linux/drivers/net/wan/pc300_drv.c
David Howells 7d12e780e0 IRQ: Maintain regs pointer globally rather than passing to IRQ handlers
Maintain a per-CPU global "struct pt_regs *" variable which can be used instead
of passing regs around manually through all ~1800 interrupt handlers in the
Linux kernel.

The regs pointer is used in few places, but it potentially costs both stack
space and code to pass it around.  On the FRV arch, removing the regs parameter
from all the genirq function results in a 20% speed up of the IRQ exit path
(ie: from leaving timer_interrupt() to leaving do_IRQ()).

Where appropriate, an arch may override the generic storage facility and do
something different with the variable.  On FRV, for instance, the address is
maintained in GR28 at all times inside the kernel as part of general exception
handling.

Having looked over the code, it appears that the parameter may be handed down
through up to twenty or so layers of functions.  Consider a USB character
device attached to a USB hub, attached to a USB controller that posts its
interrupts through a cascaded auxiliary interrupt controller.  A character
device driver may want to pass regs to the sysrq handler through the input
layer which adds another few layers of parameter passing.

I've build this code with allyesconfig for x86_64 and i386.  I've runtested the
main part of the code on FRV and i386, though I can't test most of the drivers.
I've also done partial conversion for powerpc and MIPS - these at least compile
with minimal configurations.

This will affect all archs.  Mostly the changes should be relatively easy.
Take do_IRQ(), store the regs pointer at the beginning, saving the old one:

	struct pt_regs *old_regs = set_irq_regs(regs);

And put the old one back at the end:

	set_irq_regs(old_regs);

Don't pass regs through to generic_handle_irq() or __do_IRQ().

In timer_interrupt(), this sort of change will be necessary:

	-	update_process_times(user_mode(regs));
	-	profile_tick(CPU_PROFILING, regs);
	+	update_process_times(user_mode(get_irq_regs()));
	+	profile_tick(CPU_PROFILING);

I'd like to move update_process_times()'s use of get_irq_regs() into itself,
except that i386, alone of the archs, uses something other than user_mode().

Some notes on the interrupt handling in the drivers:

 (*) input_dev() is now gone entirely.  The regs pointer is no longer stored in
     the input_dev struct.

 (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking.  It does
     something different depending on whether it's been supplied with a regs
     pointer or not.

 (*) Various IRQ handler function pointers have been moved to type
     irq_handler_t.

Signed-Off-By: David Howells <dhowells@redhat.com>
(cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 15:10:12 +01:00

