_W8(tp, MCU, RTL_R8(tp, MCU) & ~NOW_IS_OOB);
RTL_W8(tp, DLLPR, RTL_R8(tp, DLLPR) | PFM_EN);
RTL_W32(tp, MISC, RTL_R32(tp, MISC) | PWM_EN);
RTL_W8(tp, Config5, RTL_R8(tp, Config5) & ~Spi_en);
rtl8168_config_eee_mac(tp);
}
static void rtl_hw_start_8168f_1(struct rtl8169_private *tp)
{
static const struct ephy_info e_info_8168f_1[] = {
{ 0x06, 0x00c0, 0x0020 },
{ 0x08, 0x0001, 0x0002 },
{ 0x09, 0x0000, 0x0080 },
{ 0x19, 0x0000, 0x0224 },
{ 0x00, 0x0000, 0x0004 },
{ 0x0c, 0x3df0, 0x0200 },
};
rtl_hw_start_8168f(tp);
rtl_ephy_init(tp, e_info_8168f_1);
rtl_eri_set_bits(tp, 0x0d4, 0x1f00);
}
static void rtl_hw_start_8411(struct rtl8169_private *tp)
{
static const struct ephy_info e_info_8168f_1[] = {
{ 0x06, 0x00c0, 0x0020 },
{ 0x0f, 0xffff, 0x5200 },
{ 0x19, 0x0000, 0x0224 },
{ 0x00, 0x0000, 0x0004 },
{ 0x0c, 0x3df0, 0x0200 },
};
rtl_hw_start_8168f(tp);
rtl_pcie_state_l2l3_disable(tp);
rtl_ephy_init(tp, e_info_8168f_1);
rtl_eri_set_bits(tp, 0x0d4, 0x0c00);
}
static void rtl_hw_start_8168g(struct rtl8169_private *tp)
{
rtl_set_fifo_size(tp, 0x08, 0x10, 0x02, 0x06);
rtl8168g_set_pause_thresholds(tp, 0x38, 0x48);
rtl_set_def_aspm_entry_latency(tp);
rtl_reset_packet_filter(tp);
rtl_eri_write(tp, 0x2f8, ERIAR_MASK_0011, 0x1d8f);
RTL_W32(tp, MISC, RTL_R32(tp, MISC) & ~RXDV_GATED_EN);
rtl_eri_write(tp, 0xc0, ERIAR_MASK_0011, 0x0000);
rtl_eri_write(tp, 0xb8, ERIAR_MASK_0011, 0x0000);
rtl_eri_set_bits(tp, 0x0d4, 0x1f80);
rtl8168_config_eee_mac(tp);
rtl_w0w1_eri(tp, 0x2fc, 0x01, 0x06);
rtl_eri_clear_bits(tp, 0x1b0, BIT(12));
rtl_pcie_state_l2l3_disable(tp);
}
static void rtl_hw_start_8168g_1(struct rtl8169_private *tp)
{
static const struct ephy_info e_info_8168g_1[] = {
{ 0x00, 0x0008, 0x0000 },
{ 0x0c, 0x3ff0, 0x0820 },
{ 0x1e, 0x0000, 0x0001 },
{ 0x19, 0x8000, 0x0000 }
};
rtl_hw_start_8168g(tp);
/* disable aspm and clock request before access ephy */
rtl_hw_aspm_clkreq_enable(tp, false);
rtl_ephy_init(tp, e_info_8168g_1);
rtl_hw_aspm_clkreq_enable(tp, true);
}
static void rtl_hw_start_8168g_2(struct rtl8169_private *tp)
{
static const struct ephy_info e_info_8168g_2[] = {
{ 0x00, 0x0008, 0x0000 },
{ 0x0c, 0x3ff0, 0x0820 },
{ 0x19, 0xffff, 0x7c00 },
{ 0x1e, 0xffff, 0x20eb },
{ 0x0d, 0xffff, 0x1666 },
{ 0x00, 0xffff, 0x10a3 },
{ 0x06, 0xffff, 0xf050 },
{ 0x04, 0x0000, 0x0010 },
{ 0x1d, 0x4000, 0x0000 },
};
rtl_hw_start_8168g(tp);
/* disable aspm and clock request before access ephy */
rtl_hw_aspm_clkreq_enable(tp, false);
rtl_ephy_init(tp, e_info_8168g_2);
}
static void rtl_hw_start_8411_2(struct rtl8169_private *tp)
{
static const struct ephy_info e_info_8411_2[] = {
{ 0x00, 0x0008, 0x0000 },
{ 0x0c, 0x37d0, 0x0820 },
{ 0x1e, 0x0000, 0x0001 },
{ 0x19, 0x8021, 0x0000 },
{ 0x1e, 0x0000, 0x2000 },
{ 0x0d, 0x0100, 0x0200 },
{ 0x00, 0x0000, 0x0080 },
{ 0x06, 0x0000, 0x0010 },
{ 0x04, 0x0000, 0x0010 },
{ 0x1d, 0x0000, 0x4000 },
};
rtl_hw_start_8168g(tp);
/* disable aspm and clock request before access ephy */
rtl_hw_aspm_clkreq_enable(tp, false);
rtl_ephy_init(tp, e_info_8411_2);
/* The following Realtek-provided magic fixes an issue with the RX unit
* getting confused after the PHY having been powered-down.
*/
r8168_mac_ocp_write(tp, 0xFC28, 0x0000);
r8168_mac_ocp_write(tp, 0xFC2A, 0x0000);
r8168_mac_ocp_write(tp, 0xFC2C, 0x0000);
r8168_mac_ocp_write(tp, 0xFC2E, 0x0000);
r8168_mac_ocp_write(tp, 0xFC30, 0x0000);
r8168_mac_ocp_write(tp, 0xFC32, 0x0000);
r8168_mac_ocp_write(tp, 0xFC34, 0x0000);
r8168_mac_ocp_write(tp, 0xFC36, 0x0000);
mdelay(3);
r8168_mac_ocp_write(tp, 0xFC26, 0x0000);
r8168_mac_ocp_write(tp, 0xF800, 0xE008);
r8168_mac_ocp_write(tp, 0xF802, 0xE00A);
r8168_mac_ocp_write(tp, 0xF804, 0xE00C);
r8168_mac_ocp_write(tp, 0xF806, 0xE00E);
r8168_mac_ocp_write(tp, 0xF808, 0xE027);
r8168_mac_ocp_write(tp, 0xF80A, 0xE04F);
r8168_mac_ocp_write(tp, 0xF80C, 0xE05E);
r8168_mac_ocp_write(tp, 0xF80E, 0xE065);
r8168_mac_ocp_write(tp, 0xF810, 0xC602);
r8168_mac_ocp_write(tp, 0xF812, 0xBE00);
r8168_mac_ocp_write(tp, 0xF814, 0x0000);
r8168_mac_ocp_write(tp, 0xF816, 0xC502);
r8168_mac_ocp_write(tp, 0xF818, 0xBD00);
r8168_mac_ocp_write(tp, 0xF81A, 0x074C);
r8168_mac_ocp_write(tp, 0xF81C, 0xC302);
r8168_mac_ocp_write(tp, 0xF81E, 0xBB00);
r8168_mac_ocp_write(tp, 0xF820, 0x080A);
r8168_mac_ocp_write(tp, 0xF822, 0x6420);
r8168_mac_ocp_write(tp, 0xF824, 0x48C2);
r8168_mac_ocp_write(tp, 0xF826, 0x8C20);
r8168_mac_ocp_write(tp, 0xF828, 0xC516);
r8168_mac_ocp_write(tp, 0xF82A, 0x64A4);
r8168_mac_ocp_write(tp, 0xF82C, 0x49C0);
r8168_mac_ocp_write(tp, 0xF82E, 0xF009);
r8168_mac_ocp_write(tp, 0xF830, 0x74A2);
r8168_mac_ocp_write(tp, 0xF832, 0x8CA5);
r8168_mac_ocp_write(tp, 0xF834, 0x74A0);
r8168_mac_ocp_write(tp, 0xF836, 0xC50E);
r8168_mac_ocp_write(tp, 0xF838, 0x9CA2);
r8168_mac_ocp_write(tp, 0xF83A, 0x1C11);
r8168_mac_ocp_write(tp, 0xF83C, 0x9CA0);
r8168_mac_ocp_write(tp, 0xF83E, 0xE006);
r8168_mac_ocp_write(tp, 0xF840, 0x74F8);
r8168_mac_ocp_write(tp, 0xF842, 0x48C4);
r8168_mac_ocp_write(tp, 0xF844, 0x8CF8);
r8168_mac_ocp_write(tp, 0xF846, 0xC404);
r8168_mac_ocp_write(tp, 0xF848, 0xBC00);
r8168_mac_ocp_write(tp, 0xF84A, 0xC403);
r8168_mac_ocp_write(tp, 0xF84C, 0xBC00);
r8168_mac_ocp_write(tp, 0xF84E, 0x0BF2);
r8168_mac_ocp_write(tp, 0xF850, 0x0C0A);
r8168_mac_ocp_write(tp, 0xF852, 0xE434);
r8168_mac_ocp_write(tp, 0xF854, 0xD3C0);
r8168_mac_ocp_write(tp, 0xF856, 0x49D9);
r8168_mac_ocp_write(tp, 0xF858, 0xF01F);
r8168_mac_ocp_write(tp, 0xF85A, 0xC526);
r8168_mac_ocp_write(tp, 0xF85C, 0x64A5);
r8168_mac_ocp_write(tp, 0xF85E, 0x1400);
r8168_mac_ocp_write(tp, 0xF860, 0xF007);
r8168_mac_ocp_write(tp, 0xF862, 0x0C01);
r8168_mac_ocp_write(tp, 0xF864, 0x8CA5);
r8168_mac_ocp_write(tp, 0xF866, 0x1C15);
r8168_mac_ocp_write(tp, 0xF868, 0xC51B);
r8168_mac_ocp_write(tp, 0xF86A, 0x9CA0);
r8168_mac_ocp_write(tp, 0xF86C, 0xE013);
r8168_mac_ocp_write(tp, 0xF86E, 0xC519);
r8168_mac_ocp_write(tp, 0xF870, 0x74A0);
r8168_mac_ocp_write(tp, 0xF872, 0x48C4);
r8168_mac_ocp_write(tp, 0xF874, 0x8CA0);
r8168_mac_ocp_write(tp, 0xF876, 0xC516);
r8168_mac_ocp_write(tp, 0xF878, 0x74A4);
r8168_mac_ocp_write(tp, 0xF87A, 0x48C8);
r8168_mac_ocp_write(tp, 0xF87C, 0x48CA);
r8168_mac_ocp_write(tp, 0xF87E, 0x9CA4);
r8168_mac_ocp_write(tp, 0xF880, 0xC512);
r8168_mac_ocp_write(tp, 0xF882, 0x1B00);
r8168_mac_ocp_write(tp, 0xF884, 0x9BA0);
r8168_mac_ocp_write(tp, 0xF886, 0x1B1C);
r8168_mac_ocp_write(tp, 0xF888, 0x483F);
r8168_mac_ocp_write(tp, 0xF88A, 0x9BA2);
r8168_mac_ocp_write(tp, 0xF88C, 0x1B04);
r8168_mac_ocp_write(tp, 0xF88E, 0xC508);
r8168_mac_ocp_write(tp, 0xF890, 0x9BA0);
r8168_mac_ocp_write(tp, 0xF892, 0xC505);
r8168_mac_ocp_write(tp, 0xF894, 0xBD00);
r8168_mac_ocp_write(tp, 0xF896, 0xC502);
r8168_mac_ocp_write(tp, 0xF898, 0xBD00);
r8168_mac_ocp_write(tp, 0xF89A, 0x0300);
r8168_mac_ocp_write(tp, 0xF89C, 0x051E);
r8168_mac_ocp_write(tp, 0xF89E, 0xE434);
r8168_mac_ocp_write(tp, 0xF8A0, 0xE018);
r8168_mac_ocp_write(tp, 0xF8A2, 0xE092);
r8168_mac_ocp_write(tp, 0xF8A4, 0xDE20);
r8168_mac_ocp_write(tp, 0xF8A6, 0xD3C0);
r8168_mac_ocp_write(tp, 0xF8A8, 0xC50F);
r8168_mac_ocp_write(tp, 0xF8AA, 0x76A4);
r8168_mac_ocp_write(tp, 0xF8AC, 0x49E3);
r8168_mac_ocp_write(tp, 0xF8AE, 0xF007);
r8168_mac_ocp_write(tp, 0xF8B0, 0x49C0);
r8168_mac_ocp_write(tp, 0xF8B2, 0xF103);
r8168_mac_ocp_write(tp, 0xF8B4, 0xC607);
r8168_mac_ocp_write(tp, 0xF8B6, 0xBE00);
r8168_mac_ocp_write(tp, 0xF8B8, 0xC606);
