linux/arch/s390/kernel/ptrace.c
Martin Schwidefsky ef280c859f s390: move sys_call_table and last_break from thread_info to thread_struct
Move the last two architecture specific fields from the thread_info
structure to the thread_struct. All that is left in thread_info is
the flags field.

Reviewed-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2016-11-15 16:48:20 +01:00

1492 lines
40 KiB
C

/*
* Ptrace user space interface.
*
* Copyright IBM Corp. 1999, 2010
* Author(s): Denis Joseph Barrow
* Martin Schwidefsky (schwidefsky@de.ibm.com)
*/
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/mm.h>
#include <linux/smp.h>
#include <linux/errno.h>
#include <linux/ptrace.h>
#include <linux/user.h>
#include <linux/security.h>
#include <linux/audit.h>
#include <linux/signal.h>
#include <linux/elf.h>
#include <linux/regset.h>
#include <linux/tracehook.h>
#include <linux/seccomp.h>
#include <linux/compat.h>
#include <trace/syscall.h>
#include <asm/segment.h>
#include <asm/page.h>
#include <asm/pgtable.h>
#include <asm/pgalloc.h>
#include <asm/uaccess.h>
#include <asm/unistd.h>
#include <asm/switch_to.h>
#include "entry.h"
#ifdef CONFIG_COMPAT
#include "compat_ptrace.h"
#endif
#define CREATE_TRACE_POINTS
#include <trace/events/syscalls.h>
void update_cr_regs(struct task_struct *task)
{
struct pt_regs *regs = task_pt_regs(task);
struct thread_struct *thread = &task->thread;
struct per_regs old, new;
/* Take care of the enable/disable of transactional execution. */
if (MACHINE_HAS_TE) {
unsigned long cr, cr_new;
__ctl_store(cr, 0, 0);
/* Set or clear transaction execution TXC bit 8. */
cr_new = cr | (1UL << 55);
if (task->thread.per_flags & PER_FLAG_NO_TE)
cr_new &= ~(1UL << 55);
if (cr_new != cr)
__ctl_load(cr_new, 0, 0);
/* Set or clear transaction execution TDC bits 62 and 63. */
__ctl_store(cr, 2, 2);
cr_new = cr & ~3UL;
if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND) {
if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND_TEND)
cr_new |= 1UL;
else
cr_new |= 2UL;
}
if (cr_new != cr)
__ctl_load(cr_new, 2, 2);
}
/* Copy user specified PER registers */
new.control = thread->per_user.control;
new.start = thread->per_user.start;
new.end = thread->per_user.end;
/* merge TIF_SINGLE_STEP into user specified PER registers. */
if (test_tsk_thread_flag(task, TIF_SINGLE_STEP) ||
test_tsk_thread_flag(task, TIF_UPROBE_SINGLESTEP)) {
if (test_tsk_thread_flag(task, TIF_BLOCK_STEP))
new.control |= PER_EVENT_BRANCH;
else
new.control |= PER_EVENT_IFETCH;
new.control |= PER_CONTROL_SUSPENSION;
new.control |= PER_EVENT_TRANSACTION_END;
if (test_tsk_thread_flag(task, TIF_UPROBE_SINGLESTEP))
new.control |= PER_EVENT_IFETCH;
new.start = 0;
new.end = -1UL;
}
/* Take care of the PER enablement bit in the PSW. */
if (!(new.control & PER_EVENT_MASK)) {
regs->psw.mask &= ~PSW_MASK_PER;
return;
}
regs->psw.mask |= PSW_MASK_PER;
__ctl_store(old, 9, 11);
if (memcmp(&new, &old, sizeof(struct per_regs)) != 0)
__ctl_load(new, 9, 11);
}
void user_enable_single_step(struct task_struct *task)
{
clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
set_tsk_thread_flag(task, TIF_SINGLE_STEP);
}
void user_disable_single_step(struct task_struct *task)
{
clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
}
void user_enable_block_step(struct task_struct *task)
{
set_tsk_thread_flag(task, TIF_SINGLE_STEP);
set_tsk_thread_flag(task, TIF_BLOCK_STEP);
}
/*
* Called by kernel/ptrace.c when detaching..
*
* Clear all debugging related fields.
*/
void ptrace_disable(struct task_struct *task)
{
memset(&task->thread.per_user, 0, sizeof(task->thread.per_user));
memset(&task->thread.per_event, 0, sizeof(task->thread.per_event));
clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
clear_pt_regs_flag(task_pt_regs(task), PIF_PER_TRAP);
task->thread.per_flags = 0;
}
#define __ADDR_MASK 7
static inline unsigned long __peek_user_per(struct task_struct *child,
addr_t addr)
{
struct per_struct_kernel *dummy = NULL;
if (addr == (addr_t) &dummy->cr9)
/* Control bits of the active per set. */
return test_thread_flag(TIF_SINGLE_STEP) ?
PER_EVENT_IFETCH : child->thread.per_user.control;
else if (addr == (addr_t) &dummy->cr10)
/* Start address of the active per set. */
return test_thread_flag(TIF_SINGLE_STEP) ?
0 : child->thread.per_user.start;
else if (addr == (addr_t) &dummy->cr11)
/* End address of the active per set. */
return test_thread_flag(TIF_SINGLE_STEP) ?
-1UL : child->thread.per_user.end;
else if (addr == (addr_t) &dummy->bits)
/* Single-step bit. */
return test_thread_flag(TIF_SINGLE_STEP) ?