3694 lines
111 KiB
C

#define USE_PCI_CLOCK
static char rcsid[] =
"Revision: 3.4.5 Date: 2002/03/07 ";
/*
* pc300.c Cyclades-PC300(tm) Driver.
*
* Author: Ivan Passos <ivan@cyclades.com>
* Maintainer: PC300 Maintainer <pc300@cyclades.com>
*
* Copyright: (c) 1999-2003 Cyclades Corp.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
* Using tabstop = 4.
*
* $Log: pc300_drv.c,v $
* Revision 3.23 2002/03/20 13:58:40 henrique
* Fixed ortographic mistakes
*
* Revision 3.22 2002/03/13 16:56:56 henrique
* Take out the debug messages
*
* Revision 3.21 2002/03/07 14:17:09 henrique
* License data fixed
*
* Revision 3.20 2002/01/17 17:58:52 ivan
* Support for PC300-TE/M (PMC).
*
* Revision 3.19 2002/01/03 17:08:47 daniela
* Enables DMA reception when the SCA-II disables it improperly.
*
* Revision 3.18 2001/12/03 18:47:50 daniela
* Esthetic changes.
*
* Revision 3.17 2001/10/19 16:50:13 henrique
* Patch to kernel 2.4.12 and new generic hdlc.
*
* Revision 3.16 2001/10/16 15:12:31 regina
* clear statistics
*
* Revision 3.11 to 3.15 2001/10/11 20:26:04 daniela
* More DMA fixes for noisy lines.
* Return the size of bad frames in dma_get_rx_frame_size, so that the Rx buffer
* descriptors can be cleaned by dma_buf_read (called in cpc_net_rx).
* Renamed dma_start routine to rx_dma_start. Improved Rx statistics.
* Fixed BOF interrupt treatment. Created dma_start routine.
* Changed min and max to cpc_min and cpc_max.
*
* Revision 3.10 2001/08/06 12:01:51 regina
* Fixed problem in DSR_DE bit.
*
* Revision 3.9 2001/07/18 19:27:26 daniela
* Added some history comments.
*
* Revision 3.8 2001/07/12 13:11:19 regina
* bug fix - DCD-OFF in pc300 tty driver
*
* Revision 3.3 to 3.7 2001/07/06 15:00:20 daniela
* Removing kernel 2.4.3 and previous support.
* DMA transmission bug fix.
* MTU check in cpc_net_rx fixed.
* Boot messages reviewed.
* New configuration parameters (line code, CRC calculation and clock).
*
* Revision 3.2 2001/06/22 13:13:02 regina
* MLPPP implementation. Changed the header of message trace to include
* the device name. New format : "hdlcX[R/T]: ".
* Default configuration changed.
*
* Revision 3.1 2001/06/15 regina
* in cpc_queue_xmit, netif_stop_queue is called if don't have free descriptor
* upping major version number
*
* Revision 1.1.1.1 2001/06/13 20:25:04 daniela
* PC300 initial CVS version (3.4.0-pre1)
*
* Revision 3.0.1.2 2001/06/08 daniela
* Did some changes in the DMA programming implementation to avoid the
* occurrence of a SCA-II bug when CDA is accessed during a DMA transfer.
*
* Revision 3.0.1.1 2001/05/02 daniela
* Added kernel 2.4.3 support.
*
* Revision 3.0.1.0 2001/03/13 daniela, henrique
* Added Frame Relay Support.
* Driver now uses HDLC generic driver to provide protocol support.
*
* Revision 3.0.0.8 2001/03/02 daniela
* Fixed ram size detection.
* Changed SIOCGPC300CONF ioctl, to give hw information to pc300util.
*
* Revision 3.0.0.7 2001/02/23 daniela
* netif_stop_queue called before the SCA-II transmition commands in
* cpc_queue_xmit, and with interrupts disabled to avoid race conditions with
* transmition interrupts.
* Fixed falc_check_status for Unframed E1.
*
* Revision 3.0.0.6 2000/12/13 daniela
* Implemented pc300util support: trace, statistics, status and loopback
* tests for the PC300 TE boards.
*
* Revision 3.0.0.5 2000/12/12 ivan
* Added support for Unframed E1.
* Implemented monitor mode.
* Fixed DCD sensitivity on the second channel.
* Driver now complies with new PCI kernel architecture.
*
* Revision 3.0.0.4 2000/09/28 ivan
* Implemented DCD sensitivity.
* Moved hardware-specific open to the end of cpc_open, to avoid race
* conditions with early reception interrupts.
* Included code for [request|release]_mem_region().
* Changed location of pc300.h .
* Minor code revision (contrib. of Jeff Garzik).
*
* Revision 3.0.0.3 2000/07/03 ivan
* Previous bugfix for the framing errors with external clock made X21
* boards stop working. This version fixes it.
*
* Revision 3.0.0.2 2000/06/23 ivan
* Revisited cpc_queue_xmit to prevent race conditions on Tx DMA buffer
* handling when Tx timeouts occur.
* Revisited Rx statistics.
* Fixed a bug in the SCA-II programming that would cause framing errors
* when external clock was configured.
*
* Revision 3.0.0.1 2000/05/26 ivan
* Added logic in the SCA interrupt handler so that no board can monopolize
* the driver.
* Request PLX I/O region, although driver doesn't use it, to avoid
* problems with other drivers accessing it.
*
* Revision 3.0.0.0 2000/05/15 ivan
* Did some changes in the DMA programming implementation to avoid the
* occurrence of a SCA-II bug in the second channel.
* Implemented workaround for PLX9050 bug that would cause a system lockup
* in certain systems, depending on the MMIO addresses allocated to the
* board.
* Fixed the FALC chip programming to avoid synchronization problems in the
* second channel (TE only).
* Implemented a cleaner and faster Tx DMA descriptor cleanup procedure in
* cpc_queue_xmit().
* Changed the built-in driver implementation so that the driver can use the
* general 'hdlcN' naming convention instead of proprietary device names.
* Driver load messages are now device-centric, instead of board-centric.
* Dynamic allocation of net_device structures.
* Code is now compliant with the new module interface (module_[init|exit]).
* Make use of the PCI helper functions to access PCI resources.
*
* Revision 2.0.0.0 2000/04/15 ivan
* Added support for the PC300/TE boards (T1/FT1/E1/FE1).
*
* Revision 1.1.0.0 2000/02/28 ivan
* Major changes in the driver architecture.
* Softnet compliancy implemented.
* Driver now reports physical instead of virtual memory addresses.
* Added cpc_change_mtu function.
*
* Revision 1.0.0.0 1999/12/16 ivan
* First official release.
* Support for 1- and 2-channel boards (which use distinct PCI Device ID's).
* Support for monolythic installation (i.e., drv built into the kernel).
* X.25 additional checking when lapb_[dis]connect_request returns an error.
* SCA programming now covers X.21 as well.
*
* Revision 0.3.1.0 1999/11/18 ivan
* Made X.25 support configuration-dependent (as it depends on external
* modules to work).
* Changed X.25-specific function names to comply with adopted convention.
* Fixed typos in X.25 functions that would cause compile errors (Daniela).
* Fixed bug in ch_config that would disable interrupts on a previously
* enabled channel if the other channel on the same board was enabled later.
*
* Revision 0.3.0.0 1999/11/16 daniela
* X.25 support.
*
* Revision 0.2.3.0 1999/11/15 ivan
* Function cpc_ch_status now provides more detailed information.
* Added support for X.21 clock configuration.
* Changed TNR1 setting in order to prevent Tx FIFO overaccesses by the SCA.
* Now using PCI clock instead of internal oscillator clock for the SCA.
*
* Revision 0.2.2.0 1999/11/10 ivan
* Changed the *_dma_buf_check functions so that they would print only
* the useful info instead of the whole buffer descriptor bank.
* Fixed bug in cpc_queue_xmit that would eventually crash the system
* in case of a packet drop.
* Implemented TX underrun handling.
* Improved SCA fine tuning to boost up its performance.
*
* Revision 0.2.1.0 1999/11/03 ivan
* Added functions *dma_buf_pt_init to allow independent initialization
* of the next-descr. and DMA buffer pointers on the DMA descriptors.
* Kernel buffer release and tbusy clearing is now done in the interrupt
* handler.
* Fixed bug in cpc_open that would cause an interface reopen to fail.
* Added a protocol-specific code section in cpc_net_rx.
* Removed printk level defs (they might be added back after the beta phase).
*
* Revision 0.2.0.0 1999/10/28 ivan
* Revisited the code so that new protocols can be easily added / supported.
*
* Revision 0.1.0.1 1999/10/20 ivan
* Mostly "esthetic" changes.
*
* Revision 0.1.0.0 1999/10/11 ivan
* Initial version.
*
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/ioport.h>
#include <linux/pci.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/net.h>
#include <linux/skbuff.h>
#include <linux/if_arp.h>
#include <linux/netdevice.h>
#include <linux/spinlock.h>
#include <linux/if.h>
#include <net/syncppp.h>
#include <net/arp.h>
#include <asm/io.h>
#include <asm/uaccess.h>
#include "pc300.h"
#define CPC_LOCK(card,flags) \
do { \
spin_lock_irqsave(&card->card_lock, flags); \
} while (0)
#define CPC_UNLOCK(card,flags) \
do { \
spin_unlock_irqrestore(&card->card_lock, flags); \
} while (0)
#undef PC300_DEBUG_PCI
#undef PC300_DEBUG_INTR
#undef PC300_DEBUG_TX
#undef PC300_DEBUG_RX
#undef PC300_DEBUG_OTHER
static struct pci_device_id cpc_pci_dev_id[] __devinitdata = {
/* PC300/RSV or PC300/X21, 2 chan */
{0x120e, 0x300, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0x300},
/* PC300/RSV or PC300/X21, 1 chan */
{0x120e, 0x301, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0x301},
/* PC300/TE, 2 chan */
{0x120e, 0x310, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0x310},
/* PC300/TE, 1 chan */
{0x120e, 0x311, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0x311},
/* PC300/TE-M, 2 chan */
{0x120e, 0x320, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0x320},
/* PC300/TE-M, 1 chan */
{0x120e, 0x321, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0x321},
/* End of table */
{0,},
};
MODULE_DEVICE_TABLE(pci, cpc_pci_dev_id);
#ifndef cpc_min
#define cpc_min(a,b) (((a)<(b))?(a):(b))
#endif
#ifndef cpc_max
#define cpc_max(a,b) (((a)>(b))?(a):(b))
#endif
/* prototypes */
static void tx_dma_buf_pt_init(pc300_t *, int);
static void tx_dma_buf_init(pc300_t *, int);
static void rx_dma_buf_pt_init(pc300_t *, int);
static void rx_dma_buf_init(pc300_t *, int);
static void tx_dma_buf_check(pc300_t *, int);
static void rx_dma_buf_check(pc300_t *, int);
static irqreturn_t cpc_intr(int, void *);
static struct net_device_stats *cpc_get_stats(struct net_device *);
static int clock_rate_calc(uclong, uclong, int *);
static uclong detect_ram(pc300_t *);
static void plx_init(pc300_t *);
static void cpc_trace(struct net_device *, struct sk_buff *, char);
static int cpc_attach(struct net_device *, unsigned short, unsigned short);
static int cpc_close(struct net_device *dev);
#ifdef CONFIG_PC300_MLPPP
void cpc_tty_init(pc300dev_t * dev);
void cpc_tty_unregister_service(pc300dev_t * pc300dev);
void cpc_tty_receive(pc300dev_t * pc300dev);
void cpc_tty_trigger_poll(pc300dev_t * pc300dev);
void cpc_tty_reset_var(void);
#endif
/************************/
/*** DMA Routines ***/
/************************/
static void tx_dma_buf_pt_init(pc300_t * card, int ch)
{
int i;
int ch_factor = ch * N_DMA_TX_BUF;
volatile pcsca_bd_t __iomem *ptdescr = (card->hw.rambase
+ DMA_TX_BD_BASE + ch_factor * sizeof(pcsca_bd_t));
for (i = 0; i < N_DMA_TX_BUF; i++, ptdescr++) {
cpc_writel(&ptdescr->next, (uclong) (DMA_TX_BD_BASE +
(ch_factor + ((i + 1) & (N_DMA_TX_BUF - 1))) * sizeof(pcsca_bd_t)));
cpc_writel(&ptdescr->ptbuf,
(uclong) (DMA_TX_BASE + (ch_factor + i) * BD_DEF_LEN));
}
}
static void tx_dma_buf_init(pc300_t * card, int ch)
{
int i;
int ch_factor = ch * N_DMA_TX_BUF;
volatile pcsca_bd_t __iomem *ptdescr = (card->hw.rambase
+ DMA_TX_BD_BASE + ch_factor * sizeof(pcsca_bd_t));
for (i = 0; i < N_DMA_TX_BUF; i++, ptdescr++) {
memset_io(ptdescr, 0, sizeof(pcsca_bd_t));
cpc_writew(&ptdescr->len, 0);
cpc_writeb(&ptdescr->status, DST_OSB);
}
tx_dma_buf_pt_init(card, ch);
}
static void rx_dma_buf_pt_init(pc300_t * card, int ch)
{
int i;
int ch_factor = ch * N_DMA_RX_BUF;
volatile pcsca_bd_t __iomem *ptdescr = (card->hw.rambase
+ DMA_RX_BD_BASE + ch_factor * sizeof(pcsca_bd_t));
for (i = 0; i < N_DMA_RX_BUF; i++, ptdescr++) {
cpc_writel(&ptdescr->next, (uclong) (DMA_RX_BD_BASE +
(ch_factor + ((i + 1) & (N_DMA_RX_BUF - 1))) * sizeof(pcsca_bd_t)));
cpc_writel(&ptdescr->ptbuf,
(uclong) (DMA_RX_BASE + (ch_factor + i) * BD_DEF_LEN));
}
}
static void rx_dma_buf_init(pc300_t * card, int ch)
{
int i;
int ch_factor = ch * N_DMA_RX_BUF;
volatile pcsca_bd_t __iomem *ptdescr = (card->hw.rambase
+ DMA_RX_BD_BASE + ch_factor * sizeof(pcsca_bd_t));
for (i = 0; i < N_DMA_RX_BUF; i++, ptdescr++) {
memset_io(ptdescr, 0, sizeof(pcsca_bd_t));
cpc_writew(&ptdescr->len, 0);
cpc_writeb(&ptdescr->status, 0);
}
rx_dma_buf_pt_init(card, ch);
}
static void tx_dma_buf_check(pc300_t * card, int ch)
{
volatile pcsca_bd_t __iomem *ptdescr;
int i;
ucshort first_bd = card->chan[ch].tx_first_bd;
ucshort next_bd = card->chan[ch].tx_next_bd;
printk("#CH%d: f_bd = %d(0x%08zx), n_bd = %d(0x%08zx)\n", ch,
first_bd, TX_BD_ADDR(ch, first_bd),
next_bd, TX_BD_ADDR(ch, next_bd));
for (i = first_bd,
ptdescr = (card->hw.rambase + TX_BD_ADDR(ch, first_bd));
i != ((next_bd + 1) & (N_DMA_TX_BUF - 1));
i = (i + 1) & (N_DMA_TX_BUF - 1),
ptdescr = (card->hw.rambase + TX_BD_ADDR(ch, i))) {
printk("\n CH%d TX%d: next=0x%x, ptbuf=0x%x, ST=0x%x, len=%d",
ch, i, cpc_readl(&ptdescr->next),
cpc_readl(&ptdescr->ptbuf),
cpc_readb(&ptdescr->status), cpc_readw(&ptdescr->len));
}
printk("\n");
}
#ifdef PC300_DEBUG_OTHER
/* Show all TX buffer descriptors */
static void tx1_dma_buf_check(pc300_t * card, int ch)
{
volatile pcsca_bd_t __iomem *ptdescr;
int i;
ucshort first_bd = card->chan[ch].tx_first_bd;
ucshort next_bd = card->chan[ch].tx_next_bd;
uclong scabase = card->hw.scabase;
printk ("\nnfree_tx_bd = %d \n", card->chan[ch].nfree_tx_bd);
printk("#CH%d: f_bd = %d(0x%08x), n_bd = %d(0x%08x)\n", ch,
first_bd, TX_BD_ADDR(ch, first_bd),
next_bd, TX_BD_ADDR(ch, next_bd));
printk("TX_CDA=0x%08x, TX_EDA=0x%08x\n",
cpc_readl(scabase + DTX_REG(CDAL, ch)),
cpc_readl(scabase + DTX_REG(EDAL, ch)));
for (i = 0; i < N_DMA_TX_BUF; i++) {
ptdescr = (card->hw.rambase + TX_BD_ADDR(ch, i));
printk("\n CH%d TX%d: next=0x%x, ptbuf=0x%x, ST=0x%x, len=%d",
ch, i, cpc_readl(&ptdescr->next),
cpc_readl(&ptdescr->ptbuf),
cpc_readb(&ptdescr->status), cpc_readw(&ptdescr->len));
}
printk("\n");
}
#endif
static void rx_dma_buf_check(pc300_t * card, int ch)
{
volatile pcsca_bd_t __iomem *ptdescr;
int i;
ucshort first_bd = card->chan[ch].rx_first_bd;
ucshort last_bd = card->chan[ch].rx_last_bd;
int ch_factor;
ch_factor = ch * N_DMA_RX_BUF;
printk("#CH%d: f_bd = %d, l_bd = %d\n", ch, first_bd, last_bd);
for (i = 0, ptdescr = (card->hw.rambase +
DMA_RX_BD_BASE + ch_factor * sizeof(pcsca_bd_t));
i < N_DMA_RX_BUF; i++, ptdescr++) {
if (cpc_readb(&ptdescr->status) & DST_OSB)
printk ("\n CH%d RX%d: next=0x%x, ptbuf=0x%x, ST=0x%x, len=%d",
ch, i, cpc_readl(&ptdescr->next),
cpc_readl(&ptdescr->ptbuf),
cpc_readb(&ptdescr->status),
cpc_readw(&ptdescr->len));
}
printk("\n");
}
static int dma_get_rx_frame_size(pc300_t * card, int ch)
{
volatile pcsca_bd_t __iomem *ptdescr;
ucshort first_bd = card->chan[ch].rx_first_bd;
int rcvd = 0;
volatile ucchar status;
ptdescr = (card->hw.rambase + RX_BD_ADDR(ch, first_bd));
while ((status = cpc_readb(&ptdescr->status)) & DST_OSB) {
rcvd += cpc_readw(&ptdescr->len);