r8168_mac_ocp_write(tp, 0xF8BA, 0xBE00);
r8168_mac_ocp_write(tp, 0xF8BC, 0xC602);
r8168_mac_ocp_write(tp, 0xF8BE, 0xBE00);
r8168_mac_ocp_write(tp, 0xF8C0, 0x0C4C);
r8168_mac_ocp_write(tp, 0xF8C2, 0x0C28);
r8168_mac_ocp_write(tp, 0xF8C4, 0x0C2C);
r8168_mac_ocp_write(tp, 0xF8C6, 0xDC00);
r8168_mac_ocp_write(tp, 0xF8C8, 0xC707);
r8168_mac_ocp_write(tp, 0xF8CA, 0x1D00);
r8168_mac_ocp_write(tp, 0xF8CC, 0x8DE2);
r8168_mac_ocp_write(tp, 0xF8CE, 0x48C1);
r8168_mac_ocp_write(tp, 0xF8D0, 0xC502);
r8168_mac_ocp_write(tp, 0xF8D2, 0xBD00);
r8168_mac_ocp_write(tp, 0xF8D4, 0x00AA);
r8168_mac_ocp_write(tp, 0xF8D6, 0xE0C0);
r8168_mac_ocp_write(tp, 0xF8D8, 0xC502);
r8168_mac_ocp_write(tp, 0xF8DA, 0xBD00);
r8168_mac_ocp_write(tp, 0xF8DC, 0x0132);
r8168_mac_ocp_write(tp, 0xFC26, 0x8000);
r8168_mac_ocp_write(tp, 0xFC2A, 0x0743);
r8168_mac_ocp_write(tp, 0xFC2C, 0x0801);
r8168_mac_ocp_write(tp, 0xFC2E, 0x0BE9);
r8168_mac_ocp_write(tp, 0xFC30, 0x02FD);
r8168_mac_ocp_write(tp, 0xFC32, 0x0C25);
r8168_mac_ocp_write(tp, 0xFC34, 0x00A9);
r8168_mac_ocp_write(tp, 0xFC36, 0x012D);
rtl_hw_aspm_clkreq_enable(tp, true);
}
static void rtl_hw_start_8168h_1(struct rtl8169_private *tp)
{
static const struct ephy_info e_info_8168h_1[] = {
{ 0x1e, 0x0800, 0x0001 },
{ 0x1d, 0x0000, 0x0800 },
{ 0x05, 0xffff, 0x2089 },
{ 0x06, 0xffff, 0x5881 },
{ 0x04, 0xffff, 0x854a },
{ 0x01, 0xffff, 0x068b }
};
int rg_saw_cnt;
/* disable aspm and clock request before access ephy */
rtl_hw_aspm_clkreq_enable(tp, false);
rtl_ephy_init(tp, e_info_8168h_1);
rtl_set_fifo_size(tp, 0x08, 0x10, 0x02, 0x06);
rtl8168g_set_pause_thresholds(tp, 0x38, 0x48);
rtl_set_def_aspm_entry_latency(tp);
rtl_reset_packet_filter(tp);
rtl_eri_set_bits(tp, 0xd4, 0x1f00);
rtl_eri_set_bits(tp, 0xdc, 0x001c);
rtl_eri_write(tp, 0x5f0, ERIAR_MASK_0011, 0x4f87);
RTL_W32(tp, MISC, RTL_R32(tp, MISC) & ~RXDV_GATED_EN);
rtl_eri_write(tp, 0xc0, ERIAR_MASK_0011, 0x0000);
rtl_eri_write(tp, 0xb8, ERIAR_MASK_0011, 0x0000);
rtl8168_config_eee_mac(tp);
RTL_W8(tp, DLLPR, RTL_R8(tp, DLLPR) & ~PFM_EN);
RTL_W8(tp, MISC_1, RTL_R8(tp, MISC_1) & ~PFM_D3COLD_EN);
RTL_W8(tp, DLLPR, RTL_R8(tp, DLLPR) & ~TX_10M_PS_EN);
rtl_eri_clear_bits(tp, 0x1b0, BIT(12));
rtl_pcie_state_l2l3_disable(tp);
rg_saw_cnt = phy_read_paged(tp->phydev, 0x0c42, 0x13) & 0x3fff;
if (rg_saw_cnt > 0) {
u16 sw_cnt_1ms_ini;
sw_cnt_1ms_ini = 16000000/rg_saw_cnt;
sw_cnt_1ms_ini &= 0x0fff;
r8168_mac_ocp_modify(tp, 0xd412, 0x0fff, sw_cnt_1ms_ini);
}
r8168_mac_ocp_modify(tp, 0xe056, 0x00f0, 0x0070);
r8168_mac_ocp_modify(tp, 0xe052, 0x6000, 0x8008);
r8168_mac_ocp_modify(tp, 0xe0d6, 0x01ff, 0x017f);
r8168_mac_ocp_modify(tp, 0xd420, 0x0fff, 0x047f);
r8168_mac_ocp_write(tp, 0xe63e, 0x0001);
r8168_mac_ocp_write(tp, 0xe63e, 0x0000);
r8168_mac_ocp_write(tp, 0xc094, 0x0000);
r8168_mac_ocp_write(tp, 0xc09e, 0x0000);
rtl_hw_aspm_clkreq_enable(tp, true);
}
static void rtl_hw_start_8168ep(struct rtl8169_private *tp)
{
rtl8168ep_stop_cmac(tp);
rtl_set_fifo_size(tp, 0x08, 0x10, 0x02, 0x06);
rtl8168g_set_pause_thresholds(tp, 0x2f, 0x5f);
rtl_set_def_aspm_entry_latency(tp);
rtl_reset_packet_filter(tp);
rtl_eri_set_bits(tp, 0xd4, 0x1f80);
rtl_eri_write(tp, 0x5f0, ERIAR_MASK_0011, 0x4f87);
RTL_W32(tp, MISC, RTL_R32(tp, MISC) & ~RXDV_GATED_EN);
rtl_eri_write(tp, 0xc0, ERIAR_MASK_0011, 0x0000);
rtl_eri_write(tp, 0xb8, ERIAR_MASK_0011, 0x0000);
rtl8168_config_eee_mac(tp);
rtl_w0w1_eri(tp, 0x2fc, 0x01, 0x06);
RTL_W8(tp, DLLPR, RTL_R8(tp, DLLPR) & ~TX_10M_PS_EN);
rtl_pcie_state_l2l3_disable(tp);
}
static void rtl_hw_start_8168ep_1(struct rtl8169_private *tp)
{
static const struct ephy_info e_info_8168ep_1[] = {
{ 0x00, 0xffff, 0x10ab },
{ 0x06, 0xffff, 0xf030 },
{ 0x08, 0xffff, 0x2006 },
{ 0x0d, 0xffff, 0x1666 },
{ 0x0c, 0x3ff0, 0x0000 }
};
/* disable aspm and clock request before access ephy */
rtl_hw_aspm_clkreq_enable(tp, false);
rtl_ephy_init(tp, e_info_8168ep_1);
rtl_hw_start_8168ep(tp);
rtl_hw_aspm_clkreq_enable(tp, true);
}
static void rtl_hw_start_8168ep_2(struct rtl8169_private *tp)
{
static const struct ephy_info e_info_8168ep_2[] = {
{ 0x00, 0xffff, 0x10a3 },
{ 0x19, 0xffff, 0xfc00 },
{ 0x1e, 0xffff, 0x20ea }
};
/* disable aspm and clock request before access ephy */
rtl_hw_aspm_clkreq_enable(tp, false);
rtl_ephy_init(tp, e_info_8168ep_2);
rtl_hw_start_8168ep(tp);
RTL_W8(tp, DLLPR, RTL_R8(tp, DLLPR) & ~PFM_EN);
RTL_W8(tp, MISC_1, RTL_R8(tp, MISC_1) & ~PFM_D3COLD_EN);
rtl_hw_aspm_clkreq_enable(tp, true);
}
static void rtl_hw_start_8168ep_3(struct rtl8169_private *tp)
{
static const struct ephy_info e_info_8168ep_3[] = {
{ 0x00, 0x0000, 0x0080 },
{ 0x0d, 0x0100, 0x0200 },
{ 0x19, 0x8021, 0x0000 },
{ 0x1e, 0x0000, 0x2000 },
};
/* disable aspm and clock request before access ephy */
rtl_hw_aspm_clkreq_enable(tp, false);
rtl_ephy_init(tp, e_info_8168ep_3);
rtl_hw_start_8168ep(tp);
RTL_W8(tp, DLLPR, RTL_R8(tp, DLLPR) & ~PFM_EN);
RTL_W8(tp, MISC_1, RTL_R8(tp, MISC_1) & ~PFM_D3COLD_EN);
r8168_mac_ocp_modify(tp, 0xd3e2, 0x0fff, 0x0271);
r8168_mac_ocp_modify(tp, 0xd3e4, 0x00ff, 0x0000);
r8168_mac_ocp_modify(tp, 0xe860, 0x0000, 0x0080);
rtl_hw_aspm_clkreq_enable(tp, true);
}
static void rtl_hw_start_8117(struct rtl8169_private *tp)
{
static const struct ephy_info e_info_8117[] = {
{ 0x19, 0x0040, 0x1100 },
{ 0x59, 0x0040, 0x1100 },
};
int rg_saw_cnt;
rtl8168ep_stop_cmac(tp);
/* disable aspm and clock request before access ephy */
rtl_hw_aspm_clkreq_enable(tp, false);
rtl_ephy_init(tp, e_info_8117);
rtl_set_fifo_size(tp, 0x08, 0x10, 0x02, 0x06);
rtl8168g_set_pause_thresholds(tp, 0x2f, 0x5f);
rtl_set_def_aspm_entry_latency(tp);
rtl_reset_packet_filter(tp);
rtl_eri_set_bits(tp, 0xd4, 0x1f90);
rtl_eri_write(tp, 0x5f0, ERIAR_MASK_0011, 0x4f87);
RTL_W32(tp, MISC, RTL_R32(tp, MISC) & ~RXDV_GATED_EN);
rtl_eri_write(tp, 0xc0, ERIAR_MASK_0011, 0x0000);
rtl_eri_write(tp, 0xb8, ERIAR_MASK_0011, 0x0000);
rtl8168_config_eee_mac(tp);
RTL_W8(tp, DLLPR, RTL_R8(tp, DLLPR) & ~PFM_EN);
RTL_W8(tp, MISC_1, RTL_R8(tp, MISC_1) & ~PFM_D3COLD_EN);
RTL_W8(tp, DLLPR, RTL_R8(tp, DLLPR) & ~TX_10M_PS_EN);
rtl_eri_clear_bits(tp, 0x1b0, BIT(12));
rtl_pcie_state_l2l3_disable(tp);
rg_saw_cnt = phy_read_paged(tp->phydev, 0x0c42, 0x13) & 0x3fff;
if (rg_saw_cnt > 0) {
u16 sw_cnt_1ms_ini;
sw_cnt_1ms_ini = (16000000 / rg_saw_cnt) & 0x0fff;
r8168_mac_ocp_modify(tp, 0xd412, 0x0fff, sw_cnt_1ms_ini);
}
r8168_mac_ocp_modify(tp, 0xe056, 0x00f0, 0x0070);
r8168_mac_ocp_write(tp, 0xea80, 0x0003);
r8168_mac_ocp_modify(tp, 0xe052, 0x0000, 0x0009);
r8168_mac_ocp_modify(tp, 0xd420, 0x0fff, 0x047f);
r8168_mac_ocp_write(tp, 0xe63e, 0x0001);
r8168_mac_ocp_write(tp, 0xe63e, 0x0000);
r8168_mac_ocp_write(tp, 0xc094, 0x0000);
r8168_mac_ocp_write(tp, 0xc09e, 0x0000);
/* firmware is for MAC only */
r8169_apply_firmware(tp);
rtl_hw_aspm_clkreq_enable(tp, true);
}
static void rtl_hw_start_8102e_1(struct rtl8169_private *tp)
{
static const struct ephy_info e_info_8102e_1[] = {
{ 0x01, 0, 0x6e65 },
{ 0x02, 0, 0x091f },
{ 0x03, 0, 0xc2f9 },
{ 0x06, 0, 0xafb5 },
{ 0x07, 0, 0x0e00 },
{ 0x19, 0, 0xec80 },
{ 0x01, 0, 0x2e65 },
{ 0x01, 0, 0x6e65 }
};
u8 cfg1;
rtl_set_def_aspm_entry_latency(tp);
RTL_W8(tp, DBG_REG, FIX_NAK_1);
RTL_W8(tp, Config1,
LEDS1 | LEDS0 | Speed_down | MEMMAP | IOMAP | VPD | PMEnable);
RTL_W8(tp, Config3, RTL_R8(tp, Config3) & ~Beacon_en);
cfg1 = RTL_R8(tp, Config1);
if ((cfg1 & LEDS0) && (cfg1 & LEDS1))