(1UL << (BITS_PER_LONG - 1)) : 0;
else if (addr == (addr_t) &dummy->starting_addr)
/* Start address of the user specified per set. */
return child->thread.per_user.start;
else if (addr == (addr_t) &dummy->ending_addr)
/* End address of the user specified per set. */
return child->thread.per_user.end;
else if (addr == (addr_t) &dummy->perc_atmid)
/* PER code, ATMID and AI of the last PER trap */
return (unsigned long)
child->thread.per_event.cause << (BITS_PER_LONG - 16);
else if (addr == (addr_t) &dummy->address)
/* Address of the last PER trap */
return child->thread.per_event.address;
else if (addr == (addr_t) &dummy->access_id)
/* Access id of the last PER trap */
return (unsigned long)
child->thread.per_event.paid << (BITS_PER_LONG - 8);
return 0;
}
/*
* Read the word at offset addr from the user area of a process. The
* trouble here is that the information is littered over different
* locations. The process registers are found on the kernel stack,
* the floating point stuff and the trace settings are stored in
* the task structure. In addition the different structures in
* struct user contain pad bytes that should be read as zeroes.
* Lovely...
*/
static unsigned long __peek_user(struct task_struct *child, addr_t addr)
{
struct user *dummy = NULL;
addr_t offset, tmp;
if (addr < (addr_t) &dummy->regs.acrs) {
/*
* psw and gprs are stored on the stack
*/
tmp = *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr);
if (addr == (addr_t) &dummy->regs.psw.mask) {
/* Return a clean psw mask. */
tmp &= PSW_MASK_USER | PSW_MASK_RI;
tmp |= PSW_USER_BITS;
}
} else if (addr < (addr_t) &dummy->regs.orig_gpr2) {
/*
* access registers are stored in the thread structure
*/
offset = addr - (addr_t) &dummy->regs.acrs;
/*
* Very special case: old & broken 64 bit gdb reading
* from acrs[15]. Result is a 64 bit value. Read the
* 32 bit acrs[15] value and shift it by 32. Sick...
*/
if (addr == (addr_t) &dummy->regs.acrs[15])
tmp = ((unsigned long) child->thread.acrs[15]) << 32;
else
tmp = *(addr_t *)((addr_t) &child->thread.acrs + offset);
} else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
/*
* orig_gpr2 is stored on the kernel stack
*/
tmp = (addr_t) task_pt_regs(child)->orig_gpr2;
} else if (addr < (addr_t) &dummy->regs.fp_regs) {
/*
* prevent reads of padding hole between
* orig_gpr2 and fp_regs on s390.
*/
tmp = 0;
} else if (addr == (addr_t) &dummy->regs.fp_regs.fpc) {
/*
* floating point control reg. is in the thread structure
*/
tmp = child->thread.fpu.fpc;
tmp <<= BITS_PER_LONG - 32;
} else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
/*
* floating point regs. are either in child->thread.fpu
* or the child->thread.fpu.vxrs array
*/
offset = addr - (addr_t) &dummy->regs.fp_regs.fprs;
if (MACHINE_HAS_VX)
tmp = *(addr_t *)
((addr_t) child->thread.fpu.vxrs + 2*offset);
else
tmp = *(addr_t *)
((addr_t) child->thread.fpu.fprs + offset);
} else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
/*
* Handle access to the per_info structure.
*/
addr -= (addr_t) &dummy->regs.per_info;
tmp = __peek_user_per(child, addr);
} else
tmp = 0;
return tmp;
}
static int
peek_user(struct task_struct *child, addr_t addr, addr_t data)
{
addr_t tmp, mask;
/*
* Stupid gdb peeks/pokes the access registers in 64 bit with
* an alignment of 4. Programmers from hell...
*/
mask = __ADDR_MASK;
if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
mask = 3;
if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
return -EIO;
tmp = __peek_user(child, addr);
return put_user(tmp, (addr_t __user *) data);
}
static inline void __poke_user_per(struct task_struct *child,
addr_t addr, addr_t data)
{
struct per_struct_kernel *dummy = NULL;
/*
* There are only three fields in the per_info struct that the
* debugger user can write to.
* 1) cr9: the debugger wants to set a new PER event mask
* 2) starting_addr: the debugger wants to set a new starting
* address to use with the PER event mask.
* 3) ending_addr: the debugger wants to set a new ending
* address to use with the PER event mask.
* The user specified PER event mask and the start and end
* addresses are used only if single stepping is not in effect.
* Writes to any other field in per_info are ignored.
*/
if (addr == (addr_t) &dummy->cr9)
/* PER event mask of the user specified per set. */
child->thread.per_user.control =
data & (PER_EVENT_MASK | PER_CONTROL_MASK);
else if (addr == (addr_t) &dummy->starting_addr)
/* Starting address of the user specified per set. */
child->thread.per_user.start = data;
else if (addr == (addr_t) &dummy->ending_addr)
/* Ending address of the user specified per set. */
child->thread.per_user.end = data;
}
/*
* Write a word to the user area of a process at location addr. This
* operation does have an additional problem compared to peek_user.
* Stores to the program status word and on the floating point
* control register needs to get checked for validity.
