linux/arch/powerpc/include/asm/pgalloc-64.h
Hari Bathini 8ff812719a powerpc/kdump: Adding symbols in vmcoreinfo to facilitate dump filtering
When CONFIG_SPARSEMEM_VMEMMAP option is used in kernel, makedumpfile fails
to filter vmcore dump as it fails to do vmemmap translations. So far
dump filtering on ppc64 never had to deal with vmemmap addresses seperately
as vmemmap regions where mapped in zone normal. But with the inclusion of
CONFIG_SPARSEMEM_VMEMMAP config option in kernel, this vmemmap address
translation support becomes necessary for dump filtering. For vmemmap adress
translation, few kernel symbols are needed by dump filtering tool. This patch
adds those symbols to vmcoreinfo, which a dump filtering tool can use for
filtering the kernel dump. Tested this changes successfully with makedumpfile
tool that supports vmemmap to physical address translation outside zone normal.

[ Removed unneeded #ifdef as suggested by Michael Ellerman --BenH ]

Signed-off-by: Hari Bathini <hbathini@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2013-11-25 11:50:12 +11:00

248 lines
6.5 KiB
C

#ifndef _ASM_POWERPC_PGALLOC_64_H
#define _ASM_POWERPC_PGALLOC_64_H
/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#include <linux/slab.h>
#include <linux/cpumask.h>
#include <linux/percpu.h>
struct vmemmap_backing {
struct vmemmap_backing *list;
unsigned long phys;
unsigned long virt_addr;
};
extern struct vmemmap_backing *vmemmap_list;
/*
* Functions that deal with pagetables that could be at any level of
* the table need to be passed an "index_size" so they know how to
* handle allocation. For PTE pages (which are linked to a struct
* page for now, and drawn from the main get_free_pages() pool), the
* allocation size will be (2^index_size * sizeof(pointer)) and
* allocations are drawn from the kmem_cache in PGT_CACHE(index_size).
*
* The maximum index size needs to be big enough to allow any
* pagetable sizes we need, but small enough to fit in the low bits of
* any page table pointer. In other words all pagetables, even tiny
* ones, must be aligned to allow at least enough low 0 bits to
* contain this value. This value is also used as a mask, so it must
* be one less than a power of two.
*/
#define MAX_PGTABLE_INDEX_SIZE 0xf
extern struct kmem_cache *pgtable_cache[];
#define PGT_CACHE(shift) ({ \
BUG_ON(!(shift)); \
pgtable_cache[(shift) - 1]; \
})
static inline pgd_t *pgd_alloc(struct mm_struct *mm)
{
return kmem_cache_alloc(PGT_CACHE(PGD_INDEX_SIZE), GFP_KERNEL);
}
static inline void pgd_free(struct mm_struct *mm, pgd_t *pgd)
{
kmem_cache_free(PGT_CACHE(PGD_INDEX_SIZE), pgd);
}
#ifndef CONFIG_PPC_64K_PAGES
#define pgd_populate(MM, PGD, PUD) pgd_set(PGD, PUD)
static inline pud_t *pud_alloc_one(struct mm_struct *mm, unsigned long addr)
{
return kmem_cache_alloc(PGT_CACHE(PUD_INDEX_SIZE),
GFP_KERNEL|__GFP_REPEAT);
}
static inline void pud_free(struct mm_struct *mm, pud_t *pud)
{
kmem_cache_free(PGT_CACHE(PUD_INDEX_SIZE), pud);
}
static inline void pud_populate(struct mm_struct *mm, pud_t *pud, pmd_t *pmd)
{
pud_set(pud, (unsigned long)pmd);
}
#define pmd_populate(mm, pmd, pte_page) \
pmd_populate_kernel(mm, pmd, page_address(pte_page))
#define pmd_populate_kernel(mm, pmd, pte) pmd_set(pmd, (unsigned long)(pte))
#define pmd_pgtable(pmd) pmd_page(pmd)
static inline pte_t *pte_alloc_one_kernel(struct mm_struct *mm,
unsigned long address)
{
return (pte_t *)__get_free_page(GFP_KERNEL | __GFP_REPEAT | __GFP_ZERO);
}
static inline pgtable_t pte_alloc_one(struct mm_struct *mm,
unsigned long address)
{
struct page *page;
pte_t *pte;
pte = pte_alloc_one_kernel(mm, address);
if (!pte)
return NULL;
page = virt_to_page(pte);