RTL_W8(tp, Config1, cfg1 & ~LEDS0);
rtl_ephy_init(tp, e_info_8102e_1);
}
static void rtl_hw_start_8102e_2(struct rtl8169_private *tp)
{
rtl_set_def_aspm_entry_latency(tp);
RTL_W8(tp, Config1, MEMMAP | IOMAP | VPD | PMEnable);
RTL_W8(tp, Config3, RTL_R8(tp, Config3) & ~Beacon_en);
}
static void rtl_hw_start_8102e_3(struct rtl8169_private *tp)
{
rtl_hw_start_8102e_2(tp);
rtl_ephy_write(tp, 0x03, 0xc2f9);
}
static void rtl_hw_start_8105e_1(struct rtl8169_private *tp)
{
static const struct ephy_info e_info_8105e_1[] = {
{ 0x07, 0, 0x4000 },
{ 0x19, 0, 0x0200 },
{ 0x19, 0, 0x0020 },
{ 0x1e, 0, 0x2000 },
{ 0x03, 0, 0x0001 },
{ 0x19, 0, 0x0100 },
{ 0x19, 0, 0x0004 },
{ 0x0a, 0, 0x0020 }
};
/* Force LAN exit from ASPM if Rx/Tx are not idle */
RTL_W32(tp, FuncEvent, RTL_R32(tp, FuncEvent) | 0x002800);
/* Disable Early Tally Counter */
RTL_W32(tp, FuncEvent, RTL_R32(tp, FuncEvent) & ~0x010000);
RTL_W8(tp, MCU, RTL_R8(tp, MCU) | EN_NDP | EN_OOB_RESET);
RTL_W8(tp, DLLPR, RTL_R8(tp, DLLPR) | PFM_EN);
rtl_ephy_init(tp, e_info_8105e_1);
rtl_pcie_state_l2l3_disable(tp);
}
static void rtl_hw_start_8105e_2(struct rtl8169_private *tp)
{
rtl_hw_start_8105e_1(tp);
rtl_ephy_write(tp, 0x1e, rtl_ephy_read(tp, 0x1e) | 0x8000);
}
static void rtl_hw_start_8402(struct rtl8169_private *tp)
{
static const struct ephy_info e_info_8402[] = {
{ 0x19, 0xffff, 0xff64 },
{ 0x1e, 0, 0x4000 }
};
rtl_set_def_aspm_entry_latency(tp);
/* Force LAN exit from ASPM if Rx/Tx are not idle */
RTL_W32(tp, FuncEvent, RTL_R32(tp, FuncEvent) | 0x002800);
RTL_W8(tp, MCU, RTL_R8(tp, MCU) & ~NOW_IS_OOB);
rtl_ephy_init(tp, e_info_8402);
rtl_set_fifo_size(tp, 0x00, 0x00, 0x02, 0x06);
rtl_reset_packet_filter(tp);
rtl_eri_write(tp, 0xc0, ERIAR_MASK_0011, 0x0000);
rtl_eri_write(tp, 0xb8, ERIAR_MASK_0011, 0x0000);
rtl_w0w1_eri(tp, 0x0d4, 0x0e00, 0xff00);
/* disable EEE */
rtl_eri_write(tp, 0x1b0, ERIAR_MASK_0011, 0x0000);
rtl_pcie_state_l2l3_disable(tp);
}
static void rtl_hw_start_8106(struct rtl8169_private *tp)
{
rtl_hw_aspm_clkreq_enable(tp, false);
/* Force LAN exit from ASPM if Rx/Tx are not idle */
RTL_W32(tp, FuncEvent, RTL_R32(tp, FuncEvent) | 0x002800);
RTL_W32(tp, MISC, (RTL_R32(tp, MISC) | DISABLE_LAN_EN) & ~EARLY_TALLY_EN);
RTL_W8(tp, MCU, RTL_R8(tp, MCU) | EN_NDP | EN_OOB_RESET);
RTL_W8(tp, DLLPR, RTL_R8(tp, DLLPR) & ~PFM_EN);
rtl_eri_write(tp, 0x1d0, ERIAR_MASK_0011, 0x0000);
/* disable EEE */
rtl_eri_write(tp, 0x1b0, ERIAR_MASK_0011, 0x0000);
rtl_pcie_state_l2l3_disable(tp);
rtl_hw_aspm_clkreq_enable(tp, true);
}
DECLARE_RTL_COND(rtl_mac_ocp_e00e_cond)
{
return r8168_mac_ocp_read(tp, 0xe00e) & BIT(13);
}
static void rtl_hw_start_8125_common(struct rtl8169_private *tp)
{
rtl_pcie_state_l2l3_disable(tp);
RTL_W16(tp, 0x382, 0x221b);
RTL_W8(tp, 0x4500, 0);
RTL_W16(tp, 0x4800, 0);
/* disable UPS */
r8168_mac_ocp_modify(tp, 0xd40a, 0x0010, 0x0000);
RTL_W8(tp, Config1, RTL_R8(tp, Config1) & ~0x10);
r8168_mac_ocp_write(tp, 0xc140, 0xffff);
r8168_mac_ocp_write(tp, 0xc142, 0xffff);
r8168_mac_ocp_modify(tp, 0xd3e2, 0x0fff, 0x03a9);
r8168_mac_ocp_modify(tp, 0xd3e4, 0x00ff, 0x0000);
r8168_mac_ocp_modify(tp, 0xe860, 0x0000, 0x0080);
/* disable new tx descriptor format */
r8168_mac_ocp_modify(tp, 0xeb58, 0x0001, 0x0000);
r8168_mac_ocp_modify(tp, 0xe614, 0x0700, 0x0400);
r8168_mac_ocp_modify(tp, 0xe63e, 0x0c30, 0x0020);
r8168_mac_ocp_modify(tp, 0xc0b4, 0x0000, 0x000c);
r8168_mac_ocp_modify(tp, 0xeb6a, 0x00ff, 0x0033);
r8168_mac_ocp_modify(tp, 0xeb50, 0x03e0, 0x0040);
r8168_mac_ocp_modify(tp, 0xe056, 0x00f0, 0x0030);
r8168_mac_ocp_modify(tp, 0xe040, 0x1000, 0x0000);
r8168_mac_ocp_modify(tp, 0xe0c0, 0x4f0f, 0x4403);
r8168_mac_ocp_modify(tp, 0xe052, 0x0080, 0x0067);
r8168_mac_ocp_modify(tp, 0xc0ac, 0x0080, 0x1f00);
r8168_mac_ocp_modify(tp, 0xd430, 0x0fff, 0x047f);
r8168_mac_ocp_modify(tp, 0xe84c, 0x0000, 0x00c0);
r8168_mac_ocp_modify(tp, 0xea1c, 0x0004, 0x0000);
r8168_mac_ocp_modify(tp, 0xeb54, 0x0000, 0x0001);
udelay(1);
r8168_mac_ocp_modify(tp, 0xeb54, 0x0001, 0x0000);
RTL_W16(tp, 0x1880, RTL_R16(tp, 0x1880) & ~0x0030);
r8168_mac_ocp_write(tp, 0xe098, 0xc302);
rtl_loop_wait_low(tp, &rtl_mac_ocp_e00e_cond, 1000, 10);
rtl8125_config_eee_mac(tp);
RTL_W32(tp, MISC, RTL_R32(tp, MISC) & ~RXDV_GATED_EN);
udelay(10);
}
static void rtl_hw_start_8125_1(struct rtl8169_private *tp)
{
static const struct ephy_info e_info_8125_1[] = {
{ 0x01, 0xffff, 0xa812 },
{ 0x09, 0xffff, 0x520c },
{ 0x04, 0xffff, 0xd000 },
{ 0x0d, 0xffff, 0xf702 },
{ 0x0a, 0xffff, 0x8653 },
{ 0x06, 0xffff, 0x001e },
{ 0x08, 0xffff, 0x3595 },
{ 0x20, 0xffff, 0x9455 },
{ 0x21, 0xffff, 0x99ff },
{ 0x02, 0xffff, 0x6046 },
{ 0x29, 0xffff, 0xfe00 },
{ 0x23, 0xffff, 0xab62 },
{ 0x41, 0xffff, 0xa80c },
{ 0x49, 0xffff, 0x520c },
{ 0x44, 0xffff, 0xd000 },
{ 0x4d, 0xffff, 0xf702 },
{ 0x4a, 0xffff, 0x8653 },
{ 0x46, 0xffff, 0x001e },
{ 0x48, 0xffff, 0x3595 },
{ 0x60, 0xffff, 0x9455 },
{ 0x61, 0xffff, 0x99ff },
{ 0x42, 0xffff, 0x6046 },
{ 0x69, 0xffff, 0xfe00 },
{ 0x63, 0xffff, 0xab62 },
};
rtl_set_def_aspm_entry_latency(tp);
/* disable aspm and clock request before access ephy */
rtl_hw_aspm_clkreq_enable(tp, false);
rtl_ephy_init(tp, e_info_8125_1);
rtl_hw_start_8125_common(tp);
}
static void rtl_hw_start_8125_2(struct rtl8169_private *tp)
{
static const struct ephy_info e_info_8125_2[] = {
{ 0x04, 0xffff, 0xd000 },
{ 0x0a, 0xffff, 0x8653 },
{ 0x23, 0xffff, 0xab66 },
{ 0x20, 0xffff, 0x9455 },
{ 0x21, 0xffff, 0x99ff },
{ 0x29, 0xffff, 0xfe04 },
{ 0x44, 0xffff, 0xd000 },
{ 0x4a, 0xffff, 0x8653 },
{ 0x63, 0xffff, 0xab66 },
{ 0x60, 0xffff, 0x9455 },
{ 0x61, 0xffff, 0x99ff },
{ 0x69, 0xffff, 0xfe04 },
};
rtl_set_def_aspm_entry_latency(tp);
/* disable aspm and clock request before access ephy */
rtl_hw_aspm_clkreq_enable(tp, false);
rtl_ephy_init(tp, e_info_8125_2);
rtl_hw_start_8125_common(tp);
}
static void rtl_hw_config(struct rtl8169_private *tp)
{
static const rtl_generic_fct hw_configs[] = {
[RTL_GIGA_MAC_VER_07] = rtl_hw_start_8102e_1,
[RTL_GIGA_MAC_VER_08] = rtl_hw_start_8102e_3,
[RTL_GIGA_MAC_VER_09] = rtl_hw_start_8102e_2,
[RTL_GIGA_MAC_VER_10] = NULL,
[RTL_GIGA_MAC_VER_11] = rtl_hw_start_8168b,
[RTL_GIGA_MAC_VER_12] = rtl_hw_start_8168b,
[RTL_GIGA_MAC_VER_13] = NULL,
[RTL_GIGA_MAC_VER_14] = NULL,
[RTL_GIGA_MAC_VER_15] = NULL,
[RTL_GIGA_MAC_VER_16] = NULL,
[RTL_GIGA_MAC_VER_17] = rtl_hw_start_8168b,
[RTL_GIGA_MAC_VER_18] = rtl_hw_start_8168cp_1,
[RTL_GIGA_MAC_VER_19] = rtl_hw_start_8168c_1,
[RTL_GIGA_MAC_VER_20] = rtl_hw_start_8168c_2,
[RTL_GIGA_MAC_VER_21] = rtl_hw_start_8168c_3,
[RTL_GIGA_MAC_VER_22] = rtl_hw_start_8168c_4,
[RTL_GIGA_MAC_VER_23] = rtl_hw_start_8168cp_2,
[RTL_GIGA_MAC_VER_24] = rtl_hw_start_8168cp_3,
[RTL_GIGA_MAC_VER_25] = rtl_hw_start_8168d,
[RTL_GIGA_MAC_VER_26] = rtl_hw_start_8168d,
[RTL_GIGA_MAC_VER_27] = rtl_hw_start_8168d,
[RTL_GIGA_MAC_VER_28] = rtl_hw_start_8168d_4,
[RTL_GIGA_MAC_VER_29] = rtl_hw_start_8105e_1,
[RTL_GIGA_MAC_VER_30] = rtl_hw_start_8105e_2,
[RTL_GIGA_MAC_VER_31] = rtl_hw_start_8168d,
[RTL_GIGA_MAC_VER_32] = rtl_hw_start_8168e_1,
[RTL_GIGA_MAC_VER_33] = rtl_hw_start_8168e_1,
[RTL_GIGA_MAC_VER_34] = rtl_hw_start_8168e_2,
[RTL_GIGA_MAC_VER_35] = rtl_hw_start_8168f_1,
[RTL_GIGA_MAC_VER_36] = rtl_hw_start_8168f_1,
[RTL_GIGA_MAC_VER_37] = rtl_hw_start_8402,
[RTL_GIGA_MAC_VER_38] = rtl_hw_start_8411,
[RTL_GIGA_MAC_VER_39] = rtl_hw_start_8106,
[RTL_GIGA_MAC_VER_40] = rtl_hw_start_8168g_1,