*/
static int __poke_user(struct task_struct *child, addr_t addr, addr_t data)
{
struct user *dummy = NULL;
addr_t offset;
if (addr < (addr_t) &dummy->regs.acrs) {
/*
* psw and gprs are stored on the stack
*/
if (addr == (addr_t) &dummy->regs.psw.mask) {
unsigned long mask = PSW_MASK_USER;
mask |= is_ri_task(child) ? PSW_MASK_RI : 0;
if ((data ^ PSW_USER_BITS) & ~mask)
/* Invalid psw mask. */
return -EINVAL;
if ((data & PSW_MASK_ASC) == PSW_ASC_HOME)
/* Invalid address-space-control bits */
return -EINVAL;
if ((data & PSW_MASK_EA) && !(data & PSW_MASK_BA))
/* Invalid addressing mode bits */
return -EINVAL;
}
*(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr) = data;
} else if (addr < (addr_t) (&dummy->regs.orig_gpr2)) {
/*
* access registers are stored in the thread structure
*/
offset = addr - (addr_t) &dummy->regs.acrs;
/*
* Very special case: old & broken 64 bit gdb writing
* to acrs[15] with a 64 bit value. Ignore the lower
* half of the value and write the upper 32 bit to
* acrs[15]. Sick...
*/
if (addr == (addr_t) &dummy->regs.acrs[15])
child->thread.acrs[15] = (unsigned int) (data >> 32);
else
*(addr_t *)((addr_t) &child->thread.acrs + offset) = data;
} else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
/*
* orig_gpr2 is stored on the kernel stack
*/
task_pt_regs(child)->orig_gpr2 = data;
} else if (addr < (addr_t) &dummy->regs.fp_regs) {
/*
* prevent writes of padding hole between
* orig_gpr2 and fp_regs on s390.
*/
return 0;
} else if (addr == (addr_t) &dummy->regs.fp_regs.fpc) {
/*
* floating point control reg. is in the thread structure
*/
if ((unsigned int) data != 0 ||
test_fp_ctl(data >> (BITS_PER_LONG - 32)))
return -EINVAL;
child->thread.fpu.fpc = data >> (BITS_PER_LONG - 32);
} else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
/*
* floating point regs. are either in child->thread.fpu
* or the child->thread.fpu.vxrs array
*/
offset = addr - (addr_t) &dummy->regs.fp_regs.fprs;
if (MACHINE_HAS_VX)
*(addr_t *)((addr_t)
child->thread.fpu.vxrs + 2*offset) = data;
else
*(addr_t *)((addr_t)
child->thread.fpu.fprs + offset) = data;
} else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
/*
* Handle access to the per_info structure.
*/
addr -= (addr_t) &dummy->regs.per_info;
__poke_user_per(child, addr, data);
}
return 0;
}
static int poke_user(struct task_struct *child, addr_t addr, addr_t data)
{
addr_t mask;
/*
* Stupid gdb peeks/pokes the access registers in 64 bit with
* an alignment of 4. Programmers from hell indeed...
*/
mask = __ADDR_MASK;
if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
mask = 3;
if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
return -EIO;
return __poke_user(child, addr, data);
}
long arch_ptrace(struct task_struct *child, long request,
unsigned long addr, unsigned long data)
{
ptrace_area parea;
int copied, ret;
switch (request) {
case PTRACE_PEEKUSR:
/* read the word at location addr in the USER area. */
return peek_user(child, addr, data);
case PTRACE_POKEUSR:
/* write the word at location addr in the USER area */
return poke_user(child, addr, data);
case PTRACE_PEEKUSR_AREA:
case PTRACE_POKEUSR_AREA:
if (copy_from_user(&parea, (void __force __user *) addr,
sizeof(parea)))
return -EFAULT;
addr = parea.kernel_addr;
data = parea.process_addr;
copied = 0;
while (copied < parea.len) {
if (request == PTRACE_PEEKUSR_AREA)
ret = peek_user(child, addr, data);
else {
addr_t utmp;
if (get_user(utmp,
(addr_t __force __user *) data))
return -EFAULT;
ret = poke_user(child, addr, utmp);
}
if (ret)
return ret;
addr += sizeof(unsigned long);
data += sizeof(unsigned long);
copied += sizeof(unsigned long);
}
return 0;
case PTRACE_GET_LAST_BREAK:
put_user(child->thread.last_break,
(unsigned long __user *) data);
return 0;
case PTRACE_ENABLE_TE:
if (!MACHINE_HAS_TE)
return -EIO;
child->thread.per_flags &= ~PER_FLAG_NO_TE;
return 0;
case PTRACE_DISABLE_TE:
if (!MACHINE_HAS_TE)
return -EIO;
child->thread.per_flags |= PER_FLAG_NO_TE;
child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
return 0;
case PTRACE_TE_ABORT_RAND:
if (!MACHINE_HAS_TE || (child->thread.per_flags & PER_FLAG_NO_TE))
return -EIO;
switch (data) {
case 0UL:
child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
break;
case 1UL:
child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND_TEND;
break;
case 2UL:
child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND_TEND;
break;
default:
return -EINVAL;
}
return 0;
default:
return ptrace_request(child, request, addr, data);
}
}
#ifdef CONFIG_COMPAT
/*
* Now the fun part starts... a 31 bit program running in the
* 31 bit emulation tracing another program. PTRACE_PEEKTEXT,
* PTRACE_PEEKDATA, PTRACE_POKETEXT and PTRACE_POKEDATA are easy
* to handle, the difference to the 64 bit versions of the requests
* is that the access is done in multiples of 4 byte instead of
* 8 bytes (sizeof(unsigned long) on 31/64 bit).
* The ugly part are PTRACE_PEEKUSR, PTRACE_PEEKUSR_AREA,
* PTRACE_POKEUSR and PTRACE_POKEUSR_AREA. If the traced program
* is a 31 bit program too, the content of struct user can be
* emulated. A 31 bit program peeking into the struct user of
* a 64 bit program is a no-no.
