linux/drivers/video/vermilion/vermilion.c
Tejun Heo 5a0e3ad6af include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files.  percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.

percpu.h -> slab.h dependency is about to be removed.  Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability.  As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.

  http://userweb.kernel.org/~tj/misc/slabh-sweep.py

The script does the followings.

* Scan files for gfp and slab usages and update includes such that
  only the necessary includes are there.  ie. if only gfp is used,
  gfp.h, if slab is used, slab.h.

* When the script inserts a new include, it looks at the include
  blocks and try to put the new include such that its order conforms
  to its surrounding.  It's put in the include block which contains
  core kernel includes, in the same order that the rest are ordered -
  alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
  doesn't seem to be any matching order.

* If the script can't find a place to put a new include (mostly
  because the file doesn't have fitting include block), it prints out
  an error message indicating which .h file needs to be added to the
  file.

The conversion was done in the following steps.

1. The initial automatic conversion of all .c files updated slightly
   over 4000 files, deleting around 700 includes and adding ~480 gfp.h
   and ~3000 slab.h inclusions.  The script emitted errors for ~400
   files.

2. Each error was manually checked.  Some didn't need the inclusion,
   some needed manual addition while adding it to implementation .h or
   embedding .c file was more appropriate for others.  This step added
   inclusions to around 150 files.

3. The script was run again and the output was compared to the edits
   from  to make sure no file was left behind.

4. Several build tests were done and a couple of problems were fixed.
   e.g. lib/decompress_*.c used malloc/free() wrappers around slab
   APIs requiring slab.h to be added manually.

5. The script was run on all .h files but without automatically
   editing them as sprinkling gfp.h and slab.h inclusions around .h
   files could easily lead to inclusion dependency hell.  Most gfp.h
   inclusion directives were ignored as stuff from gfp.h was usually
   wildly available and often used in preprocessor macros.  Each
   slab.h inclusion directive was examined and added manually as
   necessary.

6. percpu.h was updated not to include slab.h.

7. Build test were done on the following configurations and failures
   were fixed.  CONFIG_GCOV_KERNEL was turned off for all tests (as my
   distributed build env didn't work with gcov compiles) and a few
   more options had to be turned off depending on archs to make things
   build (like ipr on powerpc/64 which failed due to missing writeq).

   * x86 and x86_64 UP and SMP allmodconfig and a custom test config.
   * powerpc and powerpc64 SMP allmodconfig
   * sparc and sparc64 SMP allmodconfig
   * ia64 SMP allmodconfig
   * s390 SMP allmodconfig
   * alpha SMP allmodconfig
   * um on x86_64 SMP allmodconfig

8. percpu.h modifications were reverted so that it could be applied as
   a separate patch and serve as bisection point.

Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.

Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-30 22:02:32 +09:00

1187 lines
29 KiB
C

/*
* Copyright (c) Intel Corp. 2007.
* All Rights Reserved.
*
* Intel funded Tungsten Graphics (http://www.tungstengraphics.com) to
* develop this driver.
*
* This file is part of the Vermilion Range fb driver.
* The Vermilion Range fb driver is free software;
* you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* The Vermilion Range fb driver is distributed
* in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this driver; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
* Authors:
* Thomas Hellström <thomas-at-tungstengraphics-dot-com>
* Michel Dänzer <michel-at-tungstengraphics-dot-com>
* Alan Hourihane <alanh-at-tungstengraphics-dot-com>
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/delay.h>
#include <linux/slab.h>
#include <linux/mm.h>
#include <linux/fb.h>
#include <linux/pci.h>
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#include <linux/mmzone.h>
/* #define VERMILION_DEBUG */
#include "vermilion.h"
#define MODULE_NAME "vmlfb"
#define VML_TOHW(_val, _width) ((((_val) << (_width)) + 0x7FFF - (_val)) >> 16)
static struct mutex vml_mutex;
static struct list_head global_no_mode;
static struct list_head global_has_mode;
static struct fb_ops vmlfb_ops;
static struct vml_sys *subsys = NULL;
static char *vml_default_mode = "1024x768@60";
static struct fb_videomode defaultmode = {
NULL, 60, 1024, 768, 12896, 144, 24, 29, 3, 136, 6,
0, FB_VMODE_NONINTERLACED
};
static u32 vml_mem_requested = (10 * 1024 * 1024);
static u32 vml_mem_contig = (4 * 1024 * 1024);
static u32 vml_mem_min = (4 * 1024 * 1024);
static u32 vml_clocks[] = {
6750,
13500,
27000,
29700,
37125,
54000,
59400,
74250,
120000,
148500
};
static u32 vml_num_clocks = ARRAY_SIZE(vml_clocks);
/*
* Allocate a contiguous vram area and make its linear kernel map
* uncached.
*/
static int vmlfb_alloc_vram_area(struct vram_area *va, unsigned max_order,
unsigned min_order)
{
gfp_t flags;
unsigned long i;
max_order++;
do {
/*
* Really try hard to get the needed memory.
* We need memory below the first 32MB, so we
* add the __GFP_DMA flag that guarantees that we are
* below the first 16MB.
*/
flags = __GFP_DMA | __GFP_HIGH;
va->logical =
__get_free_pages(flags, --max_order);
} while (va->logical == 0 && max_order > min_order);
if (!va->logical)
return -ENOMEM;
va->phys = virt_to_phys((void *)va->logical);
va->size = PAGE_SIZE << max_order;
va->order = max_order;
/*
* It seems like __get_free_pages only ups the usage count
* of the first page. This doesn't work with fault mapping, so
* up the usage count once more (XXX: should use split_page or
* compound page).
*/
memset((void *)va->logical, 0x00, va->size);
for (i = va->logical; i < va->logical + va->size; i += PAGE_SIZE) {
get_page(virt_to_page(i));
}
/*
* Change caching policy of the linear kernel map to avoid
* mapping type conflicts with user-space mappings.
*/
set_pages_uc(virt_to_page(va->logical), va->size >> PAGE_SHIFT);
printk(KERN_DEBUG MODULE_NAME
": Allocated %ld bytes vram area at 0x%08lx\n",
va->size, va->phys);
return 0;
}
/*
* Free a contiguous vram area and reset its linear kernel map
* mapping type.
*/
static void vmlfb_free_vram_area(struct vram_area *va)
{
unsigned long j;
if (va->logical) {
/*
* Reset the linear kernel map caching policy.
*/
set_pages_wb(virt_to_page(va->logical),
va->size >> PAGE_SHIFT);
/*
* Decrease the usage count on the pages we've used
* to compensate for upping when allocating.
*/
for (j = va->logical; j < va->logical + va->size;
j += PAGE_SIZE) {
(void)put_page_testzero(virt_to_page(j));
}
printk(KERN_DEBUG MODULE_NAME
": Freeing %ld bytes vram area at 0x%08lx\n",
va->size, va->phys);
free_pages(va->logical, va->order);
va->logical = 0;
}
}
/*
* Free allocated vram.
*/
static void vmlfb_free_vram(struct vml_info *vinfo)