first_bd = (first_bd + 1) & (N_DMA_RX_BUF - 1);
if ((status & DST_EOM) || (first_bd == card->chan[ch].rx_last_bd)) {
/* Return the size of a good frame or incomplete bad frame
* (dma_buf_read will clean the buffer descriptors in this case). */
return (rcvd);
}
ptdescr = (card->hw.rambase + cpc_readl(&ptdescr->next));
}
return (-1);
}
/*
* dma_buf_write: writes a frame to the Tx DMA buffers
* NOTE: this function writes one frame at a time.
*/
static int dma_buf_write(pc300_t * card, int ch, ucchar * ptdata, int len)
{
int i, nchar;
volatile pcsca_bd_t __iomem *ptdescr;
int tosend = len;
ucchar nbuf = ((len - 1) / BD_DEF_LEN) + 1;
if (nbuf >= card->chan[ch].nfree_tx_bd) {
return -ENOMEM;
}
for (i = 0; i < nbuf; i++) {
ptdescr = (card->hw.rambase +
TX_BD_ADDR(ch, card->chan[ch].tx_next_bd));
nchar = cpc_min(BD_DEF_LEN, tosend);
if (cpc_readb(&ptdescr->status) & DST_OSB) {
memcpy_toio((card->hw.rambase + cpc_readl(&ptdescr->ptbuf)),
&ptdata[len - tosend], nchar);
cpc_writew(&ptdescr->len, nchar);
card->chan[ch].nfree_tx_bd--;
if ((i + 1) == nbuf) {
/* This must be the last BD to be used */
cpc_writeb(&ptdescr->status, DST_EOM);
} else {
cpc_writeb(&ptdescr->status, 0);
}
} else {
return -ENOMEM;
}
tosend -= nchar;
card->chan[ch].tx_next_bd =
(card->chan[ch].tx_next_bd + 1) & (N_DMA_TX_BUF - 1);
}
/* If it gets to here, it means we have sent the whole frame */
return 0;
}
/*
* dma_buf_read: reads a frame from the Rx DMA buffers
* NOTE: this function reads one frame at a time.
*/
static int dma_buf_read(pc300_t * card, int ch, struct sk_buff *skb)
{
int nchar;
pc300ch_t *chan = (pc300ch_t *) & card->chan[ch];
volatile pcsca_bd_t __iomem *ptdescr;
int rcvd = 0;
volatile ucchar status;
ptdescr = (card->hw.rambase +
RX_BD_ADDR(ch, chan->rx_first_bd));
while ((status = cpc_readb(&ptdescr->status)) & DST_OSB) {
nchar = cpc_readw(&ptdescr->len);
if ((status & (DST_OVR | DST_CRC | DST_RBIT | DST_SHRT | DST_ABT))
|| (nchar > BD_DEF_LEN)) {
if (nchar > BD_DEF_LEN)
status |= DST_RBIT;
rcvd = -status;
/* Discard remaining descriptors used by the bad frame */
while (chan->rx_first_bd != chan->rx_last_bd) {
cpc_writeb(&ptdescr->status, 0);
chan->rx_first_bd = (chan->rx_first_bd+1) & (N_DMA_RX_BUF-1);
if (status & DST_EOM)
break;
ptdescr = (card->hw.rambase +
cpc_readl(&ptdescr->next));
status = cpc_readb(&ptdescr->status);
}
break;
}
if (nchar != 0) {
if (skb) {
memcpy_fromio(skb_put(skb, nchar),
(card->hw.rambase+cpc_readl(&ptdescr->ptbuf)),nchar);
}
rcvd += nchar;
}
cpc_writeb(&ptdescr->status, 0);
cpc_writeb(&ptdescr->len, 0);
chan->rx_first_bd = (chan->rx_first_bd + 1) & (N_DMA_RX_BUF - 1);
if (status & DST_EOM)
break;
ptdescr = (card->hw.rambase + cpc_readl(&ptdescr->next));
}
if (rcvd != 0) {
/* Update pointer */
chan->rx_last_bd = (chan->rx_first_bd - 1) & (N_DMA_RX_BUF - 1);
/* Update EDA */
cpc_writel(card->hw.scabase + DRX_REG(EDAL, ch),
RX_BD_ADDR(ch, chan->rx_last_bd));
}
return (rcvd);
}
static void tx_dma_stop(pc300_t * card, int ch)
{
void __iomem *scabase = card->hw.scabase;
ucchar drr_ena_bit = 1 << (5 + 2 * ch);
ucchar drr_rst_bit = 1 << (1 + 2 * ch);
/* Disable DMA */
cpc_writeb(scabase + DRR, drr_ena_bit);
cpc_writeb(scabase + DRR, drr_rst_bit & ~drr_ena_bit);
}
static void rx_dma_stop(pc300_t * card, int ch)
{
void __iomem *scabase = card->hw.scabase;
ucchar drr_ena_bit = 1 << (4 + 2 * ch);
ucchar drr_rst_bit = 1 << (2 * ch);
/* Disable DMA */
cpc_writeb(scabase + DRR, drr_ena_bit);
cpc_writeb(scabase + DRR, drr_rst_bit & ~drr_ena_bit);
}
static void rx_dma_start(pc300_t * card, int ch)
{
void __iomem *scabase = card->hw.scabase;
pc300ch_t *chan = (pc300ch_t *) & card->chan[ch];
/* Start DMA */
cpc_writel(scabase + DRX_REG(CDAL, ch),
RX_BD_ADDR(ch, chan->rx_first_bd));
if (cpc_readl(scabase + DRX_REG(CDAL,ch)) !=
RX_BD_ADDR(ch, chan->rx_first_bd)) {
cpc_writel(scabase + DRX_REG(CDAL, ch),
RX_BD_ADDR(ch, chan->rx_first_bd));
}
cpc_writel(scabase + DRX_REG(EDAL, ch),
RX_BD_ADDR(ch, chan->rx_last_bd));
cpc_writew(scabase + DRX_REG(BFLL, ch), BD_DEF_LEN);
cpc_writeb(scabase + DSR_RX(ch), DSR_DE);
if (!(cpc_readb(scabase + DSR_RX(ch)) & DSR_DE)) {
cpc_writeb(scabase + DSR_RX(ch), DSR_DE);
}
}
/*************************/
/*** FALC Routines ***/
/*************************/
static void falc_issue_cmd(pc300_t * card, int ch, ucchar cmd)
{
void __iomem *falcbase = card->hw.falcbase;
unsigned long i = 0;
while (cpc_readb(falcbase + F_REG(SIS, ch)) & SIS_CEC) {
if (i++ >= PC300_FALC_MAXLOOP) {
printk("%s: FALC command locked(cmd=0x%x).\n",
card->chan[ch].d.name, cmd);
break;
}
}
cpc_writeb(falcbase + F_REG(CMDR, ch), cmd);
}
static void falc_intr_enable(pc300_t * card, int ch)
{
pc300ch_t *chan = (pc300ch_t *) & card->chan[ch];
pc300chconf_t *conf = (pc300chconf_t *) & chan->conf;
falc_t *pfalc = (falc_t *) & chan->falc;
void __iomem *falcbase = card->hw.falcbase;
/* Interrupt pins are open-drain */
cpc_writeb(falcbase + F_REG(IPC, ch),
cpc_readb(falcbase + F_REG(IPC, ch)) & ~IPC_IC0);
/* Conters updated each second */
cpc_writeb(falcbase + F_REG(FMR1, ch),
cpc_readb(falcbase + F_REG(FMR1, ch)) | FMR1_ECM);
/* Enable SEC and ES interrupts */
cpc_writeb(falcbase + F_REG(IMR3, ch),
cpc_readb(falcbase + F_REG(IMR3, ch)) & ~(IMR3_SEC | IMR3_ES));
if (conf->fr_mode == PC300_FR_UNFRAMED) {
cpc_writeb(falcbase + F_REG(IMR4, ch),
cpc_readb(falcbase + F_REG(IMR4, ch)) & ~(IMR4_LOS));
} else {
cpc_writeb(falcbase + F_REG(IMR4, ch),
cpc_readb(falcbase + F_REG(IMR4, ch)) &
~(IMR4_LFA | IMR4_AIS | IMR4_LOS | IMR4_SLIP));
}
if (conf->media == IF_IFACE_T1) {
cpc_writeb(falcbase + F_REG(IMR3, ch),
cpc_readb(falcbase + F_REG(IMR3, ch)) & ~IMR3_LLBSC);
} else {
cpc_writeb(falcbase + F_REG(IPC, ch),
cpc_readb(falcbase + F_REG(IPC, ch)) | IPC_SCI);
if (conf->fr_mode == PC300_FR_UNFRAMED) {
cpc_writeb(falcbase + F_REG(IMR2, ch),
cpc_readb(falcbase + F_REG(IMR2, ch)) & ~(IMR2_LOS));
} else {
cpc_writeb(falcbase + F_REG(IMR2, ch),
cpc_readb(falcbase + F_REG(IMR2, ch)) &
~(IMR2_FAR | IMR2_LFA | IMR2_AIS | IMR2_LOS));
if (pfalc->multiframe_mode) {
cpc_writeb(falcbase + F_REG(IMR2, ch),
cpc_readb(falcbase + F_REG(IMR2, ch)) &
~(IMR2_T400MS | IMR2_MFAR));
} else {
cpc_writeb(falcbase + F_REG(IMR2, ch),
cpc_readb(falcbase + F_REG(IMR2, ch)) |
IMR2_T400MS | IMR2_MFAR);
}
}
}
}
static void falc_open_timeslot(pc300_t * card, int ch, int timeslot)
{
void __iomem *falcbase = card->hw.falcbase;
ucchar tshf = card->chan[ch].falc.offset;
cpc_writeb(falcbase + F_REG((ICB1 + (timeslot - tshf) / 8), ch),
cpc_readb(falcbase + F_REG((ICB1 + (timeslot - tshf) / 8), ch)) &
~(0x80 >> ((timeslot - tshf) & 0x07)));
cpc_writeb(falcbase + F_REG((TTR1 + timeslot / 8), ch),
cpc_readb(falcbase + F_REG((TTR1 + timeslot / 8), ch)) |
(0x80 >> (timeslot & 0x07)));
cpc_writeb(falcbase + F_REG((RTR1 + timeslot / 8), ch),
cpc_readb(falcbase + F_REG((RTR1 + timeslot / 8), ch)) |
(0x80 >> (timeslot & 0x07)));
}
static void falc_close_timeslot(pc300_t * card, int ch, int timeslot)
{
void __iomem *falcbase = card->hw.falcbase;
ucchar tshf = card->chan[ch].falc.offset;
cpc_writeb(falcbase + F_REG((ICB1 + (timeslot - tshf) / 8), ch),
cpc_readb(falcbase + F_REG((ICB1 + (timeslot - tshf) / 8), ch)) |
(0x80 >> ((timeslot - tshf) & 0x07)));
cpc_writeb(falcbase + F_REG((TTR1 + timeslot / 8), ch),
cpc_readb(falcbase + F_REG((TTR1 + timeslot / 8), ch)) &
~(0x80 >> (timeslot & 0x07)));
cpc_writeb(falcbase + F_REG((RTR1 + timeslot / 8), ch),
cpc_readb(falcbase + F_REG((RTR1 + timeslot / 8), ch)) &
~(0x80 >> (timeslot & 0x07)));
}
static void falc_close_all_timeslots(pc300_t * card, int ch)
{
pc300ch_t *chan = (pc300ch_t *) & card->chan[ch];
pc300chconf_t *conf = (pc300chconf_t *) & chan->conf;
void __iomem *falcbase = card->hw.falcbase;
cpc_writeb(falcbase + F_REG(ICB1, ch), 0xff);
cpc_writeb(falcbase + F_REG(TTR1, ch), 0);
cpc_writeb(falcbase + F_REG(RTR1, ch), 0);
cpc_writeb(falcbase + F_REG(ICB2, ch), 0xff);
cpc_writeb(falcbase + F_REG(TTR2, ch), 0);
cpc_writeb(falcbase + F_REG(RTR2, ch), 0);
cpc_writeb(falcbase + F_REG(ICB3, ch), 0xff);
cpc_writeb(falcbase + F_REG(TTR3, ch), 0);
cpc_writeb(falcbase + F_REG(RTR3, ch), 0);
if (conf->media == IF_IFACE_E1) {
cpc_writeb(falcbase + F_REG(ICB4, ch), 0xff);
cpc_writeb(falcbase + F_REG(TTR4, ch), 0);
cpc_writeb(falcbase + F_REG(RTR4, ch), 0);
}
}
static void falc_open_all_timeslots(pc300_t * card, int ch)
{
pc300ch_t *chan = (pc300ch_t *) & card->chan[ch];
pc300chconf_t *conf = (pc300chconf_t *) & chan->conf;
void __iomem *falcbase = card->hw.falcbase;
cpc_writeb(falcbase + F_REG(ICB1, ch), 0);
if (conf->fr_mode == PC300_FR_UNFRAMED) {
cpc_writeb(falcbase + F_REG(TTR1, ch), 0xff);
cpc_writeb(falcbase + F_REG(RTR1, ch), 0xff);
} else {
/* Timeslot 0 is never enabled */
cpc_writeb(falcbase + F_REG(TTR1, ch), 0x7f);
cpc_writeb(falcbase + F_REG(RTR1, ch), 0x7f);
}
cpc_writeb(falcbase + F_REG(ICB2, ch), 0);
cpc_writeb(falcbase + F_REG(TTR2, ch), 0xff);
cpc_writeb(falcbase + F_REG(RTR2, ch), 0xff);
cpc_writeb(falcbase + F_REG(ICB3, ch), 0);
cpc_writeb(falcbase + F_REG(TTR3, ch), 0xff);
cpc_writeb(falcbase + F_REG(RTR3, ch), 0xff);
if (conf->media == IF_IFACE_E1) {
cpc_writeb(falcbase + F_REG(ICB4, ch), 0);
cpc_writeb(falcbase + F_REG(TTR4, ch), 0xff);
cpc_writeb(falcbase + F_REG(RTR4, ch), 0xff);
} else {
cpc_writeb(falcbase + F_REG(ICB4, ch), 0xff);
cpc_writeb(falcbase + F_REG(TTR4, ch), 0x80);
cpc_writeb(falcbase + F_REG(RTR4, ch), 0x80);
}
}
static void falc_init_timeslot(pc300_t * card, int ch)
{
pc300ch_t *chan = (pc300ch_t *) & card->chan[ch];
pc300chconf_t *conf = (pc300chconf_t *) & chan->conf;
falc_t *pfalc = (falc_t *) & chan->falc;
int tslot;
for (tslot = 0; tslot < pfalc->num_channels; tslot++) {
if (conf->tslot_bitmap & (1 << tslot)) {
// Channel enabled
falc_open_timeslot(card, ch, tslot + 1);
} else {
// Channel disabled
falc_close_timeslot(card, ch, tslot + 1);
}
}
}
static void falc_enable_comm(pc300_t * card, int ch)
{
pc300ch_t *chan = (pc300ch_t *) & card->chan[ch];
falc_t *pfalc = (falc_t *) & chan->falc;
if (pfalc->full_bandwidth) {
falc_open_all_timeslots(card, ch);
} else {
falc_init_timeslot(card, ch);
}
// CTS/DCD ON
cpc_writeb(card->hw.falcbase + card->hw.cpld_reg1,
cpc_readb(card->hw.falcbase + card->hw.cpld_reg1) &
~((CPLD_REG1_FALC_DCD | CPLD_REG1_FALC_CTS) << (2 * ch)));
}
static void falc_disable_comm(pc300_t * card, int ch)
{
pc300ch_t *chan = (pc300ch_t *) & card->chan[ch];
falc_t *pfalc = (falc_t *) & chan->falc;
if (pfalc->loop_active != 2) {
falc_close_all_timeslots(card, ch);
}
// CTS/DCD OFF
cpc_writeb(card->hw.falcbase + card->hw.cpld_reg1,
cpc_readb(card->hw.falcbase + card->hw.cpld_reg1) |
((CPLD_REG1_FALC_DCD | CPLD_REG1_FALC_CTS) << (2 * ch)));
}
static void falc_init_t1(pc300_t * card, int ch)
{
pc300ch_t *chan = (pc300ch_t *) & card->chan[ch];
pc300chconf_t *conf = (pc300chconf_t *) & chan->conf;
falc_t *pfalc = (falc_t *) & chan->falc;
void __iomem *falcbase = card->hw.falcbase;
ucchar dja = (ch ? (LIM2_DJA2 | LIM2_DJA1) : 0);
/* Switch to T1 mode (PCM 24) */
cpc_writeb(falcbase + F_REG(FMR1, ch), FMR1_PMOD);
/* Wait 20 us for setup */
udelay(20);
/* Transmit Buffer Size (1 frame) */
cpc_writeb(falcbase + F_REG(SIC1, ch), SIC1_XBS0);
/* Clock mode */
if (conf->phys_settings.clock_type == CLOCK_INT) { /* Master mode */
cpc_writeb(falcbase + F_REG(LIM0, ch),
cpc_readb(falcbase + F_REG(LIM0, ch)) | LIM0_MAS);
} else { /* Slave mode */
cpc_writeb(falcbase + F_REG(LIM0, ch),
cpc_readb(falcbase + F_REG(LIM0, ch)) & ~LIM0_MAS);
cpc_writeb(falcbase + F_REG(LOOP, ch),
cpc_readb(falcbase + F_REG(LOOP, ch)) & ~LOOP_RTM);
}
cpc_writeb(falcbase + F_REG(IPC, ch), IPC_SCI);
cpc_writeb(falcbase + F_REG(FMR0, ch),
cpc_readb(falcbase + F_REG(FMR0, ch)) &
~(FMR0_XC0 | FMR0_XC1 | FMR0_RC0 | FMR0_RC1));
switch (conf->lcode) {
case PC300_LC_AMI:
cpc_writeb(falcbase + F_REG(FMR0, ch),
cpc_readb(falcbase + F_REG(FMR0, ch)) |
FMR0_XC1 | FMR0_RC1);
/* Clear Channel register to ON for all channels */
cpc_writeb(falcbase + F_REG(CCB1, ch), 0xff);
cpc_writeb(falcbase + F_REG(CCB2, ch), 0xff);
cpc_writeb(falcbase + F_REG(CCB3, ch), 0xff);
break;
case PC300_LC_B8ZS:
cpc_writeb(falcbase + F_REG(FMR0, ch),
cpc_readb(falcbase + F_REG(FMR0, ch)) |
FMR0_XC0 | FMR0_XC1 | FMR0_RC0 | FMR0_RC1);
break;
case PC300_LC_NRZ:
cpc_writeb(falcbase + F_REG(FMR0, ch),
cpc_readb(falcbase + F_REG(FMR0, ch)) | 0x00);
break;
}
cpc_writeb(falcbase + F_REG(LIM0, ch),
cpc_readb(falcbase + F_REG(LIM0, ch)) | LIM0_ELOS);
cpc_writeb(falcbase + F_REG(LIM0, ch),
cpc_readb(falcbase + F_REG(LIM0, ch)) & ~(LIM0_SCL1 | LIM0_SCL0));
/* Set interface mode to 2 MBPS */
cpc_writeb(falcbase + F_REG(FMR1, ch),
cpc_readb(falcbase + F_REG(FMR1, ch)) | FMR1_IMOD);
switch (conf->fr_mode) {
case PC300_FR_ESF:
pfalc->multiframe_mode = 0;
cpc_writeb(falcbase + F_REG(FMR4, ch),
cpc_readb(falcbase + F_REG(FMR4, ch)) | FMR4_FM1);
cpc_writeb(falcbase + F_REG(FMR1, ch),
cpc_readb(falcbase + F_REG(FMR1, ch)) |
FMR1_CRC | FMR1_EDL);
cpc_writeb(falcbase + F_REG(XDL1, ch), 0);
cpc_writeb(falcbase + F_REG(XDL2, ch), 0);
cpc_writeb(falcbase + F_REG(XDL3, ch), 0);
cpc_writeb(falcbase + F_REG(FMR0, ch),
cpc_readb(falcbase + F_REG(FMR0, ch)) & ~FMR0_SRAF);
cpc_writeb(falcbase + F_REG(FMR2, ch),
cpc_readb(falcbase + F_REG(FMR2,ch)) | FMR2_MCSP | FMR2_SSP);
break;
case PC300_FR_D4:
pfalc->multiframe_mode = 1;
cpc_writeb(falcbase + F_REG(FMR4, ch),
cpc_readb(falcbase + F_REG(FMR4, ch)) &
~(FMR4_FM1 | FMR4_FM0));
cpc_writeb(falcbase + F_REG(FMR0, ch),
cpc_readb(falcbase + F_REG(FMR0, ch)) | FMR0_SRAF);
cpc_writeb(falcbase + F_REG(FMR2, ch),
cpc_readb(falcbase + F_REG(FMR2, ch)) & ~FMR2_SSP);
break;
}
/* Enable Automatic Resynchronization */
cpc_writeb(falcbase + F_REG(FMR4, ch),
cpc_readb(falcbase + F_REG(FMR4, ch)) | FMR4_AUTO);
/* Transmit Automatic Remote Alarm */
cpc_writeb(falcbase + F_REG(FMR2, ch),
cpc_readb(falcbase + F_REG(FMR2, ch)) | FMR2_AXRA);
/* Channel translation mode 1 : one to one */
cpc_writeb(falcbase + F_REG(FMR1, ch),
cpc_readb(falcbase + F_REG(FMR1, ch)) | FMR1_CTM);
/* No signaling */
cpc_writeb(falcbase + F_REG(FMR1, ch),
cpc_readb(falcbase + F_REG(FMR1, ch)) & ~FMR1_SIGM);
cpc_writeb(falcbase + F_REG(FMR5, ch),
cpc_readb(falcbase + F_REG(FMR5, ch)) &
~(FMR5_EIBR | FMR5_SRS));
cpc_writeb(falcbase + F_REG(CCR1, ch), 0);
cpc_writeb(falcbase + F_REG(LIM1, ch),
cpc_readb(falcbase + F_REG(LIM1, ch)) | LIM1_RIL0 | LIM1_RIL1);
switch (conf->lbo) {
/* Provides proper Line Build Out */
case PC300_LBO_0_DB:
cpc_writeb(falcbase + F_REG(LIM2, ch), (LIM2_LOS1 | dja));
cpc_writeb(falcbase + F_REG(XPM0, ch), 0x5a);
cpc_writeb(falcbase + F_REG(XPM1, ch), 0x8f);
cpc_writeb(falcbase + F_REG(XPM2, ch), 0x20);
break;
case PC300_LBO_7_5_DB:
cpc_writeb(falcbase + F_REG(LIM2, ch), (0x40 | LIM2_LOS1 | dja));
cpc_writeb(falcbase + F_REG(XPM0, ch), 0x11);
cpc_writeb(falcbase + F_REG(XPM1, ch), 0x02);
cpc_writeb(falcbase + F_REG(XPM2, ch), 0x20);
break;
case PC300_LBO_15_DB:
