linux/drivers/base/core.c
Saravana Kannan c2c724c868 driver core: Add fw_devlink_parse_fwtree()
This function is a wrapper around fwnode_operations.add_links().

This function parses each node in a fwnode tree and create fwnode links
for each of those nodes. The information for creating the fwnode links
(the supplier and consumer fwnode) is obtained by parsing the properties
in each of the fwnodes.

This function also ensures that no fwnode is parsed more than once by
marking the fwnodes as parsed.

Signed-off-by: Saravana Kannan <saravanak@google.com>
Link: https://lore.kernel.org/r/20201121020232.908850-13-saravanak@google.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-12-09 19:10:21 +01:00

4365 lines
115 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* drivers/base/core.c - core driver model code (device registration, etc)
*
* Copyright (c) 2002-3 Patrick Mochel
* Copyright (c) 2002-3 Open Source Development Labs
* Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
* Copyright (c) 2006 Novell, Inc.
*/
#include <linux/acpi.h>
#include <linux/cpufreq.h>
#include <linux/device.h>
#include <linux/err.h>
#include <linux/fwnode.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/kdev_t.h>
#include <linux/notifier.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/genhd.h>
#include <linux/mutex.h>
#include <linux/pm_runtime.h>
#include <linux/netdevice.h>
#include <linux/sched/signal.h>
#include <linux/sched/mm.h>
#include <linux/sysfs.h>
#include "base.h"
#include "power/power.h"
#ifdef CONFIG_SYSFS_DEPRECATED
#ifdef CONFIG_SYSFS_DEPRECATED_V2
long sysfs_deprecated = 1;
#else
long sysfs_deprecated = 0;
#endif
static int __init sysfs_deprecated_setup(char *arg)
{
return kstrtol(arg, 10, &sysfs_deprecated);
}
early_param("sysfs.deprecated", sysfs_deprecated_setup);
#endif
/* Device links support. */
static LIST_HEAD(wait_for_suppliers);
static DEFINE_MUTEX(wfs_lock);
static LIST_HEAD(deferred_sync);
static unsigned int defer_sync_state_count = 1;
static DEFINE_MUTEX(fwnode_link_lock);
/**
* fwnode_link_add - Create a link between two fwnode_handles.
* @con: Consumer end of the link.
* @sup: Supplier end of the link.
*
* Create a fwnode link between fwnode handles @con and @sup. The fwnode link
* represents the detail that the firmware lists @sup fwnode as supplying a
* resource to @con.
*
* The driver core will use the fwnode link to create a device link between the
* two device objects corresponding to @con and @sup when they are created. The
* driver core will automatically delete the fwnode link between @con and @sup
* after doing that.
*
* Attempts to create duplicate links between the same pair of fwnode handles
* are ignored and there is no reference counting.
*/
int fwnode_link_add(struct fwnode_handle *con, struct fwnode_handle *sup)
{
struct fwnode_link *link;
int ret = 0;
mutex_lock(&fwnode_link_lock);
list_for_each_entry(link, &sup->consumers, s_hook)
if (link->consumer == con)
goto out;
link = kzalloc(sizeof(*link), GFP_KERNEL);
if (!link) {
ret = -ENOMEM;
goto out;
}
link->supplier = sup;
INIT_LIST_HEAD(&link->s_hook);
link->consumer = con;
INIT_LIST_HEAD(&link->c_hook);
list_add(&link->s_hook, &sup->consumers);
list_add(&link->c_hook, &con->suppliers);
out:
mutex_unlock(&fwnode_link_lock);
return ret;
}
/**
* fwnode_links_purge_suppliers - Delete all supplier links of fwnode_handle.
* @fwnode: fwnode whose supplier links need to be deleted
*
* Deletes all supplier links connecting directly to @fwnode.
*/
static void fwnode_links_purge_suppliers(struct fwnode_handle *fwnode)
{
struct fwnode_link *link, *tmp;
mutex_lock(&fwnode_link_lock);
list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) {
list_del(&link->s_hook);
list_del(&link->c_hook);
kfree(link);
}
mutex_unlock(&fwnode_link_lock);
}
/**
* fwnode_links_purge_consumers - Delete all consumer links of fwnode_handle.
* @fwnode: fwnode whose consumer links need to be deleted
*
* Deletes all consumer links connecting directly to @fwnode.
*/
static void fwnode_links_purge_consumers(struct fwnode_handle *fwnode)
{
struct fwnode_link *link, *tmp;
mutex_lock(&fwnode_link_lock);
list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) {
list_del(&link->s_hook);
list_del(&link->c_hook);
kfree(link);
}
mutex_unlock(&fwnode_link_lock);
}
/**
* fwnode_links_purge - Delete all links connected to a fwnode_handle.
* @fwnode: fwnode whose links needs to be deleted
*
* Deletes all links connecting directly to a fwnode.
*/
void fwnode_links_purge(struct fwnode_handle *fwnode)
{
fwnode_links_purge_suppliers(fwnode);
fwnode_links_purge_consumers(fwnode);
}
#ifdef CONFIG_SRCU
static DEFINE_MUTEX(device_links_lock);
DEFINE_STATIC_SRCU(device_links_srcu);
static inline void device_links_write_lock(void)
{
mutex_lock(&device_links_lock);
}
static inline void device_links_write_unlock(void)
{
mutex_unlock(&device_links_lock);
}
int device_links_read_lock(void) __acquires(&device_links_srcu)
{
return srcu_read_lock(&device_links_srcu);
}
void device_links_read_unlock(int idx) __releases(&device_links_srcu)
{
srcu_read_unlock(&device_links_srcu, idx);
}
int device_links_read_lock_held(void)
{
return srcu_read_lock_held(&device_links_srcu);
}
#else /* !CONFIG_SRCU */
static DECLARE_RWSEM(device_links_lock);
static inline void device_links_write_lock(void)
{
down_write(&device_links_lock);
}
static inline void device_links_write_unlock(void)
{
up_write(&device_links_lock);
}
int device_links_read_lock(void)
{
down_read(&device_links_lock);
return 0;
}
void device_links_read_unlock(int not_used)
{
up_read(&device_links_lock);
}
#ifdef CONFIG_DEBUG_LOCK_ALLOC
int device_links_read_lock_held(void)
{
return lockdep_is_held(&device_links_lock);
}
#endif
#endif /* !CONFIG_SRCU */
/**
* device_is_dependent - Check if one device depends on another one
* @dev: Device to check dependencies for.
* @target: Device to check against.
*
* Check if @target depends on @dev or any device dependent on it (its child or
* its consumer etc). Return 1 if that is the case or 0 otherwise.
*/
int device_is_dependent(struct device *dev, void *target)
{
struct device_link *link;
int ret;
if (dev == target)
return 1;
ret = device_for_each_child(dev, target, device_is_dependent);
if (ret)
return ret;
list_for_each_entry(link, &dev->links.consumers, s_node) {
if (link->flags == (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
continue;
if (link->consumer == target)
return 1;
ret = device_is_dependent(link->consumer, target);
if (ret)
break;
}
return ret;
}
static void device_link_init_status(struct device_link *link,
struct device *consumer,
struct device *supplier)
{
switch (supplier->links.status) {
case DL_DEV_PROBING:
switch (consumer->links.status) {
case DL_DEV_PROBING:
/*
* A consumer driver can create a link to a supplier
* that has not completed its probing yet as long as it
* knows that the supplier is already functional (for
* example, it has just acquired some resources from the
* supplier).
*/
link->status = DL_STATE_CONSUMER_PROBE;
break;
default:
link->status = DL_STATE_DORMANT;
break;
}
break;
case DL_DEV_DRIVER_BOUND:
switch (consumer->links.status) {
case DL_DEV_PROBING:
link->status = DL_STATE_CONSUMER_PROBE;
break;
case DL_DEV_DRIVER_BOUND:
link->status = DL_STATE_ACTIVE;
break;
default:
link->status = DL_STATE_AVAILABLE;
break;
}
break;
case DL_DEV_UNBINDING:
link->status = DL_STATE_SUPPLIER_UNBIND;
break;
default:
link->status = DL_STATE_DORMANT;
break;
}
}
static int device_reorder_to_tail(struct device *dev, void *not_used)
{
struct device_link *link;
/*
* Devices that have not been registered yet will be put to the ends
* of the lists during the registration, so skip them here.
*/
if (device_is_registered(dev))
devices_kset_move_last(dev);
if (device_pm_initialized(dev))
device_pm_move_last(dev);
device_for_each_child(dev, NULL, device_reorder_to_tail);
list_for_each_entry(link, &dev->links.consumers, s_node) {
if (link->flags == (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
continue;
device_reorder_to_tail(link->consumer, NULL);
}
return 0;
}
/**
* device_pm_move_to_tail - Move set of devices to the end of device lists
* @dev: Device to move
*
* This is a device_reorder_to_tail() wrapper taking the requisite locks.
*
* It moves the @dev along with all of its children and all of its consumers
* to the ends of the device_kset and dpm_list, recursively.
*/
void device_pm_move_to_tail(struct device *dev)
{
int idx;
idx = device_links_read_lock();
device_pm_lock();
device_reorder_to_tail(dev, NULL);
device_pm_unlock();
device_links_read_unlock(idx);
}
#define to_devlink(dev) container_of((dev), struct device_link, link_dev)
static ssize_t status_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
const char *output;
switch (to_devlink(dev)->status) {
case DL_STATE_NONE:
output = "not tracked";
break;
case DL_STATE_DORMANT:
output = "dormant";
break;
case DL_STATE_AVAILABLE:
output = "available";
break;
case DL_STATE_CONSUMER_PROBE:
output = "consumer probing";
break;
case DL_STATE_ACTIVE:
output = "active";
break;
case DL_STATE_SUPPLIER_UNBIND:
output = "supplier unbinding";
break;
default:
output = "unknown";
break;
}
return sysfs_emit(buf, "%s\n", output);
}
static DEVICE_ATTR_RO(status);
static ssize_t auto_remove_on_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct device_link *link = to_devlink(dev);
const char *output;
if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
output = "supplier unbind";
else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER)
output = "consumer unbind";
else
output = "never";
return sysfs_emit(buf, "%s\n", output);
}
static DEVICE_ATTR_RO(auto_remove_on);
static ssize_t runtime_pm_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct device_link *link = to_devlink(dev);
return sysfs_emit(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME));
}
static DEVICE_ATTR_RO(runtime_pm);
static ssize_t sync_state_only_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct device_link *link = to_devlink(dev);
return sysfs_emit(buf, "%d\n",
!!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
}
static DEVICE_ATTR_RO(sync_state_only);
static struct attribute *devlink_attrs[] = {
&dev_attr_status.attr,
&dev_attr_auto_remove_on.attr,
&dev_attr_runtime_pm.attr,
&dev_attr_sync_state_only.attr,
NULL,
};
ATTRIBUTE_GROUPS(devlink);
static void device_link_free(struct device_link *link)
{
while (refcount_dec_not_one(&link->rpm_active))
pm_runtime_put(link->supplier);
put_device(link->consumer);
put_device(link->supplier);
kfree(link);
}
#ifdef CONFIG_SRCU
static void __device_link_free_srcu(struct rcu_head *rhead)
{
device_link_free(container_of(rhead, struct device_link, rcu_head));
}
static void devlink_dev_release(struct device *dev)
{
struct device_link *link = to_devlink(dev);
call_srcu(&device_links_srcu, &link->rcu_head, __device_link_free_srcu);
}
#else
static void devlink_dev_release(struct device *dev)
{
device_link_free(to_devlink(dev));
}
#endif
static struct class devlink_class = {
.name = "devlink",
.owner = THIS_MODULE,
.dev_groups = devlink_groups,
.dev_release = devlink_dev_release,
};
static int devlink_add_symlinks(struct device *dev,
struct class_interface *class_intf)
{
int ret;
size_t len;
struct device_link *link = to_devlink(dev);
struct device *sup = link->supplier;
struct device *con = link->consumer;
char *buf;
len = max(strlen(dev_name(sup)), strlen(dev_name(con)));
len += strlen("supplier:") + 1;
buf = kzalloc(len, GFP_KERNEL);
if (!buf)
return -ENOMEM;
ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier");
if (ret)
goto out;
ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer");
if (ret)
goto err_con;
snprintf(buf, len, "consumer:%s", dev_name(con));
ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf);
if (ret)
goto err_con_dev;
snprintf(buf, len, "supplier:%s", dev_name(sup));
ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf);
if (ret)
goto err_sup_dev;
goto out;
err_sup_dev:
snprintf(buf, len, "consumer:%s", dev_name(con));
sysfs_remove_link(&sup->kobj, buf);
err_con_dev:
sysfs_remove_link(&link->link_dev.kobj, "consumer");
err_con:
sysfs_remove_link(&link->link_dev.kobj, "supplier");
out:
kfree(buf);
return ret;
}
static void devlink_remove_symlinks(struct device *dev,
struct class_interface *class_intf)
{
struct device_link *link = to_devlink(dev);
size_t len;
struct device *sup = link->supplier;
struct device *con = link->consumer;
char *buf;
sysfs_remove_link(&link->link_dev.kobj, "consumer");
sysfs_remove_link(&link->link_dev.kobj, "supplier");
len = max(strlen(dev_name(sup)), strlen(dev_name(con)));
len += strlen("supplier:") + 1;
buf = kzalloc(len, GFP_KERNEL);
if (!buf) {
WARN(1, "Unable to properly free device link symlinks!\n");
return;
}
snprintf(buf, len, "supplier:%s", dev_name(sup));
sysfs_remove_link(&con->kobj, buf);
snprintf(buf, len, "consumer:%s", dev_name(con));
sysfs_remove_link(&sup->kobj, buf);
kfree(buf);
}
static struct class_interface devlink_class_intf = {
.class = &devlink_class,
.add_dev = devlink_add_symlinks,
.remove_dev = devlink_remove_symlinks,
};
static int __init devlink_class_init(void)
{
int ret;
ret = class_register(&devlink_class);
if (ret)
return ret;
ret = class_interface_register(&devlink_class_intf);
if (ret)
class_unregister(&devlink_class);
return ret;
}
postcore_initcall(devlink_class_init);
#define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \
DL_FLAG_AUTOREMOVE_SUPPLIER | \
DL_FLAG_AUTOPROBE_CONSUMER | \
DL_FLAG_SYNC_STATE_ONLY)
#define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \
DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE)
/**
* device_link_add - Create a link between two devices.