*/
/*
* Same as peek_user_per but for a 31 bit program.
*/
static inline __u32 __peek_user_per_compat(struct task_struct *child,
addr_t addr)
{
struct compat_per_struct_kernel *dummy32 = NULL;
if (addr == (addr_t) &dummy32->cr9)
/* Control bits of the active per set. */
return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
PER_EVENT_IFETCH : child->thread.per_user.control;
else if (addr == (addr_t) &dummy32->cr10)
/* Start address of the active per set. */
return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
0 : child->thread.per_user.start;
else if (addr == (addr_t) &dummy32->cr11)
/* End address of the active per set. */
return test_thread_flag(TIF_SINGLE_STEP) ?
PSW32_ADDR_INSN : child->thread.per_user.end;
else if (addr == (addr_t) &dummy32->bits)
/* Single-step bit. */
return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
0x80000000 : 0;
else if (addr == (addr_t) &dummy32->starting_addr)
/* Start address of the user specified per set. */
return (__u32) child->thread.per_user.start;
else if (addr == (addr_t) &dummy32->ending_addr)
/* End address of the user specified per set. */
return (__u32) child->thread.per_user.end;
else if (addr == (addr_t) &dummy32->perc_atmid)
/* PER code, ATMID and AI of the last PER trap */
return (__u32) child->thread.per_event.cause << 16;
else if (addr == (addr_t) &dummy32->address)
/* Address of the last PER trap */
return (__u32) child->thread.per_event.address;
else if (addr == (addr_t) &dummy32->access_id)
/* Access id of the last PER trap */
return (__u32) child->thread.per_event.paid << 24;
return 0;
}
/*
* Same as peek_user but for a 31 bit program.
*/
static u32 __peek_user_compat(struct task_struct *child, addr_t addr)
{
struct compat_user *dummy32 = NULL;
addr_t offset;
__u32 tmp;
if (addr < (addr_t) &dummy32->regs.acrs) {
struct pt_regs *regs = task_pt_regs(child);
/*
* psw and gprs are stored on the stack
*/
if (addr == (addr_t) &dummy32->regs.psw.mask) {
/* Fake a 31 bit psw mask. */
tmp = (__u32)(regs->psw.mask >> 32);
tmp &= PSW32_MASK_USER | PSW32_MASK_RI;
tmp |= PSW32_USER_BITS;
} else if (addr == (addr_t) &dummy32->regs.psw.addr) {
/* Fake a 31 bit psw address. */
tmp = (__u32) regs->psw.addr |
(__u32)(regs->psw.mask & PSW_MASK_BA);
} else {
/* gpr 0-15 */
tmp = *(__u32 *)((addr_t) &regs->psw + addr*2 + 4);
}
} else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
/*
* access registers are stored in the thread structure
*/
offset = addr - (addr_t) &dummy32->regs.acrs;
tmp = *(__u32*)((addr_t) &child->thread.acrs + offset);
} else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
/*
* orig_gpr2 is stored on the kernel stack
*/
tmp = *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4);
} else if (addr < (addr_t) &dummy32->regs.fp_regs) {
/*
* prevent reads of padding hole between
* orig_gpr2 and fp_regs on s390.
*/
tmp = 0;
} else if (addr == (addr_t) &dummy32->regs.fp_regs.fpc) {
/*
* floating point control reg. is in the thread structure
*/
tmp = child->thread.fpu.fpc;
} else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
/*
* floating point regs. are either in child->thread.fpu
* or the child->thread.fpu.vxrs array
*/
offset = addr - (addr_t) &dummy32->regs.fp_regs.fprs;
if (MACHINE_HAS_VX)
tmp = *(__u32 *)
((addr_t) child->thread.fpu.vxrs + 2*offset);
else
tmp = *(__u32 *)
((addr_t) child->thread.fpu.fprs + offset);
} else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
/*
* Handle access to the per_info structure.
*/
addr -= (addr_t) &dummy32->regs.per_info;
tmp = __peek_user_per_compat(child, addr);
} else
tmp = 0;
return tmp;
}
static int peek_user_compat(struct task_struct *child,
addr_t addr, addr_t data)
{
__u32 tmp;
if (!is_compat_task() || (addr & 3) || addr > sizeof(struct user) - 3)
return -EIO;
tmp = __peek_user_compat(child, addr);
return put_user(tmp, (__u32 __user *) data);
}
/*
* Same as poke_user_per but for a 31 bit program.
*/
static inline void __poke_user_per_compat(struct task_struct *child,
addr_t addr, __u32 data)
{
struct compat_per_struct_kernel *dummy32 = NULL;
if (addr == (addr_t) &dummy32->cr9)
/* PER event mask of the user specified per set. */
child->thread.per_user.control =
data & (PER_EVENT_MASK | PER_CONTROL_MASK);
else if (addr == (addr_t) &dummy32->starting_addr)
/* Starting address of the user specified per set. */
child->thread.per_user.start = data;
else if (addr == (addr_t) &dummy32->ending_addr)
/* Ending address of the user specified per set. */
child->thread.per_user.end = data;
}
/*
* Same as poke_user but for a 31 bit program.