cpc_writeb(falcbase + F_REG(LIM2, ch), (0x80 | LIM2_LOS1 | dja));
cpc_writeb(falcbase + F_REG(XPM0, ch), 0x8e);
cpc_writeb(falcbase + F_REG(XPM1, ch), 0x01);
cpc_writeb(falcbase + F_REG(XPM2, ch), 0x20);
break;
case PC300_LBO_22_5_DB:
cpc_writeb(falcbase + F_REG(LIM2, ch), (0xc0 | LIM2_LOS1 | dja));
cpc_writeb(falcbase + F_REG(XPM0, ch), 0x09);
cpc_writeb(falcbase + F_REG(XPM1, ch), 0x01);
cpc_writeb(falcbase + F_REG(XPM2, ch), 0x20);
break;
}
/* Transmit Clock-Slot Offset */
cpc_writeb(falcbase + F_REG(XC0, ch),
cpc_readb(falcbase + F_REG(XC0, ch)) | 0x01);
/* Transmit Time-slot Offset */
cpc_writeb(falcbase + F_REG(XC1, ch), 0x3e);
/* Receive Clock-Slot offset */
cpc_writeb(falcbase + F_REG(RC0, ch), 0x05);
/* Receive Time-slot offset */
cpc_writeb(falcbase + F_REG(RC1, ch), 0x00);
/* LOS Detection after 176 consecutive 0s */
cpc_writeb(falcbase + F_REG(PCDR, ch), 0x0a);
/* LOS Recovery after 22 ones in the time window of PCD */
cpc_writeb(falcbase + F_REG(PCRR, ch), 0x15);
cpc_writeb(falcbase + F_REG(IDLE, ch), 0x7f);
if (conf->fr_mode == PC300_FR_ESF_JAPAN) {
cpc_writeb(falcbase + F_REG(RC1, ch),
cpc_readb(falcbase + F_REG(RC1, ch)) | 0x80);
}
falc_close_all_timeslots(card, ch);
}
static void falc_init_e1(pc300_t * card, int ch)
{
pc300ch_t *chan = (pc300ch_t *) & card->chan[ch];
pc300chconf_t *conf = (pc300chconf_t *) & chan->conf;
falc_t *pfalc = (falc_t *) & chan->falc;
void __iomem *falcbase = card->hw.falcbase;
ucchar dja = (ch ? (LIM2_DJA2 | LIM2_DJA1) : 0);
/* Switch to E1 mode (PCM 30) */
cpc_writeb(falcbase + F_REG(FMR1, ch),
cpc_readb(falcbase + F_REG(FMR1, ch)) & ~FMR1_PMOD);
/* Clock mode */
if (conf->phys_settings.clock_type == CLOCK_INT) { /* Master mode */
cpc_writeb(falcbase + F_REG(LIM0, ch),
cpc_readb(falcbase + F_REG(LIM0, ch)) | LIM0_MAS);
} else { /* Slave mode */
cpc_writeb(falcbase + F_REG(LIM0, ch),
cpc_readb(falcbase + F_REG(LIM0, ch)) & ~LIM0_MAS);
}
cpc_writeb(falcbase + F_REG(LOOP, ch),
cpc_readb(falcbase + F_REG(LOOP, ch)) & ~LOOP_SFM);
cpc_writeb(falcbase + F_REG(IPC, ch), IPC_SCI);
cpc_writeb(falcbase + F_REG(FMR0, ch),
cpc_readb(falcbase + F_REG(FMR0, ch)) &
~(FMR0_XC0 | FMR0_XC1 | FMR0_RC0 | FMR0_RC1));
switch (conf->lcode) {
case PC300_LC_AMI:
cpc_writeb(falcbase + F_REG(FMR0, ch),
cpc_readb(falcbase + F_REG(FMR0, ch)) |
FMR0_XC1 | FMR0_RC1);
break;
case PC300_LC_HDB3:
cpc_writeb(falcbase + F_REG(FMR0, ch),
cpc_readb(falcbase + F_REG(FMR0, ch)) |
FMR0_XC0 | FMR0_XC1 | FMR0_RC0 | FMR0_RC1);
break;
case PC300_LC_NRZ:
break;
}
cpc_writeb(falcbase + F_REG(LIM0, ch),
cpc_readb(falcbase + F_REG(LIM0, ch)) & ~(LIM0_SCL1 | LIM0_SCL0));
/* Set interface mode to 2 MBPS */
cpc_writeb(falcbase + F_REG(FMR1, ch),
cpc_readb(falcbase + F_REG(FMR1, ch)) | FMR1_IMOD);
cpc_writeb(falcbase + F_REG(XPM0, ch), 0x18);
cpc_writeb(falcbase + F_REG(XPM1, ch), 0x03);
cpc_writeb(falcbase + F_REG(XPM2, ch), 0x00);
switch (conf->fr_mode) {
case PC300_FR_MF_CRC4:
pfalc->multiframe_mode = 1;
cpc_writeb(falcbase + F_REG(FMR1, ch),
cpc_readb(falcbase + F_REG(FMR1, ch)) | FMR1_XFS);
cpc_writeb(falcbase + F_REG(FMR2, ch),
cpc_readb(falcbase + F_REG(FMR2, ch)) | FMR2_RFS1);
cpc_writeb(falcbase + F_REG(FMR2, ch),
cpc_readb(falcbase + F_REG(FMR2, ch)) & ~FMR2_RFS0);
cpc_writeb(falcbase + F_REG(FMR3, ch),
cpc_readb(falcbase + F_REG(FMR3, ch)) & ~FMR3_EXTIW);
/* MultiFrame Resynchronization */
cpc_writeb(falcbase + F_REG(FMR1, ch),
cpc_readb(falcbase + F_REG(FMR1, ch)) | FMR1_MFCS);
/* Automatic Loss of Multiframe > 914 CRC errors */
cpc_writeb(falcbase + F_REG(FMR2, ch),
cpc_readb(falcbase + F_REG(FMR2, ch)) | FMR2_ALMF);
/* S1 and SI1/SI2 spare Bits set to 1 */
cpc_writeb(falcbase + F_REG(XSP, ch),
cpc_readb(falcbase + F_REG(XSP, ch)) & ~XSP_AXS);
cpc_writeb(falcbase + F_REG(XSP, ch),
cpc_readb(falcbase + F_REG(XSP, ch)) | XSP_EBP);
cpc_writeb(falcbase + F_REG(XSP, ch),
cpc_readb(falcbase + F_REG(XSP, ch)) | XSP_XS13 | XSP_XS15);
/* Automatic Force Resynchronization */
cpc_writeb(falcbase + F_REG(FMR1, ch),
cpc_readb(falcbase + F_REG(FMR1, ch)) | FMR1_AFR);
/* Transmit Automatic Remote Alarm */
cpc_writeb(falcbase + F_REG(FMR2, ch),
cpc_readb(falcbase + F_REG(FMR2, ch)) | FMR2_AXRA);
/* Transmit Spare Bits for National Use (Y, Sn, Sa) */
cpc_writeb(falcbase + F_REG(XSW, ch),
cpc_readb(falcbase + F_REG(XSW, ch)) |
XSW_XY0 | XSW_XY1 | XSW_XY2 | XSW_XY3 | XSW_XY4);
break;
case PC300_FR_MF_NON_CRC4:
case PC300_FR_D4:
pfalc->multiframe_mode = 0;
cpc_writeb(falcbase + F_REG(FMR1, ch),
cpc_readb(falcbase + F_REG(FMR1, ch)) & ~FMR1_XFS);
cpc_writeb(falcbase + F_REG(FMR2, ch),
cpc_readb(falcbase + F_REG(FMR2, ch)) &
~(FMR2_RFS1 | FMR2_RFS0));
cpc_writeb(falcbase + F_REG(XSW, ch),
cpc_readb(falcbase + F_REG(XSW, ch)) | XSW_XSIS);
cpc_writeb(falcbase + F_REG(XSP, ch),
cpc_readb(falcbase + F_REG(XSP, ch)) | XSP_XSIF);
/* Automatic Force Resynchronization */
cpc_writeb(falcbase + F_REG(FMR1, ch),
cpc_readb(falcbase + F_REG(FMR1, ch)) | FMR1_AFR);
/* Transmit Automatic Remote Alarm */
cpc_writeb(falcbase + F_REG(FMR2, ch),
cpc_readb(falcbase + F_REG(FMR2, ch)) | FMR2_AXRA);
/* Transmit Spare Bits for National Use (Y, Sn, Sa) */
cpc_writeb(falcbase + F_REG(XSW, ch),
cpc_readb(falcbase + F_REG(XSW, ch)) |
XSW_XY0 | XSW_XY1 | XSW_XY2 | XSW_XY3 | XSW_XY4);
break;
case PC300_FR_UNFRAMED:
pfalc->multiframe_mode = 0;
cpc_writeb(falcbase + F_REG(FMR1, ch),
cpc_readb(falcbase + F_REG(FMR1, ch)) & ~FMR1_XFS);
cpc_writeb(falcbase + F_REG(FMR2, ch),
cpc_readb(falcbase + F_REG(FMR2, ch)) &
~(FMR2_RFS1 | FMR2_RFS0));
cpc_writeb(falcbase + F_REG(XSP, ch),
cpc_readb(falcbase + F_REG(XSP, ch)) | XSP_TT0);
cpc_writeb(falcbase + F_REG(XSW, ch),
cpc_readb(falcbase + F_REG(XSW, ch)) &
~(XSW_XTM|XSW_XY0|XSW_XY1|XSW_XY2|XSW_XY3|XSW_XY4));
cpc_writeb(falcbase + F_REG(TSWM, ch), 0xff);
cpc_writeb(falcbase + F_REG(FMR2, ch),
cpc_readb(falcbase + F_REG(FMR2, ch)) |
(FMR2_RTM | FMR2_DAIS));
cpc_writeb(falcbase + F_REG(FMR2, ch),
cpc_readb(falcbase + F_REG(FMR2, ch)) & ~FMR2_AXRA);
cpc_writeb(falcbase + F_REG(FMR1, ch),
cpc_readb(falcbase + F_REG(FMR1, ch)) & ~FMR1_AFR);
pfalc->sync = 1;
cpc_writeb(falcbase + card->hw.cpld_reg2,
cpc_readb(falcbase + card->hw.cpld_reg2) |
(CPLD_REG2_FALC_LED2 << (2 * ch)));
break;
}
/* No signaling */
cpc_writeb(falcbase + F_REG(XSP, ch),
cpc_readb(falcbase + F_REG(XSP, ch)) & ~XSP_CASEN);
cpc_writeb(falcbase + F_REG(CCR1, ch), 0);
cpc_writeb(falcbase + F_REG(LIM1, ch),
cpc_readb(falcbase + F_REG(LIM1, ch)) | LIM1_RIL0 | LIM1_RIL1);
cpc_writeb(falcbase + F_REG(LIM2, ch), (LIM2_LOS1 | dja));
/* Transmit Clock-Slot Offset */
cpc_writeb(falcbase + F_REG(XC0, ch),
cpc_readb(falcbase + F_REG(XC0, ch)) | 0x01);
/* Transmit Time-slot Offset */
cpc_writeb(falcbase + F_REG(XC1, ch), 0x3e);
/* Receive Clock-Slot offset */
cpc_writeb(falcbase + F_REG(RC0, ch), 0x05);
/* Receive Time-slot offset */
cpc_writeb(falcbase + F_REG(RC1, ch), 0x00);
/* LOS Detection after 176 consecutive 0s */
cpc_writeb(falcbase + F_REG(PCDR, ch), 0x0a);
/* LOS Recovery after 22 ones in the time window of PCD */
cpc_writeb(falcbase + F_REG(PCRR, ch), 0x15);
cpc_writeb(falcbase + F_REG(IDLE, ch), 0x7f);
falc_close_all_timeslots(card, ch);
}
static void falc_init_hdlc(pc300_t * card, int ch)
{
void __iomem *falcbase = card->hw.falcbase;
pc300ch_t *chan = (pc300ch_t *) & card->chan[ch];
pc300chconf_t *conf = (pc300chconf_t *) & chan->conf;
/* Enable transparent data transfer */
if (conf->fr_mode == PC300_FR_UNFRAMED) {
cpc_writeb(falcbase + F_REG(MODE, ch), 0);
} else {
cpc_writeb(falcbase + F_REG(MODE, ch),
cpc_readb(falcbase + F_REG(MODE, ch)) |
(MODE_HRAC | MODE_MDS2));
cpc_writeb(falcbase + F_REG(RAH2, ch), 0xff);
cpc_writeb(falcbase + F_REG(RAH1, ch), 0xff);
cpc_writeb(falcbase + F_REG(RAL2, ch), 0xff);
cpc_writeb(falcbase + F_REG(RAL1, ch), 0xff);
}
/* Tx/Rx reset */
falc_issue_cmd(card, ch, CMDR_RRES | CMDR_XRES | CMDR_SRES);
/* Enable interrupt sources */
falc_intr_enable(card, ch);
}
static void te_config(pc300_t * card, int ch)
{
pc300ch_t *chan = (pc300ch_t *) & card->chan[ch];
pc300chconf_t *conf = (pc300chconf_t *) & chan->conf;
falc_t *pfalc = (falc_t *) & chan->falc;
void __iomem *falcbase = card->hw.falcbase;
ucchar dummy;
unsigned long flags;
memset(pfalc, 0, sizeof(falc_t));
switch (conf->media) {
case IF_IFACE_T1:
pfalc->num_channels = NUM_OF_T1_CHANNELS;
pfalc->offset = 1;
break;
case IF_IFACE_E1:
pfalc->num_channels = NUM_OF_E1_CHANNELS;
pfalc->offset = 0;
break;
}
if (conf->tslot_bitmap == 0xffffffffUL)
pfalc->full_bandwidth = 1;
else
pfalc->full_bandwidth = 0;
CPC_LOCK(card, flags);
/* Reset the FALC chip */
cpc_writeb(card->hw.falcbase + card->hw.cpld_reg1,
cpc_readb(card->hw.falcbase + card->hw.cpld_reg1) |
(CPLD_REG1_FALC_RESET << (2 * ch)));
udelay(10000);
cpc_writeb(card->hw.falcbase + card->hw.cpld_reg1,
cpc_readb(card->hw.falcbase + card->hw.cpld_reg1) &
~(CPLD_REG1_FALC_RESET << (2 * ch)));
if (conf->media == IF_IFACE_T1) {
falc_init_t1(card, ch);
} else {
falc_init_e1(card, ch);
}
falc_init_hdlc(card, ch);
if (conf->rx_sens == PC300_RX_SENS_SH) {
cpc_writeb(falcbase + F_REG(LIM0, ch),
cpc_readb(falcbase + F_REG(LIM0, ch)) & ~LIM0_EQON);
} else {
cpc_writeb(falcbase + F_REG(LIM0, ch),
cpc_readb(falcbase + F_REG(LIM0, ch)) | LIM0_EQON);
}
cpc_writeb(card->hw.falcbase + card->hw.cpld_reg2,
cpc_readb(card->hw.falcbase + card->hw.cpld_reg2) |
((CPLD_REG2_FALC_TX_CLK | CPLD_REG2_FALC_RX_CLK) << (2 * ch)));
/* Clear all interrupt registers */
dummy = cpc_readb(falcbase + F_REG(FISR0, ch)) +
cpc_readb(falcbase + F_REG(FISR1, ch)) +
cpc_readb(falcbase + F_REG(FISR2, ch)) +
cpc_readb(falcbase + F_REG(FISR3, ch));
CPC_UNLOCK(card, flags);
}
static void falc_check_status(pc300_t * card, int ch, unsigned char frs0)
{
pc300ch_t *chan = (pc300ch_t *) & card->chan[ch];
pc300chconf_t *conf = (pc300chconf_t *) & chan->conf;
falc_t *pfalc = (falc_t *) & chan->falc;
void __iomem *falcbase = card->hw.falcbase;
/* Verify LOS */
if (frs0 & FRS0_LOS) {
if (!pfalc->red_alarm) {
pfalc->red_alarm = 1;
pfalc->los++;
if (!pfalc->blue_alarm) {
// EVENT_FALC_ABNORMAL
if (conf->media == IF_IFACE_T1) {
/* Disable this interrupt as it may otherwise interfere
* with other working boards. */
cpc_writeb(falcbase + F_REG(IMR0, ch),
cpc_readb(falcbase + F_REG(IMR0, ch))
| IMR0_PDEN);
}
falc_disable_comm(card, ch);
// EVENT_FALC_ABNORMAL
}
}
} else {
if (pfalc->red_alarm) {
pfalc->red_alarm = 0;
pfalc->losr++;
}
}
if (conf->fr_mode != PC300_FR_UNFRAMED) {
/* Verify AIS alarm */
if (frs0 & FRS0_AIS) {
if (!pfalc->blue_alarm) {
pfalc->blue_alarm = 1;
pfalc->ais++;
// EVENT_AIS
if (conf->media == IF_IFACE_T1) {
/* Disable this interrupt as it may otherwise interfere with other working boards. */
cpc_writeb(falcbase + F_REG(IMR0, ch),
cpc_readb(falcbase + F_REG(IMR0, ch)) | IMR0_PDEN);
}
falc_disable_comm(card, ch);
// EVENT_AIS
}
} else {
pfalc->blue_alarm = 0;
}
/* Verify LFA */
if (frs0 & FRS0_LFA) {
if (!pfalc->loss_fa) {
pfalc->loss_fa = 1;
pfalc->lfa++;
if (!pfalc->blue_alarm && !pfalc->red_alarm) {
// EVENT_FALC_ABNORMAL
if (conf->media == IF_IFACE_T1) {
/* Disable this interrupt as it may otherwise
* interfere with other working boards. */
cpc_writeb(falcbase + F_REG(IMR0, ch),
cpc_readb(falcbase + F_REG(IMR0, ch))
| IMR0_PDEN);
}
falc_disable_comm(card, ch);
// EVENT_FALC_ABNORMAL
}
}
} else {
if (pfalc->loss_fa) {
pfalc->loss_fa = 0;
pfalc->farec++;
}
}
/* Verify LMFA */
if (pfalc->multiframe_mode && (frs0 & FRS0_LMFA)) {
/* D4 or CRC4 frame mode */
if (!pfalc->loss_mfa) {
pfalc->loss_mfa = 1;
pfalc->lmfa++;
if (!pfalc->blue_alarm && !pfalc->red_alarm &&
!pfalc->loss_fa) {
// EVENT_FALC_ABNORMAL
if (conf->media == IF_IFACE_T1) {
/* Disable this interrupt as it may otherwise
* interfere with other working boards. */
cpc_writeb(falcbase + F_REG(IMR0, ch),
cpc_readb(falcbase + F_REG(IMR0, ch))
| IMR0_PDEN);
}
falc_disable_comm(card, ch);
// EVENT_FALC_ABNORMAL
}
}
} else {
pfalc->loss_mfa = 0;
}
/* Verify Remote Alarm */
if (frs0 & FRS0_RRA) {
if (!pfalc->yellow_alarm) {
pfalc->yellow_alarm = 1;
pfalc->rai++;
if (pfalc->sync) {
// EVENT_RAI
falc_disable_comm(card, ch);
// EVENT_RAI
}
}
} else {
pfalc->yellow_alarm = 0;
}
} /* if !PC300_UNFRAMED */
if (pfalc->red_alarm || pfalc->loss_fa ||
pfalc->loss_mfa || pfalc->blue_alarm) {
if (pfalc->sync) {
pfalc->sync = 0;
chan->d.line_off++;
cpc_writeb(falcbase + card->hw.cpld_reg2,
cpc_readb(falcbase + card->hw.cpld_reg2) &
~(CPLD_REG2_FALC_LED2 << (2 * ch)));
}
} else {
if (!pfalc->sync) {
pfalc->sync = 1;
chan->d.line_on++;
cpc_writeb(falcbase + card->hw.cpld_reg2,
cpc_readb(falcbase + card->hw.cpld_reg2) |
(CPLD_REG2_FALC_LED2 << (2 * ch)));
}
}
if (pfalc->sync && !pfalc->yellow_alarm) {
if (!pfalc->active) {
// EVENT_FALC_NORMAL
if (pfalc->loop_active) {
return;
}
if (conf->media == IF_IFACE_T1) {
cpc_writeb(falcbase + F_REG(IMR0, ch),
cpc_readb(falcbase + F_REG(IMR0, ch)) & ~IMR0_PDEN);
}
falc_enable_comm(card, ch);
// EVENT_FALC_NORMAL
pfalc->active = 1;
}
} else {
if (pfalc->active) {
pfalc->active = 0;
}
}
}
static void falc_update_stats(pc300_t * card, int ch)
{
pc300ch_t *chan = (pc300ch_t *) & card->chan[ch];
pc300chconf_t *conf = (pc300chconf_t *) & chan->conf;
falc_t *pfalc = (falc_t *) & chan->falc;
void __iomem *falcbase = card->hw.falcbase;
ucshort counter;
counter = cpc_readb(falcbase + F_REG(FECL, ch));
counter |= cpc_readb(falcbase + F_REG(FECH, ch)) << 8;
pfalc->fec += counter;
counter = cpc_readb(falcbase + F_REG(CVCL, ch));
counter |= cpc_readb(falcbase + F_REG(CVCH, ch)) << 8;
pfalc->cvc += counter;
counter = cpc_readb(falcbase + F_REG(CECL, ch));
counter |= cpc_readb(falcbase + F_REG(CECH, ch)) << 8;
pfalc->cec += counter;
counter = cpc_readb(falcbase + F_REG(EBCL, ch));
counter |= cpc_readb(falcbase + F_REG(EBCH, ch)) << 8;
pfalc->ebc += counter;
if (cpc_readb(falcbase + F_REG(LCR1, ch)) & LCR1_EPRM) {
mdelay(10);
counter = cpc_readb(falcbase + F_REG(BECL, ch));
counter |= cpc_readb(falcbase + F_REG(BECH, ch)) << 8;
pfalc->bec += counter;
if (((conf->media == IF_IFACE_T1) &&
(cpc_readb(falcbase + F_REG(FRS1, ch)) & FRS1_LLBAD) &&
(!(cpc_readb(falcbase + F_REG(FRS1, ch)) & FRS1_PDEN)))
||
((conf->media == IF_IFACE_E1) &&
(cpc_readb(falcbase + F_REG(RSP, ch)) & RSP_LLBAD))) {
pfalc->prbs = 2;
} else {
pfalc->prbs = 1;
}
}
}
/*----------------------------------------------------------------------------
* falc_remote_loop
*----------------------------------------------------------------------------
* Description: In the remote loopback mode the clock and data recovered
* from the line inputs RL1/2 or RDIP/RDIN are routed back
* to the line outputs XL1/2 or XDOP/XDON via the analog
* transmitter. As in normal mode they are processsed by
* the synchronizer and then sent to the system interface.
*----------------------------------------------------------------------------
*/
static void falc_remote_loop(pc300_t * card, int ch, int loop_on)
{
pc300ch_t *chan = (pc300ch_t *) & card->chan[ch];