[RTL_GIGA_MAC_VER_41] = rtl_hw_start_8168g_1,
[RTL_GIGA_MAC_VER_42] = rtl_hw_start_8168g_2,
[RTL_GIGA_MAC_VER_43] = rtl_hw_start_8168g_2,
[RTL_GIGA_MAC_VER_44] = rtl_hw_start_8411_2,
[RTL_GIGA_MAC_VER_45] = rtl_hw_start_8168h_1,
[RTL_GIGA_MAC_VER_46] = rtl_hw_start_8168h_1,
[RTL_GIGA_MAC_VER_47] = rtl_hw_start_8168h_1,
[RTL_GIGA_MAC_VER_48] = rtl_hw_start_8168h_1,
[RTL_GIGA_MAC_VER_49] = rtl_hw_start_8168ep_1,
[RTL_GIGA_MAC_VER_50] = rtl_hw_start_8168ep_2,
[RTL_GIGA_MAC_VER_51] = rtl_hw_start_8168ep_3,
[RTL_GIGA_MAC_VER_52] = rtl_hw_start_8117,
[RTL_GIGA_MAC_VER_60] = rtl_hw_start_8125_1,
[RTL_GIGA_MAC_VER_61] = rtl_hw_start_8125_2,
};
if (hw_configs[tp->mac_version])
hw_configs[tp->mac_version](tp);
}
static void rtl_hw_start_8125(struct rtl8169_private *tp)
{
int i;
/* disable interrupt coalescing */
for (i = 0xa00; i < 0xb00; i += 4)
RTL_W32(tp, i, 0);
rtl_hw_config(tp);
}
static void rtl_hw_start_8168(struct rtl8169_private *tp)
{
if (rtl_is_8168evl_up(tp))
RTL_W8(tp, MaxTxPacketSize, EarlySize);
else
RTL_W8(tp, MaxTxPacketSize, TxPacketMax);
rtl_hw_config(tp);
/* disable interrupt coalescing */
RTL_W16(tp, IntrMitigate, 0x0000);
}
static void rtl_hw_start_8169(struct rtl8169_private *tp)
{
RTL_W8(tp, EarlyTxThres, NoEarlyTx);
tp->cp_cmd |= PCIMulRW;
if (tp->mac_version == RTL_GIGA_MAC_VER_02 ||
tp->mac_version == RTL_GIGA_MAC_VER_03)
tp->cp_cmd |= EnAnaPLL;
RTL_W16(tp, CPlusCmd, tp->cp_cmd);
rtl8169_set_magic_reg(tp);
/* disable interrupt coalescing */
RTL_W16(tp, IntrMitigate, 0x0000);
}
static void rtl_hw_start(struct rtl8169_private *tp)
{
rtl_unlock_config_regs(tp);
RTL_W16(tp, CPlusCmd, tp->cp_cmd);
if (tp->mac_version <= RTL_GIGA_MAC_VER_06)
rtl_hw_start_8169(tp);
else if (rtl_is_8125(tp))
rtl_hw_start_8125(tp);
else
rtl_hw_start_8168(tp);
rtl_set_rx_max_size(tp);
rtl_set_rx_tx_desc_registers(tp);
rtl_lock_config_regs(tp);
rtl_jumbo_config(tp);
/* Initially a 10 us delay. Turned it into a PCI commit. - FR */
rtl_pci_commit(tp);
RTL_W8(tp, ChipCmd, CmdTxEnb | CmdRxEnb);
rtl_init_rxcfg(tp);
rtl_set_tx_config_registers(tp);
rtl_set_rx_config_features(tp, tp->dev->features);
rtl_set_rx_mode(tp->dev);
rtl_irq_enable(tp);
}
static int rtl8169_change_mtu(struct net_device *dev, int new_mtu)
{
struct rtl8169_private *tp = netdev_priv(dev);
dev->mtu = new_mtu;
netdev_update_features(dev);
rtl_jumbo_config(tp);
return 0;
}
static void rtl8169_mark_to_asic(struct RxDesc *desc)
{
u32 eor = le32_to_cpu(desc->opts1) & RingEnd;
desc->opts2 = 0;
/* Force memory writes to complete before releasing descriptor */
dma_wmb();
WRITE_ONCE(desc->opts1, cpu_to_le32(DescOwn | eor | R8169_RX_BUF_SIZE));
}
static struct page *rtl8169_alloc_rx_data(struct rtl8169_private *tp,
struct RxDesc *desc)
{
struct device *d = tp_to_dev(tp);
int node = dev_to_node(d);
dma_addr_t mapping;
struct page *data;
data = alloc_pages_node(node, GFP_KERNEL, get_order(R8169_RX_BUF_SIZE));
if (!data)
return NULL;
mapping = dma_map_page(d, data, 0, R8169_RX_BUF_SIZE, DMA_FROM_DEVICE);
if (unlikely(dma_mapping_error(d, mapping))) {
netdev_err(tp->dev, "Failed to map RX DMA!\n");
__free_pages(data, get_order(R8169_RX_BUF_SIZE));
return NULL;
}
desc->addr = cpu_to_le64(mapping);
rtl8169_mark_to_asic(desc);
return data;
}
static void rtl8169_rx_clear(struct rtl8169_private *tp)
{
unsigned int i;
for (i = 0; i < NUM_RX_DESC && tp->Rx_databuff[i]; i++) {
dma_unmap_page(tp_to_dev(tp),
le64_to_cpu(tp->RxDescArray[i].addr),
R8169_RX_BUF_SIZE, DMA_FROM_DEVICE);
__free_pages(tp->Rx_databuff[i], get_order(R8169_RX_BUF_SIZE));
tp->Rx_databuff[i] = NULL;
tp->RxDescArray[i].addr = 0;
tp->RxDescArray[i].opts1 = 0;
}
}
static int rtl8169_rx_fill(struct rtl8169_private *tp)
{
unsigned int i;
for (i = 0; i < NUM_RX_DESC; i++) {
struct page *data;
data = rtl8169_alloc_rx_data(tp, tp->RxDescArray + i);
if (!data) {
rtl8169_rx_clear(tp);
return -ENOMEM;
}
tp->Rx_databuff[i] = data;
}
/* mark as last descriptor in the ring */
tp->RxDescArray[NUM_RX_DESC - 1].opts1 |= cpu_to_le32(RingEnd);
return 0;
}
static int rtl8169_init_ring(struct rtl8169_private *tp)
{
rtl8169_init_ring_indexes(tp);
memset(tp->tx_skb, 0, sizeof(tp->tx_skb));
memset(tp->Rx_databuff, 0, sizeof(tp->Rx_databuff));
return rtl8169_rx_fill(tp);
}
static void rtl8169_unmap_tx_skb(struct rtl8169_private *tp, unsigned int entry)
{
struct ring_info *tx_skb = tp->tx_skb + entry;
struct TxDesc *desc = tp->TxDescArray + entry;
dma_unmap_single(tp_to_dev(tp), le64_to_cpu(desc->addr), tx_skb->len,
DMA_TO_DEVICE);
memset(desc, 0, sizeof(*desc));
memset(tx_skb, 0, sizeof(*tx_skb));
}
static void rtl8169_tx_clear_range(struct rtl8169_private *tp, u32 start,
unsigned int n)
{
unsigned int i;
for (i = 0; i < n; i++) {
unsigned int entry = (start + i) % NUM_TX_DESC;
struct ring_info *tx_skb = tp->tx_skb + entry;
unsigned int len = tx_skb->len;
if (len) {
struct sk_buff *skb = tx_skb->skb;
rtl8169_unmap_tx_skb(tp, entry);
if (skb)
dev_consume_skb_any(skb);
}
}
}
static void rtl8169_tx_clear(struct rtl8169_private *tp)
{
rtl8169_tx_clear_range(tp, tp->dirty_tx, NUM_TX_DESC);
netdev_reset_queue(tp->dev);
}
static void rtl8169_hw_reset(struct rtl8169_private *tp, bool going_down)
{
/* Give a racing hard_start_xmit a few cycles to complete. */
synchronize_rcu();
/* Disable interrupts */
rtl8169_irq_mask_and_ack(tp);
rtl_rx_close(tp);
if (going_down && tp->dev->wol_enabled)
goto no_reset;
switch (tp->mac_version) {
case RTL_GIGA_MAC_VER_27:
case RTL_GIGA_MAC_VER_28:
case RTL_GIGA_MAC_VER_31:
rtl_loop_wait_low(tp, &rtl_npq_cond, 20, 2000);
break;
case RTL_GIGA_MAC_VER_34 ... RTL_GIGA_MAC_VER_38:
RTL_W8(tp, ChipCmd, RTL_R8(tp, ChipCmd) | StopReq);
rtl_loop_wait_high(tp, &rtl_txcfg_empty_cond, 100, 666);
break;
case RTL_GIGA_MAC_VER_40 ... RTL_GIGA_MAC_VER_61:
rtl_enable_rxdvgate(tp);
fsleep(2000);
break;
default:
RTL_W8(tp, ChipCmd, RTL_R8(tp, ChipCmd) | StopReq);
fsleep(100);
break;
}
rtl_hw_reset(tp);
no_reset:
rtl8169_tx_clear(tp);
rtl8169_init_ring_indexes(tp);
}
static void rtl_reset_work(struct rtl8169_private *tp)
{
struct net_device *dev = tp->dev;
int i;
napi_disable(&tp->napi);
netif_stop_queue(dev);
rtl8169_hw_reset(tp, false);
for (i = 0; i < NUM_RX_DESC; i++)
rtl8169_mark_to_asic(tp->RxDescArray + i);
napi_enable(&tp->napi);
rtl_hw_start(tp);
netif_wake_queue(dev);
}
static void rtl8169_tx_timeout(struct net_device *dev, unsigned int txqueue)
{
struct rtl8169_private *tp = netdev_priv(dev);
rtl_schedule_task(tp, RTL_FLAG_TASK_RESET_PENDING);
}
static int rtl8169_tx_map(struct rtl8169_private *tp, const u32 *opts, u32 len,
void *addr, unsigned int entry, bool desc_own)
{
struct TxDesc *txd = tp->TxDescArray + entry;
struct device *d = tp_to_dev(tp);
dma_addr_t mapping;
u32 opts1;
int ret;
mapping = dma_map_single(d, addr, len, DMA_TO_DEVICE);
ret = dma_mapping_error(d, mapping);
if (unlikely(ret)) {
if (net_ratelimit())
netdev_err(tp->dev, "Failed to map TX data!\n");
return ret;
}
txd->addr = cpu_to_le64(mapping);
txd->opts2 = cpu_to_le32(opts[1]);
opts1 = opts[0] | len;
if (entry == NUM_TX_DESC - 1)
opts1 |= RingEnd;
if (desc_own)
opts1 |= DescOwn;
txd->opts1 = cpu_to_le32(opts1);
tp->tx_skb[entry].len = len;
return 0;
}
static int rtl8169_xmit_frags(struct rtl8169_private *tp, struct sk_buff *skb,
const u32 *opts, unsigned int entry)
{
struct skb_shared_info *info = skb_shinfo(skb);
unsigned int cur_frag;