*/
static int __poke_user_compat(struct task_struct *child,
addr_t addr, addr_t data)
{
struct compat_user *dummy32 = NULL;
__u32 tmp = (__u32) data;
addr_t offset;
if (addr < (addr_t) &dummy32->regs.acrs) {
struct pt_regs *regs = task_pt_regs(child);
/*
* psw, gprs, acrs and orig_gpr2 are stored on the stack
*/
if (addr == (addr_t) &dummy32->regs.psw.mask) {
__u32 mask = PSW32_MASK_USER;
mask |= is_ri_task(child) ? PSW32_MASK_RI : 0;
/* Build a 64 bit psw mask from 31 bit mask. */
if ((tmp ^ PSW32_USER_BITS) & ~mask)
/* Invalid psw mask. */
return -EINVAL;
if ((data & PSW32_MASK_ASC) == PSW32_ASC_HOME)
/* Invalid address-space-control bits */
return -EINVAL;
regs->psw.mask = (regs->psw.mask & ~PSW_MASK_USER) |
(regs->psw.mask & PSW_MASK_BA) |
(__u64)(tmp & mask) << 32;
} else if (addr == (addr_t) &dummy32->regs.psw.addr) {
/* Build a 64 bit psw address from 31 bit address. */
regs->psw.addr = (__u64) tmp & PSW32_ADDR_INSN;
/* Transfer 31 bit amode bit to psw mask. */
regs->psw.mask = (regs->psw.mask & ~PSW_MASK_BA) |
(__u64)(tmp & PSW32_ADDR_AMODE);
} else {
/* gpr 0-15 */
*(__u32*)((addr_t) &regs->psw + addr*2 + 4) = tmp;
}
} else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
/*
* access registers are stored in the thread structure
*/
offset = addr - (addr_t) &dummy32->regs.acrs;
*(__u32*)((addr_t) &child->thread.acrs + offset) = tmp;
} else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
/*
* orig_gpr2 is stored on the kernel stack
*/
*(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4) = tmp;
} else if (addr < (addr_t) &dummy32->regs.fp_regs) {
/*
* prevent writess of padding hole between
* orig_gpr2 and fp_regs on s390.
*/
return 0;
} else if (addr == (addr_t) &dummy32->regs.fp_regs.fpc) {
/*
* floating point control reg. is in the thread structure
*/
if (test_fp_ctl(tmp))
return -EINVAL;
child->thread.fpu.fpc = data;
} else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
/*
* floating point regs. are either in child->thread.fpu
* or the child->thread.fpu.vxrs array
*/
offset = addr - (addr_t) &dummy32->regs.fp_regs.fprs;
if (MACHINE_HAS_VX)
*(__u32 *)((addr_t)
child->thread.fpu.vxrs + 2*offset) = tmp;
else
*(__u32 *)((addr_t)
child->thread.fpu.fprs + offset) = tmp;
} else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
/*
* Handle access to the per_info structure.
*/
addr -= (addr_t) &dummy32->regs.per_info;
__poke_user_per_compat(child, addr, data);
}
return 0;
}
static int poke_user_compat(struct task_struct *child,
addr_t addr, addr_t data)
{
if (!is_compat_task() || (addr & 3) ||
addr > sizeof(struct compat_user) - 3)
return -EIO;
return __poke_user_compat(child, addr, data);
}
long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
compat_ulong_t caddr, compat_ulong_t cdata)
{
unsigned long addr = caddr;
unsigned long data = cdata;
compat_ptrace_area parea;
int copied, ret;
switch (request) {
case PTRACE_PEEKUSR:
/* read the word at location addr in the USER area. */
return peek_user_compat(child, addr, data);
case PTRACE_POKEUSR:
/* write the word at location addr in the USER area */
return poke_user_compat(child, addr, data);
case PTRACE_PEEKUSR_AREA:
case PTRACE_POKEUSR_AREA:
if (copy_from_user(&parea, (void __force __user *) addr,
sizeof(parea)))
return -EFAULT;
addr = parea.kernel_addr;
data = parea.process_addr;
copied = 0;
while (copied < parea.len) {
if (request == PTRACE_PEEKUSR_AREA)
ret = peek_user_compat(child, addr, data);
else {
__u32 utmp;
if (get_user(utmp,
(__u32 __force __user *) data))
return -EFAULT;
ret = poke_user_compat(child, addr, utmp);
}
if (ret)
return ret;
addr += sizeof(unsigned int);
data += sizeof(unsigned int);
copied += sizeof(unsigned int);
}
return 0;
case PTRACE_GET_LAST_BREAK:
put_user(child->thread.last_break,
(unsigned int __user *) data);
return 0;
}
return compat_ptrace_request(child, request, addr, data);
}
#endif
asmlinkage long do_syscall_trace_enter(struct pt_regs *regs)
{
unsigned long mask = -1UL;
/*
* The sysc_tracesys code in entry.S stored the system
* call number to gprs[2].
*/
if (test_thread_flag(TIF_SYSCALL_TRACE) &&
(tracehook_report_syscall_entry(regs) ||
regs->gprs[2] >= NR_syscalls)) {
/*
* Tracing decided this syscall should not happen or the
* debugger stored an invalid system call number. Skip
* the system call and the system call restart handling.
*/
clear_pt_regs_flag(regs, PIF_SYSCALL);
return -1;
}
/* Do the secure computing check after ptrace. */
if (secure_computing(NULL)) {
/* seccomp failures shouldn't expose any additional code. */
return -1;
}
if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
trace_sys_enter(regs, regs->gprs[2]);
if (is_compat_task())
mask = 0xffffffff;
audit_syscall_entry(regs->gprs[2], regs->orig_gpr2 & mask,
regs->gprs[3] &mask, regs->gprs[4] &mask,
regs->gprs[5] &mask);
return regs->gprs[2];
}
asmlinkage void do_syscall_trace_exit(struct pt_regs *regs)
{
audit_syscall_exit(regs);
if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
trace_sys_exit(regs, regs->gprs[2]);
if (test_thread_flag(TIF_SYSCALL_TRACE))
tracehook_report_syscall_exit(regs, 0);
}
/*
* user_regset definitions.