* @consumer: Consumer end of the link.
* @supplier: Supplier end of the link.
* @flags: Link flags.
*
* The caller is responsible for the proper synchronization of the link creation
* with runtime PM. First, setting the DL_FLAG_PM_RUNTIME flag will cause the
* runtime PM framework to take the link into account. Second, if the
* DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
* be forced into the active metastate and reference-counted upon the creation
* of the link. If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
* ignored.
*
* If DL_FLAG_STATELESS is set in @flags, the caller of this function is
* expected to release the link returned by it directly with the help of either
* device_link_del() or device_link_remove().
*
* If that flag is not set, however, the caller of this function is handing the
* management of the link over to the driver core entirely and its return value
* can only be used to check whether or not the link is present. In that case,
* the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link
* flags can be used to indicate to the driver core when the link can be safely
* deleted. Namely, setting one of them in @flags indicates to the driver core
* that the link is not going to be used (by the given caller of this function)
* after unbinding the consumer or supplier driver, respectively, from its
* device, so the link can be deleted at that point. If none of them is set,
* the link will be maintained until one of the devices pointed to by it (either
* the consumer or the supplier) is unregistered.
*
* Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and
* DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent
* managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can
* be used to request the driver core to automaticall probe for a consmer
* driver after successfully binding a driver to the supplier device.
*
* The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER,
* DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at
* the same time is invalid and will cause NULL to be returned upfront.
* However, if a device link between the given @consumer and @supplier pair
* exists already when this function is called for them, the existing link will
* be returned regardless of its current type and status (the link's flags may
* be modified then). The caller of this function is then expected to treat
* the link as though it has just been created, so (in particular) if
* DL_FLAG_STATELESS was passed in @flags, the link needs to be released
* explicitly when not needed any more (as stated above).
*
* A side effect of the link creation is re-ordering of dpm_list and the
* devices_kset list by moving the consumer device and all devices depending
* on it to the ends of these lists (that does not happen to devices that have
* not been registered when this function is called).
*
* The supplier device is required to be registered when this function is called
* and NULL will be returned if that is not the case. The consumer device need
* not be registered, however.
*/
struct device_link *device_link_add(struct device *consumer,
struct device *supplier, u32 flags)
{
struct device_link *link;
if (!consumer || !supplier || flags & ~DL_ADD_VALID_FLAGS ||
(flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) ||
(flags & DL_FLAG_SYNC_STATE_ONLY &&
flags != DL_FLAG_SYNC_STATE_ONLY) ||
(flags & DL_FLAG_AUTOPROBE_CONSUMER &&
flags & (DL_FLAG_AUTOREMOVE_CONSUMER |
DL_FLAG_AUTOREMOVE_SUPPLIER)))
return NULL;
if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) {
if (pm_runtime_get_sync(supplier) < 0) {
pm_runtime_put_noidle(supplier);
return NULL;
}
}
if (!(flags & DL_FLAG_STATELESS))
flags |= DL_FLAG_MANAGED;
device_links_write_lock();
device_pm_lock();
/*
* If the supplier has not been fully registered yet or there is a
* reverse (non-SYNC_STATE_ONLY) dependency between the consumer and
* the supplier already in the graph, return NULL. If the link is a
* SYNC_STATE_ONLY link, we don't check for reverse dependencies
* because it only affects sync_state() callbacks.
*/
if (!device_pm_initialized(supplier)
|| (!(flags & DL_FLAG_SYNC_STATE_ONLY) &&
device_is_dependent(consumer, supplier))) {
link = NULL;
goto out;
}
/*
* SYNC_STATE_ONLY links are useless once a consumer device has probed.
* So, only create it if the consumer hasn't probed yet.
*/
if (flags & DL_FLAG_SYNC_STATE_ONLY &&
consumer->links.status != DL_DEV_NO_DRIVER &&
consumer->links.status != DL_DEV_PROBING) {
link = NULL;
goto out;
}
/*
* DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed
* longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both
* together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER.
*/
if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
list_for_each_entry(link, &supplier->links.consumers, s_node) {
if (link->consumer != consumer)
continue;
if (flags & DL_FLAG_PM_RUNTIME) {
if (!(link->flags & DL_FLAG_PM_RUNTIME)) {
pm_runtime_new_link(consumer);
link->flags |= DL_FLAG_PM_RUNTIME;
}
if (flags & DL_FLAG_RPM_ACTIVE)
refcount_inc(&link->rpm_active);
}
if (flags & DL_FLAG_STATELESS) {
kref_get(&link->kref);
if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
!(link->flags & DL_FLAG_STATELESS)) {
link->flags |= DL_FLAG_STATELESS;
goto reorder;
} else {
link->flags |= DL_FLAG_STATELESS;
goto out;
}
}
/*
* If the life time of the link following from the new flags is
* longer than indicated by the flags of the existing link,
* update the existing link to stay around longer.
*/
if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) {
if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER;
}
} else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) {
link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER |
DL_FLAG_AUTOREMOVE_SUPPLIER);
}
if (!(link->flags & DL_FLAG_MANAGED)) {
kref_get(&link->kref);
link->flags |= DL_FLAG_MANAGED;
device_link_init_status(link, consumer, supplier);
}
if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
!(flags & DL_FLAG_SYNC_STATE_ONLY)) {
link->flags &= ~DL_FLAG_SYNC_STATE_ONLY;
goto reorder;
}
goto out;
}
link = kzalloc(sizeof(*link), GFP_KERNEL);
if (!link)
goto out;
refcount_set(&link->rpm_active, 1);
get_device(supplier);
link->supplier = supplier;
INIT_LIST_HEAD(&link->s_node);
get_device(consumer);
link->consumer = consumer;
INIT_LIST_HEAD(&link->c_node);
link->flags = flags;
kref_init(&link->kref);
link->link_dev.class = &devlink_class;
device_set_pm_not_required(&link->link_dev);
dev_set_name(&link->link_dev, "%s--%s",
dev_name(supplier), dev_name(consumer));
if (device_register(&link->link_dev)) {
put_device(consumer);
put_device(supplier);
kfree(link);
link = NULL;
goto out;
}
if (flags & DL_FLAG_PM_RUNTIME) {
if (flags & DL_FLAG_RPM_ACTIVE)
refcount_inc(&link->rpm_active);
pm_runtime_new_link(consumer);
}
/* Determine the initial link state. */
if (flags & DL_FLAG_STATELESS)
link->status = DL_STATE_NONE;
else
device_link_init_status(link, consumer, supplier);
/*
* Some callers expect the link creation during consumer driver probe to
* resume the supplier even without DL_FLAG_RPM_ACTIVE.
*/
if (link->status == DL_STATE_CONSUMER_PROBE &&
flags & DL_FLAG_PM_RUNTIME)
pm_runtime_resume(supplier);
list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
if (flags & DL_FLAG_SYNC_STATE_ONLY) {
dev_dbg(consumer,
"Linked as a sync state only consumer to %s\n",
dev_name(supplier));
goto out;
}
reorder:
/*
* Move the consumer and all of the devices depending on it to the end
* of dpm_list and the devices_kset list.
*
* It is necessary to hold dpm_list locked throughout all that or else
* we may end up suspending with a wrong ordering of it.
*/
device_reorder_to_tail(consumer, NULL);
dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
out:
device_pm_unlock();
device_links_write_unlock();
if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link)
pm_runtime_put(supplier);
return link;
}
EXPORT_SYMBOL_GPL(device_link_add);
/**
* device_link_wait_for_supplier - Add device to wait_for_suppliers list
* @consumer: Consumer device
*
* Marks the @consumer device as waiting for suppliers to become available by
* adding it to the wait_for_suppliers list. The consumer device will never be
* probed until it's removed from the wait_for_suppliers list.
*
* The caller is responsible for adding the links to the supplier devices once
* they are available and removing the @consumer device from the
* wait_for_suppliers list once links to all the suppliers have been created.
*
* This function is NOT meant to be called from the probe function of the
* consumer but rather from code that creates/adds the consumer device.
*/
static void device_link_wait_for_supplier(struct device *consumer,
bool need_for_probe)
{
mutex_lock(&wfs_lock);
list_add_tail(&consumer->links.needs_suppliers, &wait_for_suppliers);
consumer->links.need_for_probe = need_for_probe;
mutex_unlock(&wfs_lock);
}
static void device_link_wait_for_mandatory_supplier(struct device *consumer)
{
device_link_wait_for_supplier(consumer, true);
}
static void device_link_wait_for_optional_supplier(struct device *consumer)
{
device_link_wait_for_supplier(consumer, false);
}
/**
* device_link_add_missing_supplier_links - Add links from consumer devices to
* supplier devices, leaving any
* consumer with inactive suppliers on
* the wait_for_suppliers list
*
* Loops through all consumers waiting on suppliers and tries to add all their
* supplier links. If that succeeds, the consumer device is removed from
* wait_for_suppliers list. Otherwise, they are left in the wait_for_suppliers
* list. Devices left on the wait_for_suppliers list will not be probed.
*
* The fwnode add_links callback is expected to return 0 if it has found and
* added all the supplier links for the consumer device. It should return an
* error if it isn't able to do so.
*
* The caller of device_link_wait_for_supplier() is expected to call this once
* it's aware of potential suppliers becoming available.
*/
static void device_link_add_missing_supplier_links(void)
{
struct device *dev, *tmp;
mutex_lock(&wfs_lock);
list_for_each_entry_safe(dev, tmp, &wait_for_suppliers,
links.needs_suppliers) {
int ret = fwnode_call_int_op(dev->fwnode, add_links, dev);
if (!ret)
list_del_init(&dev->links.needs_suppliers);
else if (ret != -ENODEV)
dev->links.need_for_probe = false;
}
mutex_unlock(&wfs_lock);
}
#ifdef CONFIG_SRCU
static void __device_link_del(struct kref *kref)
{
struct device_link *link = container_of(kref, struct device_link, kref);
dev_dbg(link->consumer, "Dropping the link to %s\n",
dev_name(link->supplier));
pm_runtime_drop_link(link);
list_del_rcu(&link->s_node);
list_del_rcu(&link->c_node);
device_unregister(&link->link_dev);
}
#else /* !CONFIG_SRCU */
static void __device_link_del(struct kref *kref)
{
struct device_link *link = container_of(kref, struct device_link, kref);
dev_info(link->consumer, "Dropping the link to %s\n",
dev_name(link->supplier));
pm_runtime_drop_link(link);
list_del(&link->s_node);
list_del(&link->c_node);
device_unregister(&link->link_dev);
}
#endif /* !CONFIG_SRCU */
static void device_link_put_kref(struct device_link *link)
{
if (link->flags & DL_FLAG_STATELESS)
kref_put(&link->kref, __device_link_del);
else
WARN(1, "Unable to drop a managed device link reference\n");
}
/**
* device_link_del - Delete a stateless link between two devices.
* @link: Device link to delete.
*
* The caller must ensure proper synchronization of this function with runtime
* PM. If the link was added multiple times, it needs to be deleted as often.
* Care is required for hotplugged devices: Their links are purged on removal
* and calling device_link_del() is then no longer allowed.
*/
void device_link_del(struct device_link *link)
{
device_links_write_lock();
device_link_put_kref(link);
device_links_write_unlock();
}
EXPORT_SYMBOL_GPL(device_link_del);
/**
* device_link_remove - Delete a stateless link between two devices.
* @consumer: Consumer end of the link.
* @supplier: Supplier end of the link.
*
* The caller must ensure proper synchronization of this function with runtime
* PM.
*/
void device_link_remove(void *consumer, struct device *supplier)
{
struct device_link *link;
if (WARN_ON(consumer == supplier))
return;
device_links_write_lock();
list_for_each_entry(link, &supplier->links.consumers, s_node) {
if (link->consumer == consumer) {
device_link_put_kref(link);
break;
}
}
device_links_write_unlock();
}
EXPORT_SYMBOL_GPL(device_link_remove);
static void device_links_missing_supplier(struct device *dev)
{
struct device_link *link;
list_for_each_entry(link, &dev->links.suppliers, c_node) {
if (link->status != DL_STATE_CONSUMER_PROBE)
continue;
if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
} else {
WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
WRITE_ONCE(link->status, DL_STATE_DORMANT);
}
}
}
/**
* device_links_check_suppliers - Check presence of supplier drivers.
* @dev: Consumer device.
*
* Check links from this device to any suppliers. Walk the list of the device's
* links to suppliers and see if all of them are available. If not, simply
* return -EPROBE_DEFER.
*
* We need to guarantee that the supplier will not go away after the check has
* been positive here. It only can go away in __device_release_driver() and
* that function checks the device's links to consumers. This means we need to
* mark the link as "consumer probe in progress" to make the supplier removal
* wait for us to complete (or bad things may happen).
*
* Links without the DL_FLAG_MANAGED flag set are ignored.
*/
int device_links_check_suppliers(struct device *dev)
{
struct device_link *link;
int ret = 0;
/*
* Device waiting for supplier to become available is not allowed to
* probe.
*/
mutex_lock(&wfs_lock);
if (!list_empty(&dev->links.needs_suppliers) &&
dev->links.need_for_probe) {
mutex_unlock(&wfs_lock);
return -EPROBE_DEFER;
}
mutex_unlock(&wfs_lock);
device_links_write_lock();
list_for_each_entry(link, &dev->links.suppliers, c_node) {
if (!(link->flags & DL_FLAG_MANAGED))
continue;
if (link->status != DL_STATE_AVAILABLE &&
!(link->flags & DL_FLAG_SYNC_STATE_ONLY)) {
device_links_missing_supplier(dev);
ret = -EPROBE_DEFER;
break;
}
WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
}
dev->links.status = DL_DEV_PROBING;
device_links_write_unlock();
return ret;
}
/**
* __device_links_queue_sync_state - Queue a device for sync_state() callback
* @dev: Device to call sync_state() on
* @list: List head to queue the @dev on
*
* Queues a device for a sync_state() callback when the device links write lock
* isn't held. This allows the sync_state() execution flow to use device links
* APIs. The caller must ensure this function is called with
* device_links_write_lock() held.