{
int i;
for (i = 0; i < vinfo->num_areas; ++i) {
vmlfb_free_vram_area(&vinfo->vram[i]);
}
vinfo->num_areas = 0;
}
/*
* Allocate vram. Currently we try to allocate contiguous areas from the
* __GFP_DMA zone and puzzle them together. A better approach would be to
* allocate one contiguous area for scanout and use one-page allocations for
* offscreen areas. This requires user-space and GPU virtual mappings.
*/
static int vmlfb_alloc_vram(struct vml_info *vinfo,
size_t requested,
size_t min_total, size_t min_contig)
{
int i, j;
int order;
int contiguous;
int err;
struct vram_area *va;
struct vram_area *va2;
vinfo->num_areas = 0;
for (i = 0; i < VML_VRAM_AREAS; ++i) {
va = &vinfo->vram[i];
order = 0;
while (requested > (PAGE_SIZE << order) && order < MAX_ORDER)
order++;
err = vmlfb_alloc_vram_area(va, order, 0);
if (err)
break;
if (i == 0) {
vinfo->vram_start = va->phys;
vinfo->vram_logical = (void __iomem *) va->logical;
vinfo->vram_contig_size = va->size;
vinfo->num_areas = 1;
} else {
contiguous = 0;
for (j = 0; j < i; ++j) {
va2 = &vinfo->vram[j];
if (va->phys + va->size == va2->phys ||
va2->phys + va2->size == va->phys) {
contiguous = 1;
break;
}
}
if (contiguous) {
vinfo->num_areas++;
if (va->phys < vinfo->vram_start) {
vinfo->vram_start = va->phys;
vinfo->vram_logical =
(void __iomem *)va->logical;
}
vinfo->vram_contig_size += va->size;
} else {
vmlfb_free_vram_area(va);
break;
}
}
if (requested < va->size)
break;
else
requested -= va->size;
}
if (vinfo->vram_contig_size > min_total &&
vinfo->vram_contig_size > min_contig) {
printk(KERN_DEBUG MODULE_NAME
": Contiguous vram: %ld bytes at physical 0x%08lx.\n",
(unsigned long)vinfo->vram_contig_size,
(unsigned long)vinfo->vram_start);
return 0;
}
printk(KERN_ERR MODULE_NAME
": Could not allocate requested minimal amount of vram.\n");
vmlfb_free_vram(vinfo);
return -ENOMEM;
}
/*
* Find the GPU to use with our display controller.
*/
static int vmlfb_get_gpu(struct vml_par *par)
{
mutex_lock(&vml_mutex);
par->gpu = pci_get_device(PCI_VENDOR_ID_INTEL, VML_DEVICE_GPU, NULL);
if (!par->gpu) {
mutex_unlock(&vml_mutex);
return -ENODEV;
}
mutex_unlock(&vml_mutex);
if (pci_enable_device(par->gpu) < 0)
return -ENODEV;
return 0;
}
/*
* Find a contiguous vram area that contains a given offset from vram start.
*/
static int vmlfb_vram_offset(struct vml_info *vinfo, unsigned long offset)
{
unsigned long aoffset;
unsigned i;
for (i = 0; i < vinfo->num_areas; ++i) {
aoffset = offset - (vinfo->vram[i].phys - vinfo->vram_start);
if (aoffset < vinfo->vram[i].size) {
return 0;
}
}
return -EINVAL;
}
/*
* Remap the MMIO register spaces of the VDC and the GPU.
*/
static int vmlfb_enable_mmio(struct vml_par *par)
{
int err;
par->vdc_mem_base = pci_resource_start(par->vdc, 0);
par->vdc_mem_size = pci_resource_len(par->vdc, 0);
if (!request_mem_region(par->vdc_mem_base, par->vdc_mem_size, "vmlfb")) {
printk(KERN_ERR MODULE_NAME
": Could not claim display controller MMIO.\n");
return -EBUSY;
}
par->vdc_mem = ioremap_nocache(par->vdc_mem_base, par->vdc_mem_size);
if (par->vdc_mem == NULL) {
printk(KERN_ERR MODULE_NAME
": Could not map display controller MMIO.\n");
err = -ENOMEM;
goto out_err_0;
}
par->gpu_mem_base = pci_resource_start(par->gpu, 0);
par->gpu_mem_size = pci_resource_len(par->gpu, 0);
if (!request_mem_region(par->gpu_mem_base, par->gpu_mem_size, "vmlfb")) {
printk(KERN_ERR MODULE_NAME ": Could not claim GPU MMIO.\n");
err = -EBUSY;
goto out_err_1;
}
par->gpu_mem = ioremap_nocache(par->gpu_mem_base, par->gpu_mem_size);
if (par->gpu_mem == NULL) {
printk(KERN_ERR MODULE_NAME ": Could not map GPU MMIO.\n");
err = -ENOMEM;
goto out_err_2;
}
return 0;
out_err_2:
release_mem_region(par->gpu_mem_base, par->gpu_mem_size);
out_err_1:
iounmap(par->vdc_mem);
out_err_0:
release_mem_region(par->vdc_mem_base, par->vdc_mem_size);