if (!pgtable_page_ctor(page)) {
__free_page(page);
return NULL;
}
return page;
}
static inline void pte_free_kernel(struct mm_struct *mm, pte_t *pte)
{
free_page((unsigned long)pte);
}
static inline void pte_free(struct mm_struct *mm, pgtable_t ptepage)
{
pgtable_page_dtor(ptepage);
__free_page(ptepage);
}
static inline void pgtable_free(void *table, unsigned index_size)
{
if (!index_size)
free_page((unsigned long)table);
else {
BUG_ON(index_size > MAX_PGTABLE_INDEX_SIZE);
kmem_cache_free(PGT_CACHE(index_size), table);
}
}
#ifdef CONFIG_SMP
static inline void pgtable_free_tlb(struct mmu_gather *tlb,
void *table, int shift)
{
unsigned long pgf = (unsigned long)table;
BUG_ON(shift > MAX_PGTABLE_INDEX_SIZE);
pgf |= shift;
tlb_remove_table(tlb, (void *)pgf);
}
static inline void __tlb_remove_table(void *_table)
{
void *table = (void *)((unsigned long)_table & ~MAX_PGTABLE_INDEX_SIZE);
unsigned shift = (unsigned long)_table & MAX_PGTABLE_INDEX_SIZE;
pgtable_free(table, shift);
}
#else /* !CONFIG_SMP */
static inline void pgtable_free_tlb(struct mmu_gather *tlb,
void *table, int shift)
{
pgtable_free(table, shift);
}
#endif /* CONFIG_SMP */
static inline void __pte_free_tlb(struct mmu_gather *tlb, pgtable_t table,
unsigned long address)
{
struct page *page = page_address(table);
tlb_flush_pgtable(tlb, address);
pgtable_page_dtor(page);
pgtable_free_tlb(tlb, page, 0);
}
#else /* if CONFIG_PPC_64K_PAGES */
/*
* we support 16 fragments per PTE page.
*/
#define PTE_FRAG_NR 16
/*
* We use a 2K PTE page fragment and another 2K for storing
* real_pte_t hash index
*/
#define PTE_FRAG_SIZE_SHIFT 12
#define PTE_FRAG_SIZE (2 * PTRS_PER_PTE * sizeof(pte_t))
extern pte_t *page_table_alloc(struct mm_struct *, unsigned long, int);
extern void page_table_free(struct mm_struct *, unsigned long *, int);
extern void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int shift);
#ifdef CONFIG_SMP
extern void __tlb_remove_table(void *_table);
#endif
#define pud_populate(mm, pud, pmd) pud_set(pud, (unsigned long)pmd)
static inline void pmd_populate_kernel(struct mm_struct *mm, pmd_t *pmd,
pte_t *pte)
{
pmd_set(pmd, (unsigned long)pte);
}
static inline void pmd_populate(struct mm_struct *mm, pmd_t *pmd,
pgtable_t pte_page)
{
pmd_set(pmd, (unsigned long)pte_page);
}
static inline pgtable_t pmd_pgtable(pmd_t pmd)
{
return (pgtable_t)(pmd_val(pmd) & ~PMD_MASKED_BITS);
}
static inline pte_t *pte_alloc_one_kernel(struct mm_struct *mm,
unsigned long address)
{
return (pte_t *)page_table_alloc(mm, address, 1);
}
static inline pgtable_t pte_alloc_one(struct mm_struct *mm,
unsigned long address)
{
return (pgtable_t)page_table_alloc(mm, address, 0);
}
static inline void pte_free_kernel(struct mm_struct *mm, pte_t *pte)
{
page_table_free(mm, (unsigned long *)pte, 1);
}
static inline void pte_free(struct mm_struct *mm, pgtable_t ptepage)
{
page_table_free(mm, (unsigned long *)ptepage, 0);
}
static inline void __pte_free_tlb(struct mmu_gather *tlb, pgtable_t table,
unsigned long address)
{
tlb_flush_pgtable(tlb, address);
pgtable_free_tlb(tlb, table, 0);
}
#endif /* CONFIG_PPC_64K_PAGES */
static inline pmd_t *pmd_alloc_one(struct mm_struct *mm, unsigned long addr)
{
return kmem_cache_alloc(PGT_CACHE(PMD_CACHE_INDEX),
GFP_KERNEL|__GFP_REPEAT);
}
static inline void pmd_free(struct mm_struct *mm, pmd_t *pmd)
{
kmem_cache_free(PGT_CACHE(PMD_CACHE_INDEX), pmd);
}
#define __pmd_free_tlb(tlb, pmd, addr) \
pgtable_free_tlb(tlb, pmd, PMD_CACHE_INDEX)
#ifndef CONFIG_PPC_64K_PAGES
#define __pud_free_tlb(tlb, pud, addr) \
pgtable_free_tlb(tlb, pud, PUD_INDEX_SIZE)
#endif /* CONFIG_PPC_64K_PAGES */
#define check_pgt_cache() do { } while (0)
#endif /* _ASM_POWERPC_PGALLOC_64_H */