for (cur_frag = 0; cur_frag < info->nr_frags; cur_frag++) {
const skb_frag_t *frag = info->frags + cur_frag;
void *addr = skb_frag_address(frag);
u32 len = skb_frag_size(frag);
entry = (entry + 1) % NUM_TX_DESC;
if (unlikely(rtl8169_tx_map(tp, opts, len, addr, entry, true)))
goto err_out;
}
return 0;
err_out:
rtl8169_tx_clear_range(tp, tp->cur_tx + 1, cur_frag);
return -EIO;
}
static bool rtl_test_hw_pad_bug(struct rtl8169_private *tp, struct sk_buff *skb)
{
return skb->len < ETH_ZLEN && tp->mac_version == RTL_GIGA_MAC_VER_34;
}
static void rtl8169_tso_csum_v1(struct sk_buff *skb, u32 *opts)
{
u32 mss = skb_shinfo(skb)->gso_size;
if (mss) {
opts[0] |= TD_LSO;
opts[0] |= mss << TD0_MSS_SHIFT;
} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
const struct iphdr *ip = ip_hdr(skb);
if (ip->protocol == IPPROTO_TCP)
opts[0] |= TD0_IP_CS | TD0_TCP_CS;
else if (ip->protocol == IPPROTO_UDP)
opts[0] |= TD0_IP_CS | TD0_UDP_CS;
else
WARN_ON_ONCE(1);
}
}
static bool rtl8169_tso_csum_v2(struct rtl8169_private *tp,
struct sk_buff *skb, u32 *opts)
{
u32 transport_offset = (u32)skb_transport_offset(skb);
struct skb_shared_info *shinfo = skb_shinfo(skb);
u32 mss = shinfo->gso_size;
if (mss) {
if (shinfo->gso_type & SKB_GSO_TCPV4) {
opts[0] |= TD1_GTSENV4;
} else if (shinfo->gso_type & SKB_GSO_TCPV6) {
if (skb_cow_head(skb, 0))
return false;
tcp_v6_gso_csum_prep(skb);
opts[0] |= TD1_GTSENV6;
} else {
WARN_ON_ONCE(1);
}
opts[0] |= transport_offset << GTTCPHO_SHIFT;
opts[1] |= mss << TD1_MSS_SHIFT;
} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
u8 ip_protocol;
switch (vlan_get_protocol(skb)) {
case htons(ETH_P_IP):
opts[1] |= TD1_IPv4_CS;
ip_protocol = ip_hdr(skb)->protocol;
break;
case htons(ETH_P_IPV6):
opts[1] |= TD1_IPv6_CS;
ip_protocol = ipv6_hdr(skb)->nexthdr;
break;
default:
ip_protocol = IPPROTO_RAW;
break;
}
if (ip_protocol == IPPROTO_TCP)
opts[1] |= TD1_TCP_CS;
else if (ip_protocol == IPPROTO_UDP)
opts[1] |= TD1_UDP_CS;
else
WARN_ON_ONCE(1);
opts[1] |= transport_offset << TCPHO_SHIFT;
} else {
if (unlikely(rtl_test_hw_pad_bug(tp, skb)))
return !eth_skb_pad(skb);
}
return true;
}
static bool rtl_tx_slots_avail(struct rtl8169_private *tp,
unsigned int nr_frags)
{
unsigned int slots_avail = tp->dirty_tx + NUM_TX_DESC - tp->cur_tx;
/* A skbuff with nr_frags needs nr_frags+1 entries in the tx queue */
return slots_avail > nr_frags;
}
/* Versions RTL8102e and from RTL8168c onwards support csum_v2 */
static bool rtl_chip_supports_csum_v2(struct rtl8169_private *tp)
{
switch (tp->mac_version) {
case RTL_GIGA_MAC_VER_02 ... RTL_GIGA_MAC_VER_06:
case RTL_GIGA_MAC_VER_10 ... RTL_GIGA_MAC_VER_17:
return false;
default:
return true;
}
}
static void rtl8169_doorbell(struct rtl8169_private *tp)
{
if (rtl_is_8125(tp))
RTL_W16(tp, TxPoll_8125, BIT(0));
else
RTL_W8(tp, TxPoll, NPQ);
}
static netdev_tx_t rtl8169_start_xmit(struct sk_buff *skb,
struct net_device *dev)
{
unsigned int frags = skb_shinfo(skb)->nr_frags;
struct rtl8169_private *tp = netdev_priv(dev);
unsigned int entry = tp->cur_tx % NUM_TX_DESC;
struct TxDesc *txd_first, *txd_last;
bool stop_queue, door_bell;
u32 opts[2];
txd_first = tp->TxDescArray + entry;
if (unlikely(!rtl_tx_slots_avail(tp, frags))) {
if (net_ratelimit())
netdev_err(dev, "BUG! Tx Ring full when queue awake!\n");
goto err_stop_0;
}
if (unlikely(le32_to_cpu(txd_first->opts1) & DescOwn))
goto err_stop_0;
opts[1] = rtl8169_tx_vlan_tag(skb);
opts[0] = 0;
if (!rtl_chip_supports_csum_v2(tp))
rtl8169_tso_csum_v1(skb, opts);
else if (!rtl8169_tso_csum_v2(tp, skb, opts))
goto err_dma_0;
if (unlikely(rtl8169_tx_map(tp, opts, skb_headlen(skb), skb->data,
entry, false)))
goto err_dma_0;
if (frags) {
if (rtl8169_xmit_frags(tp, skb, opts, entry))
goto err_dma_1;
entry = (entry + frags) % NUM_TX_DESC;
}
txd_last = tp->TxDescArray + entry;
txd_last->opts1 |= cpu_to_le32(LastFrag);
tp->tx_skb[entry].skb = skb;
skb_tx_timestamp(skb);
/* Force memory writes to complete before releasing descriptor */
dma_wmb();
door_bell = __netdev_sent_queue(dev, skb->len, netdev_xmit_more());
txd_first->opts1 |= cpu_to_le32(DescOwn | FirstFrag);
/* rtl_tx needs to see descriptor changes before updated tp->cur_tx */
smp_wmb();
tp->cur_tx += frags + 1;
stop_queue = !rtl_tx_slots_avail(tp, MAX_SKB_FRAGS);
if (unlikely(stop_queue)) {
/* Avoid wrongly optimistic queue wake-up: rtl_tx thread must
* not miss a ring update when it notices a stopped queue.
*/
smp_wmb();
netif_stop_queue(dev);
door_bell = true;
}
if (door_bell)
rtl8169_doorbell(tp);
if (unlikely(stop_queue)) {
/* Sync with rtl_tx:
* - publish queue status and cur_tx ring index (write barrier)
* - refresh dirty_tx ring index (read barrier).
* May the current thread have a pessimistic view of the ring
* status and forget to wake up queue, a racing rtl_tx thread
* can't.
*/
smp_mb();
if (rtl_tx_slots_avail(tp, MAX_SKB_FRAGS))
netif_start_queue(dev);
}
return NETDEV_TX_OK;
err_dma_1:
rtl8169_unmap_tx_skb(tp, entry);
err_dma_0:
dev_kfree_skb_any(skb);
dev->stats.tx_dropped++;
return NETDEV_TX_OK;
err_stop_0:
netif_stop_queue(dev);
dev->stats.tx_dropped++;
return NETDEV_TX_BUSY;
}
static unsigned int rtl_last_frag_len(struct sk_buff *skb)
{
struct skb_shared_info *info = skb_shinfo(skb);
unsigned int nr_frags = info->nr_frags;
if (!nr_frags)
return UINT_MAX;
return skb_frag_size(info->frags + nr_frags - 1);
}
/* Workaround for hw issues with TSO on RTL8168evl */
static netdev_features_t rtl8168evl_fix_tso(struct sk_buff *skb,
netdev_features_t features)
{
/* IPv4 header has options field */
if (vlan_get_protocol(skb) == htons(ETH_P_IP) &&
ip_hdrlen(skb) > sizeof(struct iphdr))
features &= ~NETIF_F_ALL_TSO;
/* IPv4 TCP header has options field */
else if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4 &&
tcp_hdrlen(skb) > sizeof(struct tcphdr))
features &= ~NETIF_F_ALL_TSO;
else if (rtl_last_frag_len(skb) <= 6)
features &= ~NETIF_F_ALL_TSO;
return features;
}
static netdev_features_t rtl8169_features_check(struct sk_buff *skb,
struct net_device *dev,
netdev_features_t features)
{
int transport_offset = skb_transport_offset(skb);
struct rtl8169_private *tp = netdev_priv(dev);
if (skb_is_gso(skb)) {
if (tp->mac_version == RTL_GIGA_MAC_VER_34)
features = rtl8168evl_fix_tso(skb, features);
if (transport_offset > GTTCPHO_MAX &&
rtl_chip_supports_csum_v2(tp))
features &= ~NETIF_F_ALL_TSO;
} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
if (skb->len < ETH_ZLEN) {
switch (tp->mac_version) {
case RTL_GIGA_MAC_VER_11:
case RTL_GIGA_MAC_VER_12:
case RTL_GIGA_MAC_VER_17:
case RTL_GIGA_MAC_VER_34:
features &= ~NETIF_F_CSUM_MASK;
break;
default:
break;
}
}
if (transport_offset > TCPHO_MAX &&
rtl_chip_supports_csum_v2(tp))
features &= ~NETIF_F_CSUM_MASK;
}
return vlan_features_check(skb, features);
}
static void rtl8169_pcierr_interrupt(struct net_device *dev)
{
struct rtl8169_private *tp = netdev_priv(dev);
struct pci_dev *pdev = tp->pci_dev;
int pci_status_errs;
u16 pci_cmd;
pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
pci_status_errs = pci_status_get_and_clear_errors(pdev);
if (net_ratelimit())
netdev_err(dev, "PCI error (cmd = 0x%04x, status_errs = 0x%04x)\n",
pci_cmd, pci_status_errs);
/*
* The recovery sequence below admits a very elaborated explanation:
* - it seems to work;
* - I did not see what else could be done;
* - it makes iop3xx happy.