pc300chconf_t *conf = (pc300chconf_t *) & chan->conf;
falc_t *pfalc = (falc_t *) & chan->falc;
void __iomem *falcbase = card->hw.falcbase;
if (loop_on) {
// EVENT_FALC_ABNORMAL
if (conf->media == IF_IFACE_T1) {
/* Disable this interrupt as it may otherwise interfere with
* other working boards. */
cpc_writeb(falcbase + F_REG(IMR0, ch),
cpc_readb(falcbase + F_REG(IMR0, ch)) | IMR0_PDEN);
}
falc_disable_comm(card, ch);
// EVENT_FALC_ABNORMAL
cpc_writeb(falcbase + F_REG(LIM1, ch),
cpc_readb(falcbase + F_REG(LIM1, ch)) | LIM1_RL);
pfalc->loop_active = 1;
} else {
cpc_writeb(falcbase + F_REG(LIM1, ch),
cpc_readb(falcbase + F_REG(LIM1, ch)) & ~LIM1_RL);
pfalc->sync = 0;
cpc_writeb(falcbase + card->hw.cpld_reg2,
cpc_readb(falcbase + card->hw.cpld_reg2) &
~(CPLD_REG2_FALC_LED2 << (2 * ch)));
pfalc->active = 0;
falc_issue_cmd(card, ch, CMDR_XRES);
pfalc->loop_active = 0;
}
}
/*----------------------------------------------------------------------------
* falc_local_loop
*----------------------------------------------------------------------------
* Description: The local loopback mode disconnects the receive lines
* RL1/RL2 resp. RDIP/RDIN from the receiver. Instead of the
* signals coming from the line the data provided by system
* interface are routed through the analog receiver back to
* the system interface. The unipolar bit stream will be
* undisturbed transmitted on the line. Receiver and transmitter
* coding must be identical.
*----------------------------------------------------------------------------
*/
static void falc_local_loop(pc300_t * card, int ch, int loop_on)
{
pc300ch_t *chan = (pc300ch_t *) & card->chan[ch];
falc_t *pfalc = (falc_t *) & chan->falc;
void __iomem *falcbase = card->hw.falcbase;
if (loop_on) {
cpc_writeb(falcbase + F_REG(LIM0, ch),
cpc_readb(falcbase + F_REG(LIM0, ch)) | LIM0_LL);
pfalc->loop_active = 1;
} else {
cpc_writeb(falcbase + F_REG(LIM0, ch),
cpc_readb(falcbase + F_REG(LIM0, ch)) & ~LIM0_LL);
pfalc->loop_active = 0;
}
}
/*----------------------------------------------------------------------------
* falc_payload_loop
*----------------------------------------------------------------------------
* Description: This routine allows to enable/disable payload loopback.
* When the payload loop is activated, the received 192 bits
* of payload data will be looped back to the transmit
* direction. The framing bits, CRC6 and DL bits are not
* looped. They are originated by the FALC-LH transmitter.
*----------------------------------------------------------------------------
*/
static void falc_payload_loop(pc300_t * card, int ch, int loop_on)
{
pc300ch_t *chan = (pc300ch_t *) & card->chan[ch];
pc300chconf_t *conf = (pc300chconf_t *) & chan->conf;
falc_t *pfalc = (falc_t *) & chan->falc;
void __iomem *falcbase = card->hw.falcbase;
if (loop_on) {
// EVENT_FALC_ABNORMAL
if (conf->media == IF_IFACE_T1) {
/* Disable this interrupt as it may otherwise interfere with
* other working boards. */
cpc_writeb(falcbase + F_REG(IMR0, ch),
cpc_readb(falcbase + F_REG(IMR0, ch)) | IMR0_PDEN);
}
falc_disable_comm(card, ch);
// EVENT_FALC_ABNORMAL
cpc_writeb(falcbase + F_REG(FMR2, ch),
cpc_readb(falcbase + F_REG(FMR2, ch)) | FMR2_PLB);
if (conf->media == IF_IFACE_T1) {
cpc_writeb(falcbase + F_REG(FMR4, ch),
cpc_readb(falcbase + F_REG(FMR4, ch)) | FMR4_TM);
} else {
cpc_writeb(falcbase + F_REG(FMR5, ch),
cpc_readb(falcbase + F_REG(FMR5, ch)) | XSP_TT0);
}
falc_open_all_timeslots(card, ch);
pfalc->loop_active = 2;
} else {
cpc_writeb(falcbase + F_REG(FMR2, ch),
cpc_readb(falcbase + F_REG(FMR2, ch)) & ~FMR2_PLB);
if (conf->media == IF_IFACE_T1) {
cpc_writeb(falcbase + F_REG(FMR4, ch),
cpc_readb(falcbase + F_REG(FMR4, ch)) & ~FMR4_TM);
} else {
cpc_writeb(falcbase + F_REG(FMR5, ch),
cpc_readb(falcbase + F_REG(FMR5, ch)) & ~XSP_TT0);
}
pfalc->sync = 0;
cpc_writeb(falcbase + card->hw.cpld_reg2,
cpc_readb(falcbase + card->hw.cpld_reg2) &
~(CPLD_REG2_FALC_LED2 << (2 * ch)));
pfalc->active = 0;
falc_issue_cmd(card, ch, CMDR_XRES);
pfalc->loop_active = 0;
}
}
/*----------------------------------------------------------------------------
* turn_off_xlu
*----------------------------------------------------------------------------
* Description: Turns XLU bit off in the proper register
*----------------------------------------------------------------------------
*/
static void turn_off_xlu(pc300_t * card, int ch)
{
pc300ch_t *chan = (pc300ch_t *) & card->chan[ch];
pc300chconf_t *conf = (pc300chconf_t *) & chan->conf;
void __iomem *falcbase = card->hw.falcbase;
if (conf->media == IF_IFACE_T1) {
cpc_writeb(falcbase + F_REG(FMR5, ch),
cpc_readb(falcbase + F_REG(FMR5, ch)) & ~FMR5_XLU);
} else {
cpc_writeb(falcbase + F_REG(FMR3, ch),
cpc_readb(falcbase + F_REG(FMR3, ch)) & ~FMR3_XLU);
}
}
/*----------------------------------------------------------------------------
* turn_off_xld
*----------------------------------------------------------------------------
* Description: Turns XLD bit off in the proper register
*----------------------------------------------------------------------------
*/
static void turn_off_xld(pc300_t * card, int ch)
{
pc300ch_t *chan = (pc300ch_t *) & card->chan[ch];
pc300chconf_t *conf = (pc300chconf_t *) & chan->conf;
void __iomem *falcbase = card->hw.falcbase;
if (conf->media == IF_IFACE_T1) {
cpc_writeb(falcbase + F_REG(FMR5, ch),
cpc_readb(falcbase + F_REG(FMR5, ch)) & ~FMR5_XLD);
} else {
cpc_writeb(falcbase + F_REG(FMR3, ch),
cpc_readb(falcbase + F_REG(FMR3, ch)) & ~FMR3_XLD);
}
}
/*----------------------------------------------------------------------------
* falc_generate_loop_up_code
*----------------------------------------------------------------------------
* Description: This routine writes the proper FALC chip register in order
* to generate a LOOP activation code over a T1/E1 line.
*----------------------------------------------------------------------------
*/
static void falc_generate_loop_up_code(pc300_t * card, int ch)
{
pc300ch_t *chan = (pc300ch_t *) & card->chan[ch];
pc300chconf_t *conf = (pc300chconf_t *) & chan->conf;
falc_t *pfalc = (falc_t *) & chan->falc;
void __iomem *falcbase = card->hw.falcbase;
if (conf->media == IF_IFACE_T1) {
cpc_writeb(falcbase + F_REG(FMR5, ch),
cpc_readb(falcbase + F_REG(FMR5, ch)) | FMR5_XLU);
} else {
cpc_writeb(falcbase + F_REG(FMR3, ch),
cpc_readb(falcbase + F_REG(FMR3, ch)) | FMR3_XLU);
}
// EVENT_FALC_ABNORMAL
if (conf->media == IF_IFACE_T1) {
/* Disable this interrupt as it may otherwise interfere with
* other working boards. */
cpc_writeb(falcbase + F_REG(IMR0, ch),
cpc_readb(falcbase + F_REG(IMR0, ch)) | IMR0_PDEN);
}
falc_disable_comm(card, ch);
// EVENT_FALC_ABNORMAL
pfalc->loop_gen = 1;
}
/*----------------------------------------------------------------------------
* falc_generate_loop_down_code
*----------------------------------------------------------------------------
* Description: This routine writes the proper FALC chip register in order
* to generate a LOOP deactivation code over a T1/E1 line.
*----------------------------------------------------------------------------
*/
static void falc_generate_loop_down_code(pc300_t * card, int ch)
{
pc300ch_t *chan = (pc300ch_t *) & card->chan[ch];
pc300chconf_t *conf = (pc300chconf_t *) & chan->conf;
falc_t *pfalc = (falc_t *) & chan->falc;
void __iomem *falcbase = card->hw.falcbase;
if (conf->media == IF_IFACE_T1) {
cpc_writeb(falcbase + F_REG(FMR5, ch),
cpc_readb(falcbase + F_REG(FMR5, ch)) | FMR5_XLD);
} else {
cpc_writeb(falcbase + F_REG(FMR3, ch),
cpc_readb(falcbase + F_REG(FMR3, ch)) | FMR3_XLD);
}
pfalc->sync = 0;
cpc_writeb(falcbase + card->hw.cpld_reg2,
cpc_readb(falcbase + card->hw.cpld_reg2) &
~(CPLD_REG2_FALC_LED2 << (2 * ch)));
pfalc->active = 0;
//? falc_issue_cmd(card, ch, CMDR_XRES);
pfalc->loop_gen = 0;
}
/*----------------------------------------------------------------------------
* falc_pattern_test
*----------------------------------------------------------------------------
* Description: This routine generates a pattern code and checks
* it on the reception side.
*----------------------------------------------------------------------------
*/
static void falc_pattern_test(pc300_t * card, int ch, unsigned int activate)
{
pc300ch_t *chan = (pc300ch_t *) & card->chan[ch];
pc300chconf_t *conf = (pc300chconf_t *) & chan->conf;
falc_t *pfalc = (falc_t *) & chan->falc;
void __iomem *falcbase = card->hw.falcbase;
if (activate) {
pfalc->prbs = 1;
pfalc->bec = 0;
if (conf->media == IF_IFACE_T1) {
/* Disable local loop activation/deactivation detect */
cpc_writeb(falcbase + F_REG(IMR3, ch),
cpc_readb(falcbase + F_REG(IMR3, ch)) | IMR3_LLBSC);
} else {
/* Disable local loop activation/deactivation detect */
cpc_writeb(falcbase + F_REG(IMR1, ch),
cpc_readb(falcbase + F_REG(IMR1, ch)) | IMR1_LLBSC);
}
/* Activates generation and monitoring of PRBS
* (Pseudo Random Bit Sequence) */
cpc_writeb(falcbase + F_REG(LCR1, ch),
cpc_readb(falcbase + F_REG(LCR1, ch)) | LCR1_EPRM | LCR1_XPRBS);
} else {
pfalc->prbs = 0;
/* Deactivates generation and monitoring of PRBS
* (Pseudo Random Bit Sequence) */
cpc_writeb(falcbase + F_REG(LCR1, ch),
cpc_readb(falcbase+F_REG(LCR1,ch)) & ~(LCR1_EPRM | LCR1_XPRBS));
if (conf->media == IF_IFACE_T1) {
/* Enable local loop activation/deactivation detect */
cpc_writeb(falcbase + F_REG(IMR3, ch),
cpc_readb(falcbase + F_REG(IMR3, ch)) & ~IMR3_LLBSC);
} else {
/* Enable local loop activation/deactivation detect */
cpc_writeb(falcbase + F_REG(IMR1, ch),
cpc_readb(falcbase + F_REG(IMR1, ch)) & ~IMR1_LLBSC);
}
}
}
/*----------------------------------------------------------------------------
* falc_pattern_test_error
*----------------------------------------------------------------------------
* Description: This routine returns the bit error counter value
*----------------------------------------------------------------------------
*/
static ucshort falc_pattern_test_error(pc300_t * card, int ch)
{
pc300ch_t *chan = (pc300ch_t *) & card->chan[ch];
falc_t *pfalc = (falc_t *) & chan->falc;
return (pfalc->bec);
}
/**********************************/
/*** Net Interface Routines ***/
/**********************************/
static void
cpc_trace(struct net_device *dev, struct sk_buff *skb_main, char rx_tx)
{
struct sk_buff *skb;
if ((skb = dev_alloc_skb(10 + skb_main->len)) == NULL) {
printk("%s: out of memory\n", dev->name);
return;
}
skb_put(skb, 10 + skb_main->len);
skb->dev = dev;
skb->protocol = htons(ETH_P_CUST);
skb->mac.raw = skb->data;
skb->pkt_type = PACKET_HOST;
skb->len = 10 + skb_main->len;
memcpy(skb->data, dev->name, 5);
skb->data[5] = '[';
skb->data[6] = rx_tx;
skb->data[7] = ']';
skb->data[8] = ':';
skb->data[9] = ' ';
memcpy(&skb->data[10], skb_main->data, skb_main->len);
netif_rx(skb);
}
static void cpc_tx_timeout(struct net_device *dev)
{
pc300dev_t *d = (pc300dev_t *) dev->priv;
pc300ch_t *chan = (pc300ch_t *) d->chan;
pc300_t *card = (pc300_t *) chan->card;
struct net_device_stats *stats = hdlc_stats(dev);
int ch = chan->channel;
unsigned long flags;
ucchar ilar;
stats->tx_errors++;
stats->tx_aborted_errors++;
CPC_LOCK(card, flags);
if ((ilar = cpc_readb(card->hw.scabase + ILAR)) != 0) {
printk("%s: ILAR=0x%x\n", dev->name, ilar);
cpc_writeb(card->hw.scabase + ILAR, ilar);
cpc_writeb(card->hw.scabase + DMER, 0x80);
}
if (card->hw.type == PC300_TE) {
cpc_writeb(card->hw.falcbase + card->hw.cpld_reg2,
cpc_readb(card->hw.falcbase + card->hw.cpld_reg2) &
~(CPLD_REG2_FALC_LED1 << (2 * ch)));
}
dev->trans_start = jiffies;
CPC_UNLOCK(card, flags);
netif_wake_queue(dev);
}
static int cpc_queue_xmit(struct sk_buff *skb, struct net_device *dev)
{
pc300dev_t *d = (pc300dev_t *) dev->priv;
pc300ch_t *chan = (pc300ch_t *) d->chan;
pc300_t *card = (pc300_t *) chan->card;
struct net_device_stats *stats = hdlc_stats(dev);
int ch = chan->channel;
unsigned long flags;
#ifdef PC300_DEBUG_TX
int i;
#endif
if (chan->conf.monitor) {
/* In monitor mode no Tx is done: ignore packet */
dev_kfree_skb(skb);
return 0;
} else if (!netif_carrier_ok(dev)) {
/* DCD must be OFF: drop packet */
dev_kfree_skb(skb);
stats->tx_errors++;
stats->tx_carrier_errors++;
return 0;
} else if (cpc_readb(card->hw.scabase + M_REG(ST3, ch)) & ST3_DCD) {
printk("%s: DCD is OFF. Going administrative down.\n", dev->name);
stats->tx_errors++;
stats->tx_carrier_errors++;
dev_kfree_skb(skb);
netif_carrier_off(dev);
CPC_LOCK(card, flags);
cpc_writeb(card->hw.scabase + M_REG(CMD, ch), CMD_TX_BUF_CLR);
if (card->hw.type == PC300_TE) {
cpc_writeb(card->hw.falcbase + card->hw.cpld_reg2,
cpc_readb(card->hw.falcbase + card->hw.cpld_reg2) &
~(CPLD_REG2_FALC_LED1 << (2 * ch)));
}
CPC_UNLOCK(card, flags);
netif_wake_queue(dev);
return 0;
}
/* Write buffer to DMA buffers */
if (dma_buf_write(card, ch, (ucchar *) skb->data, skb->len) != 0) {
// printk("%s: write error. Dropping TX packet.\n", dev->name);
netif_stop_queue(dev);
dev_kfree_skb(skb);
stats->tx_errors++;
stats->tx_dropped++;
return 0;
}
#ifdef PC300_DEBUG_TX
printk("%s T:", dev->name);
for (i = 0; i < skb->len; i++)
printk(" %02x", *(skb->data + i));
printk("\n");
#endif
if (d->trace_on) {
cpc_trace(dev, skb, 'T');
}
dev->trans_start = jiffies;
/* Start transmission */
CPC_LOCK(card, flags);
/* verify if it has more than one free descriptor */
if (card->chan[ch].nfree_tx_bd <= 1) {
/* don't have so stop the queue */
netif_stop_queue(dev);
}
cpc_writel(card->hw.scabase + DTX_REG(EDAL, ch),
TX_BD_ADDR(ch, chan->tx_next_bd));
cpc_writeb(card->hw.scabase + M_REG(CMD, ch), CMD_TX_ENA);
cpc_writeb(card->hw.scabase + DSR_TX(ch), DSR_DE);
if (card->hw.type == PC300_TE) {
cpc_writeb(card->hw.falcbase + card->hw.cpld_reg2,
cpc_readb(card->hw.falcbase + card->hw.cpld_reg2) |
(CPLD_REG2_FALC_LED1 << (2 * ch)));
}
CPC_UNLOCK(card, flags);
dev_kfree_skb(skb);
return 0;
}
static void cpc_net_rx(struct net_device *dev)
{
pc300dev_t *d = (pc300dev_t *) dev->priv;
pc300ch_t *chan = (pc300ch_t *) d->chan;
pc300_t *card = (pc300_t *) chan->card;
struct net_device_stats *stats = hdlc_stats(dev);
int ch = chan->channel;
#ifdef PC300_DEBUG_RX
int i;
#endif
int rxb;
struct sk_buff *skb;
while (1) {
if ((rxb = dma_get_rx_frame_size(card, ch)) == -1)
return;
if (!netif_carrier_ok(dev)) {
/* DCD must be OFF: drop packet */
printk("%s : DCD is OFF - drop %d rx bytes\n", dev->name, rxb);
skb = NULL;
} else {
if (rxb > (dev->mtu + 40)) { /* add headers */
printk("%s : MTU exceeded %d\n", dev->name, rxb);
skb = NULL;
} else {
skb = dev_alloc_skb(rxb);
if (skb == NULL) {
printk("%s: Memory squeeze!!\n", dev->name);
return;
}
skb->dev = dev;
}
}
if (((rxb = dma_buf_read(card, ch, skb)) <= 0) || (skb == NULL)) {
#ifdef PC300_DEBUG_RX
printk("%s: rxb = %x\n", dev->name, rxb);
#endif
if ((skb == NULL) && (rxb > 0)) {
/* rxb > dev->mtu */
stats->rx_errors++;
stats->rx_length_errors++;
continue;
}
if (rxb < 0) { /* Invalid frame */
rxb = -rxb;