*
* This function does a get_device() to make sure the device is not freed while
* on this list.
*
* So the caller must also ensure that device_links_flush_sync_list() is called
* as soon as the caller releases device_links_write_lock(). This is necessary
* to make sure the sync_state() is called in a timely fashion and the
* put_device() is called on this device.
*/
static void __device_links_queue_sync_state(struct device *dev,
struct list_head *list)
{
struct device_link *link;
if (!dev_has_sync_state(dev))
return;
if (dev->state_synced)
return;
list_for_each_entry(link, &dev->links.consumers, s_node) {
if (!(link->flags & DL_FLAG_MANAGED))
continue;
if (link->status != DL_STATE_ACTIVE)
return;
}
/*
* Set the flag here to avoid adding the same device to a list more
* than once. This can happen if new consumers get added to the device
* and probed before the list is flushed.
*/
dev->state_synced = true;
if (WARN_ON(!list_empty(&dev->links.defer_sync)))
return;
get_device(dev);
list_add_tail(&dev->links.defer_sync, list);
}
/**
* device_links_flush_sync_list - Call sync_state() on a list of devices
* @list: List of devices to call sync_state() on
* @dont_lock_dev: Device for which lock is already held by the caller
*
* Calls sync_state() on all the devices that have been queued for it. This
* function is used in conjunction with __device_links_queue_sync_state(). The
* @dont_lock_dev parameter is useful when this function is called from a
* context where a device lock is already held.
*/
static void device_links_flush_sync_list(struct list_head *list,
struct device *dont_lock_dev)
{
struct device *dev, *tmp;
list_for_each_entry_safe(dev, tmp, list, links.defer_sync) {
list_del_init(&dev->links.defer_sync);
if (dev != dont_lock_dev)
device_lock(dev);
if (dev->bus->sync_state)
dev->bus->sync_state(dev);
else if (dev->driver && dev->driver->sync_state)
dev->driver->sync_state(dev);
if (dev != dont_lock_dev)
device_unlock(dev);
put_device(dev);
}
}
void device_links_supplier_sync_state_pause(void)
{
device_links_write_lock();
defer_sync_state_count++;
device_links_write_unlock();
}
void device_links_supplier_sync_state_resume(void)
{
struct device *dev, *tmp;
LIST_HEAD(sync_list);
device_links_write_lock();
if (!defer_sync_state_count) {
WARN(true, "Unmatched sync_state pause/resume!");
goto out;
}
defer_sync_state_count--;
if (defer_sync_state_count)
goto out;
list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_sync) {
/*
* Delete from deferred_sync list before queuing it to
* sync_list because defer_sync is used for both lists.
*/
list_del_init(&dev->links.defer_sync);
__device_links_queue_sync_state(dev, &sync_list);
}
out:
device_links_write_unlock();
device_links_flush_sync_list(&sync_list, NULL);
}
static int sync_state_resume_initcall(void)
{
device_links_supplier_sync_state_resume();
return 0;
}
late_initcall(sync_state_resume_initcall);
static void __device_links_supplier_defer_sync(struct device *sup)
{
if (list_empty(&sup->links.defer_sync) && dev_has_sync_state(sup))
list_add_tail(&sup->links.defer_sync, &deferred_sync);
}
static void device_link_drop_managed(struct device_link *link)
{
link->flags &= ~DL_FLAG_MANAGED;
WRITE_ONCE(link->status, DL_STATE_NONE);
kref_put(&link->kref, __device_link_del);
}
static ssize_t waiting_for_supplier_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
bool val;
device_lock(dev);
val = !list_empty(&dev->links.needs_suppliers)
&& dev->links.need_for_probe;
device_unlock(dev);
return sysfs_emit(buf, "%u\n", val);
}
static DEVICE_ATTR_RO(waiting_for_supplier);
/**
* device_links_driver_bound - Update device links after probing its driver.
* @dev: Device to update the links for.
*
* The probe has been successful, so update links from this device to any
* consumers by changing their status to "available".
*
* Also change the status of @dev's links to suppliers to "active".
*
* Links without the DL_FLAG_MANAGED flag set are ignored.
*/
void device_links_driver_bound(struct device *dev)
{
struct device_link *link, *ln;
LIST_HEAD(sync_list);
/*
* If a device probes successfully, it's expected to have created all
* the device links it needs to or make new device links as it needs
* them. So, it no longer needs to wait on any suppliers.
*/
mutex_lock(&wfs_lock);
list_del_init(&dev->links.needs_suppliers);
mutex_unlock(&wfs_lock);
device_remove_file(dev, &dev_attr_waiting_for_supplier);
device_links_write_lock();
list_for_each_entry(link, &dev->links.consumers, s_node) {
if (!(link->flags & DL_FLAG_MANAGED))
continue;
/*
* Links created during consumer probe may be in the "consumer
* probe" state to start with if the supplier is still probing
* when they are created and they may become "active" if the
* consumer probe returns first. Skip them here.
*/
if (link->status == DL_STATE_CONSUMER_PROBE ||
link->status == DL_STATE_ACTIVE)
continue;
WARN_ON(link->status != DL_STATE_DORMANT);
WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER)
driver_deferred_probe_add(link->consumer);
}
if (defer_sync_state_count)
__device_links_supplier_defer_sync(dev);
else
__device_links_queue_sync_state(dev, &sync_list);
list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
struct device *supplier;
if (!(link->flags & DL_FLAG_MANAGED))
continue;
supplier = link->supplier;
if (link->flags & DL_FLAG_SYNC_STATE_ONLY) {
/*
* When DL_FLAG_SYNC_STATE_ONLY is set, it means no
* other DL_MANAGED_LINK_FLAGS have been set. So, it's
* save to drop the managed link completely.
*/
device_link_drop_managed(link);
} else {
WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
WRITE_ONCE(link->status, DL_STATE_ACTIVE);
}
/*
* This needs to be done even for the deleted
* DL_FLAG_SYNC_STATE_ONLY device link in case it was the last
* device link that was preventing the supplier from getting a
* sync_state() call.
*/
if (defer_sync_state_count)
__device_links_supplier_defer_sync(supplier);
else
__device_links_queue_sync_state(supplier, &sync_list);
}
dev->links.status = DL_DEV_DRIVER_BOUND;
device_links_write_unlock();
device_links_flush_sync_list(&sync_list, dev);
}
/**
* __device_links_no_driver - Update links of a device without a driver.
* @dev: Device without a drvier.
*
* Delete all non-persistent links from this device to any suppliers.
*
* Persistent links stay around, but their status is changed to "available",
* unless they already are in the "supplier unbind in progress" state in which
* case they need not be updated.
*
* Links without the DL_FLAG_MANAGED flag set are ignored.
*/
static void __device_links_no_driver(struct device *dev)
{
struct device_link *link, *ln;
list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
if (!(link->flags & DL_FLAG_MANAGED))
continue;
if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
device_link_drop_managed(link);
continue;
}
if (link->status != DL_STATE_CONSUMER_PROBE &&
link->status != DL_STATE_ACTIVE)
continue;
if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
} else {
WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
WRITE_ONCE(link->status, DL_STATE_DORMANT);
}
}
dev->links.status = DL_DEV_NO_DRIVER;
}
/**
* device_links_no_driver - Update links after failing driver probe.
* @dev: Device whose driver has just failed to probe.
*
* Clean up leftover links to consumers for @dev and invoke
* %__device_links_no_driver() to update links to suppliers for it as
* appropriate.
*
* Links without the DL_FLAG_MANAGED flag set are ignored.
*/
void device_links_no_driver(struct device *dev)
{
struct device_link *link;
device_links_write_lock();
list_for_each_entry(link, &dev->links.consumers, s_node) {
if (!(link->flags & DL_FLAG_MANAGED))
continue;
/*
* The probe has failed, so if the status of the link is
* "consumer probe" or "active", it must have been added by
* a probing consumer while this device was still probing.
* Change its state to "dormant", as it represents a valid
* relationship, but it is not functionally meaningful.
*/
if (link->status == DL_STATE_CONSUMER_PROBE ||
link->status == DL_STATE_ACTIVE)
WRITE_ONCE(link->status, DL_STATE_DORMANT);
}
__device_links_no_driver(dev);
device_links_write_unlock();
}
/**
* device_links_driver_cleanup - Update links after driver removal.
* @dev: Device whose driver has just gone away.
*
* Update links to consumers for @dev by changing their status to "dormant" and
* invoke %__device_links_no_driver() to update links to suppliers for it as
* appropriate.
*
* Links without the DL_FLAG_MANAGED flag set are ignored.
*/
void device_links_driver_cleanup(struct device *dev)
{
struct device_link *link, *ln;
device_links_write_lock();
list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) {
if (!(link->flags & DL_FLAG_MANAGED))
continue;
WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER);
WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
/*
* autoremove the links between this @dev and its consumer
* devices that are not active, i.e. where the link state
* has moved to DL_STATE_SUPPLIER_UNBIND.
*/
if (link->status == DL_STATE_SUPPLIER_UNBIND &&
link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
device_link_drop_managed(link);
WRITE_ONCE(link->status, DL_STATE_DORMANT);
}
list_del_init(&dev->links.defer_sync);
__device_links_no_driver(dev);
device_links_write_unlock();
}
/**
* device_links_busy - Check if there are any busy links to consumers.
* @dev: Device to check.
*
* Check each consumer of the device and return 'true' if its link's status
* is one of "consumer probe" or "active" (meaning that the given consumer is
* probing right now or its driver is present). Otherwise, change the link
* state to "supplier unbind" to prevent the consumer from being probed
* successfully going forward.
*
* Return 'false' if there are no probing or active consumers.
*
* Links without the DL_FLAG_MANAGED flag set are ignored.
*/
bool device_links_busy(struct device *dev)
{
struct device_link *link;
bool ret = false;
device_links_write_lock();
list_for_each_entry(link, &dev->links.consumers, s_node) {
if (!(link->flags & DL_FLAG_MANAGED))
continue;
if (link->status == DL_STATE_CONSUMER_PROBE
|| link->status == DL_STATE_ACTIVE) {
ret = true;
break;
}
WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
}
dev->links.status = DL_DEV_UNBINDING;
device_links_write_unlock();
return ret;
}
/**
* device_links_unbind_consumers - Force unbind consumers of the given device.
* @dev: Device to unbind the consumers of.
*
* Walk the list of links to consumers for @dev and if any of them is in the
* "consumer probe" state, wait for all device probes in progress to complete
* and start over.
*
* If that's not the case, change the status of the link to "supplier unbind"
* and check if the link was in the "active" state. If so, force the consumer
* driver to unbind and start over (the consumer will not re-probe as we have
* changed the state of the link already).
*
* Links without the DL_FLAG_MANAGED flag set are ignored.
*/
void device_links_unbind_consumers(struct device *dev)
{
struct device_link *link;
start:
device_links_write_lock();
list_for_each_entry(link, &dev->links.consumers, s_node) {
enum device_link_state status;
if (!(link->flags & DL_FLAG_MANAGED) ||
link->flags & DL_FLAG_SYNC_STATE_ONLY)
continue;
status = link->status;
if (status == DL_STATE_CONSUMER_PROBE) {
device_links_write_unlock();
wait_for_device_probe();
goto start;
}
WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
if (status == DL_STATE_ACTIVE) {
struct device *consumer = link->consumer;
get_device(consumer);
device_links_write_unlock();
device_release_driver_internal(consumer, NULL,
consumer->parent);
put_device(consumer);
goto start;
}
}
device_links_write_unlock();
}
/**
* device_links_purge - Delete existing links to other devices.
* @dev: Target device.
*/
static void device_links_purge(struct device *dev)
{
struct device_link *link, *ln;
if (dev->class == &devlink_class)
return;
mutex_lock(&wfs_lock);
list_del_init(&dev->links.needs_suppliers);
mutex_unlock(&wfs_lock);
/*
* Delete all of the remaining links from this device to any other
* devices (either consumers or suppliers).