*
* Feel free to adjust to your needs.
*/
if (pdev->broken_parity_status)
pci_cmd &= ~PCI_COMMAND_PARITY;
else
pci_cmd |= PCI_COMMAND_SERR | PCI_COMMAND_PARITY;
pci_write_config_word(pdev, PCI_COMMAND, pci_cmd);
rtl_schedule_task(tp, RTL_FLAG_TASK_RESET_PENDING);
}
static void rtl_tx(struct net_device *dev, struct rtl8169_private *tp,
int budget)
{
unsigned int dirty_tx, tx_left, bytes_compl = 0, pkts_compl = 0;
dirty_tx = tp->dirty_tx;
smp_rmb();
for (tx_left = tp->cur_tx - dirty_tx; tx_left > 0; tx_left--) {
unsigned int entry = dirty_tx % NUM_TX_DESC;
struct sk_buff *skb = tp->tx_skb[entry].skb;
u32 status;
status = le32_to_cpu(tp->TxDescArray[entry].opts1);
if (status & DescOwn)
break;
rtl8169_unmap_tx_skb(tp, entry);
if (skb) {
pkts_compl++;
bytes_compl += skb->len;
napi_consume_skb(skb, budget);
}
dirty_tx++;
}
if (tp->dirty_tx != dirty_tx) {
netdev_completed_queue(dev, pkts_compl, bytes_compl);
u64_stats_update_begin(&tp->tx_stats.syncp);
tp->tx_stats.packets += pkts_compl;
tp->tx_stats.bytes += bytes_compl;
u64_stats_update_end(&tp->tx_stats.syncp);
tp->dirty_tx = dirty_tx;
/* Sync with rtl8169_start_xmit:
* - publish dirty_tx ring index (write barrier)
* - refresh cur_tx ring index and queue status (read barrier)
* May the current thread miss the stopped queue condition,
* a racing xmit thread can only have a right view of the
* ring status.
*/
smp_mb();
if (netif_queue_stopped(dev) &&
rtl_tx_slots_avail(tp, MAX_SKB_FRAGS)) {
netif_wake_queue(dev);
}
/*
* 8168 hack: TxPoll requests are lost when the Tx packets are
* too close. Let's kick an extra TxPoll request when a burst
* of start_xmit activity is detected (if it is not detected,
* it is slow enough). -- FR
*/
if (tp->cur_tx != dirty_tx)
rtl8169_doorbell(tp);
}
}
static inline int rtl8169_fragmented_frame(u32 status)
{
return (status & (FirstFrag | LastFrag)) != (FirstFrag | LastFrag);
}
static inline void rtl8169_rx_csum(struct sk_buff *skb, u32 opts1)
{
u32 status = opts1 & RxProtoMask;
if (((status == RxProtoTCP) && !(opts1 & TCPFail)) ||
((status == RxProtoUDP) && !(opts1 & UDPFail)))
skb->ip_summed = CHECKSUM_UNNECESSARY;
else
skb_checksum_none_assert(skb);
}
static int rtl_rx(struct net_device *dev, struct rtl8169_private *tp, u32 budget)
{
unsigned int cur_rx, rx_left, count;
struct device *d = tp_to_dev(tp);
cur_rx = tp->cur_rx;
for (rx_left = min(budget, NUM_RX_DESC); rx_left > 0; rx_left--, cur_rx++) {
unsigned int pkt_size, entry = cur_rx % NUM_RX_DESC;
struct RxDesc *desc = tp->RxDescArray + entry;
struct sk_buff *skb;
const void *rx_buf;
dma_addr_t addr;
u32 status;
status = le32_to_cpu(desc->opts1);
if (status & DescOwn)
break;
/* This barrier is needed to keep us from reading
* any other fields out of the Rx descriptor until
* we know the status of DescOwn
*/
dma_rmb();
if (unlikely(status & RxRES)) {
if (net_ratelimit())
netdev_warn(dev, "Rx ERROR. status = %08x\n",
status);
dev->stats.rx_errors++;
if (status & (RxRWT | RxRUNT))
dev->stats.rx_length_errors++;
if (status & RxCRC)
dev->stats.rx_crc_errors++;
if (!(dev->features & NETIF_F_RXALL))
goto release_descriptor;
else if (status & RxRWT || !(status & (RxRUNT | RxCRC)))
goto release_descriptor;
}
pkt_size = status & GENMASK(13, 0);
if (likely(!(dev->features & NETIF_F_RXFCS)))
pkt_size -= ETH_FCS_LEN;
/* The driver does not support incoming fragmented frames.
* They are seen as a symptom of over-mtu sized frames.
*/
if (unlikely(rtl8169_fragmented_frame(status))) {
dev->stats.rx_dropped++;
dev->stats.rx_length_errors++;
goto release_descriptor;
}
skb = napi_alloc_skb(&tp->napi, pkt_size);
if (unlikely(!skb)) {
dev->stats.rx_dropped++;
goto release_descriptor;
}
addr = le64_to_cpu(desc->addr);
rx_buf = page_address(tp->Rx_databuff[entry]);
dma_sync_single_for_cpu(d, addr, pkt_size, DMA_FROM_DEVICE);
prefetch(rx_buf);
skb_copy_to_linear_data(skb, rx_buf, pkt_size);
skb->tail += pkt_size;
skb->len = pkt_size;
dma_sync_single_for_device(d, addr, pkt_size, DMA_FROM_DEVICE);
rtl8169_rx_csum(skb, status);
skb->protocol = eth_type_trans(skb, dev);
rtl8169_rx_vlan_tag(desc, skb);
if (skb->pkt_type == PACKET_MULTICAST)
dev->stats.multicast++;
napi_gro_receive(&tp->napi, skb);
u64_stats_update_begin(&tp->rx_stats.syncp);
tp->rx_stats.packets++;
tp->rx_stats.bytes += pkt_size;
u64_stats_update_end(&tp->rx_stats.syncp);
release_descriptor:
rtl8169_mark_to_asic(desc);
}
count = cur_rx - tp->cur_rx;
tp->cur_rx = cur_rx;
return count;
}
static irqreturn_t rtl8169_interrupt(int irq, void *dev_instance)
{
struct rtl8169_private *tp = dev_instance;
u32 status = rtl_get_events(tp);
if (!tp->irq_enabled || (status & 0xffff) == 0xffff ||
!(status & tp->irq_mask))
return IRQ_NONE;
if (unlikely(status & SYSErr)) {
rtl8169_pcierr_interrupt(tp->dev);
goto out;
}
if (status & LinkChg)
phy_mac_interrupt(tp->phydev);
if (unlikely(status & RxFIFOOver &&
tp->mac_version == RTL_GIGA_MAC_VER_11)) {
netif_stop_queue(tp->dev);
rtl_schedule_task(tp, RTL_FLAG_TASK_RESET_PENDING);
}
rtl_irq_disable(tp);
napi_schedule_irqoff(&tp->napi);
out:
rtl_ack_events(tp, status);
return IRQ_HANDLED;
}
static void rtl_task(struct work_struct *work)
{
struct rtl8169_private *tp =
container_of(work, struct rtl8169_private, wk.work);
rtl_lock_work(tp);
if (!netif_running(tp->dev) ||
!test_bit(RTL_FLAG_TASK_ENABLED, tp->wk.flags))
goto out_unlock;
if (test_and_clear_bit(RTL_FLAG_TASK_RESET_PENDING, tp->wk.flags))
rtl_reset_work(tp);
out_unlock:
rtl_unlock_work(tp);
}
static int rtl8169_poll(struct napi_struct *napi, int budget)
{
struct rtl8169_private *tp = container_of(napi, struct rtl8169_private, napi);
struct net_device *dev = tp->dev;
int work_done;
work_done = rtl_rx(dev, tp, (u32) budget);
rtl_tx(dev, tp, budget);
if (work_done < budget) {
napi_complete_done(napi, work_done);
rtl_irq_enable(tp);
}
return work_done;
}
static void r8169_phylink_handler(struct net_device *ndev)
{
struct rtl8169_private *tp = netdev_priv(ndev);
if (netif_carrier_ok(ndev)) {
rtl_link_chg_patch(tp);
pm_request_resume(&tp->pci_dev->dev);
} else {
pm_runtime_idle(&tp->pci_dev->dev);
}
if (net_ratelimit())
phy_print_status(tp->phydev);
}
static int r8169_phy_connect(struct rtl8169_private *tp)
{
struct phy_device *phydev = tp->phydev;
phy_interface_t phy_mode;
int ret;
phy_mode = tp->supports_gmii ? PHY_INTERFACE_MODE_GMII :
PHY_INTERFACE_MODE_MII;
ret = phy_connect_direct(tp->dev, phydev, r8169_phylink_handler,
phy_mode);
if (ret)
return ret;
if (!tp->supports_gmii)
phy_set_max_speed(phydev, SPEED_100);
phy_support_asym_pause(phydev);
phy_attached_info(phydev);
return 0;
}
static void rtl8169_down(struct rtl8169_private *tp)
{
rtl_lock_work(tp);
/* Clear all task flags */
bitmap_zero(tp->wk.flags, RTL_FLAG_MAX);
phy_stop(tp->phydev);
napi_disable(&tp->napi);
rtl8169_hw_reset(tp, true);
rtl_pll_power_down(tp);
rtl_unlock_work(tp);
}
static int rtl8169_close(struct net_device *dev)
{
struct rtl8169_private *tp = netdev_priv(dev);
struct pci_dev *pdev = tp->pci_dev;
pm_runtime_get_sync(&pdev->dev);
/* Update counters before going down */
rtl8169_update_counters(tp);
netif_stop_queue(dev);
rtl8169_down(tp);
rtl8169_rx_clear(tp);
cancel_work_sync(&tp->wk.work);
phy_disconnect(tp->phydev);
pci_free_irq(pdev, 0, tp);
dma_free_coherent(&pdev->dev, R8169_RX_RING_BYTES, tp->RxDescArray,
tp->RxPhyAddr);
dma_free_coherent(&pdev->dev, R8169_TX_RING_BYTES, tp->TxDescArray,
tp->TxPhyAddr);
tp->TxDescArray = NULL;
tp->RxDescArray = NULL;
pm_runtime_put_sync(&pdev->dev);
return 0;
}
#ifdef CONFIG_NET_POLL_CONTROLLER
static void rtl8169_netpoll(struct net_device *dev)
{
struct rtl8169_private *tp = netdev_priv(dev);
rtl8169_interrupt(pci_irq_vector(tp->pci_dev, 0), tp);
}
#endif
static int rtl_open(struct net_device *dev)
{
struct rtl8169_private *tp = netdev_priv(dev);
struct pci_dev *pdev = tp->pci_dev;
int retval = -ENOMEM;
pm_runtime_get_sync(&pdev->dev);
/*
* Rx and Tx descriptors needs 256 bytes alignment.
* dma_alloc_coherent provides more.