if (rxb & DST_OVR) {
stats->rx_errors++;
stats->rx_fifo_errors++;
}
if (rxb & DST_CRC) {
stats->rx_errors++;
stats->rx_crc_errors++;
}
if (rxb & (DST_RBIT | DST_SHRT | DST_ABT)) {
stats->rx_errors++;
stats->rx_frame_errors++;
}
}
if (skb) {
dev_kfree_skb_irq(skb);
}
continue;
}
stats->rx_bytes += rxb;
#ifdef PC300_DEBUG_RX
printk("%s R:", dev->name);
for (i = 0; i < skb->len; i++)
printk(" %02x", *(skb->data + i));
printk("\n");
#endif
if (d->trace_on) {
cpc_trace(dev, skb, 'R');
}
stats->rx_packets++;
skb->protocol = hdlc_type_trans(skb, dev);
netif_rx(skb);
}
}
/************************************/
/*** PC300 Interrupt Routines ***/
/************************************/
static void sca_tx_intr(pc300dev_t *dev)
{
pc300ch_t *chan = (pc300ch_t *)dev->chan;
pc300_t *card = (pc300_t *)chan->card;
int ch = chan->channel;
volatile pcsca_bd_t __iomem * ptdescr;
struct net_device_stats *stats = hdlc_stats(dev->dev);
/* Clean up descriptors from previous transmission */
ptdescr = (card->hw.rambase +
TX_BD_ADDR(ch,chan->tx_first_bd));
while ((cpc_readl(card->hw.scabase + DTX_REG(CDAL,ch)) !=
TX_BD_ADDR(ch,chan->tx_first_bd)) &&
(cpc_readb(&ptdescr->status) & DST_OSB)) {
stats->tx_packets++;
stats->tx_bytes += cpc_readw(&ptdescr->len);
cpc_writeb(&ptdescr->status, DST_OSB);
cpc_writew(&ptdescr->len, 0);
chan->nfree_tx_bd++;
chan->tx_first_bd = (chan->tx_first_bd + 1) & (N_DMA_TX_BUF - 1);
ptdescr = (card->hw.rambase + TX_BD_ADDR(ch,chan->tx_first_bd));
}
#ifdef CONFIG_PC300_MLPPP
if (chan->conf.proto == PC300_PROTO_MLPPP) {
cpc_tty_trigger_poll(dev);
} else {
#endif
/* Tell the upper layer we are ready to transmit more packets */
netif_wake_queue(dev->dev);
#ifdef CONFIG_PC300_MLPPP
}
#endif
}
static void sca_intr(pc300_t * card)
{
void __iomem *scabase = card->hw.scabase;
volatile uclong status;
int ch;
int intr_count = 0;
unsigned char dsr_rx;
while ((status = cpc_readl(scabase + ISR0)) != 0) {
for (ch = 0; ch < card->hw.nchan; ch++) {
pc300ch_t *chan = &card->chan[ch];
pc300dev_t *d = &chan->d;
struct net_device *dev = d->dev;
spin_lock(&card->card_lock);
/**** Reception ****/
if (status & IR0_DRX((IR0_DMIA | IR0_DMIB), ch)) {
ucchar drx_stat = cpc_readb(scabase + DSR_RX(ch));
/* Clear RX interrupts */
cpc_writeb(scabase + DSR_RX(ch), drx_stat | DSR_DWE);
#ifdef PC300_DEBUG_INTR
printk ("sca_intr: RX intr chan[%d] (st=0x%08lx, dsr=0x%02x)\n",
ch, status, drx_stat);
#endif
if (status & IR0_DRX(IR0_DMIA, ch)) {
if (drx_stat & DSR_BOF) {
#ifdef CONFIG_PC300_MLPPP
if (chan->conf.proto == PC300_PROTO_MLPPP) {
/* verify if driver is TTY */
if ((cpc_readb(scabase + DSR_RX(ch)) & DSR_DE)) {
rx_dma_stop(card, ch);
}
cpc_tty_receive(d);
rx_dma_start(card, ch);
} else
#endif
{
if ((cpc_readb(scabase + DSR_RX(ch)) & DSR_DE)) {
rx_dma_stop(card, ch);
}
cpc_net_rx(dev);
/* Discard invalid frames */
hdlc_stats(dev)->rx_errors++;
hdlc_stats(dev)->rx_over_errors++;
chan->rx_first_bd = 0;
chan->rx_last_bd = N_DMA_RX_BUF - 1;
rx_dma_start(card, ch);
}
}
}
if (status & IR0_DRX(IR0_DMIB, ch)) {
if (drx_stat & DSR_EOM) {
if (card->hw.type == PC300_TE) {
cpc_writeb(card->hw.falcbase +
card->hw.cpld_reg2,
cpc_readb (card->hw.falcbase +
card->hw.cpld_reg2) |
(CPLD_REG2_FALC_LED1 << (2 * ch)));
}
#ifdef CONFIG_PC300_MLPPP
if (chan->conf.proto == PC300_PROTO_MLPPP) {
/* verify if driver is TTY */
cpc_tty_receive(d);
} else {
cpc_net_rx(dev);
}
#else
cpc_net_rx(dev);
#endif
if (card->hw.type == PC300_TE) {
cpc_writeb(card->hw.falcbase +
card->hw.cpld_reg2,
cpc_readb (card->hw.falcbase +
card->hw.cpld_reg2) &
~ (CPLD_REG2_FALC_LED1 << (2 * ch)));
}
}
}
if (!(dsr_rx = cpc_readb(scabase + DSR_RX(ch)) & DSR_DE)) {
#ifdef PC300_DEBUG_INTR
printk("%s: RX intr chan[%d] (st=0x%08lx, dsr=0x%02x, dsr2=0x%02x)\n",
dev->name, ch, status, drx_stat, dsr_rx);
#endif
cpc_writeb(scabase + DSR_RX(ch), (dsr_rx | DSR_DE) & 0xfe);
}
}
/**** Transmission ****/
if (status & IR0_DTX((IR0_EFT | IR0_DMIA | IR0_DMIB), ch)) {
ucchar dtx_stat = cpc_readb(scabase + DSR_TX(ch));
/* Clear TX interrupts */
cpc_writeb(scabase + DSR_TX(ch), dtx_stat | DSR_DWE);
#ifdef PC300_DEBUG_INTR
printk ("sca_intr: TX intr chan[%d] (st=0x%08lx, dsr=0x%02x)\n",
ch, status, dtx_stat);
#endif
if (status & IR0_DTX(IR0_EFT, ch)) {
if (dtx_stat & DSR_UDRF) {
if (cpc_readb (scabase + M_REG(TBN, ch)) != 0) {
cpc_writeb(scabase + M_REG(CMD,ch), CMD_TX_BUF_CLR);
}
if (card->hw.type == PC300_TE) {
cpc_writeb(card->hw.falcbase + card->hw.cpld_reg2,
cpc_readb (card->hw.falcbase +
card->hw.cpld_reg2) &
~ (CPLD_REG2_FALC_LED1 << (2 * ch)));
}
hdlc_stats(dev)->tx_errors++;
hdlc_stats(dev)->tx_fifo_errors++;
sca_tx_intr(d);
}
}
if (status & IR0_DTX(IR0_DMIA, ch)) {
if (dtx_stat & DSR_BOF) {
}
}
if (status & IR0_DTX(IR0_DMIB, ch)) {
if (dtx_stat & DSR_EOM) {
if (card->hw.type == PC300_TE) {
cpc_writeb(card->hw.falcbase + card->hw.cpld_reg2,
cpc_readb (card->hw.falcbase +
card->hw.cpld_reg2) &
~ (CPLD_REG2_FALC_LED1 << (2 * ch)));
}
sca_tx_intr(d);
}
}
}
/**** MSCI ****/
if (status & IR0_M(IR0_RXINTA, ch)) {
ucchar st1 = cpc_readb(scabase + M_REG(ST1, ch));
/* Clear MSCI interrupts */
cpc_writeb(scabase + M_REG(ST1, ch), st1);
#ifdef PC300_DEBUG_INTR
printk("sca_intr: MSCI intr chan[%d] (st=0x%08lx, st1=0x%02x)\n",
ch, status, st1);
#endif
if (st1 & ST1_CDCD) { /* DCD changed */
if (cpc_readb(scabase + M_REG(ST3, ch)) & ST3_DCD) {
printk ("%s: DCD is OFF. Going administrative down.\n",
dev->name);
#ifdef CONFIG_PC300_MLPPP
if (chan->conf.proto != PC300_PROTO_MLPPP) {
netif_carrier_off(dev);
}
#else
netif_carrier_off(dev);
#endif
card->chan[ch].d.line_off++;
} else { /* DCD = 1 */
printk ("%s: DCD is ON. Going administrative up.\n",
dev->name);
#ifdef CONFIG_PC300_MLPPP
if (chan->conf.proto != PC300_PROTO_MLPPP)
/* verify if driver is not TTY */
#endif
netif_carrier_on(dev);
card->chan[ch].d.line_on++;
}
}
}
spin_unlock(&card->card_lock);
}
if (++intr_count == 10)
/* Too much work at this board. Force exit */
break;
}
}
static void falc_t1_loop_detection(pc300_t * card, int ch, ucchar frs1)
{
pc300ch_t *chan = (pc300ch_t *) & card->chan[ch];
falc_t *pfalc = (falc_t *) & chan->falc;
void __iomem *falcbase = card->hw.falcbase;
if (((cpc_readb(falcbase + F_REG(LCR1, ch)) & LCR1_XPRBS) == 0) &&
!pfalc->loop_gen) {
if (frs1 & FRS1_LLBDD) {
// A Line Loop Back Deactivation signal detected
if (pfalc->loop_active) {
falc_remote_loop(card, ch, 0);
}
} else {
if ((frs1 & FRS1_LLBAD) &&
((cpc_readb(falcbase + F_REG(LCR1, ch)) & LCR1_EPRM) == 0)) {
// A Line Loop Back Activation signal detected
if (!pfalc->loop_active) {
falc_remote_loop(card, ch, 1);
}
}
}
}
}
static void falc_e1_loop_detection(pc300_t * card, int ch, ucchar rsp)
{
pc300ch_t *chan = (pc300ch_t *) & card->chan[ch];
falc_t *pfalc = (falc_t *) & chan->falc;
void __iomem *falcbase = card->hw.falcbase;
if (((cpc_readb(falcbase + F_REG(LCR1, ch)) & LCR1_XPRBS) == 0) &&
!pfalc->loop_gen) {
if (rsp & RSP_LLBDD) {
// A Line Loop Back Deactivation signal detected
if (pfalc->loop_active) {
falc_remote_loop(card, ch, 0);
}
} else {
if ((rsp & RSP_LLBAD) &&
((cpc_readb(falcbase + F_REG(LCR1, ch)) & LCR1_EPRM) == 0)) {
// A Line Loop Back Activation signal detected
if (!pfalc->loop_active) {
falc_remote_loop(card, ch, 1);
}
}
}
}
}
static void falc_t1_intr(pc300_t * card, int ch)
{
pc300ch_t *chan = (pc300ch_t *) & card->chan[ch];
falc_t *pfalc = (falc_t *) & chan->falc;
void __iomem *falcbase = card->hw.falcbase;
ucchar isr0, isr3, gis;
ucchar dummy;
while ((gis = cpc_readb(falcbase + F_REG(GIS, ch))) != 0) {
if (gis & GIS_ISR0) {
isr0 = cpc_readb(falcbase + F_REG(FISR0, ch));
if (isr0 & FISR0_PDEN) {
/* Read the bit to clear the situation */
if (cpc_readb(falcbase + F_REG(FRS1, ch)) &
FRS1_PDEN) {
pfalc->pden++;
}
}
}
if (gis & GIS_ISR1) {
dummy = cpc_readb(falcbase + F_REG(FISR1, ch));
}
if (gis & GIS_ISR2) {
dummy = cpc_readb(falcbase + F_REG(FISR2, ch));
}
if (gis & GIS_ISR3) {
isr3 = cpc_readb(falcbase + F_REG(FISR3, ch));
if (isr3 & FISR3_SEC) {
pfalc->sec++;
falc_update_stats(card, ch);
falc_check_status(card, ch,
cpc_readb(falcbase + F_REG(FRS0, ch)));
}
if (isr3 & FISR3_ES) {
pfalc->es++;
}
if (isr3 & FISR3_LLBSC) {
falc_t1_loop_detection(card, ch,
cpc_readb(falcbase + F_REG(FRS1, ch)));
}
}
}
}
static void falc_e1_intr(pc300_t * card, int ch)
{
pc300ch_t *chan = (pc300ch_t *) & card->chan[ch];
falc_t *pfalc = (falc_t *) & chan->falc;
void __iomem *falcbase = card->hw.falcbase;
ucchar isr1, isr2, isr3, gis, rsp;
ucchar dummy;
while ((gis = cpc_readb(falcbase + F_REG(GIS, ch))) != 0) {
rsp = cpc_readb(falcbase + F_REG(RSP, ch));
if (gis & GIS_ISR0) {
dummy = cpc_readb(falcbase + F_REG(FISR0, ch));
}
if (gis & GIS_ISR1) {
isr1 = cpc_readb(falcbase + F_REG(FISR1, ch));
if (isr1 & FISR1_XMB) {
if ((pfalc->xmb_cause & 2)
&& pfalc->multiframe_mode) {
if (cpc_readb (falcbase + F_REG(FRS0, ch)) &
(FRS0_LOS | FRS0_AIS | FRS0_LFA)) {
cpc_writeb(falcbase + F_REG(XSP, ch),
cpc_readb(falcbase + F_REG(XSP, ch))
& ~XSP_AXS);
} else {
cpc_writeb(falcbase + F_REG(XSP, ch),
cpc_readb(falcbase + F_REG(XSP, ch))
| XSP_AXS);
}
}
pfalc->xmb_cause = 0;
cpc_writeb(falcbase + F_REG(IMR1, ch),
cpc_readb(falcbase + F_REG(IMR1, ch)) | IMR1_XMB);
}
if (isr1 & FISR1_LLBSC) {
falc_e1_loop_detection(card, ch, rsp);
}
}
if (gis & GIS_ISR2) {
isr2 = cpc_readb(falcbase + F_REG(FISR2, ch));
if (isr2 & FISR2_T400MS) {
cpc_writeb(falcbase + F_REG(XSW, ch),
cpc_readb(falcbase + F_REG(XSW, ch)) | XSW_XRA);
}
if (isr2 & FISR2_MFAR) {
cpc_writeb(falcbase + F_REG(XSW, ch),
cpc_readb(falcbase + F_REG(XSW, ch)) & ~XSW_XRA);
}
if (isr2 & (FISR2_FAR | FISR2_LFA | FISR2_AIS | FISR2_LOS)) {
pfalc->xmb_cause |= 2;
cpc_writeb(falcbase + F_REG(IMR1, ch),
cpc_readb(falcbase + F_REG(IMR1, ch)) & ~IMR1_XMB);
}
}
if (gis & GIS_ISR3) {
isr3 = cpc_readb(falcbase + F_REG(FISR3, ch));
if (isr3 & FISR3_SEC) {
pfalc->sec++;
falc_update_stats(card, ch);
falc_check_status(card, ch,
cpc_readb(falcbase + F_REG(FRS0, ch)));
}
if (isr3 & FISR3_ES) {
pfalc->es++;
}
}
}
}
static void falc_intr(pc300_t * card)
{
int ch;
for (ch = 0; ch < card->hw.nchan; ch++) {
pc300ch_t *chan = &card->chan[ch];
pc300chconf_t *conf = (pc300chconf_t *) & chan->conf;
if (conf->media == IF_IFACE_T1) {
falc_t1_intr(card, ch);
} else {
falc_e1_intr(card, ch);
}
}
}
static irqreturn_t cpc_intr(int irq, void *dev_id)
{
pc300_t *card;
volatile ucchar plx_status;
if ((card = (pc300_t *) dev_id) == 0) {
#ifdef PC300_DEBUG_INTR
printk("cpc_intr: spurious intr %d\n", irq);
#endif
return IRQ_NONE; /* spurious intr */
}
if (card->hw.rambase == 0) {
#ifdef PC300_DEBUG_INTR
printk("cpc_intr: spurious intr2 %d\n", irq);
#endif
return IRQ_NONE; /* spurious intr */
}
switch (card->hw.type) {
case PC300_RSV:
case PC300_X21:
sca_intr(card);
break;
case PC300_TE:
while ( (plx_status = (cpc_readb(card->hw.plxbase + card->hw.intctl_reg) &
(PLX_9050_LINT1_STATUS | PLX_9050_LINT2_STATUS))) != 0) {
if (plx_status & PLX_9050_LINT1_STATUS) { /* SCA Interrupt */
sca_intr(card);
}
if (plx_status & PLX_9050_LINT2_STATUS) { /* FALC Interrupt */
falc_intr(card);
}
}
break;
}
return IRQ_HANDLED;
}
static void cpc_sca_status(pc300_t * card, int ch)
{
ucchar ilar;
void __iomem *scabase = card->hw.scabase;
unsigned long flags;
tx_dma_buf_check(card, ch);
rx_dma_buf_check(card, ch);
ilar = cpc_readb(scabase + ILAR);
printk ("ILAR=0x%02x, WCRL=0x%02x, PCR=0x%02x, BTCR=0x%02x, BOLR=0x%02x\n",
ilar, cpc_readb(scabase + WCRL), cpc_readb(scabase + PCR),
cpc_readb(scabase + BTCR), cpc_readb(scabase + BOLR));
printk("TX_CDA=0x%08x, TX_EDA=0x%08x\n",
cpc_readl(scabase + DTX_REG(CDAL, ch)),
cpc_readl(scabase + DTX_REG(EDAL, ch)));
printk("RX_CDA=0x%08x, RX_EDA=0x%08x, BFL=0x%04x\n",
cpc_readl(scabase + DRX_REG(CDAL, ch)),
cpc_readl(scabase + DRX_REG(EDAL, ch)),
cpc_readw(scabase + DRX_REG(BFLL, ch)));
printk("DMER=0x%02x, DSR_TX=0x%02x, DSR_RX=0x%02x\n",
cpc_readb(scabase + DMER), cpc_readb(scabase + DSR_TX(ch)),
cpc_readb(scabase + DSR_RX(ch)));
printk("DMR_TX=0x%02x, DMR_RX=0x%02x, DIR_TX=0x%02x, DIR_RX=0x%02x\n",
cpc_readb(scabase + DMR_TX(ch)), cpc_readb(scabase + DMR_RX(ch)),
cpc_readb(scabase + DIR_TX(ch)),
cpc_readb(scabase + DIR_RX(ch)));
printk("DCR_TX=0x%02x, DCR_RX=0x%02x, FCT_TX=0x%02x, FCT_RX=0x%02x\n",
cpc_readb(scabase + DCR_TX(ch)), cpc_readb(scabase + DCR_RX(ch)),
cpc_readb(scabase + FCT_TX(ch)),
cpc_readb(scabase + FCT_RX(ch)));
printk("MD0=0x%02x, MD1=0x%02x, MD2=0x%02x, MD3=0x%02x, IDL=0x%02x\n",
cpc_readb(scabase + M_REG(MD0, ch)),
cpc_readb(scabase + M_REG(MD1, ch)),
cpc_readb(scabase + M_REG(MD2, ch)),
cpc_readb(scabase + M_REG(MD3, ch)),
cpc_readb(scabase + M_REG(IDL, ch)));
printk("CMD=0x%02x, SA0=0x%02x, SA1=0x%02x, TFN=0x%02x, CTL=0x%02x\n",
cpc_readb(scabase + M_REG(CMD, ch)),
cpc_readb(scabase + M_REG(SA0, ch)),
cpc_readb(scabase + M_REG(SA1, ch)),
cpc_readb(scabase + M_REG(TFN, ch)),
cpc_readb(scabase + M_REG(CTL, ch)));
printk("ST0=0x%02x, ST1=0x%02x, ST2=0x%02x, ST3=0x%02x, ST4=0x%02x\n",
cpc_readb(scabase + M_REG(ST0, ch)),
cpc_readb(scabase + M_REG(ST1, ch)),
cpc_readb(scabase + M_REG(ST2, ch)),
cpc_readb(scabase + M_REG(ST3, ch)),
cpc_readb(scabase + M_REG(ST4, ch)));
printk ("CST0=0x%02x, CST1=0x%02x, CST2=0x%02x, CST3=0x%02x, FST=0x%02x\n",
cpc_readb(scabase + M_REG(CST0, ch)),
cpc_readb(scabase + M_REG(CST1, ch)),
cpc_readb(scabase + M_REG(CST2, ch)),
cpc_readb(scabase + M_REG(CST3, ch)),
cpc_readb(scabase + M_REG(FST, ch)));
printk("TRC0=0x%02x, TRC1=0x%02x, RRC=0x%02x, TBN=0x%02x, RBN=0x%02x\n",
cpc_readb(scabase + M_REG(TRC0, ch)),
cpc_readb(scabase + M_REG(TRC1, ch)),
cpc_readb(scabase + M_REG(RRC, ch)),
cpc_readb(scabase + M_REG(TBN, ch)),
cpc_readb(scabase + M_REG(RBN, ch)));
printk("TFS=0x%02x, TNR0=0x%02x, TNR1=0x%02x, RNR=0x%02x\n",
cpc_readb(scabase + M_REG(TFS, ch)),
cpc_readb(scabase + M_REG(TNR0, ch)),
cpc_readb(scabase + M_REG(TNR1, ch)),
cpc_readb(scabase + M_REG(RNR, ch)));
printk("TCR=0x%02x, RCR=0x%02x, TNR1=0x%02x, RNR=0x%02x\n",
cpc_readb(scabase + M_REG(TCR, ch)),
cpc_readb(scabase + M_REG(RCR, ch)),
cpc_readb(scabase + M_REG(TNR1, ch)),
cpc_readb(scabase + M_REG(RNR, ch)));
printk("TXS=0x%02x, RXS=0x%02x, EXS=0x%02x, TMCT=0x%02x, TMCR=0x%02x\n",
cpc_readb(scabase + M_REG(TXS, ch)),
cpc_readb(scabase + M_REG(RXS, ch)),
cpc_readb(scabase + M_REG(EXS, ch)),
cpc_readb(scabase + M_REG(TMCT, ch)),
cpc_readb(scabase + M_REG(TMCR, ch)));
printk("IE0=0x%02x, IE1=0x%02x, IE2=0x%02x, IE4=0x%02x, FIE=0x%02x\n",
cpc_readb(scabase + M_REG(IE0, ch)),
cpc_readb(scabase + M_REG(IE1, ch)),
cpc_readb(scabase + M_REG(IE2, ch)),
cpc_readb(scabase + M_REG(IE4, ch)),
cpc_readb(scabase + M_REG(FIE, ch)));
printk("IER0=0x%08x\n", cpc_readl(scabase + IER0));
if (ilar != 0) {
CPC_LOCK(card, flags);
cpc_writeb(scabase + ILAR, ilar);
cpc_writeb(scabase + DMER, 0x80);
CPC_UNLOCK(card, flags);
}
}
static void cpc_falc_status(pc300_t * card, int ch)
{
pc300ch_t *chan = &card->chan[ch];
falc_t *pfalc = (falc_t *) & chan->falc;