*/
static int s390_regs_get(struct task_struct *target,
const struct user_regset *regset,
unsigned int pos, unsigned int count,
void *kbuf, void __user *ubuf)
{
if (target == current)
save_access_regs(target->thread.acrs);
if (kbuf) {
unsigned long *k = kbuf;
while (count > 0) {
*k++ = __peek_user(target, pos);
count -= sizeof(*k);
pos += sizeof(*k);
}
} else {
unsigned long __user *u = ubuf;
while (count > 0) {
if (__put_user(__peek_user(target, pos), u++))
return -EFAULT;
count -= sizeof(*u);
pos += sizeof(*u);
}
}
return 0;
}
static int s390_regs_set(struct task_struct *target,
const struct user_regset *regset,
unsigned int pos, unsigned int count,
const void *kbuf, const void __user *ubuf)
{
int rc = 0;
if (target == current)
save_access_regs(target->thread.acrs);
if (kbuf) {
const unsigned long *k = kbuf;
while (count > 0 && !rc) {
rc = __poke_user(target, pos, *k++);
count -= sizeof(*k);
pos += sizeof(*k);
}
} else {
const unsigned long __user *u = ubuf;
while (count > 0 && !rc) {
unsigned long word;
rc = __get_user(word, u++);
if (rc)
break;
rc = __poke_user(target, pos, word);
count -= sizeof(*u);
pos += sizeof(*u);
}
}
if (rc == 0 && target == current)
restore_access_regs(target->thread.acrs);
return rc;
}
static int s390_fpregs_get(struct task_struct *target,
const struct user_regset *regset, unsigned int pos,
unsigned int count, void *kbuf, void __user *ubuf)
{
_s390_fp_regs fp_regs;
if (target == current)
save_fpu_regs();
fp_regs.fpc = target->thread.fpu.fpc;
fpregs_store(&fp_regs, &target->thread.fpu);
return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
&fp_regs, 0, -1);
}
static int s390_fpregs_set(struct task_struct *target,
const struct user_regset *regset, unsigned int pos,
unsigned int count, const void *kbuf,
const void __user *ubuf)
{
int rc = 0;
freg_t fprs[__NUM_FPRS];
if (target == current)
save_fpu_regs();
/* If setting FPC, must validate it first. */
if (count > 0 && pos < offsetof(s390_fp_regs, fprs)) {
u32 ufpc[2] = { target->thread.fpu.fpc, 0 };
rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ufpc,
0, offsetof(s390_fp_regs, fprs));
if (rc)
return rc;
if (ufpc[1] != 0 || test_fp_ctl(ufpc[0]))
return -EINVAL;
target->thread.fpu.fpc = ufpc[0];
}
if (rc == 0 && count > 0)
rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
fprs, offsetof(s390_fp_regs, fprs), -1);
if (rc)
return rc;
if (MACHINE_HAS_VX)
convert_fp_to_vx(target->thread.fpu.vxrs, fprs);
else
memcpy(target->thread.fpu.fprs, &fprs, sizeof(fprs));
return rc;
}
static int s390_last_break_get(struct task_struct *target,
const struct user_regset *regset,
unsigned int pos, unsigned int count,
void *kbuf, void __user *ubuf)
{
if (count > 0) {
if (kbuf) {
unsigned long *k = kbuf;
*k = target->thread.last_break;
} else {
unsigned long __user *u = ubuf;
if (__put_user(target->thread.last_break, u))
return -EFAULT;
}
}
return 0;
}
static int s390_last_break_set(struct task_struct *target,
const struct user_regset *regset,
unsigned int pos, unsigned int count,
const void *kbuf, const void __user *ubuf)
{
return 0;
}
static int s390_tdb_get(struct task_struct *target,
const struct user_regset *regset,
unsigned int pos, unsigned int count,
void *kbuf, void __user *ubuf)
{
struct pt_regs *regs = task_pt_regs(target);
unsigned char *data;
if (!(regs->int_code & 0x200))
return -ENODATA;
data = target->thread.trap_tdb;
return user_regset_copyout(&pos, &count, &kbuf, &ubuf, data, 0, 256);
}
static int s390_tdb_set(struct task_struct *target,
const struct user_regset *regset,
unsigned int pos, unsigned int count,
const void *kbuf, const void __user *ubuf)
{
return 0;
}
static int s390_vxrs_low_get(struct task_struct *target,
const struct user_regset *regset,
unsigned int pos, unsigned int count,
void *kbuf, void __user *ubuf)
{
__u64 vxrs[__NUM_VXRS_LOW];
int i;
if (!MACHINE_HAS_VX)
return -ENODEV;
if (target == current)
save_fpu_regs();
for (i = 0; i < __NUM_VXRS_LOW; i++)
vxrs[i] = *((__u64 *)(target->thread.fpu.vxrs + i) + 1);
return user_regset_copyout(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1);
}
static int s390_vxrs_low_set(struct task_struct *target,
const struct user_regset *regset,
unsigned int pos, unsigned int count,
const void *kbuf, const void __user *ubuf)
{
__u64 vxrs[__NUM_VXRS_LOW];
int i, rc;
if (!MACHINE_HAS_VX)
return -ENODEV;
if (target == current)
save_fpu_regs();
rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1);
if (rc == 0)
for (i = 0; i < __NUM_VXRS_LOW; i++)
*((__u64 *)(target->thread.fpu.vxrs + i) + 1) = vxrs[i];