*/
tp->TxDescArray = dma_alloc_coherent(&pdev->dev, R8169_TX_RING_BYTES,
&tp->TxPhyAddr, GFP_KERNEL);
if (!tp->TxDescArray)
goto err_pm_runtime_put;
tp->RxDescArray = dma_alloc_coherent(&pdev->dev, R8169_RX_RING_BYTES,
&tp->RxPhyAddr, GFP_KERNEL);
if (!tp->RxDescArray)
goto err_free_tx_0;
retval = rtl8169_init_ring(tp);
if (retval < 0)
goto err_free_rx_1;
rtl_request_firmware(tp);
retval = pci_request_irq(pdev, 0, rtl8169_interrupt, NULL, tp,
dev->name);
if (retval < 0)
goto err_release_fw_2;
retval = r8169_phy_connect(tp);
if (retval)
goto err_free_irq;
rtl_lock_work(tp);
set_bit(RTL_FLAG_TASK_ENABLED, tp->wk.flags);
napi_enable(&tp->napi);
rtl8169_init_phy(tp);
rtl_pll_power_up(tp);
rtl_hw_start(tp);
rtl8169_init_counter_offsets(tp);
phy_start(tp->phydev);
netif_start_queue(dev);
rtl_unlock_work(tp);
pm_runtime_put_sync(&pdev->dev);
out:
return retval;
err_free_irq:
pci_free_irq(pdev, 0, tp);
err_release_fw_2:
rtl_release_firmware(tp);
rtl8169_rx_clear(tp);
err_free_rx_1:
dma_free_coherent(&pdev->dev, R8169_RX_RING_BYTES, tp->RxDescArray,
tp->RxPhyAddr);
tp->RxDescArray = NULL;
err_free_tx_0:
dma_free_coherent(&pdev->dev, R8169_TX_RING_BYTES, tp->TxDescArray,
tp->TxPhyAddr);
tp->TxDescArray = NULL;
err_pm_runtime_put:
pm_runtime_put_noidle(&pdev->dev);
goto out;
}
static void
rtl8169_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
{
struct rtl8169_private *tp = netdev_priv(dev);
struct pci_dev *pdev = tp->pci_dev;
struct rtl8169_counters *counters = tp->counters;
unsigned int start;
pm_runtime_get_noresume(&pdev->dev);
netdev_stats_to_stats64(stats, &dev->stats);
do {
start = u64_stats_fetch_begin_irq(&tp->rx_stats.syncp);
stats->rx_packets = tp->rx_stats.packets;
stats->rx_bytes = tp->rx_stats.bytes;
} while (u64_stats_fetch_retry_irq(&tp->rx_stats.syncp, start));
do {
start = u64_stats_fetch_begin_irq(&tp->tx_stats.syncp);
stats->tx_packets = tp->tx_stats.packets;
stats->tx_bytes = tp->tx_stats.bytes;
} while (u64_stats_fetch_retry_irq(&tp->tx_stats.syncp, start));
/*
* Fetch additional counter values missing in stats collected by driver
* from tally counters.
*/
if (pm_runtime_active(&pdev->dev))
rtl8169_update_counters(tp);
/*
* Subtract values fetched during initalization.
* See rtl8169_init_counter_offsets for a description why we do that.
*/
stats->tx_errors = le64_to_cpu(counters->tx_errors) -
le64_to_cpu(tp->tc_offset.tx_errors);
stats->collisions = le32_to_cpu(counters->tx_multi_collision) -
le32_to_cpu(tp->tc_offset.tx_multi_collision);
stats->tx_aborted_errors = le16_to_cpu(counters->tx_aborted) -
le16_to_cpu(tp->tc_offset.tx_aborted);
stats->rx_missed_errors = le16_to_cpu(counters->rx_missed) -
le16_to_cpu(tp->tc_offset.rx_missed);
pm_runtime_put_noidle(&pdev->dev);
}
static void rtl8169_net_suspend(struct rtl8169_private *tp)
{
if (!netif_running(tp->dev))
return;
netif_device_detach(tp->dev);
rtl8169_down(tp);
}
#ifdef CONFIG_PM
static int __maybe_unused rtl8169_suspend(struct device *device)
{
struct rtl8169_private *tp = dev_get_drvdata(device);
rtl8169_net_suspend(tp);
clk_disable_unprepare(tp->clk);
return 0;
}
static void __rtl8169_resume(struct rtl8169_private *tp)
{
netif_device_attach(tp->dev);
rtl_pll_power_up(tp);
rtl8169_init_phy(tp);
phy_start(tp->phydev);
rtl_lock_work(tp);
napi_enable(&tp->napi);
set_bit(RTL_FLAG_TASK_ENABLED, tp->wk.flags);
rtl_reset_work(tp);
rtl_unlock_work(tp);
}
static int __maybe_unused rtl8169_resume(struct device *device)
{
struct rtl8169_private *tp = dev_get_drvdata(device);
rtl_rar_set(tp, tp->dev->dev_addr);
clk_prepare_enable(tp->clk);
if (netif_running(tp->dev))
__rtl8169_resume(tp);
return 0;
}
static int rtl8169_runtime_suspend(struct device *device)
{
struct rtl8169_private *tp = dev_get_drvdata(device);
if (!tp->TxDescArray)
return 0;
rtl_lock_work(tp);
__rtl8169_set_wol(tp, WAKE_PHY);
rtl_unlock_work(tp);
rtl8169_net_suspend(tp);
/* Update counters before going runtime suspend */
rtl8169_update_counters(tp);
return 0;
}
static int rtl8169_runtime_resume(struct device *device)
{
struct rtl8169_private *tp = dev_get_drvdata(device);
rtl_rar_set(tp, tp->dev->dev_addr);
if (!tp->TxDescArray)
return 0;
rtl_lock_work(tp);
__rtl8169_set_wol(tp, tp->saved_wolopts);
rtl_unlock_work(tp);
__rtl8169_resume(tp);
return 0;
}
static int rtl8169_runtime_idle(struct device *device)
{
struct rtl8169_private *tp = dev_get_drvdata(device);
if (!netif_running(tp->dev) || !netif_carrier_ok(tp->dev))
pm_schedule_suspend(device, 10000);
return -EBUSY;
}
static const struct dev_pm_ops rtl8169_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(rtl8169_suspend, rtl8169_resume)
SET_RUNTIME_PM_OPS(rtl8169_runtime_suspend, rtl8169_runtime_resume,
rtl8169_runtime_idle)
};
#endif /* CONFIG_PM */
static void rtl_wol_shutdown_quirk(struct rtl8169_private *tp)
{
/* WoL fails with 8168b when the receiver is disabled. */
switch (tp->mac_version) {
case RTL_GIGA_MAC_VER_11:
case RTL_GIGA_MAC_VER_12:
case RTL_GIGA_MAC_VER_17:
pci_clear_master(tp->pci_dev);
RTL_W8(tp, ChipCmd, CmdRxEnb);
rtl_pci_commit(tp);
break;
default:
break;
}
}
static void rtl_shutdown(struct pci_dev *pdev)
{
struct rtl8169_private *tp = pci_get_drvdata(pdev);
rtl8169_net_suspend(tp);
/* Restore original MAC address */
rtl_rar_set(tp, tp->dev->perm_addr);
if (system_state == SYSTEM_POWER_OFF) {
if (tp->saved_wolopts) {
rtl_wol_suspend_quirk(tp);
rtl_wol_shutdown_quirk(tp);
}
pci_wake_from_d3(pdev, true);
pci_set_power_state(pdev, PCI_D3hot);
}
}
static void rtl_remove_one(struct pci_dev *pdev)
{
struct rtl8169_private *tp = pci_get_drvdata(pdev);
if (pci_dev_run_wake(pdev))
pm_runtime_get_noresume(&pdev->dev);
unregister_netdev(tp->dev);
if (r8168_check_dash(tp))
rtl8168_driver_stop(tp);
rtl_release_firmware(tp);
/* restore original MAC address */
rtl_rar_set(tp, tp->dev->perm_addr);
}
static const struct net_device_ops rtl_netdev_ops = {
.ndo_open = rtl_open,
.ndo_stop = rtl8169_close,
.ndo_get_stats64 = rtl8169_get_stats64,
.ndo_start_xmit = rtl8169_start_xmit,
.ndo_features_check = rtl8169_features_check,
.ndo_tx_timeout = rtl8169_tx_timeout,
.ndo_validate_addr = eth_validate_addr,
.ndo_change_mtu = rtl8169_change_mtu,
.ndo_fix_features = rtl8169_fix_features,
.ndo_set_features = rtl8169_set_features,
.ndo_set_mac_address = rtl_set_mac_address,
.ndo_do_ioctl = phy_do_ioctl_running,
.ndo_set_rx_mode = rtl_set_rx_mode,
#ifdef CONFIG_NET_POLL_CONTROLLER
.ndo_poll_controller = rtl8169_netpoll,
#endif
};
static void rtl_set_irq_mask(struct rtl8169_private *tp)
{
tp->irq_mask = RxOK | RxErr | TxOK | TxErr | LinkChg;
if (tp->mac_version <= RTL_GIGA_MAC_VER_06)
tp->irq_mask |= SYSErr | RxOverflow | RxFIFOOver;
else if (tp->mac_version == RTL_GIGA_MAC_VER_11)
/* special workaround needed */
tp->irq_mask |= RxFIFOOver;
else
tp->irq_mask |= RxOverflow;
}
static int rtl_alloc_irq(struct rtl8169_private *tp)
{
unsigned int flags;
switch (tp->mac_version) {
case RTL_GIGA_MAC_VER_02 ... RTL_GIGA_MAC_VER_06:
rtl_unlock_config_regs(tp);
RTL_W8(tp, Config2, RTL_R8(tp, Config2) & ~MSIEnable);
rtl_lock_config_regs(tp);
/* fall through */
case RTL_GIGA_MAC_VER_07 ... RTL_GIGA_MAC_VER_17:
flags = PCI_IRQ_LEGACY;
break;
default:
flags = PCI_IRQ_ALL_TYPES;
break;
}
return pci_alloc_irq_vectors(tp->pci_dev, 1, 1, flags);
}
static void rtl_read_mac_address(struct rtl8169_private *tp,
u8 mac_addr[ETH_ALEN])
{
/* Get MAC address */
if (rtl_is_8168evl_up(tp) && tp->mac_version != RTL_GIGA_MAC_VER_34) {
u32 value = rtl_eri_read(tp, 0xe0);
mac_addr[0] = (value >> 0) & 0xff;
mac_addr[1] = (value >> 8) & 0xff;
mac_addr[2] = (value >> 16) & 0xff;
mac_addr[3] = (value >> 24) & 0xff;
value = rtl_eri_read(tp, 0xe4);
mac_addr[4] = (value >> 0) & 0xff;
mac_addr[5] = (value >> 8) & 0xff;
} else if (rtl_is_8125(tp)) {
rtl_read_mac_from_reg(tp, mac_addr, MAC0_BKP);
}
}
DECLARE_RTL_COND(rtl_link_list_ready_cond)
{
return RTL_R8(tp, MCU) & LINK_LIST_RDY;
}
static void r8168g_wait_ll_share_fifo_ready(struct rtl8169_private *tp)
{
rtl_loop_wait_high(tp, &rtl_link_list_ready_cond, 100, 42);
}
static int r8169_mdio_read_reg(struct mii_bus *mii_bus, int phyaddr, int phyreg)
{
struct rtl8169_private *tp = mii_bus->priv;
if (phyaddr > 0)
return -ENODEV;
return rtl_readphy(tp, phyreg);
}
static int r8169_mdio_write_reg(struct mii_bus *mii_bus, int phyaddr,
int phyreg, u16 val)
{
struct rtl8169_private *tp = mii_bus->priv;
if (phyaddr > 0)
return -ENODEV;
rtl_writephy(tp, phyreg, val);
return 0;
}
static int r8169_mdio_register(struct rtl8169_private *tp)
{
struct pci_dev *pdev = tp->pci_dev;
struct mii_bus *new_bus;
int ret;
new_bus = devm_mdiobus_alloc(&pdev->dev);
if (!new_bus)
return -ENOMEM;
new_bus->name = "r8169";
new_bus->priv = tp;
new_bus->parent = &pdev->dev;
new_bus->irq[0] = PHY_IGNORE_INTERRUPT;
snprintf(new_bus->id, MII_BUS_ID_SIZE, "r8169-%x", pci_dev_id(pdev));
new_bus->read = r8169_mdio_read_reg;
new_bus->write = r8169_mdio_write_reg;
ret = devm_mdiobus_register(new_bus);
if (ret)
return ret;
tp->phydev = mdiobus_get_phy(new_bus, 0);
if (!tp->phydev) {
return -ENODEV;
} else if (!tp->phydev->drv) {
/* Most chip versions fail with the genphy driver.