*/
device_links_write_lock();
list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
WARN_ON(link->status == DL_STATE_ACTIVE);
__device_link_del(&link->kref);
}
list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
WARN_ON(link->status != DL_STATE_DORMANT &&
link->status != DL_STATE_NONE);
__device_link_del(&link->kref);
}
device_links_write_unlock();
}
static u32 fw_devlink_flags = DL_FLAG_SYNC_STATE_ONLY;
static int __init fw_devlink_setup(char *arg)
{
if (!arg)
return -EINVAL;
if (strcmp(arg, "off") == 0) {
fw_devlink_flags = 0;
} else if (strcmp(arg, "permissive") == 0) {
fw_devlink_flags = DL_FLAG_SYNC_STATE_ONLY;
} else if (strcmp(arg, "on") == 0) {
fw_devlink_flags = DL_FLAG_AUTOPROBE_CONSUMER;
} else if (strcmp(arg, "rpm") == 0) {
fw_devlink_flags = DL_FLAG_AUTOPROBE_CONSUMER |
DL_FLAG_PM_RUNTIME;
}
return 0;
}
early_param("fw_devlink", fw_devlink_setup);
u32 fw_devlink_get_flags(void)
{
return fw_devlink_flags;
}
static bool fw_devlink_is_permissive(void)
{
return fw_devlink_flags == DL_FLAG_SYNC_STATE_ONLY;
}
static void fw_devlink_parse_fwnode(struct fwnode_handle *fwnode)
{
if (fwnode->flags & FWNODE_FLAG_LINKS_ADDED)
return;
fwnode_call_int_op(fwnode, add_links, NULL);
fwnode->flags |= FWNODE_FLAG_LINKS_ADDED;
}
static void fw_devlink_parse_fwtree(struct fwnode_handle *fwnode)
{
struct fwnode_handle *child = NULL;
fw_devlink_parse_fwnode(fwnode);
while ((child = fwnode_get_next_available_child_node(fwnode, child)))
fw_devlink_parse_fwtree(child);
}
static void fw_devlink_link_device(struct device *dev)
{
int fw_ret;
device_link_add_missing_supplier_links();
if (fw_devlink_flags && fwnode_has_op(dev->fwnode, add_links)) {
fw_ret = fwnode_call_int_op(dev->fwnode, add_links, dev);
if (fw_ret == -ENODEV && !fw_devlink_is_permissive())
device_link_wait_for_mandatory_supplier(dev);
else if (fw_ret)
device_link_wait_for_optional_supplier(dev);
}
}
/* Device links support end. */
int (*platform_notify)(struct device *dev) = NULL;
int (*platform_notify_remove)(struct device *dev) = NULL;
static struct kobject *dev_kobj;
struct kobject *sysfs_dev_char_kobj;
struct kobject *sysfs_dev_block_kobj;
static DEFINE_MUTEX(device_hotplug_lock);
void lock_device_hotplug(void)
{
mutex_lock(&device_hotplug_lock);
}
void unlock_device_hotplug(void)
{
mutex_unlock(&device_hotplug_lock);
}
int lock_device_hotplug_sysfs(void)
{
if (mutex_trylock(&device_hotplug_lock))
return 0;
/* Avoid busy looping (5 ms of sleep should do). */
msleep(5);
return restart_syscall();
}
#ifdef CONFIG_BLOCK
static inline int device_is_not_partition(struct device *dev)
{
return !(dev->type == &part_type);
}
#else
static inline int device_is_not_partition(struct device *dev)
{
return 1;
}
#endif
static int
device_platform_notify(struct device *dev, enum kobject_action action)
{
int ret;
ret = acpi_platform_notify(dev, action);
if (ret)
return ret;
ret = software_node_notify(dev, action);
if (ret)
return ret;
if (platform_notify && action == KOBJ_ADD)
platform_notify(dev);
else if (platform_notify_remove && action == KOBJ_REMOVE)
platform_notify_remove(dev);
return 0;
}
/**
* dev_driver_string - Return a device's driver name, if at all possible
* @dev: struct device to get the name of
*
* Will return the device's driver's name if it is bound to a device. If
* the device is not bound to a driver, it will return the name of the bus
* it is attached to. If it is not attached to a bus either, an empty
* string will be returned.
*/
const char *dev_driver_string(const struct device *dev)
{
struct device_driver *drv;
/* dev->driver can change to NULL underneath us because of unbinding,
* so be careful about accessing it. dev->bus and dev->class should
* never change once they are set, so they don't need special care.
*/
drv = READ_ONCE(dev->driver);
return drv ? drv->name :
(dev->bus ? dev->bus->name :
(dev->class ? dev->class->name : ""));
}
EXPORT_SYMBOL(dev_driver_string);
#define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
char *buf)
{
struct device_attribute *dev_attr = to_dev_attr(attr);
struct device *dev = kobj_to_dev(kobj);
ssize_t ret = -EIO;
if (dev_attr->show)
ret = dev_attr->show(dev, dev_attr, buf);
if (ret >= (ssize_t)PAGE_SIZE) {
printk("dev_attr_show: %pS returned bad count\n",
dev_attr->show);
}
return ret;
}
static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
const char *buf, size_t count)
{
struct device_attribute *dev_attr = to_dev_attr(attr);
struct device *dev = kobj_to_dev(kobj);
ssize_t ret = -EIO;
if (dev_attr->store)
ret = dev_attr->store(dev, dev_attr, buf, count);
return ret;
}
static const struct sysfs_ops dev_sysfs_ops = {
.show = dev_attr_show,
.store = dev_attr_store,
};
#define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
ssize_t device_store_ulong(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
struct dev_ext_attribute *ea = to_ext_attr(attr);
int ret;
unsigned long new;
ret = kstrtoul(buf, 0, &new);
if (ret)
return ret;
*(unsigned long *)(ea->var) = new;
/* Always return full write size even if we didn't consume all */
return size;
}
EXPORT_SYMBOL_GPL(device_store_ulong);
ssize_t device_show_ulong(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct dev_ext_attribute *ea = to_ext_attr(attr);
return sysfs_emit(buf, "%lx\n", *(unsigned long *)(ea->var));
}
EXPORT_SYMBOL_GPL(device_show_ulong);
ssize_t device_store_int(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
struct dev_ext_attribute *ea = to_ext_attr(attr);
int ret;
long new;
ret = kstrtol(buf, 0, &new);
if (ret)
return ret;
if (new > INT_MAX || new < INT_MIN)
return -EINVAL;
*(int *)(ea->var) = new;
/* Always return full write size even if we didn't consume all */
return size;
}
EXPORT_SYMBOL_GPL(device_store_int);
ssize_t device_show_int(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct dev_ext_attribute *ea = to_ext_attr(attr);
return sysfs_emit(buf, "%d\n", *(int *)(ea->var));
}
EXPORT_SYMBOL_GPL(device_show_int);
ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
const char *buf, size_t size)
{
struct dev_ext_attribute *ea = to_ext_attr(attr);
if (strtobool(buf, ea->var) < 0)
return -EINVAL;
return size;
}
EXPORT_SYMBOL_GPL(device_store_bool);
ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct dev_ext_attribute *ea = to_ext_attr(attr);
return sysfs_emit(buf, "%d\n", *(bool *)(ea->var));
}
EXPORT_SYMBOL_GPL(device_show_bool);
/**
* device_release - free device structure.
* @kobj: device's kobject.
*
* This is called once the reference count for the object
* reaches 0. We forward the call to the device's release
* method, which should handle actually freeing the structure.
*/
static void device_release(struct kobject *kobj)
{
struct device *dev = kobj_to_dev(kobj);
struct device_private *p = dev->p;
/*
* Some platform devices are driven without driver attached
* and managed resources may have been acquired. Make sure
* all resources are released.
*
* Drivers still can add resources into device after device
* is deleted but alive, so release devres here to avoid
* possible memory leak.
*/
devres_release_all(dev);
kfree(dev->dma_range_map);
if (dev->release)
dev->release(dev);
else if (dev->type && dev->type->release)
dev->type->release(dev);
else if (dev->class && dev->class->dev_release)
dev->class->dev_release(dev);
else
WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n",
dev_name(dev));
kfree(p);
}
static const void *device_namespace(struct kobject *kobj)
{
struct device *dev = kobj_to_dev(kobj);
const void *ns = NULL;
if (dev->class && dev->class->ns_type)
ns = dev->class->namespace(dev);
return ns;
}
static void device_get_ownership(struct kobject *kobj, kuid_t *uid, kgid_t *gid)
{
struct device *dev = kobj_to_dev(kobj);
if (dev->class && dev->class->get_ownership)
dev->class->get_ownership(dev, uid, gid);
}
static struct kobj_type device_ktype = {
.release = device_release,
.sysfs_ops = &dev_sysfs_ops,
.namespace = device_namespace,
.get_ownership = device_get_ownership,
};
static int dev_uevent_filter(struct kset *kset, struct kobject *kobj)
{
struct kobj_type *ktype = get_ktype(kobj);
if (ktype == &device_ktype) {
struct device *dev = kobj_to_dev(kobj);
if (dev->bus)
return 1;
if (dev->class)
return 1;
}
return 0;
}
static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj)
{
struct device *dev = kobj_to_dev(kobj);
if (dev->bus)
return dev->bus->name;
if (dev->class)
return dev->class->name;
return NULL;
}
static int dev_uevent(struct kset *kset, struct kobject *kobj,
struct kobj_uevent_env *env)
{
struct device *dev = kobj_to_dev(kobj);
int retval = 0;
/* add device node properties if present */
if (MAJOR(dev->devt)) {
const char *tmp;
const char *name;
umode_t mode = 0;
kuid_t uid = GLOBAL_ROOT_UID;
kgid_t gid = GLOBAL_ROOT_GID;
add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
if (name) {
add_uevent_var(env, "DEVNAME=%s", name);
if (mode)
add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
if (!uid_eq(uid, GLOBAL_ROOT_UID))
add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
if (!gid_eq(gid, GLOBAL_ROOT_GID))
add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
kfree(tmp);
}
}
if (dev->type && dev->type->name)
add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
if (dev->driver)
add_uevent_var(env, "DRIVER=%s", dev->driver->name);
/* Add common DT information about the device */
of_device_uevent(dev, env);
/* have the bus specific function add its stuff */
if (dev->bus && dev->bus->uevent) {
retval = dev->bus->uevent(dev, env);
if (retval)
pr_debug("device: '%s': %s: bus uevent() returned %d\n",
dev_name(dev), __func__, retval);
}
/* have the class specific function add its stuff */
if (dev->class && dev->class->dev_uevent) {
retval = dev->class->dev_uevent(dev, env);
if (retval)
pr_debug("device: '%s': %s: class uevent() "
"returned %d\n", dev_name(dev),
__func__, retval);
}
/* have the device type specific function add its stuff */
if (dev->type && dev->type->uevent) {
retval = dev->type->uevent(dev, env);
if (retval)
pr_debug("device: '%s': %s: dev_type uevent() "
"returned %d\n", dev_name(dev),
__func__, retval);
}
return retval;
}
static const struct kset_uevent_ops device_uevent_ops = {
.filter = dev_uevent_filter,
.name = dev_uevent_name,
.uevent = dev_uevent,
};
static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct kobject *top_kobj;
struct kset *kset;
struct kobj_uevent_env *env = NULL;
int i;
int len = 0;
int retval;
/* search the kset, the device belongs to */
top_kobj = &dev->kobj;
while (!top_kobj->kset && top_kobj->parent)
top_kobj = top_kobj->parent;
if (!top_kobj->kset)
goto out;
kset = top_kobj->kset;
if (!kset->uevent_ops || !kset->uevent_ops->uevent)
goto out;
/* respect filter */
if (kset->uevent_ops && kset->uevent_ops->filter)
if (!kset->uevent_ops->filter(kset, &dev->kobj))
goto out;
env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
if (!env)
return -ENOMEM;
/* let the kset specific function add its keys */
retval = kset->uevent_ops->uevent(kset, &dev->kobj, env);
if (retval)
goto out;
/* copy keys to file */
for (i = 0; i < env->envp_idx; i++)
len += sysfs_emit_at(buf, len, "%s\n", env->envp[i]);
out:
kfree(env);
return len;
}
static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
int rc;
rc = kobject_synth_uevent(&dev->kobj, buf, count);
if (rc) {
dev_err(dev, "uevent: failed to send synthetic uevent\n");
return rc;
}
return count;
}
static DEVICE_ATTR_RW(uevent);
static ssize_t online_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
bool val;
device_lock(dev);
val = !dev->offline;
device_unlock(dev);
return sysfs_emit(buf, "%u\n", val);
}
static ssize_t online_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
bool val;
int ret;
ret = strtobool(buf, &val);
if (ret < 0)
return ret;
ret = lock_device_hotplug_sysfs();
if (ret)
return ret;
ret = val ? device_online(dev) : device_offline(dev);
unlock_device_hotplug();
return ret < 0 ? ret : count;
}
static DEVICE_ATTR_RW(online);
int device_add_groups(struct device *dev, const struct attribute_group **groups)
{
return sysfs_create_groups(&dev->kobj, groups);
}
EXPORT_SYMBOL_GPL(device_add_groups);
void device_remove_groups(struct device *dev,
const struct attribute_group **groups)
{
sysfs_remove_groups(&dev->kobj, groups);
}
EXPORT_SYMBOL_GPL(device_remove_groups);
union device_attr_group_devres {
const struct attribute_group *group;
const struct attribute_group **groups;
};
static int devm_attr_group_match(struct device *dev, void *res, void *data)
{
return ((union device_attr_group_devres *)res)->group == data;
}
static void devm_attr_group_remove(struct device *dev, void *res)
{
union device_attr_group_devres *devres = res;
const struct attribute_group *group = devres->group;
dev_dbg(dev, "%s: removing group %p\n", __func__, group);
sysfs_remove_group(&dev->kobj, group);
}
static void devm_attr_groups_remove(struct device *dev, void *res)
{
union device_attr_group_devres *devres = res;
const struct attribute_group **groups = devres->groups;
dev_dbg(dev, "%s: removing groups %p\n", __func__, groups);
sysfs_remove_groups(&dev->kobj, groups);
}
/**
* devm_device_add_group - given a device, create a managed attribute group
* @dev: The device to create the group for
* @grp: The attribute group to create
*
* This function creates a group for the first time. It will explicitly
* warn and error if any of the attribute files being created already exist.
*
* Returns 0 on success or error code on failure.
*/
int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
{
union device_attr_group_devres *devres;
int error;
devres = devres_alloc(devm_attr_group_remove,
sizeof(*devres), GFP_KERNEL);
if (!devres)
return -ENOMEM;
error = sysfs_create_group(&dev->kobj, grp);
if (error) {
devres_free(devres);
return error;
}
devres->group = grp;
devres_add(dev, devres);
return 0;
}
EXPORT_SYMBOL_GPL(devm_device_add_group);
/**
* devm_device_remove_group: remove a managed group from a device
* @dev: device to remove the group from
* @grp: group to remove
*
* This function removes a group of attributes from a device. The attributes
* previously have to have been created for this group, otherwise it will fail.
*/
void devm_device_remove_group(struct device *dev,
const struct attribute_group *grp)
{
WARN_ON(devres_release(dev, devm_attr_group_remove,
devm_attr_group_match,
/* cast away const */ (void *)grp));
}
EXPORT_SYMBOL_GPL(devm_device_remove_group);
/**
* devm_device_add_groups - create a bunch of managed attribute groups
* @dev: The device to create the group for
* @groups: The attribute groups to create, NULL terminated
*
* This function creates a bunch of managed attribute groups. If an error
* occurs when creating a group, all previously created groups will be
* removed, unwinding everything back to the original state when this
* function was called. It will explicitly warn and error if any of the
* attribute files being created already exist.
*
* Returns 0 on success or error code from sysfs_create_group on failure.