return err;
}
/*
* Unmap the VDC and GPU register spaces.
*/
static void vmlfb_disable_mmio(struct vml_par *par)
{
iounmap(par->gpu_mem);
release_mem_region(par->gpu_mem_base, par->gpu_mem_size);
iounmap(par->vdc_mem);
release_mem_region(par->vdc_mem_base, par->vdc_mem_size);
}
/*
* Release and uninit the VDC and GPU.
*/
static void vmlfb_release_devices(struct vml_par *par)
{
if (atomic_dec_and_test(&par->refcount)) {
pci_set_drvdata(par->vdc, NULL);
pci_disable_device(par->gpu);
pci_disable_device(par->vdc);
}
}
/*
* Free up allocated resources for a device.
*/
static void __devexit vml_pci_remove(struct pci_dev *dev)
{
struct fb_info *info;
struct vml_info *vinfo;
struct vml_par *par;
info = pci_get_drvdata(dev);
if (info) {
vinfo = container_of(info, struct vml_info, info);
par = vinfo->par;
mutex_lock(&vml_mutex);
unregister_framebuffer(info);
fb_dealloc_cmap(&info->cmap);
vmlfb_free_vram(vinfo);
vmlfb_disable_mmio(par);
vmlfb_release_devices(par);
kfree(vinfo);
kfree(par);
mutex_unlock(&vml_mutex);
}
}
static void vmlfb_set_pref_pixel_format(struct fb_var_screeninfo *var)
{
switch (var->bits_per_pixel) {
case 16:
var->blue.offset = 0;
var->blue.length = 5;
var->green.offset = 5;
var->green.length = 5;
var->red.offset = 10;
var->red.length = 5;
var->transp.offset = 15;
var->transp.length = 1;
break;
case 32:
var->blue.offset = 0;
var->blue.length = 8;
var->green.offset = 8;
var->green.length = 8;
var->red.offset = 16;
var->red.length = 8;
var->transp.offset = 24;
var->transp.length = 0;
break;
default:
break;
}
var->blue.msb_right = var->green.msb_right =
var->red.msb_right = var->transp.msb_right = 0;
}
/*
* Device initialization.
* We initialize one vml_par struct per device and one vml_info
* struct per pipe. Currently we have only one pipe.
*/
static int __devinit vml_pci_probe(struct pci_dev *dev,
const struct pci_device_id *id)
{
struct vml_info *vinfo;
struct fb_info *info;
struct vml_par *par;
int err = 0;
par = kzalloc(sizeof(*par), GFP_KERNEL);
if (par == NULL)
return -ENOMEM;
vinfo = kzalloc(sizeof(*vinfo), GFP_KERNEL);
if (vinfo == NULL) {
err = -ENOMEM;
goto out_err_0;
}
vinfo->par = par;
par->vdc = dev;
atomic_set(&par->refcount, 1);
switch (id->device) {
case VML_DEVICE_VDC:
if ((err = vmlfb_get_gpu(par)))
goto out_err_1;
pci_set_drvdata(dev, &vinfo->info);
break;
default:
err = -ENODEV;
goto out_err_1;
break;
}
info = &vinfo->info;
info->flags = FBINFO_DEFAULT | FBINFO_PARTIAL_PAN_OK;
err = vmlfb_enable_mmio(par);
if (err)
goto out_err_2;
err = vmlfb_alloc_vram(vinfo, vml_mem_requested,
vml_mem_contig, vml_mem_min);
if (err)
goto out_err_3;
strcpy(info->fix.id, "Vermilion Range");
info->fix.mmio_start = 0;
info->fix.mmio_len = 0;
info->fix.smem_start = vinfo->vram_start;
info->fix.smem_len = vinfo->vram_contig_size;
info->fix.type = FB_TYPE_PACKED_PIXELS;
info->fix.visual = FB_VISUAL_TRUECOLOR;
info->fix.ypanstep = 1;
info->fix.xpanstep = 1;
info->fix.ywrapstep = 0;
info->fix.accel = FB_ACCEL_NONE;
info->screen_base = vinfo->vram_logical;
info->pseudo_palette = vinfo->pseudo_palette;
info->par = par;
info->fbops = &vmlfb_ops;
info->device = &dev->dev;
INIT_LIST_HEAD(&vinfo->head);
vinfo->pipe_disabled = 1;
vinfo->cur_blank_mode = FB_BLANK_UNBLANK;
info->var.grayscale = 0;
info->var.bits_per_pixel = 16;
vmlfb_set_pref_pixel_format(&info->var);
if (!fb_find_mode
(&info->var, info, vml_default_mode, NULL, 0, &defaultmode, 16)) {
printk(KERN_ERR MODULE_NAME ": Could not find initial mode\n");
}
if (fb_alloc_cmap(&info->cmap, 256, 1) < 0) {
err = -ENOMEM;
goto out_err_4;
}
err = register_framebuffer(info);
if (err) {
printk(KERN_ERR MODULE_NAME ": Register framebuffer error.\n");
goto out_err_5;
}
printk("Initialized vmlfb\n");
return 0;
out_err_5:
fb_dealloc_cmap(&info->cmap);
out_err_4:
vmlfb_free_vram(vinfo);
out_err_3:
vmlfb_disable_mmio(par);
out_err_2:
vmlfb_release_devices(par);
out_err_1:
kfree(vinfo);
out_err_0:
kfree(par);
return err;
}
static int vmlfb_open(struct fb_info *info, int user)
{
/*
* Save registers here?
*/
return 0;
}
static int vmlfb_release(struct fb_info *info, int user)
{
/*
* Restore registers here.
*/
return 0;
}
static int vml_nearest_clock(int clock)
{
int i;
int cur_index;
int cur_diff;
int diff;
cur_index = 0;
cur_diff = clock - vml_clocks[0];
cur_diff = (cur_diff < 0) ? -cur_diff : cur_diff;
for (i = 1; i < vml_num_clocks; ++i) {
diff = clock - vml_clocks[i];
diff = (diff < 0) ? -diff : diff;
if (diff < cur_diff) {
cur_index = i;
cur_diff = diff;
}
}
return vml_clocks[cur_index];
}
static int vmlfb_check_var_locked(struct fb_var_screeninfo *var,
struct vml_info *vinfo)
{
u32 pitch;
u64 mem;
int nearest_clock;
int clock;
int clock_diff;
struct fb_var_screeninfo v;
v = *var;
clock = PICOS2KHZ(var->pixclock);
if (subsys && subsys->nearest_clock) {
nearest_clock = subsys->nearest_clock(subsys, clock);
} else {
nearest_clock = vml_nearest_clock(clock);
}
/*
* Accept a 20% diff.
*/
clock_diff = nearest_clock - clock;
clock_diff = (clock_diff < 0) ? -clock_diff : clock_diff;
if (clock_diff > clock / 5) {
#if 0
printk(KERN_DEBUG MODULE_NAME ": Diff failure. %d %d\n",clock_diff,clock);
#endif
return -EINVAL;
}
v.pixclock = KHZ2PICOS(nearest_clock);
if (var->xres > VML_MAX_XRES || var->yres > VML_MAX_YRES) {
printk(KERN_DEBUG MODULE_NAME ": Resolution failure.\n");
return -EINVAL;
}
if (var->xres_virtual > VML_MAX_XRES_VIRTUAL) {
printk(KERN_DEBUG MODULE_NAME
": Virtual resolution failure.\n");
return -EINVAL;
}
switch (v.bits_per_pixel) {
case 0 ... 16:
v.bits_per_pixel = 16;
break;
case 17 ... 32:
v.bits_per_pixel = 32;
break;
default:
printk(KERN_DEBUG MODULE_NAME ": Invalid bpp: %d.\n",
var->bits_per_pixel);
return -EINVAL;
}
pitch = ALIGN((var->xres * var->bits_per_pixel) >> 3, 0x40);
mem = pitch * var->yres_virtual;
if (mem > vinfo->vram_contig_size) {
return -ENOMEM;
}
switch (v.bits_per_pixel) {
case 16:
if (var->blue.offset != 0 ||
var->blue.length != 5 ||
var->green.offset != 5 ||
var->green.length != 5 ||
var->red.offset != 10 ||
var->red.length != 5 ||
var->transp.offset != 15 || var->transp.length != 1) {
vmlfb_set_pref_pixel_format(&v);
}
break;
case 32:
if (var->blue.offset != 0 ||
var->blue.length != 8 ||
var->green.offset != 8 ||
var->green.length != 8 ||
var->red.offset != 16 ||
var->red.length != 8 ||
(var->transp.length != 0 && var->transp.length != 8) ||
(var->transp.length == 8 && var->transp.offset != 24)) {
vmlfb_set_pref_pixel_format(&v);
}
break;
default:
return -EINVAL;
}
*var = v;
return 0;
}
static int vmlfb_check_var(struct fb_var_screeninfo *var, struct fb_info *info)
{
struct vml_info *vinfo = container_of(info, struct vml_info, info);
int ret;
mutex_lock(&vml_mutex);
ret = vmlfb_check_var_locked(var, vinfo);
mutex_unlock(&vml_mutex);
return ret;
}
static void vml_wait_vblank(struct vml_info *vinfo)
{
/* Wait for vblank. For now, just wait for a 50Hz cycle (20ms)) */
mdelay(20);
}
static void vmlfb_disable_pipe(struct vml_info *vinfo)
{
struct vml_par *par = vinfo->par;
/* Disable the MDVO pad */
VML_WRITE32(par, VML_RCOMPSTAT, 0);
while (!(VML_READ32(par, VML_RCOMPSTAT) & VML_MDVO_VDC_I_RCOMP)) ;
/* Disable display planes */
VML_WRITE32(par, VML_DSPCCNTR,
VML_READ32(par, VML_DSPCCNTR) & ~VML_GFX_ENABLE);
(void)VML_READ32(par, VML_DSPCCNTR);
/* Wait for vblank for the disable to take effect */
vml_wait_vblank(vinfo);
/* Next, disable display pipes */
VML_WRITE32(par, VML_PIPEACONF, 0);
(void)VML_READ32(par, VML_PIPEACONF);
vinfo->pipe_disabled = 1;
}
#ifdef VERMILION_DEBUG
static void vml_dump_regs(struct vml_info *vinfo)
{
struct vml_par *par = vinfo->par;
printk(KERN_DEBUG MODULE_NAME ": Modesetting register dump:\n");
printk(KERN_DEBUG MODULE_NAME ": \tHTOTAL_A : 0x%08x\n",