return rc;
}
static int s390_vxrs_high_get(struct task_struct *target,
const struct user_regset *regset,
unsigned int pos, unsigned int count,
void *kbuf, void __user *ubuf)
{
__vector128 vxrs[__NUM_VXRS_HIGH];
if (!MACHINE_HAS_VX)
return -ENODEV;
if (target == current)
save_fpu_regs();
memcpy(vxrs, target->thread.fpu.vxrs + __NUM_VXRS_LOW, sizeof(vxrs));
return user_regset_copyout(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1);
}
static int s390_vxrs_high_set(struct task_struct *target,
const struct user_regset *regset,
unsigned int pos, unsigned int count,
const void *kbuf, const void __user *ubuf)
{
int rc;
if (!MACHINE_HAS_VX)
return -ENODEV;
if (target == current)
save_fpu_regs();
rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
target->thread.fpu.vxrs + __NUM_VXRS_LOW, 0, -1);
return rc;
}
static int s390_system_call_get(struct task_struct *target,
const struct user_regset *regset,
unsigned int pos, unsigned int count,
void *kbuf, void __user *ubuf)
{
unsigned int *data = &target->thread.system_call;
return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
data, 0, sizeof(unsigned int));
}
static int s390_system_call_set(struct task_struct *target,
const struct user_regset *regset,
unsigned int pos, unsigned int count,
const void *kbuf, const void __user *ubuf)
{
unsigned int *data = &target->thread.system_call;
return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
data, 0, sizeof(unsigned int));
}
static const struct user_regset s390_regsets[] = {
{
.core_note_type = NT_PRSTATUS,
.n = sizeof(s390_regs) / sizeof(long),
.size = sizeof(long),
.align = sizeof(long),
.get = s390_regs_get,
.set = s390_regs_set,
},
{
.core_note_type = NT_PRFPREG,
.n = sizeof(s390_fp_regs) / sizeof(long),
.size = sizeof(long),
.align = sizeof(long),
.get = s390_fpregs_get,
.set = s390_fpregs_set,
},
{
.core_note_type = NT_S390_SYSTEM_CALL,
.n = 1,
.size = sizeof(unsigned int),
.align = sizeof(unsigned int),
.get = s390_system_call_get,
.set = s390_system_call_set,
},
{
.core_note_type = NT_S390_LAST_BREAK,
.n = 1,
.size = sizeof(long),
.align = sizeof(long),
.get = s390_last_break_get,
.set = s390_last_break_set,
},
{
.core_note_type = NT_S390_TDB,
.n = 1,
.size = 256,
.align = 1,
.get = s390_tdb_get,
.set = s390_tdb_set,
},
{
.core_note_type = NT_S390_VXRS_LOW,
.n = __NUM_VXRS_LOW,
.size = sizeof(__u64),
.align = sizeof(__u64),
.get = s390_vxrs_low_get,
.set = s390_vxrs_low_set,
},
{
.core_note_type = NT_S390_VXRS_HIGH,
.n = __NUM_VXRS_HIGH,
.size = sizeof(__vector128),
.align = sizeof(__vector128),
.get = s390_vxrs_high_get,
.set = s390_vxrs_high_set,
},
};
static const struct user_regset_view user_s390_view = {
.name = UTS_MACHINE,
.e_machine = EM_S390,
.regsets = s390_regsets,
.n = ARRAY_SIZE(s390_regsets)
};
#ifdef CONFIG_COMPAT
static int s390_compat_regs_get(struct task_struct *target,
const struct user_regset *regset,
unsigned int pos, unsigned int count,
void *kbuf, void __user *ubuf)
{
if (target == current)
save_access_regs(target->thread.acrs);
if (kbuf) {
compat_ulong_t *k = kbuf;
while (count > 0) {
*k++ = __peek_user_compat(target, pos);
count -= sizeof(*k);
pos += sizeof(*k);
}
} else {
compat_ulong_t __user *u = ubuf;
while (count > 0) {
if (__put_user(__peek_user_compat(target, pos), u++))
return -EFAULT;
count -= sizeof(*u);
pos += sizeof(*u);
}
}
return 0;
}
static int s390_compat_regs_set(struct task_struct *target,
const struct user_regset *regset,
unsigned int pos, unsigned int count,
const void *kbuf, const void __user *ubuf)
{
int rc = 0;
if (target == current)
save_access_regs(target->thread.acrs);
if (kbuf) {
const compat_ulong_t *k = kbuf;
while (count > 0 && !rc) {
rc = __poke_user_compat(target, pos, *k++);
count -= sizeof(*k);
pos += sizeof(*k);
}
} else {
const compat_ulong_t __user *u = ubuf;
while (count > 0 && !rc) {
compat_ulong_t word;
rc = __get_user(word, u++);
if (rc)
break;
rc = __poke_user_compat(target, pos, word);
count -= sizeof(*u);
pos += sizeof(*u);
}
}
if (rc == 0 && target == current)
restore_access_regs(target->thread.acrs);
return rc;
}
static int s390_compat_regs_high_get(struct task_struct *target,
const struct user_regset *regset,
unsigned int pos, unsigned int count,
void *kbuf, void __user *ubuf)
{
compat_ulong_t *gprs_high;
gprs_high = (compat_ulong_t *)
&task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
if (kbuf) {
compat_ulong_t *k = kbuf;
while (count > 0) {
*k++ = *gprs_high;
gprs_high += 2;
count -= sizeof(*k);
}
} else {
compat_ulong_t __user *u = ubuf;
while (count > 0) {