*/
int devm_device_add_groups(struct device *dev,
const struct attribute_group **groups)
{
union device_attr_group_devres *devres;
int error;
devres = devres_alloc(devm_attr_groups_remove,
sizeof(*devres), GFP_KERNEL);
if (!devres)
return -ENOMEM;
error = sysfs_create_groups(&dev->kobj, groups);
if (error) {
devres_free(devres);
return error;
}
devres->groups = groups;
devres_add(dev, devres);
return 0;
}
EXPORT_SYMBOL_GPL(devm_device_add_groups);
/**
* devm_device_remove_groups - remove a list of managed groups
*
* @dev: The device for the groups to be removed from
* @groups: NULL terminated list of groups to be removed
*
* If groups is not NULL, remove the specified groups from the device.
*/
void devm_device_remove_groups(struct device *dev,
const struct attribute_group **groups)
{
WARN_ON(devres_release(dev, devm_attr_groups_remove,
devm_attr_group_match,
/* cast away const */ (void *)groups));
}
EXPORT_SYMBOL_GPL(devm_device_remove_groups);
static int device_add_attrs(struct device *dev)
{
struct class *class = dev->class;
const struct device_type *type = dev->type;
int error;
if (class) {
error = device_add_groups(dev, class->dev_groups);
if (error)
return error;
}
if (type) {
error = device_add_groups(dev, type->groups);
if (error)
goto err_remove_class_groups;
}
error = device_add_groups(dev, dev->groups);
if (error)
goto err_remove_type_groups;
if (device_supports_offline(dev) && !dev->offline_disabled) {
error = device_create_file(dev, &dev_attr_online);
if (error)
goto err_remove_dev_groups;
}
if (fw_devlink_flags && !fw_devlink_is_permissive()) {
error = device_create_file(dev, &dev_attr_waiting_for_supplier);
if (error)
goto err_remove_dev_online;
}
return 0;
err_remove_dev_online:
device_remove_file(dev, &dev_attr_online);
err_remove_dev_groups:
device_remove_groups(dev, dev->groups);
err_remove_type_groups:
if (type)
device_remove_groups(dev, type->groups);
err_remove_class_groups:
if (class)
device_remove_groups(dev, class->dev_groups);
return error;
}
static void device_remove_attrs(struct device *dev)
{
struct class *class = dev->class;
const struct device_type *type = dev->type;
device_remove_file(dev, &dev_attr_waiting_for_supplier);
device_remove_file(dev, &dev_attr_online);
device_remove_groups(dev, dev->groups);
if (type)
device_remove_groups(dev, type->groups);
if (class)
device_remove_groups(dev, class->dev_groups);
}
static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
return print_dev_t(buf, dev->devt);
}
static DEVICE_ATTR_RO(dev);
/* /sys/devices/ */
struct kset *devices_kset;
/**
* devices_kset_move_before - Move device in the devices_kset's list.
* @deva: Device to move.
* @devb: Device @deva should come before.
*/
static void devices_kset_move_before(struct device *deva, struct device *devb)
{
if (!devices_kset)
return;
pr_debug("devices_kset: Moving %s before %s\n",
dev_name(deva), dev_name(devb));
spin_lock(&devices_kset->list_lock);
list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
spin_unlock(&devices_kset->list_lock);
}
/**
* devices_kset_move_after - Move device in the devices_kset's list.
* @deva: Device to move
* @devb: Device @deva should come after.
*/
static void devices_kset_move_after(struct device *deva, struct device *devb)
{
if (!devices_kset)
return;
pr_debug("devices_kset: Moving %s after %s\n",
dev_name(deva), dev_name(devb));
spin_lock(&devices_kset->list_lock);
list_move(&deva->kobj.entry, &devb->kobj.entry);
spin_unlock(&devices_kset->list_lock);
}
/**
* devices_kset_move_last - move the device to the end of devices_kset's list.
* @dev: device to move
*/
void devices_kset_move_last(struct device *dev)
{
if (!devices_kset)
return;
pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
spin_lock(&devices_kset->list_lock);
list_move_tail(&dev->kobj.entry, &devices_kset->list);
spin_unlock(&devices_kset->list_lock);
}
/**
* device_create_file - create sysfs attribute file for device.
* @dev: device.
* @attr: device attribute descriptor.
*/
int device_create_file(struct device *dev,
const struct device_attribute *attr)
{
int error = 0;
if (dev) {
WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
"Attribute %s: write permission without 'store'\n",
attr->attr.name);
WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
"Attribute %s: read permission without 'show'\n",
attr->attr.name);
error = sysfs_create_file(&dev->kobj, &attr->attr);
}
return error;
}
EXPORT_SYMBOL_GPL(device_create_file);
/**
* device_remove_file - remove sysfs attribute file.
* @dev: device.
* @attr: device attribute descriptor.
*/
void device_remove_file(struct device *dev,
const struct device_attribute *attr)
{
if (dev)
sysfs_remove_file(&dev->kobj, &attr->attr);
}
EXPORT_SYMBOL_GPL(device_remove_file);
/**
* device_remove_file_self - remove sysfs attribute file from its own method.
* @dev: device.
* @attr: device attribute descriptor.
*
* See kernfs_remove_self() for details.
*/
bool device_remove_file_self(struct device *dev,
const struct device_attribute *attr)
{
if (dev)
return sysfs_remove_file_self(&dev->kobj, &attr->attr);
else
return false;
}
EXPORT_SYMBOL_GPL(device_remove_file_self);
/**
* device_create_bin_file - create sysfs binary attribute file for device.
* @dev: device.
* @attr: device binary attribute descriptor.
*/
int device_create_bin_file(struct device *dev,
const struct bin_attribute *attr)
{
int error = -EINVAL;
if (dev)
error = sysfs_create_bin_file(&dev->kobj, attr);
return error;
}
EXPORT_SYMBOL_GPL(device_create_bin_file);
/**
* device_remove_bin_file - remove sysfs binary attribute file
* @dev: device.
* @attr: device binary attribute descriptor.
*/
void device_remove_bin_file(struct device *dev,
const struct bin_attribute *attr)
{
if (dev)
sysfs_remove_bin_file(&dev->kobj, attr);
}
EXPORT_SYMBOL_GPL(device_remove_bin_file);
static void klist_children_get(struct klist_node *n)
{
struct device_private *p = to_device_private_parent(n);
struct device *dev = p->device;
get_device(dev);
}
static void klist_children_put(struct klist_node *n)
{
struct device_private *p = to_device_private_parent(n);
struct device *dev = p->device;
put_device(dev);
}
/**
* device_initialize - init device structure.
* @dev: device.
*
* This prepares the device for use by other layers by initializing
* its fields.
* It is the first half of device_register(), if called by
* that function, though it can also be called separately, so one
* may use @dev's fields. In particular, get_device()/put_device()
* may be used for reference counting of @dev after calling this
* function.
*
* All fields in @dev must be initialized by the caller to 0, except
* for those explicitly set to some other value. The simplest
* approach is to use kzalloc() to allocate the structure containing
* @dev.
*
* NOTE: Use put_device() to give up your reference instead of freeing
* @dev directly once you have called this function.
*/
void device_initialize(struct device *dev)
{
dev->kobj.kset = devices_kset;
kobject_init(&dev->kobj, &device_ktype);
INIT_LIST_HEAD(&dev->dma_pools);
mutex_init(&dev->mutex);
#ifdef CONFIG_PROVE_LOCKING
mutex_init(&dev->lockdep_mutex);
#endif
lockdep_set_novalidate_class(&dev->mutex);
spin_lock_init(&dev->devres_lock);
INIT_LIST_HEAD(&dev->devres_head);
device_pm_init(dev);
set_dev_node(dev, -1);
#ifdef CONFIG_GENERIC_MSI_IRQ
INIT_LIST_HEAD(&dev->msi_list);
#endif
INIT_LIST_HEAD(&dev->links.consumers);
INIT_LIST_HEAD(&dev->links.suppliers);
INIT_LIST_HEAD(&dev->links.needs_suppliers);
INIT_LIST_HEAD(&dev->links.defer_sync);
dev->links.status = DL_DEV_NO_DRIVER;
}
EXPORT_SYMBOL_GPL(device_initialize);
struct kobject *virtual_device_parent(struct device *dev)
{
static struct kobject *virtual_dir = NULL;
if (!virtual_dir)
virtual_dir = kobject_create_and_add("virtual",
&devices_kset->kobj);
return virtual_dir;
}
struct class_dir {
struct kobject kobj;
struct class *class;
};
#define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
static void class_dir_release(struct kobject *kobj)
{
struct class_dir *dir = to_class_dir(kobj);
kfree(dir);
}
static const
struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj)
{
struct class_dir *dir = to_class_dir(kobj);
return dir->class->ns_type;
}
static struct kobj_type class_dir_ktype = {
.release = class_dir_release,
.sysfs_ops = &kobj_sysfs_ops,
.child_ns_type = class_dir_child_ns_type
};
static struct kobject *
class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)
{
struct class_dir *dir;
int retval;
dir = kzalloc(sizeof(*dir), GFP_KERNEL);
if (!dir)
return ERR_PTR(-ENOMEM);
dir->class = class;
kobject_init(&dir->kobj, &class_dir_ktype);
dir->kobj.kset = &class->p->glue_dirs;
retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
if (retval < 0) {
kobject_put(&dir->kobj);
return ERR_PTR(retval);
}
return &dir->kobj;
}
static DEFINE_MUTEX(gdp_mutex);
static struct kobject *get_device_parent(struct device *dev,
struct device *parent)
{
if (dev->class) {
struct kobject *kobj = NULL;
struct kobject *parent_kobj;
struct kobject *k;
#ifdef CONFIG_BLOCK
/* block disks show up in /sys/block */
if (sysfs_deprecated && dev->class == &block_class) {
if (parent && parent->class == &block_class)
return &parent->kobj;
return &block_class.p->subsys.kobj;
}
#endif
/*
* If we have no parent, we live in "virtual".
* Class-devices with a non class-device as parent, live
* in a "glue" directory to prevent namespace collisions.
*/
if (parent == NULL)
parent_kobj = virtual_device_parent(dev);
else if (parent->class && !dev->class->ns_type)
return &parent->kobj;
else
parent_kobj = &parent->kobj;
mutex_lock(&gdp_mutex);
/* find our class-directory at the parent and reference it */
spin_lock(&dev->class->p->glue_dirs.list_lock);
list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
if (k->parent == parent_kobj) {
kobj = kobject_get(k);
break;
}
spin_unlock(&dev->class->p->glue_dirs.list_lock);
if (kobj) {
mutex_unlock(&gdp_mutex);
return kobj;
}
/* or create a new class-directory at the parent device */
k = class_dir_create_and_add(dev->class, parent_kobj);
/* do not emit an uevent for this simple "glue" directory */
mutex_unlock(&gdp_mutex);
return k;
}
/* subsystems can specify a default root directory for their devices */
if (!parent && dev->bus && dev->bus->dev_root)
return &dev->bus->dev_root->kobj;
if (parent)
return &parent->kobj;
return NULL;
}
static inline bool live_in_glue_dir(struct kobject *kobj,
struct device *dev)
{
if (!kobj || !dev->class ||
kobj->kset != &dev->class->p->glue_dirs)
return false;
return true;
}
static inline struct kobject *get_glue_dir(struct device *dev)
{
return dev->kobj.parent;
}
/*
* make sure cleaning up dir as the last step, we need to make
* sure .release handler of kobject is run with holding the
* global lock
*/
static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
{
unsigned int ref;
/* see if we live in a "glue" directory */
if (!live_in_glue_dir(glue_dir, dev))
return;
mutex_lock(&gdp_mutex);
/**
* There is a race condition between removing glue directory
* and adding a new device under the glue directory.
*
* CPU1: CPU2:
*
* device_add()
* get_device_parent()
* class_dir_create_and_add()
* kobject_add_internal()
* create_dir() // create glue_dir
*
* device_add()
* get_device_parent()
* kobject_get() // get glue_dir
*
* device_del()
* cleanup_glue_dir()
* kobject_del(glue_dir)
*
* kobject_add()
* kobject_add_internal()
* create_dir() // in glue_dir
* sysfs_create_dir_ns()
* kernfs_create_dir_ns(sd)
*
* sysfs_remove_dir() // glue_dir->sd=NULL
* sysfs_put() // free glue_dir->sd
*
* // sd is freed
* kernfs_new_node(sd)
* kernfs_get(glue_dir)
* kernfs_add_one()
* kernfs_put()
*
* Before CPU1 remove last child device under glue dir, if CPU2 add
* a new device under glue dir, the glue_dir kobject reference count
* will be increase to 2 in kobject_get(k). And CPU2 has been called
* kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir()
* and sysfs_put(). This result in glue_dir->sd is freed.
*
* Then the CPU2 will see a stale "empty" but still potentially used
* glue dir around in kernfs_new_node().
*
* In order to avoid this happening, we also should make sure that
* kernfs_node for glue_dir is released in CPU1 only when refcount
* for glue_dir kobj is 1.
*/
ref = kref_read(&glue_dir->kref);
if (!kobject_has_children(glue_dir) && !--ref)
kobject_del(glue_dir);
kobject_put(glue_dir);
mutex_unlock(&gdp_mutex);
}
static int device_add_class_symlinks(struct device *dev)
{
struct device_node *of_node = dev_of_node(dev);
int error;
if (of_node) {
error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
if (error)
dev_warn(dev, "Error %d creating of_node link\n",error);
/* An error here doesn't warrant bringing down the device */
}
if (!dev->class)
return 0;
error = sysfs_create_link(&dev->kobj,
&dev->class->p->subsys.kobj,
"subsystem");
if (error)
goto out_devnode;
if (dev->parent && device_is_not_partition(dev)) {
error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
"device");
if (error)
goto out_subsys;
}
#ifdef CONFIG_BLOCK
/* /sys/block has directories and does not need symlinks */
if (sysfs_deprecated && dev->class == &block_class)
return 0;
#endif
/* link in the class directory pointing to the device */
error = sysfs_create_link(&dev->class->p->subsys.kobj,
&dev->kobj, dev_name(dev));
if (error)
goto out_device;
return 0;
out_device:
sysfs_remove_link(&dev->kobj, "device");
out_subsys:
sysfs_remove_link(&dev->kobj, "subsystem");
out_devnode:
sysfs_remove_link(&dev->kobj, "of_node");
return error;
}
static void device_remove_class_symlinks(struct device *dev)
{
if (dev_of_node(dev))
sysfs_remove_link(&dev->kobj, "of_node");
if (!dev->class)
return;
if (dev->parent && device_is_not_partition(dev))
sysfs_remove_link(&dev->kobj, "device");
sysfs_remove_link(&dev->kobj, "subsystem");
#ifdef CONFIG_BLOCK
if (sysfs_deprecated && dev->class == &block_class)
return;
#endif
sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
}
/**
* dev_set_name - set a device name
* @dev: device
* @fmt: format string for the device's name
*/
int dev_set_name(struct device *dev, const char *fmt, ...)