(unsigned)VML_READ32(par, VML_HTOTAL_A));
printk(KERN_DEBUG MODULE_NAME ": \tHBLANK_A : 0x%08x\n",
(unsigned)VML_READ32(par, VML_HBLANK_A));
printk(KERN_DEBUG MODULE_NAME ": \tHSYNC_A : 0x%08x\n",
(unsigned)VML_READ32(par, VML_HSYNC_A));
printk(KERN_DEBUG MODULE_NAME ": \tVTOTAL_A : 0x%08x\n",
(unsigned)VML_READ32(par, VML_VTOTAL_A));
printk(KERN_DEBUG MODULE_NAME ": \tVBLANK_A : 0x%08x\n",
(unsigned)VML_READ32(par, VML_VBLANK_A));
printk(KERN_DEBUG MODULE_NAME ": \tVSYNC_A : 0x%08x\n",
(unsigned)VML_READ32(par, VML_VSYNC_A));
printk(KERN_DEBUG MODULE_NAME ": \tDSPCSTRIDE : 0x%08x\n",
(unsigned)VML_READ32(par, VML_DSPCSTRIDE));
printk(KERN_DEBUG MODULE_NAME ": \tDSPCSIZE : 0x%08x\n",
(unsigned)VML_READ32(par, VML_DSPCSIZE));
printk(KERN_DEBUG MODULE_NAME ": \tDSPCPOS : 0x%08x\n",
(unsigned)VML_READ32(par, VML_DSPCPOS));
printk(KERN_DEBUG MODULE_NAME ": \tDSPARB : 0x%08x\n",
(unsigned)VML_READ32(par, VML_DSPARB));
printk(KERN_DEBUG MODULE_NAME ": \tDSPCADDR : 0x%08x\n",
(unsigned)VML_READ32(par, VML_DSPCADDR));
printk(KERN_DEBUG MODULE_NAME ": \tBCLRPAT_A : 0x%08x\n",
(unsigned)VML_READ32(par, VML_BCLRPAT_A));
printk(KERN_DEBUG MODULE_NAME ": \tCANVSCLR_A : 0x%08x\n",
(unsigned)VML_READ32(par, VML_CANVSCLR_A));
printk(KERN_DEBUG MODULE_NAME ": \tPIPEASRC : 0x%08x\n",
(unsigned)VML_READ32(par, VML_PIPEASRC));
printk(KERN_DEBUG MODULE_NAME ": \tPIPEACONF : 0x%08x\n",
(unsigned)VML_READ32(par, VML_PIPEACONF));
printk(KERN_DEBUG MODULE_NAME ": \tDSPCCNTR : 0x%08x\n",
(unsigned)VML_READ32(par, VML_DSPCCNTR));
printk(KERN_DEBUG MODULE_NAME ": \tRCOMPSTAT : 0x%08x\n",
(unsigned)VML_READ32(par, VML_RCOMPSTAT));
printk(KERN_DEBUG MODULE_NAME ": End of modesetting register dump.\n");
}
#endif
static int vmlfb_set_par_locked(struct vml_info *vinfo)
{
struct vml_par *par = vinfo->par;
struct fb_info *info = &vinfo->info;
struct fb_var_screeninfo *var = &info->var;
u32 htotal, hactive, hblank_start, hblank_end, hsync_start, hsync_end;
u32 vtotal, vactive, vblank_start, vblank_end, vsync_start, vsync_end;
u32 dspcntr;
int clock;
vinfo->bytes_per_pixel = var->bits_per_pixel >> 3;
vinfo->stride = ALIGN(var->xres_virtual * vinfo->bytes_per_pixel, 0x40);
info->fix.line_length = vinfo->stride;
if (!subsys)
return 0;
htotal =
var->xres + var->right_margin + var->hsync_len + var->left_margin;
hactive = var->xres;
hblank_start = var->xres;
hblank_end = htotal;
hsync_start = hactive + var->right_margin;
hsync_end = hsync_start + var->hsync_len;
vtotal =
var->yres + var->lower_margin + var->vsync_len + var->upper_margin;
vactive = var->yres;
vblank_start = var->yres;
vblank_end = vtotal;
vsync_start = vactive + var->lower_margin;
vsync_end = vsync_start + var->vsync_len;
dspcntr = VML_GFX_ENABLE | VML_GFX_GAMMABYPASS;
clock = PICOS2KHZ(var->pixclock);
if (subsys->nearest_clock) {
clock = subsys->nearest_clock(subsys, clock);
} else {
clock = vml_nearest_clock(clock);
}
printk(KERN_DEBUG MODULE_NAME
": Set mode Hfreq : %d kHz, Vfreq : %d Hz.\n", clock / htotal,
((clock / htotal) * 1000) / vtotal);
switch (var->bits_per_pixel) {
case 16:
dspcntr |= VML_GFX_ARGB1555;
break;
case 32:
if (var->transp.length == 8)
dspcntr |= VML_GFX_ARGB8888 | VML_GFX_ALPHAMULT;
else
dspcntr |= VML_GFX_RGB0888;
break;
default:
return -EINVAL;
}
vmlfb_disable_pipe(vinfo);
mb();
if (subsys->set_clock)
subsys->set_clock(subsys, clock);
else
return -EINVAL;
VML_WRITE32(par, VML_HTOTAL_A, ((htotal - 1) << 16) | (hactive - 1));
VML_WRITE32(par, VML_HBLANK_A,
((hblank_end - 1) << 16) | (hblank_start - 1));
VML_WRITE32(par, VML_HSYNC_A,
((hsync_end - 1) << 16) | (hsync_start - 1));
VML_WRITE32(par, VML_VTOTAL_A, ((vtotal - 1) << 16) | (vactive - 1));
VML_WRITE32(par, VML_VBLANK_A,
((vblank_end - 1) << 16) | (vblank_start - 1));
VML_WRITE32(par, VML_VSYNC_A,
((vsync_end - 1) << 16) | (vsync_start - 1));