if (__put_user(*gprs_high, u++))
return -EFAULT;
gprs_high += 2;
count -= sizeof(*u);
}
}
return 0;
}
static int s390_compat_regs_high_set(struct task_struct *target,
const struct user_regset *regset,
unsigned int pos, unsigned int count,
const void *kbuf, const void __user *ubuf)
{
compat_ulong_t *gprs_high;
int rc = 0;
gprs_high = (compat_ulong_t *)
&task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
if (kbuf) {
const compat_ulong_t *k = kbuf;
while (count > 0) {
*gprs_high = *k++;
*gprs_high += 2;
count -= sizeof(*k);
}
} else {
const compat_ulong_t __user *u = ubuf;
while (count > 0 && !rc) {
unsigned long word;
rc = __get_user(word, u++);
if (rc)
break;
*gprs_high = word;
*gprs_high += 2;
count -= sizeof(*u);
}
}
return rc;
}
static int s390_compat_last_break_get(struct task_struct *target,
const struct user_regset *regset,
unsigned int pos, unsigned int count,
void *kbuf, void __user *ubuf)
{
compat_ulong_t last_break;
if (count > 0) {
last_break = target->thread.last_break;
if (kbuf) {
unsigned long *k = kbuf;
*k = last_break;
} else {
unsigned long __user *u = ubuf;
if (__put_user(last_break, u))
return -EFAULT;
}
}
return 0;
}
static int s390_compat_last_break_set(struct task_struct *target,
const struct user_regset *regset,
unsigned int pos, unsigned int count,
const void *kbuf, const void __user *ubuf)
{
return 0;
}
static const struct user_regset s390_compat_regsets[] = {
{
.core_note_type = NT_PRSTATUS,
.n = sizeof(s390_compat_regs) / sizeof(compat_long_t),
.size = sizeof(compat_long_t),
.align = sizeof(compat_long_t),
.get = s390_compat_regs_get,
.set = s390_compat_regs_set,
},
{
.core_note_type = NT_PRFPREG,
.n = sizeof(s390_fp_regs) / sizeof(compat_long_t),
.size = sizeof(compat_long_t),
.align = sizeof(compat_long_t),
.get = s390_fpregs_get,
.set = s390_fpregs_set,
},
{
.core_note_type = NT_S390_SYSTEM_CALL,
.n = 1,
.size = sizeof(compat_uint_t),
.align = sizeof(compat_uint_t),
.get = s390_system_call_get,
.set = s390_system_call_set,
},
{
.core_note_type = NT_S390_LAST_BREAK,
.n = 1,
.size = sizeof(long),
.align = sizeof(long),
.get = s390_compat_last_break_get,
.set = s390_compat_last_break_set,
},
{
.core_note_type = NT_S390_TDB,
.n = 1,
.size = 256,
.align = 1,
.get = s390_tdb_get,
.set = s390_tdb_set,
},
{
.core_note_type = NT_S390_VXRS_LOW,
.n = __NUM_VXRS_LOW,
.size = sizeof(__u64),
.align = sizeof(__u64),
.get = s390_vxrs_low_get,
.set = s390_vxrs_low_set,
},
{
.core_note_type = NT_S390_VXRS_HIGH,
.n = __NUM_VXRS_HIGH,
.size = sizeof(__vector128),
.align = sizeof(__vector128),
.get = s390_vxrs_high_get,
.set = s390_vxrs_high_set,
},
{
.core_note_type = NT_S390_HIGH_GPRS,
.n = sizeof(s390_compat_regs_high) / sizeof(compat_long_t),
.size = sizeof(compat_long_t),
.align = sizeof(compat_long_t),
.get = s390_compat_regs_high_get,
.set = s390_compat_regs_high_set,
},
};
static const struct user_regset_view user_s390_compat_view = {
.name = "s390",
.e_machine = EM_S390,
.regsets = s390_compat_regsets,
.n = ARRAY_SIZE(s390_compat_regsets)
};
#endif
const struct user_regset_view *task_user_regset_view(struct task_struct *task)
{
#ifdef CONFIG_COMPAT
if (test_tsk_thread_flag(task, TIF_31BIT))
return &user_s390_compat_view;
#endif
return &user_s390_view;
}
static const char *gpr_names[NUM_GPRS] = {
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
};
unsigned long regs_get_register(struct pt_regs *regs, unsigned int offset)
{
if (offset >= NUM_GPRS)
return 0;
return regs->gprs[offset];
}
int regs_query_register_offset(const char *name)
{
unsigned long offset;
if (!name || *name != 'r')
return -EINVAL;
if (kstrtoul(name + 1, 10, &offset))
return -EINVAL;
if (offset >= NUM_GPRS)
return -EINVAL;
return offset;
}
const char *regs_query_register_name(unsigned int offset)
{
if (offset >= NUM_GPRS)
return NULL;
return gpr_names[offset];
}
static int regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
{
unsigned long ksp = kernel_stack_pointer(regs);
return (addr & ~(THREAD_SIZE - 1)) == (ksp & ~(THREAD_SIZE - 1));
}
/**
* regs_get_kernel_stack_nth() - get Nth entry of the stack
* @regs:pt_regs which contains kernel stack pointer.
* @n:stack entry number.
*
* regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
* is specifined by @regs. If the @n th entry is NOT in the kernel stack,
* this returns 0.
*/
unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
{
unsigned long addr;
addr = kernel_stack_pointer(regs) + n * sizeof(long);
if (!regs_within_kernel_stack(regs, addr))
return 0;
return *(unsigned long *)addr;
}