{
va_list vargs;
int err;
va_start(vargs, fmt);
err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
va_end(vargs);
return err;
}
EXPORT_SYMBOL_GPL(dev_set_name);
/**
* device_to_dev_kobj - select a /sys/dev/ directory for the device
* @dev: device
*
* By default we select char/ for new entries. Setting class->dev_obj
* to NULL prevents an entry from being created. class->dev_kobj must
* be set (or cleared) before any devices are registered to the class
* otherwise device_create_sys_dev_entry() and
* device_remove_sys_dev_entry() will disagree about the presence of
* the link.
*/
static struct kobject *device_to_dev_kobj(struct device *dev)
{
struct kobject *kobj;
if (dev->class)
kobj = dev->class->dev_kobj;
else
kobj = sysfs_dev_char_kobj;
return kobj;
}
static int device_create_sys_dev_entry(struct device *dev)
{
struct kobject *kobj = device_to_dev_kobj(dev);
int error = 0;
char devt_str[15];
if (kobj) {
format_dev_t(devt_str, dev->devt);
error = sysfs_create_link(kobj, &dev->kobj, devt_str);
}
return error;
}
static void device_remove_sys_dev_entry(struct device *dev)
{
struct kobject *kobj = device_to_dev_kobj(dev);
char devt_str[15];
if (kobj) {
format_dev_t(devt_str, dev->devt);
sysfs_remove_link(kobj, devt_str);
}
}
static int device_private_init(struct device *dev)
{
dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
if (!dev->p)
return -ENOMEM;
dev->p->device = dev;
klist_init(&dev->p->klist_children, klist_children_get,
klist_children_put);
INIT_LIST_HEAD(&dev->p->deferred_probe);
return 0;
}
/**
* device_add - add device to device hierarchy.
* @dev: device.
*
* This is part 2 of device_register(), though may be called
* separately _iff_ device_initialize() has been called separately.
*
* This adds @dev to the kobject hierarchy via kobject_add(), adds it
* to the global and sibling lists for the device, then
* adds it to the other relevant subsystems of the driver model.
*
* Do not call this routine or device_register() more than once for
* any device structure. The driver model core is not designed to work
* with devices that get unregistered and then spring back to life.
* (Among other things, it's very hard to guarantee that all references
* to the previous incarnation of @dev have been dropped.) Allocate
* and register a fresh new struct device instead.
*
* NOTE: _Never_ directly free @dev after calling this function, even
* if it returned an error! Always use put_device() to give up your
* reference instead.
*
* Rule of thumb is: if device_add() succeeds, you should call
* device_del() when you want to get rid of it. If device_add() has
* *not* succeeded, use *only* put_device() to drop the reference
* count.
*/
int device_add(struct device *dev)
{
struct device *parent;
struct kobject *kobj;
struct class_interface *class_intf;
int error = -EINVAL;
struct kobject *glue_dir = NULL;
dev = get_device(dev);
if (!dev)
goto done;
if (!dev->p) {
error = device_private_init(dev);
if (error)
goto done;
}
/*
* for statically allocated devices, which should all be converted
* some day, we need to initialize the name. We prevent reading back
* the name, and force the use of dev_name()
*/
if (dev->init_name) {
dev_set_name(dev, "%s", dev->init_name);
dev->init_name = NULL;
}
/* subsystems can specify simple device enumeration */
if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
if (!dev_name(dev)) {
error = -EINVAL;
goto name_error;
}
pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
parent = get_device(dev->parent);
kobj = get_device_parent(dev, parent);
if (IS_ERR(kobj)) {
error = PTR_ERR(kobj);
goto parent_error;
}
if (kobj)
dev->kobj.parent = kobj;
/* use parent numa_node */
if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
set_dev_node(dev, dev_to_node(parent));
/* first, register with generic layer. */
/* we require the name to be set before, and pass NULL */
error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
if (error) {
glue_dir = get_glue_dir(dev);
goto Error;
}
/* notify platform of device entry */
error = device_platform_notify(dev, KOBJ_ADD);
if (error)
goto platform_error;
error = device_create_file(dev, &dev_attr_uevent);
if (error)
goto attrError;
error = device_add_class_symlinks(dev);
if (error)
goto SymlinkError;
error = device_add_attrs(dev);
if (error)
goto AttrsError;
error = bus_add_device(dev);
if (error)
goto BusError;
error = dpm_sysfs_add(dev);
if (error)
goto DPMError;
device_pm_add(dev);
if (MAJOR(dev->devt)) {
error = device_create_file(dev, &dev_attr_dev);
if (error)
goto DevAttrError;
error = device_create_sys_dev_entry(dev);
if (error)
goto SysEntryError;
devtmpfs_create_node(dev);
}
/* Notify clients of device addition. This call must come
* after dpm_sysfs_add() and before kobject_uevent().
*/
if (dev->bus)
blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
BUS_NOTIFY_ADD_DEVICE, dev);
kobject_uevent(&dev->kobj, KOBJ_ADD);
/*
* Check if any of the other devices (consumers) have been waiting for
* this device (supplier) to be added so that they can create a device
* link to it.
*
* This needs to happen after device_pm_add() because device_link_add()
* requires the supplier be registered before it's called.
*
* But this also needs to happen before bus_probe_device() to make sure
* waiting consumers can link to it before the driver is bound to the
* device and the driver sync_state callback is called for this device.
*/
if (dev->fwnode && !dev->fwnode->dev) {
dev->fwnode->dev = dev;
fw_devlink_link_device(dev);
}
bus_probe_device(dev);
if (parent)
klist_add_tail(&dev->p->knode_parent,
&parent->p->klist_children);
if (dev->class) {
mutex_lock(&dev->class->p->mutex);
/* tie the class to the device */
klist_add_tail(&dev->p->knode_class,
&dev->class->p->klist_devices);
/* notify any interfaces that the device is here */
list_for_each_entry(class_intf,
&dev->class->p->interfaces, node)
if (class_intf->add_dev)
class_intf->add_dev(dev, class_intf);
mutex_unlock(&dev->class->p->mutex);
}
done:
put_device(dev);
return error;
SysEntryError:
if (MAJOR(dev->devt))
device_remove_file(dev, &dev_attr_dev);
DevAttrError:
device_pm_remove(dev);
dpm_sysfs_remove(dev);
DPMError:
bus_remove_device(dev);
BusError:
device_remove_attrs(dev);
AttrsError:
device_remove_class_symlinks(dev);
SymlinkError:
device_remove_file(dev, &dev_attr_uevent);
attrError:
device_platform_notify(dev, KOBJ_REMOVE);
platform_error:
kobject_uevent(&dev->kobj, KOBJ_REMOVE);
glue_dir = get_glue_dir(dev);
kobject_del(&dev->kobj);
Error:
cleanup_glue_dir(dev, glue_dir);
parent_error:
put_device(parent);
name_error:
kfree(dev->p);
dev->p = NULL;
goto done;
}
EXPORT_SYMBOL_GPL(device_add);
/**
* device_register - register a device with the system.
* @dev: pointer to the device structure
*
* This happens in two clean steps - initialize the device
* and add it to the system. The two steps can be called
* separately, but this is the easiest and most common.
* I.e. you should only call the two helpers separately if
* have a clearly defined need to use and refcount the device
* before it is added to the hierarchy.
*
* For more information, see the kerneldoc for device_initialize()
* and device_add().
*
* NOTE: _Never_ directly free @dev after calling this function, even
* if it returned an error! Always use put_device() to give up the
* reference initialized in this function instead.
*/
int device_register(struct device *dev)
{
device_initialize(dev);
return device_add(dev);
}
EXPORT_SYMBOL_GPL(device_register);
/**
* get_device - increment reference count for device.
* @dev: device.
*
* This simply forwards the call to kobject_get(), though
* we do take care to provide for the case that we get a NULL
* pointer passed in.
*/
struct device *get_device(struct device *dev)
{
return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
}
EXPORT_SYMBOL_GPL(get_device);
/**
* put_device - decrement reference count.
* @dev: device in question.
*/
void put_device(struct device *dev)
{
/* might_sleep(); */
if (dev)
kobject_put(&dev->kobj);
}
EXPORT_SYMBOL_GPL(put_device);
bool kill_device(struct device *dev)
{
/*
* Require the device lock and set the "dead" flag to guarantee that
* the update behavior is consistent with the other bitfields near
* it and that we cannot have an asynchronous probe routine trying
* to run while we are tearing out the bus/class/sysfs from
* underneath the device.
*/
lockdep_assert_held(&dev->mutex);
if (dev->p->dead)
return false;
dev->p->dead = true;
return true;
}
EXPORT_SYMBOL_GPL(kill_device);
/**
* device_del - delete device from system.
* @dev: device.
*
* This is the first part of the device unregistration
* sequence. This removes the device from the lists we control
* from here, has it removed from the other driver model
* subsystems it was added to in device_add(), and removes it
* from the kobject hierarchy.
*
* NOTE: this should be called manually _iff_ device_add() was
* also called manually.
*/
void device_del(struct device *dev)
{
struct device *parent = dev->parent;
struct kobject *glue_dir = NULL;
struct class_interface *class_intf;
unsigned int noio_flag;
device_lock(dev);
kill_device(dev);
device_unlock(dev);
if (dev->fwnode && dev->fwnode->dev == dev)
dev->fwnode->dev = NULL;
/* Notify clients of device removal. This call must come
* before dpm_sysfs_remove().
*/
noio_flag = memalloc_noio_save();
if (dev->bus)
blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
BUS_NOTIFY_DEL_DEVICE, dev);
dpm_sysfs_remove(dev);
if (parent)
klist_del(&dev->p->knode_parent);
if (MAJOR(dev->devt)) {
devtmpfs_delete_node(dev);
device_remove_sys_dev_entry(dev);
device_remove_file(dev, &dev_attr_dev);
}
if (dev->class) {
device_remove_class_symlinks(dev);
mutex_lock(&dev->class->p->mutex);
/* notify any interfaces that the device is now gone */
list_for_each_entry(class_intf,
&dev->class->p->interfaces, node)
if (class_intf->remove_dev)
class_intf->remove_dev(dev, class_intf);
/* remove the device from the class list */
klist_del(&dev->p->knode_class);
mutex_unlock(&dev->class->p->mutex);
}
device_remove_file(dev, &dev_attr_uevent);
device_remove_attrs(dev);
bus_remove_device(dev);
device_pm_remove(dev);
driver_deferred_probe_del(dev);
device_platform_notify(dev, KOBJ_REMOVE);
device_remove_properties(dev);
device_links_purge(dev);
if (dev->bus)
blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
BUS_NOTIFY_REMOVED_DEVICE, dev);
kobject_uevent(&dev->kobj, KOBJ_REMOVE);
glue_dir = get_glue_dir(dev);
kobject_del(&dev->kobj);
cleanup_glue_dir(dev, glue_dir);
memalloc_noio_restore(noio_flag);
put_device(parent);
}
EXPORT_SYMBOL_GPL(device_del);
/**
* device_unregister - unregister device from system.
* @dev: device going away.
*
* We do this in two parts, like we do device_register(). First,
* we remove it from all the subsystems with device_del(), then
* we decrement the reference count via put_device(). If that
* is the final reference count, the device will be cleaned up
* via device_release() above. Otherwise, the structure will
* stick around until the final reference to the device is dropped.
*/
void device_unregister(struct device *dev)
{
pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
device_del(dev);
put_device(dev);
}
EXPORT_SYMBOL_GPL(device_unregister);
static struct device *prev_device(struct klist_iter *i)
{
struct klist_node *n = klist_prev(i);
struct device *dev = NULL;
struct device_private *p;
if (n) {
p = to_device_private_parent(n);
dev = p->device;
}
return dev;
}
static struct device *next_device(struct klist_iter *i)
{
struct klist_node *n = klist_next(i);
struct device *dev = NULL;
struct device_private *p;
if (n) {
p = to_device_private_parent(n);
dev = p->device;
}
return dev;
}
/**
* device_get_devnode - path of device node file
* @dev: device
* @mode: returned file access mode
* @uid: returned file owner
* @gid: returned file group
* @tmp: possibly allocated string
*
* Return the relative path of a possible device node.
* Non-default names may need to allocate a memory to compose
* a name. This memory is returned in tmp and needs to be
* freed by the caller.
*/
const char *device_get_devnode(struct device *dev,
umode_t *mode, kuid_t *uid, kgid_t *gid,
const char **tmp)
{
char *s;
*tmp = NULL;
/* the device type may provide a specific name */
if (dev->type && dev->type->devnode)
*tmp = dev->type->devnode(dev, mode, uid, gid);
if (*tmp)
return *tmp;
/* the class may provide a specific name */
if (dev->class && dev->class->devnode)
*tmp = dev->class->devnode(dev, mode);
if (*tmp)
return *tmp;
/* return name without allocation, tmp == NULL */
if (strchr(dev_name(dev), '!') == NULL)
return dev_name(dev);
/* replace '!' in the name with '/' */
s = kstrdup(dev_name(dev), GFP_KERNEL);
if (!s)
return NULL;
strreplace(s, '!', '/');
return *tmp = s;
}
/**
* device_for_each_child - device child iterator.
* @parent: parent struct device.