unsigned long flags;
CPC_LOCK(card, flags);
printk("CH%d: %s %s %d channels\n",
ch, (pfalc->sync ? "SYNC" : ""), (pfalc->active ? "ACTIVE" : ""),
pfalc->num_channels);
printk(" pden=%d, los=%d, losr=%d, lfa=%d, farec=%d\n",
pfalc->pden, pfalc->los, pfalc->losr, pfalc->lfa, pfalc->farec);
printk(" lmfa=%d, ais=%d, sec=%d, es=%d, rai=%d\n",
pfalc->lmfa, pfalc->ais, pfalc->sec, pfalc->es, pfalc->rai);
printk(" bec=%d, fec=%d, cvc=%d, cec=%d, ebc=%d\n",
pfalc->bec, pfalc->fec, pfalc->cvc, pfalc->cec, pfalc->ebc);
printk("\n");
printk(" STATUS: %s %s %s %s %s %s\n",
(pfalc->red_alarm ? "RED" : ""),
(pfalc->blue_alarm ? "BLU" : ""),
(pfalc->yellow_alarm ? "YEL" : ""),
(pfalc->loss_fa ? "LFA" : ""),
(pfalc->loss_mfa ? "LMF" : ""), (pfalc->prbs ? "PRB" : ""));
CPC_UNLOCK(card, flags);
}
static int cpc_change_mtu(struct net_device *dev, int new_mtu)
{
if ((new_mtu < 128) || (new_mtu > PC300_DEF_MTU))
return -EINVAL;
dev->mtu = new_mtu;
return 0;
}
static int cpc_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{
pc300dev_t *d = (pc300dev_t *) dev->priv;
pc300ch_t *chan = (pc300ch_t *) d->chan;
pc300_t *card = (pc300_t *) chan->card;
pc300conf_t conf_aux;
pc300chconf_t *conf = (pc300chconf_t *) & chan->conf;
int ch = chan->channel;
void __user *arg = ifr->ifr_data;
struct if_settings *settings = &ifr->ifr_settings;
void __iomem *scabase = card->hw.scabase;
if (!capable(CAP_NET_ADMIN))
return -EPERM;
switch (cmd) {
case SIOCGPC300CONF:
#ifdef CONFIG_PC300_MLPPP
if (conf->proto != PC300_PROTO_MLPPP) {
conf->proto = /* FIXME hdlc->proto.id */ 0;
}
#else
conf->proto = /* FIXME hdlc->proto.id */ 0;
#endif
memcpy(&conf_aux.conf, conf, sizeof(pc300chconf_t));
memcpy(&conf_aux.hw, &card->hw, sizeof(pc300hw_t));
if (!arg ||
copy_to_user(arg, &conf_aux, sizeof(pc300conf_t)))
return -EINVAL;
return 0;
case SIOCSPC300CONF:
if (!capable(CAP_NET_ADMIN))
return -EPERM;
if (!arg ||
copy_from_user(&conf_aux.conf, arg, sizeof(pc300chconf_t)))
return -EINVAL;
if (card->hw.cpld_id < 0x02 &&
conf_aux.conf.fr_mode == PC300_FR_UNFRAMED) {
/* CPLD_ID < 0x02 doesn't support Unframed E1 */
return -EINVAL;
}
#ifdef CONFIG_PC300_MLPPP
if (conf_aux.conf.proto == PC300_PROTO_MLPPP) {
if (conf->proto != PC300_PROTO_MLPPP) {
memcpy(conf, &conf_aux.conf, sizeof(pc300chconf_t));
cpc_tty_init(d); /* init TTY driver */
}
} else {
if (conf_aux.conf.proto == 0xffff) {
if (conf->proto == PC300_PROTO_MLPPP){
/* ifdown interface */
cpc_close(dev);
}
} else {
memcpy(conf, &conf_aux.conf, sizeof(pc300chconf_t));
/* FIXME hdlc->proto.id = conf->proto; */
}
}
#else
memcpy(conf, &conf_aux.conf, sizeof(pc300chconf_t));
/* FIXME hdlc->proto.id = conf->proto; */
#endif
return 0;
case SIOCGPC300STATUS:
cpc_sca_status(card, ch);
return 0;
case SIOCGPC300FALCSTATUS:
cpc_falc_status(card, ch);
return 0;
case SIOCGPC300UTILSTATS:
{
if (!arg) { /* clear statistics */
memset(hdlc_stats(dev), 0, sizeof(struct net_device_stats));
if (card->hw.type == PC300_TE) {
memset(&chan->falc, 0, sizeof(falc_t));
}
} else {
pc300stats_t pc300stats;
memset(&pc300stats, 0, sizeof(pc300stats_t));
pc300stats.hw_type = card->hw.type;
pc300stats.line_on = card->chan[ch].d.line_on;
pc300stats.line_off = card->chan[ch].d.line_off;
memcpy(&pc300stats.gen_stats, hdlc_stats(dev),
sizeof(struct net_device_stats));
if (card->hw.type == PC300_TE)
memcpy(&pc300stats.te_stats,&chan->falc,sizeof(falc_t));
if (copy_to_user(arg, &pc300stats, sizeof(pc300stats_t)))
return -EFAULT;
}
return 0;
}
case SIOCGPC300UTILSTATUS:
{
struct pc300status pc300status;
pc300status.hw_type = card->hw.type;
if (card->hw.type == PC300_TE) {
pc300status.te_status.sync = chan->falc.sync;
pc300status.te_status.red_alarm = chan->falc.red_alarm;
pc300status.te_status.blue_alarm = chan->falc.blue_alarm;
pc300status.te_status.loss_fa = chan->falc.loss_fa;
pc300status.te_status.yellow_alarm =chan->falc.yellow_alarm;
pc300status.te_status.loss_mfa = chan->falc.loss_mfa;
pc300status.te_status.prbs = chan->falc.prbs;
} else {
pc300status.gen_status.dcd =
!(cpc_readb (scabase + M_REG(ST3, ch)) & ST3_DCD);
pc300status.gen_status.cts =
!(cpc_readb (scabase + M_REG(ST3, ch)) & ST3_CTS);
pc300status.gen_status.rts =
!(cpc_readb (scabase + M_REG(CTL, ch)) & CTL_RTS);
pc300status.gen_status.dtr =
!(cpc_readb (scabase + M_REG(CTL, ch)) & CTL_DTR);
/* There is no DSR in HD64572 */
}
if (!arg
|| copy_to_user(arg, &pc300status, sizeof(pc300status_t)))
return -EINVAL;
return 0;
}
case SIOCSPC300TRACE:
/* Sets/resets a trace_flag for the respective device */
if (!arg || copy_from_user(&d->trace_on, arg,sizeof(unsigned char)))
return -EINVAL;
return 0;
case SIOCSPC300LOOPBACK:
{
struct pc300loopback pc300loop;
/* TE boards only */
if (card->hw.type != PC300_TE)
return -EINVAL;
if (!arg ||
copy_from_user(&pc300loop, arg, sizeof(pc300loopback_t)))
return -EINVAL;
switch (pc300loop.loop_type) {
case PC300LOCLOOP: /* Turn the local loop on/off */
falc_local_loop(card, ch, pc300loop.loop_on);
return 0;
case PC300REMLOOP: /* Turn the remote loop on/off */
falc_remote_loop(card, ch, pc300loop.loop_on);
return 0;
case PC300PAYLOADLOOP: /* Turn the payload loop on/off */
falc_payload_loop(card, ch, pc300loop.loop_on);
return 0;
case PC300GENLOOPUP: /* Generate loop UP */
if (pc300loop.loop_on) {
falc_generate_loop_up_code (card, ch);
} else {
turn_off_xlu(card, ch);
}
return 0;
case PC300GENLOOPDOWN: /* Generate loop DOWN */
if (pc300loop.loop_on) {
falc_generate_loop_down_code (card, ch);
} else {
turn_off_xld(card, ch);
}
return 0;
default:
return -EINVAL;
}
}
case SIOCSPC300PATTERNTEST:
/* Turn the pattern test on/off and show the errors counter */
{
struct pc300patterntst pc300patrntst;
/* TE boards only */
if (card->hw.type != PC300_TE)
return -EINVAL;
if (card->hw.cpld_id < 0x02) {
/* CPLD_ID < 0x02 doesn't support pattern test */
return -EINVAL;
}
if (!arg ||
copy_from_user(&pc300patrntst,arg,sizeof(pc300patterntst_t)))
return -EINVAL;
if (pc300patrntst.patrntst_on == 2) {
if (chan->falc.prbs == 0) {
falc_pattern_test(card, ch, 1);
}
pc300patrntst.num_errors =
falc_pattern_test_error(card, ch);
if (!arg
|| copy_to_user(arg, &pc300patrntst,
sizeof (pc300patterntst_t)))
return -EINVAL;
} else {
falc_pattern_test(card, ch, pc300patrntst.patrntst_on);
}
return 0;
}
case SIOCWANDEV:
switch (ifr->ifr_settings.type) {
case IF_GET_IFACE:
{
const size_t size = sizeof(sync_serial_settings);
ifr->ifr_settings.type = conf->media;
if (ifr->ifr_settings.size < size) {
/* data size wanted */
ifr->ifr_settings.size = size;
return -ENOBUFS;
}
if (copy_to_user(settings->ifs_ifsu.sync,
&conf->phys_settings, size)) {
return -EFAULT;
}
return 0;
}
case IF_IFACE_V35:
case IF_IFACE_V24:
case IF_IFACE_X21:
{
const size_t size = sizeof(sync_serial_settings);
if (!capable(CAP_NET_ADMIN)) {
return -EPERM;
}
/* incorrect data len? */
if (ifr->ifr_settings.size != size) {
return -ENOBUFS;
}
if (copy_from_user(&conf->phys_settings,
settings->ifs_ifsu.sync, size)) {
return -EFAULT;
}
if (conf->phys_settings.loopback) {
cpc_writeb(card->hw.scabase + M_REG(MD2, ch),
cpc_readb(card->hw.scabase + M_REG(MD2, ch)) |
MD2_LOOP_MIR);
}
conf->media = ifr->ifr_settings.type;
return 0;
}
case IF_IFACE_T1:
case IF_IFACE_E1:
{
const size_t te_size = sizeof(te1_settings);
const size_t size = sizeof(sync_serial_settings);
if (!capable(CAP_NET_ADMIN)) {
return -EPERM;
}
/* incorrect data len? */
if (ifr->ifr_settings.size != te_size) {
return -ENOBUFS;
}
if (copy_from_user(&conf->phys_settings,
settings->ifs_ifsu.te1, size)) {
return -EFAULT;
}/* Ignoring HDLC slot_map for a while */
if (conf->phys_settings.loopback) {
cpc_writeb(card->hw.scabase + M_REG(MD2, ch),
cpc_readb(card->hw.scabase + M_REG(MD2, ch)) |
MD2_LOOP_MIR);
}
conf->media = ifr->ifr_settings.type;
return 0;
}
default:
return hdlc_ioctl(dev, ifr, cmd);
}
default:
return hdlc_ioctl(dev, ifr, cmd);
}
}
static struct net_device_stats *cpc_get_stats(struct net_device *dev)
{
return hdlc_stats(dev);
}
static int clock_rate_calc(uclong rate, uclong clock, int *br_io)
{
int br, tc;
int br_pwr, error;
if (rate == 0)
return (0);
for (br = 0, br_pwr = 1; br <= 9; br++, br_pwr <<= 1) {
if ((tc = clock / br_pwr / rate) <= 0xff) {
*br_io = br;
break;
}
}
if (tc <= 0xff) {
error = ((rate - (clock / br_pwr / rate)) / rate) * 1000;
/* Errors bigger than +/- 1% won't be tolerated */
if (error < -10 || error > 10)
return (-1);
else
return (tc);
} else {
return (-1);
}
}
static int ch_config(pc300dev_t * d)
{
pc300ch_t *chan = (pc300ch_t *) d->chan;
pc300chconf_t *conf = (pc300chconf_t *) & chan->conf;
pc300_t *card = (pc300_t *) chan->card;
void __iomem *scabase = card->hw.scabase;
void __iomem *plxbase = card->hw.plxbase;
int ch = chan->channel;
uclong clkrate = chan->conf.phys_settings.clock_rate;
uclong clktype = chan->conf.phys_settings.clock_type;
ucshort encoding = chan->conf.proto_settings.encoding;
ucshort parity = chan->conf.proto_settings.parity;
int tmc, br;
ucchar md0, md2;
/* Reset the channel */
cpc_writeb(scabase + M_REG(CMD, ch), CMD_CH_RST);
/* Configure the SCA registers */
switch (parity) {
case PARITY_NONE:
md0 = MD0_BIT_SYNC;
break;
case PARITY_CRC16_PR0:
md0 = MD0_CRC16_0|MD0_CRCC0|MD0_BIT_SYNC;
break;
case PARITY_CRC16_PR1:
md0 = MD0_CRC16_1|MD0_CRCC0|MD0_BIT_SYNC;
break;
case PARITY_CRC32_PR1_CCITT:
md0 = MD0_CRC32|MD0_CRCC0|MD0_BIT_SYNC;
break;
case PARITY_CRC16_PR1_CCITT:
default:
md0 = MD0_CRC_CCITT|MD0_CRCC0|MD0_BIT_SYNC;
break;
}
switch (encoding) {
case ENCODING_NRZI:
md2 = MD2_F_DUPLEX|MD2_ADPLL_X8|MD2_NRZI;
break;
case ENCODING_FM_MARK: /* FM1 */
md2 = MD2_F_DUPLEX|MD2_ADPLL_X8|MD2_FM|MD2_FM1;
break;
case ENCODING_FM_SPACE: /* FM0 */
md2 = MD2_F_DUPLEX|MD2_ADPLL_X8|MD2_FM|MD2_FM0;
break;
case ENCODING_MANCHESTER: /* It's not working... */
md2 = MD2_F_DUPLEX|MD2_ADPLL_X8|MD2_FM|MD2_MANCH;
break;
case ENCODING_NRZ:
default:
md2 = MD2_F_DUPLEX|MD2_ADPLL_X8|MD2_NRZ;
break;
}
cpc_writeb(scabase + M_REG(MD0, ch), md0);
cpc_writeb(scabase + M_REG(MD1, ch), 0);
cpc_writeb(scabase + M_REG(MD2, ch), md2);
cpc_writeb(scabase + M_REG(IDL, ch), 0x7e);
cpc_writeb(scabase + M_REG(CTL, ch), CTL_URSKP | CTL_IDLC);
/* Configure HW media */
switch (card->hw.type) {
case PC300_RSV:
if (conf->media == IF_IFACE_V35) {
cpc_writel((plxbase + card->hw.gpioc_reg),
cpc_readl(plxbase + card->hw.gpioc_reg) | PC300_CHMEDIA_MASK(ch));
} else {
cpc_writel((plxbase + card->hw.gpioc_reg),
cpc_readl(plxbase + card->hw.gpioc_reg) & ~PC300_CHMEDIA_MASK(ch));
}
break;
case PC300_X21:
break;
case PC300_TE:
te_config(card, ch);
break;
}
switch (card->hw.type) {
case PC300_RSV:
case PC300_X21:
if (clktype == CLOCK_INT || clktype == CLOCK_TXINT) {
/* Calculate the clkrate parameters */
tmc = clock_rate_calc(clkrate, card->hw.clock, &br);
cpc_writeb(scabase + M_REG(TMCT, ch), tmc);
cpc_writeb(scabase + M_REG(TXS, ch),
(TXS_DTRXC | TXS_IBRG | br));
if (clktype == CLOCK_INT) {
cpc_writeb(scabase + M_REG(TMCR, ch), tmc);
cpc_writeb(scabase + M_REG(RXS, ch),
(RXS_IBRG | br));
} else {
cpc_writeb(scabase + M_REG(TMCR, ch), 1);
cpc_writeb(scabase + M_REG(RXS, ch), 0);
}
if (card->hw.type == PC300_X21) {
cpc_writeb(scabase + M_REG(GPO, ch), 1);
cpc_writeb(scabase + M_REG(EXS, ch), EXS_TES1 | EXS_RES1);
} else {
cpc_writeb(scabase + M_REG(EXS, ch), EXS_TES1);
}
} else {
cpc_writeb(scabase + M_REG(TMCT, ch), 1);
if (clktype == CLOCK_EXT) {
cpc_writeb(scabase + M_REG(TXS, ch),
TXS_DTRXC);
} else {
cpc_writeb(scabase + M_REG(TXS, ch),
TXS_DTRXC|TXS_RCLK);
}
cpc_writeb(scabase + M_REG(TMCR, ch), 1);
cpc_writeb(scabase + M_REG(RXS, ch), 0);
if (card->hw.type == PC300_X21) {
cpc_writeb(scabase + M_REG(GPO, ch), 0);
cpc_writeb(scabase + M_REG(EXS, ch), EXS_TES1 | EXS_RES1);
} else {
cpc_writeb(scabase + M_REG(EXS, ch), EXS_TES1);
}
}
break;
case PC300_TE:
/* SCA always receives clock from the FALC chip */
cpc_writeb(scabase + M_REG(TMCT, ch), 1);
cpc_writeb(scabase + M_REG(TXS, ch), 0);
cpc_writeb(scabase + M_REG(TMCR, ch), 1);
cpc_writeb(scabase + M_REG(RXS, ch), 0);
cpc_writeb(scabase + M_REG(EXS, ch), 0);
break;
}
/* Enable Interrupts */
cpc_writel(scabase + IER0,
cpc_readl(scabase + IER0) |
IR0_M(IR0_RXINTA, ch) |
IR0_DRX(IR0_EFT | IR0_DMIA | IR0_DMIB, ch) |
IR0_DTX(IR0_EFT | IR0_DMIA | IR0_DMIB, ch));
cpc_writeb(scabase + M_REG(IE0, ch),
cpc_readl(scabase + M_REG(IE0, ch)) | IE0_RXINTA);
cpc_writeb(scabase + M_REG(IE1, ch),
cpc_readl(scabase + M_REG(IE1, ch)) | IE1_CDCD);
return 0;
}
static int rx_config(pc300dev_t * d)
{
pc300ch_t *chan = (pc300ch_t *) d->chan;
pc300_t *card = (pc300_t *) chan->card;
void __iomem *scabase = card->hw.scabase;
int ch = chan->channel;
cpc_writeb(scabase + DSR_RX(ch), 0);
/* General RX settings */
cpc_writeb(scabase + M_REG(RRC, ch), 0);
cpc_writeb(scabase + M_REG(RNR, ch), 16);
/* Enable reception */
cpc_writeb(scabase + M_REG(CMD, ch), CMD_RX_CRC_INIT);
cpc_writeb(scabase + M_REG(CMD, ch), CMD_RX_ENA);
/* Initialize DMA stuff */
chan->rx_first_bd = 0;
chan->rx_last_bd = N_DMA_RX_BUF - 1;
rx_dma_buf_init(card, ch);
cpc_writeb(scabase + DCR_RX(ch), DCR_FCT_CLR);
cpc_writeb(scabase + DMR_RX(ch), (DMR_TMOD | DMR_NF));
cpc_writeb(scabase + DIR_RX(ch), (DIR_EOM | DIR_BOF));
/* Start DMA */
rx_dma_start(card, ch);
return 0;
}
static int tx_config(pc300dev_t * d)
{
pc300ch_t *chan = (pc300ch_t *) d->chan;
pc300_t *card = (pc300_t *) chan->card;
void __iomem *scabase = card->hw.scabase;
int ch = chan->channel;
cpc_writeb(scabase + DSR_TX(ch), 0);
/* General TX settings */
cpc_writeb(scabase + M_REG(TRC0, ch), 0);
cpc_writeb(scabase + M_REG(TFS, ch), 32);
cpc_writeb(scabase + M_REG(TNR0, ch), 20);
cpc_writeb(scabase + M_REG(TNR1, ch), 48);
cpc_writeb(scabase + M_REG(TCR, ch), 8);
/* Enable transmission */
cpc_writeb(scabase + M_REG(CMD, ch), CMD_TX_CRC_INIT);
/* Initialize DMA stuff */
chan->tx_first_bd = 0;
chan->tx_next_bd = 0;
tx_dma_buf_init(card, ch);
cpc_writeb(scabase + DCR_TX(ch), DCR_FCT_CLR);
cpc_writeb(scabase + DMR_TX(ch), (DMR_TMOD | DMR_NF));
cpc_writeb(scabase + DIR_TX(ch), (DIR_EOM | DIR_BOF | DIR_UDRF));
cpc_writel(scabase + DTX_REG(CDAL, ch), TX_BD_ADDR(ch, chan->tx_first_bd));
cpc_writel(scabase + DTX_REG(EDAL, ch), TX_BD_ADDR(ch, chan->tx_next_bd));
return 0;
}
static int cpc_attach(struct net_device *dev, unsigned short encoding,
unsigned short parity)
{
pc300dev_t *d = (pc300dev_t *)dev->priv;
pc300ch_t *chan = (pc300ch_t *)d->chan;
pc300_t *card = (pc300_t *)chan->card;
pc300chconf_t *conf = (pc300chconf_t *)&chan->conf;
if (card->hw.type == PC300_TE) {
if (encoding != ENCODING_NRZ && encoding != ENCODING_NRZI) {
return -EINVAL;
}
} else {
if (encoding != ENCODING_NRZ && encoding != ENCODING_NRZI &&
encoding != ENCODING_FM_MARK && encoding != ENCODING_FM_SPACE) {
/* Driver doesn't support ENCODING_MANCHESTER yet */
return -EINVAL;
}
}
if (parity != PARITY_NONE && parity != PARITY_CRC16_PR0 &&
parity != PARITY_CRC16_PR1 && parity != PARITY_CRC32_PR1_CCITT &&
parity != PARITY_CRC16_PR1_CCITT) {