VML_WRITE32(par, VML_DSPCSTRIDE, vinfo->stride);
VML_WRITE32(par, VML_DSPCSIZE,
((var->yres - 1) << 16) | (var->xres - 1));
VML_WRITE32(par, VML_DSPCPOS, 0x00000000);
VML_WRITE32(par, VML_DSPARB, VML_FIFO_DEFAULT);
VML_WRITE32(par, VML_BCLRPAT_A, 0x00000000);
VML_WRITE32(par, VML_CANVSCLR_A, 0x00000000);
VML_WRITE32(par, VML_PIPEASRC,
((var->xres - 1) << 16) | (var->yres - 1));
wmb();
VML_WRITE32(par, VML_PIPEACONF, VML_PIPE_ENABLE);
wmb();
VML_WRITE32(par, VML_DSPCCNTR, dspcntr);
wmb();
VML_WRITE32(par, VML_DSPCADDR, (u32) vinfo->vram_start +
var->yoffset * vinfo->stride +
var->xoffset * vinfo->bytes_per_pixel);
VML_WRITE32(par, VML_RCOMPSTAT, VML_MDVO_PAD_ENABLE);
while (!(VML_READ32(par, VML_RCOMPSTAT) &
(VML_MDVO_VDC_I_RCOMP | VML_MDVO_PAD_ENABLE))) ;
vinfo->pipe_disabled = 0;
#ifdef VERMILION_DEBUG
vml_dump_regs(vinfo);
#endif
return 0;
}
static int vmlfb_set_par(struct fb_info *info)
{
struct vml_info *vinfo = container_of(info, struct vml_info, info);
int ret;
mutex_lock(&vml_mutex);
list_del(&vinfo->head);
list_add(&vinfo->head, (subsys) ? &global_has_mode : &global_no_mode);
ret = vmlfb_set_par_locked(vinfo);
mutex_unlock(&vml_mutex);
return ret;
}
static int vmlfb_blank_locked(struct vml_info *vinfo)
{
struct vml_par *par = vinfo->par;
u32 cur = VML_READ32(par, VML_PIPEACONF);
switch (vinfo->cur_blank_mode) {
case FB_BLANK_UNBLANK:
if (vinfo->pipe_disabled) {
vmlfb_set_par_locked(vinfo);
}
VML_WRITE32(par, VML_PIPEACONF, cur & ~VML_PIPE_FORCE_BORDER);
(void)VML_READ32(par, VML_PIPEACONF);
break;
case FB_BLANK_NORMAL:
if (vinfo->pipe_disabled) {
vmlfb_set_par_locked(vinfo);
}
VML_WRITE32(par, VML_PIPEACONF, cur | VML_PIPE_FORCE_BORDER);
(void)VML_READ32(par, VML_PIPEACONF);
break;
case FB_BLANK_VSYNC_SUSPEND:
case FB_BLANK_HSYNC_SUSPEND:
if (!vinfo->pipe_disabled) {
vmlfb_disable_pipe(vinfo);
}
break;
case FB_BLANK_POWERDOWN:
if (!vinfo->pipe_disabled) {
vmlfb_disable_pipe(vinfo);
}
break;
default:
return -EINVAL;
}
return 0;
}
static int vmlfb_blank(int blank_mode, struct fb_info *info)
{
struct vml_info *vinfo = container_of(info, struct vml_info, info);
int ret;
mutex_lock(&vml_mutex);
vinfo->cur_blank_mode = blank_mode;
ret = vmlfb_blank_locked(vinfo);
mutex_unlock(&vml_mutex);
return ret;
}
static int vmlfb_pan_display(struct fb_var_screeninfo *var,
struct fb_info *info)
{
struct vml_info *vinfo = container_of(info, struct vml_info, info);
struct vml_par *par = vinfo->par;
mutex_lock(&vml_mutex);
VML_WRITE32(par, VML_DSPCADDR, (u32) vinfo->vram_start +
var->yoffset * vinfo->stride +
var->xoffset * vinfo->bytes_per_pixel);
(void)VML_READ32(par, VML_DSPCADDR);
mutex_unlock(&vml_mutex);
return 0;
}
static int vmlfb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
u_int transp, struct fb_info *info)
{
u32 v;
if (regno >= 16)
return -EINVAL;
if (info->var.grayscale) {
red = green = blue = (red * 77 + green * 151 + blue * 28) >> 8;
}
if (info->fix.visual != FB_VISUAL_TRUECOLOR)
return -EINVAL;
red = VML_TOHW(red, info->var.red.length);
blue = VML_TOHW(blue, info->var.blue.length);
green = VML_TOHW(green, info->var.green.length);
transp = VML_TOHW(transp, info->var.transp.length);
v = (red << info->var.red.offset) |
(green << info->var.green.offset) |
(blue << info->var.blue.offset) |
(transp << info->var.transp.offset);
switch (info->var.bits_per_pixel) {
case 16:
((u32 *) info->pseudo_palette)[regno] = v;
break;
case 24:
case 32:
((u32 *) info->pseudo_palette)[regno] = v;
break;
}
return 0;
}
static int vmlfb_mmap(struct fb_info *info, struct vm_area_struct *vma)
{
struct vml_info *vinfo = container_of(info, struct vml_info, info);
unsigned long size = vma->vm_end - vma->vm_start;
unsigned long offset = vma->vm_pgoff << PAGE_SHIFT;
int ret;
if (vma->vm_pgoff > (~0UL >> PAGE_SHIFT))
return -EINVAL;
if (offset + size > vinfo->vram_contig_size)
return -EINVAL;