* @fn: function to be called for each device.
* @data: data for the callback.
*
* Iterate over @parent's child devices, and call @fn for each,
* passing it @data.
*
* We check the return of @fn each time. If it returns anything
* other than 0, we break out and return that value.
*/
int device_for_each_child(struct device *parent, void *data,
int (*fn)(struct device *dev, void *data))
{
struct klist_iter i;
struct device *child;
int error = 0;
if (!parent->p)
return 0;
klist_iter_init(&parent->p->klist_children, &i);
while (!error && (child = next_device(&i)))
error = fn(child, data);
klist_iter_exit(&i);
return error;
}
EXPORT_SYMBOL_GPL(device_for_each_child);
/**
* device_for_each_child_reverse - device child iterator in reversed order.
* @parent: parent struct device.
* @fn: function to be called for each device.
* @data: data for the callback.
*
* Iterate over @parent's child devices, and call @fn for each,
* passing it @data.
*
* We check the return of @fn each time. If it returns anything
* other than 0, we break out and return that value.
*/
int device_for_each_child_reverse(struct device *parent, void *data,
int (*fn)(struct device *dev, void *data))
{
struct klist_iter i;
struct device *child;
int error = 0;
if (!parent->p)
return 0;
klist_iter_init(&parent->p->klist_children, &i);
while ((child = prev_device(&i)) && !error)
error = fn(child, data);
klist_iter_exit(&i);
return error;
}
EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
/**
* device_find_child - device iterator for locating a particular device.
* @parent: parent struct device
* @match: Callback function to check device
* @data: Data to pass to match function
*
* This is similar to the device_for_each_child() function above, but it
* returns a reference to a device that is 'found' for later use, as
* determined by the @match callback.
*
* The callback should return 0 if the device doesn't match and non-zero
* if it does. If the callback returns non-zero and a reference to the
* current device can be obtained, this function will return to the caller
* and not iterate over any more devices.
*
* NOTE: you will need to drop the reference with put_device() after use.
*/
struct device *device_find_child(struct device *parent, void *data,
int (*match)(struct device *dev, void *data))
{
struct klist_iter i;
struct device *child;
if (!parent)
return NULL;
klist_iter_init(&parent->p->klist_children, &i);
while ((child = next_device(&i)))
if (match(child, data) && get_device(child))
break;
klist_iter_exit(&i);
return child;
}
EXPORT_SYMBOL_GPL(device_find_child);
/**
* device_find_child_by_name - device iterator for locating a child device.
* @parent: parent struct device
* @name: name of the child device
*
* This is similar to the device_find_child() function above, but it
* returns a reference to a device that has the name @name.
*
* NOTE: you will need to drop the reference with put_device() after use.
*/
struct device *device_find_child_by_name(struct device *parent,
const char *name)
{
struct klist_iter i;
struct device *child;
if (!parent)
return NULL;
klist_iter_init(&parent->p->klist_children, &i);
while ((child = next_device(&i)))
if (sysfs_streq(dev_name(child), name) && get_device(child))
break;
klist_iter_exit(&i);
return child;
}
EXPORT_SYMBOL_GPL(device_find_child_by_name);
int __init devices_init(void)
{
devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
if (!devices_kset)
return -ENOMEM;
dev_kobj = kobject_create_and_add("dev", NULL);
if (!dev_kobj)
goto dev_kobj_err;
sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
if (!sysfs_dev_block_kobj)
goto block_kobj_err;
sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
if (!sysfs_dev_char_kobj)
goto char_kobj_err;
return 0;
char_kobj_err:
kobject_put(sysfs_dev_block_kobj);
block_kobj_err:
kobject_put(dev_kobj);
dev_kobj_err:
kset_unregister(devices_kset);
return -ENOMEM;
}
static int device_check_offline(struct device *dev, void *not_used)
{
int ret;
ret = device_for_each_child(dev, NULL, device_check_offline);
if (ret)
return ret;
return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
}
/**
* device_offline - Prepare the device for hot-removal.
* @dev: Device to be put offline.
*
* Execute the device bus type's .offline() callback, if present, to prepare
* the device for a subsequent hot-removal. If that succeeds, the device must
* not be used until either it is removed or its bus type's .online() callback
* is executed.
*
* Call under device_hotplug_lock.
*/
int device_offline(struct device *dev)
{
int ret;
if (dev->offline_disabled)
return -EPERM;
ret = device_for_each_child(dev, NULL, device_check_offline);
if (ret)
return ret;
device_lock(dev);
if (device_supports_offline(dev)) {
if (dev->offline) {
ret = 1;
} else {
ret = dev->bus->offline(dev);
if (!ret) {
kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
dev->offline = true;
}
}
}
device_unlock(dev);
return ret;
}
/**
* device_online - Put the device back online after successful device_offline().
* @dev: Device to be put back online.
*
* If device_offline() has been successfully executed for @dev, but the device
* has not been removed subsequently, execute its bus type's .online() callback
* to indicate that the device can be used again.
*
* Call under device_hotplug_lock.
*/
int device_online(struct device *dev)
{
int ret = 0;
device_lock(dev);
if (device_supports_offline(dev)) {
if (dev->offline) {
ret = dev->bus->online(dev);
if (!ret) {
kobject_uevent(&dev->kobj, KOBJ_ONLINE);
dev->offline = false;
}
} else {
ret = 1;
}
}
device_unlock(dev);
return ret;
}
struct root_device {
struct device dev;
struct module *owner;
};
static inline struct root_device *to_root_device(struct device *d)
{
return container_of(d, struct root_device, dev);
}
static void root_device_release(struct device *dev)
{
kfree(to_root_device(dev));
}
/**
* __root_device_register - allocate and register a root device
* @name: root device name
* @owner: owner module of the root device, usually THIS_MODULE
*
* This function allocates a root device and registers it
* using device_register(). In order to free the returned
* device, use root_device_unregister().
*
* Root devices are dummy devices which allow other devices
* to be grouped under /sys/devices. Use this function to
* allocate a root device and then use it as the parent of
* any device which should appear under /sys/devices/{name}
*
* The /sys/devices/{name} directory will also contain a
* 'module' symlink which points to the @owner directory
* in sysfs.
*
* Returns &struct device pointer on success, or ERR_PTR() on error.
*
* Note: You probably want to use root_device_register().
*/
struct device *__root_device_register(const char *name, struct module *owner)
{
struct root_device *root;
int err = -ENOMEM;
root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
if (!root)
return ERR_PTR(err);
err = dev_set_name(&root->dev, "%s", name);
if (err) {
kfree(root);
return ERR_PTR(err);
}
root->dev.release = root_device_release;
err = device_register(&root->dev);
if (err) {
put_device(&root->dev);
return ERR_PTR(err);
}
#ifdef CONFIG_MODULES /* gotta find a "cleaner" way to do this */
if (owner) {
struct module_kobject *mk = &owner->mkobj;
err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
if (err) {
device_unregister(&root->dev);
return ERR_PTR(err);
}
root->owner = owner;
}
#endif
return &root->dev;
}
EXPORT_SYMBOL_GPL(__root_device_register);
/**
* root_device_unregister - unregister and free a root device
* @dev: device going away
*
* This function unregisters and cleans up a device that was created by
* root_device_register().
*/
void root_device_unregister(struct device *dev)
{
struct root_device *root = to_root_device(dev);
if (root->owner)
sysfs_remove_link(&root->dev.kobj, "module");
device_unregister(dev);
}
EXPORT_SYMBOL_GPL(root_device_unregister);
static void device_create_release(struct device *dev)
{
pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
kfree(dev);
}
static __printf(6, 0) struct device *
device_create_groups_vargs(struct class *class, struct device *parent,
dev_t devt, void *drvdata,
const struct attribute_group **groups,
const char *fmt, va_list args)
{
struct device *dev = NULL;
int retval = -ENODEV;
if (class == NULL || IS_ERR(class))
goto error;
dev = kzalloc(sizeof(*dev), GFP_KERNEL);
if (!dev) {
retval = -ENOMEM;
goto error;
}
device_initialize(dev);
dev->devt = devt;
dev->class = class;
dev->parent = parent;
dev->groups = groups;
dev->release = device_create_release;
dev_set_drvdata(dev, drvdata);
retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
if (retval)
goto error;
retval = device_add(dev);
if (retval)
goto error;
return dev;
error:
put_device(dev);
return ERR_PTR(retval);
}
/**
* device_create - creates a device and registers it with sysfs
* @class: pointer to the struct class that this device should be registered to
* @parent: pointer to the parent struct device of this new device, if any
* @devt: the dev_t for the char device to be added
* @drvdata: the data to be added to the device for callbacks
* @fmt: string for the device's name
*
* This function can be used by char device classes. A struct device
* will be created in sysfs, registered to the specified class.
*
* A "dev" file will be created, showing the dev_t for the device, if
* the dev_t is not 0,0.
* If a pointer to a parent struct device is passed in, the newly created
* struct device will be a child of that device in sysfs.
* The pointer to the struct device will be returned from the call.
* Any further sysfs files that might be required can be created using this
* pointer.
*
* Returns &struct device pointer on success, or ERR_PTR() on error.
*
* Note: the struct class passed to this function must have previously
* been created with a call to class_create().
*/
struct device *device_create(struct class *class, struct device *parent,
dev_t devt, void *drvdata, const char *fmt, ...)
{
va_list vargs;
struct device *dev;
va_start(vargs, fmt);
dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL,
fmt, vargs);
va_end(vargs);
return dev;
}
EXPORT_SYMBOL_GPL(device_create);
/**
* device_create_with_groups - creates a device and registers it with sysfs
* @class: pointer to the struct class that this device should be registered to
* @parent: pointer to the parent struct device of this new device, if any
* @devt: the dev_t for the char device to be added
* @drvdata: the data to be added to the device for callbacks
* @groups: NULL-terminated list of attribute groups to be created
* @fmt: string for the device's name
*
* This function can be used by char device classes. A struct device
* will be created in sysfs, registered to the specified class.
* Additional attributes specified in the groups parameter will also
* be created automatically.
*
* A "dev" file will be created, showing the dev_t for the device, if
* the dev_t is not 0,0.
* If a pointer to a parent struct device is passed in, the newly created
* struct device will be a child of that device in sysfs.
* The pointer to the struct device will be returned from the call.
* Any further sysfs files that might be required can be created using this
* pointer.
*
* Returns &struct device pointer on success, or ERR_PTR() on error.
*
* Note: the struct class passed to this function must have previously
* been created with a call to class_create().
*/
struct device *device_create_with_groups(struct class *class,
struct device *parent, dev_t devt,
void *drvdata,
const struct attribute_group **groups,
const char *fmt, ...)
{
va_list vargs;
struct device *dev;
va_start(vargs, fmt);
dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
fmt, vargs);
va_end(vargs);
return dev;
}
EXPORT_SYMBOL_GPL(device_create_with_groups);
/**
* device_destroy - removes a device that was created with device_create()
* @class: pointer to the struct class that this device was registered with
* @devt: the dev_t of the device that was previously registered
*
* This call unregisters and cleans up a device that was created with a
* call to device_create().
*/
void device_destroy(struct class *class, dev_t devt)
{
struct device *dev;
dev = class_find_device_by_devt(class, devt);
if (dev) {
put_device(dev);
device_unregister(dev);
}
}
EXPORT_SYMBOL_GPL(device_destroy);
/**
* device_rename - renames a device
* @dev: the pointer to the struct device to be renamed
* @new_name: the new name of the device
*
* It is the responsibility of the caller to provide mutual
* exclusion between two different calls of device_rename
* on the same device to ensure that new_name is valid and
* won't conflict with other devices.
*
* Note: Don't call this function. Currently, the networking layer calls this
* function, but that will change. The following text from Kay Sievers offers
* some insight:
*
* Renaming devices is racy at many levels, symlinks and other stuff are not
* replaced atomically, and you get a "move" uevent, but it's not easy to
* connect the event to the old and new device. Device nodes are not renamed at
* all, there isn't even support for that in the kernel now.
*
* In the meantime, during renaming, your target name might be taken by another
* driver, creating conflicts. Or the old name is taken directly after you
* renamed it -- then you get events for the same DEVPATH, before you even see
* the "move" event. It's just a mess, and nothing new should ever rely on
* kernel device renaming. Besides that, it's not even implemented now for
* other things than (driver-core wise very simple) network devices.
*
* We are currently about to change network renaming in udev to completely
* disallow renaming of devices in the same namespace as the kernel uses,
* because we can't solve the problems properly, that arise with swapping names
* of multiple interfaces without races. Means, renaming of eth[0-9]* will only
* be allowed to some other name than eth[0-9]*, for the aforementioned
* reasons.