return -EINVAL;
}
conf->proto_settings.encoding = encoding;
conf->proto_settings.parity = parity;
return 0;
}
static void cpc_opench(pc300dev_t * d)
{
pc300ch_t *chan = (pc300ch_t *) d->chan;
pc300_t *card = (pc300_t *) chan->card;
int ch = chan->channel;
void __iomem *scabase = card->hw.scabase;
ch_config(d);
rx_config(d);
tx_config(d);
/* Assert RTS and DTR */
cpc_writeb(scabase + M_REG(CTL, ch),
cpc_readb(scabase + M_REG(CTL, ch)) & ~(CTL_RTS | CTL_DTR));
}
static void cpc_closech(pc300dev_t * d)
{
pc300ch_t *chan = (pc300ch_t *) d->chan;
pc300_t *card = (pc300_t *) chan->card;
falc_t *pfalc = (falc_t *) & chan->falc;
int ch = chan->channel;
cpc_writeb(card->hw.scabase + M_REG(CMD, ch), CMD_CH_RST);
rx_dma_stop(card, ch);
tx_dma_stop(card, ch);
if (card->hw.type == PC300_TE) {
memset(pfalc, 0, sizeof(falc_t));
cpc_writeb(card->hw.falcbase + card->hw.cpld_reg2,
cpc_readb(card->hw.falcbase + card->hw.cpld_reg2) &
~((CPLD_REG2_FALC_TX_CLK | CPLD_REG2_FALC_RX_CLK |
CPLD_REG2_FALC_LED2) << (2 * ch)));
/* Reset the FALC chip */
cpc_writeb(card->hw.falcbase + card->hw.cpld_reg1,
cpc_readb(card->hw.falcbase + card->hw.cpld_reg1) |
(CPLD_REG1_FALC_RESET << (2 * ch)));
udelay(10000);
cpc_writeb(card->hw.falcbase + card->hw.cpld_reg1,
cpc_readb(card->hw.falcbase + card->hw.cpld_reg1) &
~(CPLD_REG1_FALC_RESET << (2 * ch)));
}
}
int cpc_open(struct net_device *dev)
{
pc300dev_t *d = (pc300dev_t *) dev->priv;
struct ifreq ifr;
int result;
#ifdef PC300_DEBUG_OTHER
printk("pc300: cpc_open");
#endif
#ifdef FIXME
if (hdlc->proto.id == IF_PROTO_PPP) {
d->if_ptr = &hdlc->state.ppp.pppdev;
}
#endif
result = hdlc_open(dev);
if (/* FIXME hdlc->proto.id == IF_PROTO_PPP*/ 0) {
dev->priv = d;
}
if (result) {
return result;
}
sprintf(ifr.ifr_name, "%s", dev->name);
cpc_opench(d);
netif_start_queue(dev);
return 0;
}
static int cpc_close(struct net_device *dev)
{
pc300dev_t *d = (pc300dev_t *) dev->priv;
pc300ch_t *chan = (pc300ch_t *) d->chan;
pc300_t *card = (pc300_t *) chan->card;
unsigned long flags;
#ifdef PC300_DEBUG_OTHER
printk("pc300: cpc_close");
#endif
netif_stop_queue(dev);
CPC_LOCK(card, flags);
cpc_closech(d);
CPC_UNLOCK(card, flags);
hdlc_close(dev);
if (/* FIXME hdlc->proto.id == IF_PROTO_PPP*/ 0) {
d->if_ptr = NULL;
}
#ifdef CONFIG_PC300_MLPPP
if (chan->conf.proto == PC300_PROTO_MLPPP) {
cpc_tty_unregister_service(d);
chan->conf.proto = 0xffff;
}
#endif
return 0;
}
static uclong detect_ram(pc300_t * card)
{
uclong i;
ucchar data;
void __iomem *rambase = card->hw.rambase;
card->hw.ramsize = PC300_RAMSIZE;
/* Let's find out how much RAM is present on this board */
for (i = 0; i < card->hw.ramsize; i++) {
data = (ucchar) (i & 0xff);
cpc_writeb(rambase + i, data);
if (cpc_readb(rambase + i) != data) {
break;
}
}
return (i);
}
static void plx_init(pc300_t * card)
{
struct RUNTIME_9050 __iomem *plx_ctl = card->hw.plxbase;
/* Reset PLX */
cpc_writel(&plx_ctl->init_ctrl,
cpc_readl(&plx_ctl->init_ctrl) | 0x40000000);
udelay(10000L);
cpc_writel(&plx_ctl->init_ctrl,
cpc_readl(&plx_ctl->init_ctrl) & ~0x40000000);
/* Reload Config. Registers from EEPROM */
cpc_writel(&plx_ctl->init_ctrl,
cpc_readl(&plx_ctl->init_ctrl) | 0x20000000);
udelay(10000L);
cpc_writel(&plx_ctl->init_ctrl,
cpc_readl(&plx_ctl->init_ctrl) & ~0x20000000);
}
static inline void show_version(void)
{
char *rcsvers, *rcsdate, *tmp;
rcsvers = strchr(rcsid, ' ');
rcsvers++;
tmp = strchr(rcsvers, ' ');
*tmp++ = '\0';
rcsdate = strchr(tmp, ' ');
rcsdate++;
tmp = strrchr(rcsdate, ' ');
*tmp = '\0';
printk(KERN_INFO "Cyclades-PC300 driver %s %s (built %s %s)\n",
rcsvers, rcsdate, __DATE__, __TIME__);
} /* show_version */
static void cpc_init_card(pc300_t * card)
{
int i, devcount = 0;
static int board_nbr = 1;
/* Enable interrupts on the PCI bridge */
plx_init(card);
cpc_writew(card->hw.plxbase + card->hw.intctl_reg,
cpc_readw(card->hw.plxbase + card->hw.intctl_reg) | 0x0040);
#ifdef USE_PCI_CLOCK
/* Set board clock to PCI clock */
cpc_writel(card->hw.plxbase + card->hw.gpioc_reg,
cpc_readl(card->hw.plxbase + card->hw.gpioc_reg) | 0x00000004UL);
card->hw.clock = PC300_PCI_CLOCK;
#else
/* Set board clock to internal oscillator clock */
cpc_writel(card->hw.plxbase + card->hw.gpioc_reg,
cpc_readl(card->hw.plxbase + card->hw.gpioc_reg) & ~0x00000004UL);
card->hw.clock = PC300_OSC_CLOCK;
#endif
/* Detect actual on-board RAM size */
card->hw.ramsize = detect_ram(card);
/* Set Global SCA-II registers */
cpc_writeb(card->hw.scabase + PCR, PCR_PR2);
cpc_writeb(card->hw.scabase + BTCR, 0x10);
cpc_writeb(card->hw.scabase + WCRL, 0);
cpc_writeb(card->hw.scabase + DMER, 0x80);
if (card->hw.type == PC300_TE) {
ucchar reg1;
/* Check CPLD version */
reg1 = cpc_readb(card->hw.falcbase + CPLD_REG1);
cpc_writeb(card->hw.falcbase + CPLD_REG1, (reg1 + 0x5a));
if (cpc_readb(card->hw.falcbase + CPLD_REG1) == reg1) {
/* New CPLD */
card->hw.cpld_id = cpc_readb(card->hw.falcbase + CPLD_ID_REG);
card->hw.cpld_reg1 = CPLD_V2_REG1;
card->hw.cpld_reg2 = CPLD_V2_REG2;
} else {
/* old CPLD */
card->hw.cpld_id = 0;
card->hw.cpld_reg1 = CPLD_REG1;
card->hw.cpld_reg2 = CPLD_REG2;
cpc_writeb(card->hw.falcbase + CPLD_REG1, reg1);
}
/* Enable the board's global clock */
cpc_writeb(card->hw.falcbase + card->hw.cpld_reg1,
cpc_readb(card->hw.falcbase + card->hw.cpld_reg1) |
CPLD_REG1_GLOBAL_CLK);
}
for (i = 0; i < card->hw.nchan; i++) {
pc300ch_t *chan = &card->chan[i];
pc300dev_t *d = &chan->d;
hdlc_device *hdlc;
struct net_device *dev;
chan->card = card;
chan->channel = i;
chan->conf.phys_settings.clock_rate = 0;
chan->conf.phys_settings.clock_type = CLOCK_EXT;
chan->conf.proto_settings.encoding = ENCODING_NRZ;
chan->conf.proto_settings.parity = PARITY_CRC16_PR1_CCITT;
switch (card->hw.type) {
case PC300_TE:
chan->conf.media = IF_IFACE_T1;
chan->conf.lcode = PC300_LC_B8ZS;
chan->conf.fr_mode = PC300_FR_ESF;
chan->conf.lbo = PC300_LBO_0_DB;
chan->conf.rx_sens = PC300_RX_SENS_SH;
chan->conf.tslot_bitmap = 0xffffffffUL;
break;
case PC300_X21:
chan->conf.media = IF_IFACE_X21;
break;
case PC300_RSV:
default:
chan->conf.media = IF_IFACE_V35;
break;
}
chan->conf.proto = IF_PROTO_PPP;
chan->tx_first_bd = 0;
chan->tx_next_bd = 0;
chan->rx_first_bd = 0;
chan->rx_last_bd = N_DMA_RX_BUF - 1;
chan->nfree_tx_bd = N_DMA_TX_BUF;
d->chan = chan;
d->tx_skb = NULL;
d->trace_on = 0;
d->line_on = 0;
d->line_off = 0;
dev = alloc_hdlcdev(NULL);
if (dev == NULL)
continue;
hdlc = dev_to_hdlc(dev);
hdlc->xmit = cpc_queue_xmit;
hdlc->attach = cpc_attach;
d->dev = dev;
dev->mem_start = card->hw.ramphys;
dev->mem_end = card->hw.ramphys + card->hw.ramsize - 1;
dev->irq = card->hw.irq;
dev->init = NULL;
dev->tx_queue_len = PC300_TX_QUEUE_LEN;
dev->mtu = PC300_DEF_MTU;
dev->open = cpc_open;
dev->stop = cpc_close;
dev->tx_timeout = cpc_tx_timeout;
dev->watchdog_timeo = PC300_TX_TIMEOUT;
dev->get_stats = cpc_get_stats;
dev->set_multicast_list = NULL;
dev->set_mac_address = NULL;
dev->change_mtu = cpc_change_mtu;
dev->do_ioctl = cpc_ioctl;
if (register_hdlc_device(dev) == 0) {
dev->priv = d; /* We need 'priv', hdlc doesn't */
printk("%s: Cyclades-PC300/", dev->name);
switch (card->hw.type) {
case PC300_TE:
if (card->hw.bus == PC300_PMC) {
printk("TE-M");
} else {
printk("TE ");
}
break;
case PC300_X21:
printk("X21 ");
break;
case PC300_RSV:
default:
printk("RSV ");
break;
}
printk (" #%d, %dKB of RAM at 0x%08x, IRQ%d, channel %d.\n",
board_nbr, card->hw.ramsize / 1024,
card->hw.ramphys, card->hw.irq, i + 1);
devcount++;
} else {
printk ("Dev%d on card(0x%08x): unable to allocate i/f name.\n",
i + 1, card->hw.ramphys);
free_netdev(dev);
continue;
}
}
spin_lock_init(&card->card_lock);
board_nbr++;
}
static int __devinit
cpc_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
{
static int first_time = 1;
ucchar cpc_rev_id;
int err, eeprom_outdated = 0;
ucshort device_id;
pc300_t *card;
if (first_time) {
first_time = 0;
show_version();
#ifdef CONFIG_PC300_MLPPP
cpc_tty_reset_var();
#endif
}
if ((err = pci_enable_device(pdev)) < 0)
return err;
card = (pc300_t *) kmalloc(sizeof(pc300_t), GFP_KERNEL);
if (card == NULL) {
printk("PC300 found at RAM 0x%016llx, "
"but could not allocate card structure.\n",
(unsigned long long)pci_resource_start(pdev, 3));
err = -ENOMEM;
goto err_disable_dev;
}
memset(card, 0, sizeof(pc300_t));
err = -ENODEV;
/* read PCI configuration area */
device_id = ent->device;
card->hw.irq = pdev->irq;
card->hw.iophys = pci_resource_start(pdev, 1);
card->hw.iosize = pci_resource_len(pdev, 1);
card->hw.scaphys = pci_resource_start(pdev, 2);
card->hw.scasize = pci_resource_len(pdev, 2);
card->hw.ramphys = pci_resource_start(pdev, 3);
card->hw.alloc_ramsize = pci_resource_len(pdev, 3);
card->hw.falcphys = pci_resource_start(pdev, 4);
card->hw.falcsize = pci_resource_len(pdev, 4);
card->hw.plxphys = pci_resource_start(pdev, 5);
card->hw.plxsize = pci_resource_len(pdev, 5);
pci_read_config_byte(pdev, PCI_REVISION_ID, &cpc_rev_id);
switch (device_id) {
case PCI_DEVICE_ID_PC300_RX_1:
case PCI_DEVICE_ID_PC300_TE_1:
case PCI_DEVICE_ID_PC300_TE_M_1:
card->hw.nchan = 1;
break;
case PCI_DEVICE_ID_PC300_RX_2:
case PCI_DEVICE_ID_PC300_TE_2:
case PCI_DEVICE_ID_PC300_TE_M_2:
default:
card->hw.nchan = PC300_MAXCHAN;
break;
}
#ifdef PC300_DEBUG_PCI
printk("cpc (bus=0x0%x,pci_id=0x%x,", pdev->bus->number, pdev->devfn);
printk("rev_id=%d) IRQ%d\n", cpc_rev_id, card->hw.irq);
printk("cpc:found ramaddr=0x%08lx plxaddr=0x%08lx "
"ctladdr=0x%08lx falcaddr=0x%08lx\n",
card->hw.ramphys, card->hw.plxphys, card->hw.scaphys,
card->hw.falcphys);
#endif
/* Although we don't use this I/O region, we should
* request it from the kernel anyway, to avoid problems
* with other drivers accessing it. */
if (!request_region(card->hw.iophys, card->hw.iosize, "PLX Registers")) {
/* In case we can't allocate it, warn user */
printk("WARNING: couldn't allocate I/O region for PC300 board "
"at 0x%08x!\n", card->hw.ramphys);
}
if (card->hw.plxphys) {
pci_write_config_dword(pdev, PCI_BASE_ADDRESS_0, card->hw.plxphys);
} else {
eeprom_outdated = 1;
card->hw.plxphys = pci_resource_start(pdev, 0);
card->hw.plxsize = pci_resource_len(pdev, 0);
}
if (!request_mem_region(card->hw.plxphys, card->hw.plxsize,
"PLX Registers")) {
printk("PC300 found at RAM 0x%08x, "
"but could not allocate PLX mem region.\n",
card->hw.ramphys);
goto err_release_io;
}
if (!request_mem_region(card->hw.ramphys, card->hw.alloc_ramsize,
"On-board RAM")) {
printk("PC300 found at RAM 0x%08x, "
"but could not allocate RAM mem region.\n",
card->hw.ramphys);
goto err_release_plx;
}
if (!request_mem_region(card->hw.scaphys, card->hw.scasize,
"SCA-II Registers")) {
printk("PC300 found at RAM 0x%08x, "
"but could not allocate SCA mem region.\n",
card->hw.ramphys);
goto err_release_ram;
}
card->hw.plxbase = ioremap(card->hw.plxphys, card->hw.plxsize);
card->hw.rambase = ioremap(card->hw.ramphys, card->hw.alloc_ramsize);
card->hw.scabase = ioremap(card->hw.scaphys, card->hw.scasize);
switch (device_id) {
case PCI_DEVICE_ID_PC300_TE_1:
case PCI_DEVICE_ID_PC300_TE_2:
case PCI_DEVICE_ID_PC300_TE_M_1:
case PCI_DEVICE_ID_PC300_TE_M_2:
request_mem_region(card->hw.falcphys, card->hw.falcsize,
"FALC Registers");
card->hw.falcbase = ioremap(card->hw.falcphys, card->hw.falcsize);
break;
case PCI_DEVICE_ID_PC300_RX_1:
case PCI_DEVICE_ID_PC300_RX_2:
default:
card->hw.falcbase = NULL;
break;
}
#ifdef PC300_DEBUG_PCI
printk("cpc: relocate ramaddr=0x%08lx plxaddr=0x%08lx "
"ctladdr=0x%08lx falcaddr=0x%08lx\n",
card->hw.rambase, card->hw.plxbase, card->hw.scabase,
card->hw.falcbase);
#endif
/* Set PCI drv pointer to the card structure */
pci_set_drvdata(pdev, card);
/* Set board type */
switch (device_id) {
case PCI_DEVICE_ID_PC300_TE_1:
case PCI_DEVICE_ID_PC300_TE_2:
case PCI_DEVICE_ID_PC300_TE_M_1:
case PCI_DEVICE_ID_PC300_TE_M_2:
card->hw.type = PC300_TE;
if ((device_id == PCI_DEVICE_ID_PC300_TE_M_1) ||
(device_id == PCI_DEVICE_ID_PC300_TE_M_2)) {
card->hw.bus = PC300_PMC;
/* Set PLX register offsets */
card->hw.gpioc_reg = 0x54;
card->hw.intctl_reg = 0x4c;
} else {
card->hw.bus = PC300_PCI;
/* Set PLX register offsets */
card->hw.gpioc_reg = 0x50;
card->hw.intctl_reg = 0x4c;
}
break;
case PCI_DEVICE_ID_PC300_RX_1:
case PCI_DEVICE_ID_PC300_RX_2:
default:
card->hw.bus = PC300_PCI;
/* Set PLX register offsets */
card->hw.gpioc_reg = 0x50;
card->hw.intctl_reg = 0x4c;
if ((cpc_readl(card->hw.plxbase + card->hw.gpioc_reg) & PC300_CTYPE_MASK)) {
card->hw.type = PC300_X21;
} else {
card->hw.type = PC300_RSV;
}
break;
}
/* Allocate IRQ */
if (request_irq(card->hw.irq, cpc_intr, IRQF_SHARED, "Cyclades-PC300", card)) {
printk ("PC300 found at RAM 0x%08x, but could not allocate IRQ%d.\n",
card->hw.ramphys, card->hw.irq);
goto err_io_unmap;
}
cpc_init_card(card);
if (eeprom_outdated)
printk("WARNING: PC300 with outdated EEPROM.\n");
return 0;
err_io_unmap:
iounmap(card->hw.plxbase);
iounmap(card->hw.scabase);
iounmap(card->hw.rambase);
if (card->hw.type == PC300_TE) {
iounmap(card->hw.falcbase);
release_mem_region(card->hw.falcphys, card->hw.falcsize);
}
release_mem_region(card->hw.scaphys, card->hw.scasize);
err_release_ram:
release_mem_region(card->hw.ramphys, card->hw.alloc_ramsize);
err_release_plx:
release_mem_region(card->hw.plxphys, card->hw.plxsize);
err_release_io:
release_region(card->hw.iophys, card->hw.iosize);
kfree(card);
err_disable_dev:
pci_disable_device(pdev);
return err;
}
static void __devexit cpc_remove_one(struct pci_dev *pdev)
{
pc300_t *card = pci_get_drvdata(pdev);
if (card->hw.rambase != 0) {
int i;
/* Disable interrupts on the PCI bridge */
cpc_writew(card->hw.plxbase + card->hw.intctl_reg,
cpc_readw(card->hw.plxbase + card->hw.intctl_reg) & ~(0x0040));
for (i = 0; i < card->hw.nchan; i++) {
unregister_hdlc_device(card->chan[i].d.dev);
}
iounmap(card->hw.plxbase);
iounmap(card->hw.scabase);
iounmap(card->hw.rambase);
release_mem_region(card->hw.plxphys, card->hw.plxsize);
release_mem_region(card->hw.ramphys, card->hw.alloc_ramsize);
release_mem_region(card->hw.scaphys, card->hw.scasize);
release_region(card->hw.iophys, card->hw.iosize);
if (card->hw.type == PC300_TE) {
iounmap(card->hw.falcbase);
release_mem_region(card->hw.falcphys, card->hw.falcsize);
}
for (i = 0; i < card->hw.nchan; i++)
if (card->chan[i].d.dev)
free_netdev(card->chan[i].d.dev);
if (card->hw.irq)
free_irq(card->hw.irq, card);
kfree(card);
pci_disable_device(pdev);
}
}
static struct pci_driver cpc_driver = {
.name = "pc300",
.id_table = cpc_pci_dev_id,
.probe = cpc_init_one,
.remove = __devexit_p(cpc_remove_one),
};
static int __init cpc_init(void)
{
return pci_register_driver(&cpc_driver);
}
static void __exit cpc_cleanup_module(void)
{
pci_unregister_driver(&cpc_driver);
}
module_init(cpc_init);
module_exit(cpc_cleanup_module);
MODULE_DESCRIPTION("Cyclades-PC300 cards driver");
MODULE_AUTHOR( "Author: Ivan Passos <ivan@cyclades.com>\r\n"
"Maintainer: PC300 Maintainer <pc300@cyclades.com");
MODULE_LICENSE("GPL");