ret = vmlfb_vram_offset(vinfo, offset);
if (ret)
return -EINVAL;
offset += vinfo->vram_start;
pgprot_val(vma->vm_page_prot) |= _PAGE_PCD;
pgprot_val(vma->vm_page_prot) &= ~_PAGE_PWT;
vma->vm_flags |= VM_RESERVED | VM_IO;
if (remap_pfn_range(vma, vma->vm_start, offset >> PAGE_SHIFT,
size, vma->vm_page_prot))
return -EAGAIN;
return 0;
}
static int vmlfb_sync(struct fb_info *info)
{
return 0;
}
static int vmlfb_cursor(struct fb_info *info, struct fb_cursor *cursor)
{
return -EINVAL; /* just to force soft_cursor() call */
}
static struct fb_ops vmlfb_ops = {
.owner = THIS_MODULE,
.fb_open = vmlfb_open,
.fb_release = vmlfb_release,
.fb_check_var = vmlfb_check_var,
.fb_set_par = vmlfb_set_par,
.fb_blank = vmlfb_blank,
.fb_pan_display = vmlfb_pan_display,
.fb_fillrect = cfb_fillrect,
.fb_copyarea = cfb_copyarea,
.fb_imageblit = cfb_imageblit,
.fb_cursor = vmlfb_cursor,
.fb_sync = vmlfb_sync,
.fb_mmap = vmlfb_mmap,
.fb_setcolreg = vmlfb_setcolreg
};
static struct pci_device_id vml_ids[] = {
{PCI_DEVICE(PCI_VENDOR_ID_INTEL, VML_DEVICE_VDC)},
{0}
};
static struct pci_driver vmlfb_pci_driver = {
.name = "vmlfb",
.id_table = vml_ids,
.probe = vml_pci_probe,
.remove = __devexit_p(vml_pci_remove)
};
static void __exit vmlfb_cleanup(void)
{
pci_unregister_driver(&vmlfb_pci_driver);
}
static int __init vmlfb_init(void)
{
#ifndef MODULE
char *option = NULL;
if (fb_get_options(MODULE_NAME, &option))
return -ENODEV;
#endif
printk(KERN_DEBUG MODULE_NAME ": initializing\n");
mutex_init(&vml_mutex);
INIT_LIST_HEAD(&global_no_mode);
INIT_LIST_HEAD(&global_has_mode);
return pci_register_driver(&vmlfb_pci_driver);
}
int vmlfb_register_subsys(struct vml_sys *sys)
{
struct vml_info *entry;
struct list_head *list;
u32 save_activate;
mutex_lock(&vml_mutex);
if (subsys != NULL) {
subsys->restore(subsys);
}
subsys = sys;
subsys->save(subsys);
/*
* We need to restart list traversal for each item, since we
* release the list mutex in the loop.
*/
list = global_no_mode.next;
while (list != &global_no_mode) {
list_del_init(list);
entry = list_entry(list, struct vml_info, head);
/*
* First, try the current mode which might not be
* completely validated with respect to the pixel clock.
*/
if (!vmlfb_check_var_locked(&entry->info.var, entry)) {
vmlfb_set_par_locked(entry);
list_add_tail(list, &global_has_mode);
} else {
/*
* Didn't work. Try to find another mode,
* that matches this subsys.
*/
mutex_unlock(&vml_mutex);
save_activate = entry->info.var.activate;
entry->info.var.bits_per_pixel = 16;
vmlfb_set_pref_pixel_format(&entry->info.var);
if (fb_find_mode(&entry->info.var,
&entry->info,
vml_default_mode, NULL, 0, NULL, 16)) {
entry->info.var.activate |=
FB_ACTIVATE_FORCE | FB_ACTIVATE_NOW;
fb_set_var(&entry->info, &entry->info.var);
} else {
printk(KERN_ERR MODULE_NAME
": Sorry. no mode found for this subsys.\n");
}
entry->info.var.activate = save_activate;
mutex_lock(&vml_mutex);
}
vmlfb_blank_locked(entry);
list = global_no_mode.next;
}
mutex_unlock(&vml_mutex);
printk(KERN_DEBUG MODULE_NAME ": Registered %s subsystem.\n",
subsys->name ? subsys->name : "unknown");
return 0;
}
EXPORT_SYMBOL_GPL(vmlfb_register_subsys);
void vmlfb_unregister_subsys(struct vml_sys *sys)
{
struct vml_info *entry, *next;
mutex_lock(&vml_mutex);
if (subsys != sys) {
mutex_unlock(&vml_mutex);
return;
}
subsys->restore(subsys);
subsys = NULL;
list_for_each_entry_safe(entry, next, &global_has_mode, head) {
printk(KERN_DEBUG MODULE_NAME ": subsys disable pipe\n");
vmlfb_disable_pipe(entry);
list_del(&entry->head);
list_add_tail(&entry->head, &global_no_mode);
}
mutex_unlock(&vml_mutex);
}
EXPORT_SYMBOL_GPL(vmlfb_unregister_subsys);
module_init(vmlfb_init);
module_exit(vmlfb_cleanup);
MODULE_AUTHOR("Tungsten Graphics");
MODULE_DESCRIPTION("Initialization of the Vermilion display devices");
MODULE_VERSION("1.0.0");
MODULE_LICENSE("GPL");