*
* Make up a "real" name in the driver before you register anything, or add
* some other attributes for userspace to find the device, or use udev to add
* symlinks -- but never rename kernel devices later, it's a complete mess. We
* don't even want to get into that and try to implement the missing pieces in
* the core. We really have other pieces to fix in the driver core mess. :)
*/
int device_rename(struct device *dev, const char *new_name)
{
struct kobject *kobj = &dev->kobj;
char *old_device_name = NULL;
int error;
dev = get_device(dev);
if (!dev)
return -EINVAL;
dev_dbg(dev, "renaming to %s\n", new_name);
old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
if (!old_device_name) {
error = -ENOMEM;
goto out;
}
if (dev->class) {
error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj,
kobj, old_device_name,
new_name, kobject_namespace(kobj));
if (error)
goto out;
}
error = kobject_rename(kobj, new_name);
if (error)
goto out;
out:
put_device(dev);
kfree(old_device_name);
return error;
}
EXPORT_SYMBOL_GPL(device_rename);
static int device_move_class_links(struct device *dev,
struct device *old_parent,
struct device *new_parent)
{
int error = 0;
if (old_parent)
sysfs_remove_link(&dev->kobj, "device");
if (new_parent)
error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
"device");
return error;
}
/**
* device_move - moves a device to a new parent
* @dev: the pointer to the struct device to be moved
* @new_parent: the new parent of the device (can be NULL)
* @dpm_order: how to reorder the dpm_list
*/
int device_move(struct device *dev, struct device *new_parent,
enum dpm_order dpm_order)
{
int error;
struct device *old_parent;
struct kobject *new_parent_kobj;
dev = get_device(dev);
if (!dev)
return -EINVAL;
device_pm_lock();
new_parent = get_device(new_parent);
new_parent_kobj = get_device_parent(dev, new_parent);
if (IS_ERR(new_parent_kobj)) {
error = PTR_ERR(new_parent_kobj);
put_device(new_parent);
goto out;
}
pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
__func__, new_parent ? dev_name(new_parent) : "<NULL>");
error = kobject_move(&dev->kobj, new_parent_kobj);
if (error) {
cleanup_glue_dir(dev, new_parent_kobj);
put_device(new_parent);
goto out;
}
old_parent = dev->parent;
dev->parent = new_parent;
if (old_parent)
klist_remove(&dev->p->knode_parent);
if (new_parent) {
klist_add_tail(&dev->p->knode_parent,
&new_parent->p->klist_children);
set_dev_node(dev, dev_to_node(new_parent));
}
if (dev->class) {
error = device_move_class_links(dev, old_parent, new_parent);
if (error) {
/* We ignore errors on cleanup since we're hosed anyway... */
device_move_class_links(dev, new_parent, old_parent);
if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
if (new_parent)
klist_remove(&dev->p->knode_parent);
dev->parent = old_parent;
if (old_parent) {
klist_add_tail(&dev->p->knode_parent,
&old_parent->p->klist_children);
set_dev_node(dev, dev_to_node(old_parent));
}
}
cleanup_glue_dir(dev, new_parent_kobj);
put_device(new_parent);
goto out;
}
}
switch (dpm_order) {
case DPM_ORDER_NONE:
break;
case DPM_ORDER_DEV_AFTER_PARENT:
device_pm_move_after(dev, new_parent);
devices_kset_move_after(dev, new_parent);
break;
case DPM_ORDER_PARENT_BEFORE_DEV:
device_pm_move_before(new_parent, dev);
devices_kset_move_before(new_parent, dev);
break;
case DPM_ORDER_DEV_LAST:
device_pm_move_last(dev);
devices_kset_move_last(dev);
break;
}
put_device(old_parent);
out:
device_pm_unlock();
put_device(dev);
return error;
}
EXPORT_SYMBOL_GPL(device_move);
static int device_attrs_change_owner(struct device *dev, kuid_t kuid,
kgid_t kgid)
{
struct kobject *kobj = &dev->kobj;
struct class *class = dev->class;
const struct device_type *type = dev->type;
int error;
if (class) {
/*
* Change the device groups of the device class for @dev to
* @kuid/@kgid.
*/
error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid,
kgid);
if (error)
return error;
}
if (type) {
/*
* Change the device groups of the device type for @dev to
* @kuid/@kgid.
*/
error = sysfs_groups_change_owner(kobj, type->groups, kuid,
kgid);
if (error)
return error;
}
/* Change the device groups of @dev to @kuid/@kgid. */
error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid);
if (error)
return error;
if (device_supports_offline(dev) && !dev->offline_disabled) {
/* Change online device attributes of @dev to @kuid/@kgid. */
error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name,
kuid, kgid);
if (error)
return error;
}
return 0;
}
/**
* device_change_owner - change the owner of an existing device.
* @dev: device.
* @kuid: new owner's kuid
* @kgid: new owner's kgid
*
* This changes the owner of @dev and its corresponding sysfs entries to
* @kuid/@kgid. This function closely mirrors how @dev was added via driver
* core.
*
* Returns 0 on success or error code on failure.
*/
int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid)
{
int error;
struct kobject *kobj = &dev->kobj;
dev = get_device(dev);
if (!dev)
return -EINVAL;
/*
* Change the kobject and the default attributes and groups of the
* ktype associated with it to @kuid/@kgid.
*/
error = sysfs_change_owner(kobj, kuid, kgid);
if (error)
goto out;
/*
* Change the uevent file for @dev to the new owner. The uevent file
* was created in a separate step when @dev got added and we mirror
* that step here.
*/
error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid,
kgid);
if (error)
goto out;
/*
* Change the device groups, the device groups associated with the
* device class, and the groups associated with the device type of @dev
* to @kuid/@kgid.
*/
error = device_attrs_change_owner(dev, kuid, kgid);
if (error)
goto out;
error = dpm_sysfs_change_owner(dev, kuid, kgid);
if (error)
goto out;
#ifdef CONFIG_BLOCK
if (sysfs_deprecated && dev->class == &block_class)
goto out;
#endif
/*
* Change the owner of the symlink located in the class directory of
* the device class associated with @dev which points to the actual
* directory entry for @dev to @kuid/@kgid. This ensures that the
* symlink shows the same permissions as its target.
*/
error = sysfs_link_change_owner(&dev->class->p->subsys.kobj, &dev->kobj,
dev_name(dev), kuid, kgid);
if (error)
goto out;
out:
put_device(dev);
return error;
}
EXPORT_SYMBOL_GPL(device_change_owner);
/**
* device_shutdown - call ->shutdown() on each device to shutdown.
*/
void device_shutdown(void)
{
struct device *dev, *parent;
wait_for_device_probe();
device_block_probing();
cpufreq_suspend();
spin_lock(&devices_kset->list_lock);
/*
* Walk the devices list backward, shutting down each in turn.
* Beware that device unplug events may also start pulling
* devices offline, even as the system is shutting down.
*/
while (!list_empty(&devices_kset->list)) {
dev = list_entry(devices_kset->list.prev, struct device,
kobj.entry);
/*
* hold reference count of device's parent to
* prevent it from being freed because parent's
* lock is to be held
*/
parent = get_device(dev->parent);
get_device(dev);
/*
* Make sure the device is off the kset list, in the
* event that dev->*->shutdown() doesn't remove it.
*/
list_del_init(&dev->kobj.entry);
spin_unlock(&devices_kset->list_lock);
/* hold lock to avoid race with probe/release */
if (parent)
device_lock(parent);
device_lock(dev);
/* Don't allow any more runtime suspends */
pm_runtime_get_noresume(dev);
pm_runtime_barrier(dev);
if (dev->class && dev->class->shutdown_pre) {
if (initcall_debug)
dev_info(dev, "shutdown_pre\n");
dev->class->shutdown_pre(dev);
}
if (dev->bus && dev->bus->shutdown) {
if (initcall_debug)
dev_info(dev, "shutdown\n");
dev->bus->shutdown(dev);
} else if (dev->driver && dev->driver->shutdown) {
if (initcall_debug)
dev_info(dev, "shutdown\n");
dev->driver->shutdown(dev);
}
device_unlock(dev);
if (parent)
device_unlock(parent);
put_device(dev);
put_device(parent);
spin_lock(&devices_kset->list_lock);
}
spin_unlock(&devices_kset->list_lock);
}
/*
* Device logging functions
*/
#ifdef CONFIG_PRINTK
static void
set_dev_info(const struct device *dev, struct dev_printk_info *dev_info)
{
const char *subsys;
memset(dev_info, 0, sizeof(*dev_info));
if (dev->class)
subsys = dev->class->name;
else if (dev->bus)
subsys = dev->bus->name;
else
return;
strscpy(dev_info->subsystem, subsys, sizeof(dev_info->subsystem));
/*
* Add device identifier DEVICE=:
* b12:8 block dev_t
* c127:3 char dev_t
* n8 netdev ifindex
* +sound:card0 subsystem:devname
*/
if (MAJOR(dev->devt)) {
char c;
if (strcmp(subsys, "block") == 0)
c = 'b';
else
c = 'c';
snprintf(dev_info->device, sizeof(dev_info->device),
"%c%u:%u", c, MAJOR(dev->devt), MINOR(dev->devt));
} else if (strcmp(subsys, "net") == 0) {
struct net_device *net = to_net_dev(dev);
snprintf(dev_info->device, sizeof(dev_info->device),
"n%u", net->ifindex);
} else {
snprintf(dev_info->device, sizeof(dev_info->device),
"+%s:%s", subsys, dev_name(dev));
}
}
int dev_vprintk_emit(int level, const struct device *dev,
const char *fmt, va_list args)
{
struct dev_printk_info dev_info;
set_dev_info(dev, &dev_info);
return vprintk_emit(0, level, &dev_info, fmt, args);
}
EXPORT_SYMBOL(dev_vprintk_emit);
int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
{
va_list args;
int r;
va_start(args, fmt);
r = dev_vprintk_emit(level, dev, fmt, args);
va_end(args);
return r;
}
EXPORT_SYMBOL(dev_printk_emit);
static void __dev_printk(const char *level, const struct device *dev,
struct va_format *vaf)
{
if (dev)
dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
dev_driver_string(dev), dev_name(dev), vaf);
else
printk("%s(NULL device *): %pV", level, vaf);
}
void dev_printk(const char *level, const struct device *dev,
const char *fmt, ...)
{
struct va_format vaf;
va_list args;
va_start(args, fmt);
vaf.fmt = fmt;
vaf.va = &args;
__dev_printk(level, dev, &vaf);
va_end(args);
}
EXPORT_SYMBOL(dev_printk);
#define define_dev_printk_level(func, kern_level) \
void func(const struct device *dev, const char *fmt, ...) \
{ \
struct va_format vaf; \
va_list args; \
\
va_start(args, fmt); \
\
vaf.fmt = fmt; \
vaf.va = &args; \
\
__dev_printk(kern_level, dev, &vaf); \
\
va_end(args); \
} \
EXPORT_SYMBOL(func);
define_dev_printk_level(_dev_emerg, KERN_EMERG);
define_dev_printk_level(_dev_alert, KERN_ALERT);
define_dev_printk_level(_dev_crit, KERN_CRIT);
define_dev_printk_level(_dev_err, KERN_ERR);
define_dev_printk_level(_dev_warn, KERN_WARNING);
define_dev_printk_level(_dev_notice, KERN_NOTICE);
define_dev_printk_level(_dev_info, KERN_INFO);
#endif
/**
* dev_err_probe - probe error check and log helper
* @dev: the pointer to the struct device
* @err: error value to test
* @fmt: printf-style format string
* @...: arguments as specified in the format string
*
* This helper implements common pattern present in probe functions for error
* checking: print debug or error message depending if the error value is
* -EPROBE_DEFER and propagate error upwards.
* In case of -EPROBE_DEFER it sets also defer probe reason, which can be
* checked later by reading devices_deferred debugfs attribute.
* It replaces code sequence::
*
* if (err != -EPROBE_DEFER)
* dev_err(dev, ...);
* else
* dev_dbg(dev, ...);
* return err;
*
* with::
*
* return dev_err_probe(dev, err, ...);
*
* Returns @err.
*
*/
int dev_err_probe(const struct device *dev, int err, const char *fmt, ...)
{
struct va_format vaf;
va_list args;
va_start(args, fmt);
vaf.fmt = fmt;
vaf.va = &args;
if (err != -EPROBE_DEFER) {
dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
} else {
device_set_deferred_probe_reason(dev, &vaf);
dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
}
va_end(args);
return err;
}
EXPORT_SYMBOL_GPL(dev_err_probe);
static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
{
return fwnode && !IS_ERR(fwnode->secondary);
}
/**
* set_primary_fwnode - Change the primary firmware node of a given device.
* @dev: Device to handle.
* @fwnode: New primary firmware node of the device.
*
* Set the device's firmware node pointer to @fwnode, but if a secondary
* firmware node of the device is present, preserve it.
*/
void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
{
struct device *parent = dev->parent;
struct fwnode_handle *fn = dev->fwnode;
if (fwnode) {
if (fwnode_is_primary(fn))
fn = fn->secondary;
if (fn) {
WARN_ON(fwnode->secondary);
fwnode->secondary = fn;
}
dev->fwnode = fwnode;
} else {
if (fwnode_is_primary(fn)) {
dev->fwnode = fn->secondary;
if (!(parent && fn == parent->fwnode))
fn->secondary = ERR_PTR(-ENODEV);
} else {
dev->fwnode = NULL;
}
}
}
EXPORT_SYMBOL_GPL(set_primary_fwnode);
/**
* set_secondary_fwnode - Change the secondary firmware node of a given device.
* @dev: Device to handle.
* @fwnode: New secondary firmware node of the device.
*
* If a primary firmware node of the device is present, set its secondary
* pointer to @fwnode. Otherwise, set the device's firmware node pointer to
* @fwnode.
*/
void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
{
if (fwnode)
fwnode->secondary = ERR_PTR(-ENODEV);
if (fwnode_is_primary(dev->fwnode))
dev->fwnode->secondary = fwnode;
else
dev->fwnode = fwnode;
}
EXPORT_SYMBOL_GPL(set_secondary_fwnode);
/**
* device_set_of_node_from_dev - reuse device-tree node of another device
* @dev: device whose device-tree node is being set
* @dev2: device whose device-tree node is being reused
*
* Takes another reference to the new device-tree node after first dropping
* any reference held to the old node.
*/
void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
{
of_node_put(dev->of_node);
dev->of_node = of_node_get(dev2->of_node);
dev->of_node_reused = true;
}
EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
int device_match_name(struct device *dev, const void *name)
{
return sysfs_streq(dev_name(dev), name);
}
EXPORT_SYMBOL_GPL(device_match_name);
int device_match_of_node(struct device *dev, const void *np)
{
return dev->of_node == np;
}
EXPORT_SYMBOL_GPL(device_match_of_node);
int device_match_fwnode(struct device *dev, const void *fwnode)
{
return dev_fwnode(dev) == fwnode;
}
EXPORT_SYMBOL_GPL(device_match_fwnode);
int device_match_devt(struct device *dev, const void *pdevt)
{
return dev->devt == *(dev_t *)pdevt;
}
EXPORT_SYMBOL_GPL(device_match_devt);
int device_match_acpi_dev(struct device *dev, const void *adev)
{
return ACPI_COMPANION(dev) == adev;
}
EXPORT_SYMBOL(device_match_acpi_dev);
int device_match_any(struct device *dev, const void *unused)
{
return 1;
}
EXPORT_SYMBOL_GPL(device_match_any);