* Therefore ensure that the dedicated PHY driver is loaded.
*/
dev_err(&pdev->dev, "no dedicated PHY driver found for PHY ID 0x%08x, maybe realtek.ko needs to be added to initramfs?\n",
tp->phydev->phy_id);
return -EUNATCH;
}
/* PHY will be woken up in rtl_open() */
phy_suspend(tp->phydev);
return 0;
}
static void rtl_hw_init_8168g(struct rtl8169_private *tp)
{
rtl_enable_rxdvgate(tp);
RTL_W8(tp, ChipCmd, RTL_R8(tp, ChipCmd) & ~(CmdTxEnb | CmdRxEnb));
msleep(1);
RTL_W8(tp, MCU, RTL_R8(tp, MCU) & ~NOW_IS_OOB);
r8168_mac_ocp_modify(tp, 0xe8de, BIT(14), 0);
r8168g_wait_ll_share_fifo_ready(tp);
r8168_mac_ocp_modify(tp, 0xe8de, 0, BIT(15));
r8168g_wait_ll_share_fifo_ready(tp);
}
static void rtl_hw_init_8125(struct rtl8169_private *tp)
{
rtl_enable_rxdvgate(tp);
RTL_W8(tp, ChipCmd, RTL_R8(tp, ChipCmd) & ~(CmdTxEnb | CmdRxEnb));
msleep(1);
RTL_W8(tp, MCU, RTL_R8(tp, MCU) & ~NOW_IS_OOB);
r8168_mac_ocp_modify(tp, 0xe8de, BIT(14), 0);
r8168g_wait_ll_share_fifo_ready(tp);
r8168_mac_ocp_write(tp, 0xc0aa, 0x07d0);
r8168_mac_ocp_write(tp, 0xc0a6, 0x0150);
r8168_mac_ocp_write(tp, 0xc01e, 0x5555);
r8168g_wait_ll_share_fifo_ready(tp);
}
static void rtl_hw_initialize(struct rtl8169_private *tp)
{
switch (tp->mac_version) {
case RTL_GIGA_MAC_VER_49 ... RTL_GIGA_MAC_VER_52:
rtl8168ep_stop_cmac(tp);
/* fall through */
case RTL_GIGA_MAC_VER_40 ... RTL_GIGA_MAC_VER_48:
rtl_hw_init_8168g(tp);
break;
case RTL_GIGA_MAC_VER_60 ... RTL_GIGA_MAC_VER_61:
rtl_hw_init_8125(tp);
break;
default:
break;
}
}
static int rtl_jumbo_max(struct rtl8169_private *tp)
{
/* Non-GBit versions don't support jumbo frames */
if (!tp->supports_gmii)
return 0;
switch (tp->mac_version) {
/* RTL8169 */
case RTL_GIGA_MAC_VER_02 ... RTL_GIGA_MAC_VER_06:
return JUMBO_7K;
/* RTL8168b */
case RTL_GIGA_MAC_VER_11:
case RTL_GIGA_MAC_VER_12:
case RTL_GIGA_MAC_VER_17:
return JUMBO_4K;
/* RTL8168c */
case RTL_GIGA_MAC_VER_18 ... RTL_GIGA_MAC_VER_24:
return JUMBO_6K;
default:
return JUMBO_9K;
}
}
static void rtl_disable_clk(void *data)
{
clk_disable_unprepare(data);
}
static int rtl_get_ether_clk(struct rtl8169_private *tp)
{
struct device *d = tp_to_dev(tp);
struct clk *clk;
int rc;
clk = devm_clk_get(d, "ether_clk");
if (IS_ERR(clk)) {
rc = PTR_ERR(clk);
if (rc == -ENOENT)
/* clk-core allows NULL (for suspend / resume) */
rc = 0;
else if (rc != -EPROBE_DEFER)
dev_err(d, "failed to get clk: %d\n", rc);
} else {
tp->clk = clk;
rc = clk_prepare_enable(clk);
if (rc)
dev_err(d, "failed to enable clk: %d\n", rc);
else
rc = devm_add_action_or_reset(d, rtl_disable_clk, clk);
}
return rc;
}
static void rtl_init_mac_address(struct rtl8169_private *tp)
{
struct net_device *dev = tp->dev;
u8 *mac_addr = dev->dev_addr;
int rc;
rc = eth_platform_get_mac_address(tp_to_dev(tp), mac_addr);
if (!rc)
goto done;
rtl_read_mac_address(tp, mac_addr);
if (is_valid_ether_addr(mac_addr))
goto done;
rtl_read_mac_from_reg(tp, mac_addr, MAC0);
if (is_valid_ether_addr(mac_addr))
goto done;
eth_hw_addr_random(dev);
dev_warn(tp_to_dev(tp), "can't read MAC address, setting random one\n");
done:
rtl_rar_set(tp, mac_addr);
}
static int rtl_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
{
struct rtl8169_private *tp;
int jumbo_max, region, rc;
enum mac_version chipset;
struct net_device *dev;
u16 xid;
dev = devm_alloc_etherdev(&pdev->dev, sizeof (*tp));
if (!dev)
return -ENOMEM;
SET_NETDEV_DEV(dev, &pdev->dev);
dev->netdev_ops = &rtl_netdev_ops;
tp = netdev_priv(dev);
tp->dev = dev;
tp->pci_dev = pdev;
tp->supports_gmii = ent->driver_data == RTL_CFG_NO_GBIT ? 0 : 1;
tp->eee_adv = -1;
tp->ocp_base = OCP_STD_PHY_BASE;
/* Get the *optional* external "ether_clk" used on some boards */
rc = rtl_get_ether_clk(tp);
if (rc)
return rc;
/* Disable ASPM completely as that cause random device stop working
* problems as well as full system hangs for some PCIe devices users.
*/
rc = pci_disable_link_state(pdev, PCIE_LINK_STATE_L0S |
PCIE_LINK_STATE_L1);
tp->aspm_manageable = !rc;
/* enable device (incl. PCI PM wakeup and hotplug setup) */
rc = pcim_enable_device(pdev);
if (rc < 0) {
dev_err(&pdev->dev, "enable failure\n");
return rc;
}
if (pcim_set_mwi(pdev) < 0)
dev_info(&pdev->dev, "Mem-Wr-Inval unavailable\n");
/* use first MMIO region */
region = ffs(pci_select_bars(pdev, IORESOURCE_MEM)) - 1;
if (region < 0) {
dev_err(&pdev->dev, "no MMIO resource found\n");
return -ENODEV;
}
/* check for weird/broken PCI region reporting */
if (pci_resource_len(pdev, region) < R8169_REGS_SIZE) {
dev_err(&pdev->dev, "Invalid PCI region size(s), aborting\n");
return -ENODEV;
}
rc = pcim_iomap_regions(pdev, BIT(region), MODULENAME);
if (rc < 0) {
dev_err(&pdev->dev, "cannot remap MMIO, aborting\n");
return rc;
}
tp->mmio_addr = pcim_iomap_table(pdev)[region];
xid = (RTL_R32(tp, TxConfig) >> 20) & 0xfcf;
/* Identify chip attached to board */
chipset = rtl8169_get_mac_version(xid, tp->supports_gmii);
if (chipset == RTL_GIGA_MAC_NONE) {
dev_err(&pdev->dev, "unknown chip XID %03x\n", xid);
return -ENODEV;
}
tp->mac_version = chipset;
tp->cp_cmd = RTL_R16(tp, CPlusCmd) & CPCMD_MASK;
if (sizeof(dma_addr_t) > 4 && tp->mac_version >= RTL_GIGA_MAC_VER_18 &&
!dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)))
dev->features |= NETIF_F_HIGHDMA;
rtl_init_rxcfg(tp);
rtl8169_irq_mask_and_ack(tp);
rtl_hw_initialize(tp);
rtl_hw_reset(tp);
pci_set_master(pdev);
rc = rtl_alloc_irq(tp);
if (rc < 0) {
dev_err(&pdev->dev, "Can't allocate interrupt\n");
return rc;
}
mutex_init(&tp->wk.mutex);
INIT_WORK(&tp->wk.work, rtl_task);
u64_stats_init(&tp->rx_stats.syncp);
u64_stats_init(&tp->tx_stats.syncp);
rtl_init_mac_address(tp);
dev->ethtool_ops = &rtl8169_ethtool_ops;
netif_napi_add(dev, &tp->napi, rtl8169_poll, NAPI_POLL_WEIGHT);
dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_RXCSUM |
NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO;
dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
/*
* Pretend we are using VLANs; This bypasses a nasty bug where
* Interrupts stop flowing on high load on 8110SCd controllers.
*/
if (tp->mac_version == RTL_GIGA_MAC_VER_05)
/* Disallow toggling */
dev->hw_features &= ~NETIF_F_HW_VLAN_CTAG_RX;
if (rtl_chip_supports_csum_v2(tp))
dev->hw_features |= NETIF_F_IPV6_CSUM;
dev->features |= dev->hw_features;
/* There has been a number of reports that using SG/TSO results in
* tx timeouts. However for a lot of people SG/TSO works fine.
* Therefore disable both features by default, but allow users to
* enable them. Use at own risk!
*/
if (rtl_chip_supports_csum_v2(tp)) {
dev->hw_features |= NETIF_F_SG | NETIF_F_TSO | NETIF_F_TSO6;
dev->gso_max_size = RTL_GSO_MAX_SIZE_V2;
dev->gso_max_segs = RTL_GSO_MAX_SEGS_V2;
} else {
dev->hw_features |= NETIF_F_SG | NETIF_F_TSO;
dev->gso_max_size = RTL_GSO_MAX_SIZE_V1;
dev->gso_max_segs = RTL_GSO_MAX_SEGS_V1;
}
dev->hw_features |= NETIF_F_RXALL;
dev->hw_features |= NETIF_F_RXFCS;
/* configure chip for default features */
rtl8169_set_features(dev, dev->features);
jumbo_max = rtl_jumbo_max(tp);
if (jumbo_max)
dev->max_mtu = jumbo_max;
rtl_set_irq_mask(tp);
tp->fw_name = rtl_chip_infos[chipset].fw_name;
tp->counters = dmam_alloc_coherent (&pdev->dev, sizeof(*tp->counters),
&tp->counters_phys_addr,
GFP_KERNEL);
if (!tp->counters)
return -ENOMEM;
pci_set_drvdata(pdev, tp);
rc = r8169_mdio_register(tp);
if (rc)
return rc;
/* chip gets powered up in rtl_open() */
rtl_pll_power_down(tp);
rc = register_netdev(dev);
if (rc)
return rc;
netdev_info(dev, "%s, %pM, XID %03x, IRQ %d\n",
rtl_chip_infos[chipset].name, dev->dev_addr, xid,
pci_irq_vector(pdev, 0));
if (jumbo_max)
netdev_info(dev, "jumbo features [frames: %d bytes, tx checksumming: %s]\n",
jumbo_max, tp->mac_version <= RTL_GIGA_MAC_VER_06 ?
"ok" : "ko");
if (r8168_check_dash(tp))
rtl8168_driver_start(tp);
if (pci_dev_run_wake(pdev))
pm_runtime_put_sync(&pdev->dev);
return 0;
}
static struct pci_driver rtl8169_pci_driver = {
.name = MODULENAME,
.id_table = rtl8169_pci_tbl,
.probe = rtl_init_one,
.remove = rtl_remove_one,
.shutdown = rtl_shutdown,
#ifdef CONFIG_PM
.driver.pm = &rtl8169_pm_ops,
#endif
};
module_pci_driver(rtl8169_pci_driver);