Part of reorganising wireless drivers directory and Kconfig. Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
		
			
				
	
	
		
			935 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			935 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /******************************************************************************
 | |
|  *
 | |
|  * This file is provided under a dual BSD/GPLv2 license.  When using or
 | |
|  * redistributing this file, you may do so under either license.
 | |
|  *
 | |
|  * GPL LICENSE SUMMARY
 | |
|  *
 | |
|  * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of version 2 of the GNU General Public License as
 | |
|  * published by the Free Software Foundation.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful, but
 | |
|  * WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
 | |
|  * USA
 | |
|  *
 | |
|  * The full GNU General Public License is included in this distribution
 | |
|  * in the file called LICENSE.GPL.
 | |
|  *
 | |
|  * Contact Information:
 | |
|  *  Intel Linux Wireless <ilw@linux.intel.com>
 | |
|  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
 | |
|  *
 | |
|  * BSD LICENSE
 | |
|  *
 | |
|  * Copyright(c) 2005 - 2011 Intel Corporation. All rights reserved.
 | |
|  * All rights reserved.
 | |
|  *
 | |
|  * Redistribution and use in source and binary forms, with or without
 | |
|  * modification, are permitted provided that the following conditions
 | |
|  * are met:
 | |
|  *
 | |
|  *  * Redistributions of source code must retain the above copyright
 | |
|  *    notice, this list of conditions and the following disclaimer.
 | |
|  *  * Redistributions in binary form must reproduce the above copyright
 | |
|  *    notice, this list of conditions and the following disclaimer in
 | |
|  *    the documentation and/or other materials provided with the
 | |
|  *    distribution.
 | |
|  *  * Neither the name Intel Corporation nor the names of its
 | |
|  *    contributors may be used to endorse or promote products derived
 | |
|  *    from this software without specific prior written permission.
 | |
|  *
 | |
|  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 | |
|  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 | |
|  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 | |
|  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 | |
|  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 | |
|  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 | |
|  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 | |
|  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 | |
|  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 | |
|  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 | |
|  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 | |
|  *****************************************************************************/
 | |
| 
 | |
| #include <linux/slab.h>
 | |
| #include <net/mac80211.h>
 | |
| 
 | |
| #include "common.h"
 | |
| #include "4965.h"
 | |
| 
 | |
| /*****************************************************************************
 | |
|  * INIT calibrations framework
 | |
|  *****************************************************************************/
 | |
| 
 | |
| struct stats_general_data {
 | |
| 	u32 beacon_silence_rssi_a;
 | |
| 	u32 beacon_silence_rssi_b;
 | |
| 	u32 beacon_silence_rssi_c;
 | |
| 	u32 beacon_energy_a;
 | |
| 	u32 beacon_energy_b;
 | |
| 	u32 beacon_energy_c;
 | |
| };
 | |
| 
 | |
| /*****************************************************************************
 | |
|  * RUNTIME calibrations framework
 | |
|  *****************************************************************************/
 | |
| 
 | |
| /* "false alarms" are signals that our DSP tries to lock onto,
 | |
|  *   but then determines that they are either noise, or transmissions
 | |
|  *   from a distant wireless network (also "noise", really) that get
 | |
|  *   "stepped on" by stronger transmissions within our own network.
 | |
|  * This algorithm attempts to set a sensitivity level that is high
 | |
|  *   enough to receive all of our own network traffic, but not so
 | |
|  *   high that our DSP gets too busy trying to lock onto non-network
 | |
|  *   activity/noise. */
 | |
| static int
 | |
| il4965_sens_energy_cck(struct il_priv *il, u32 norm_fa, u32 rx_enable_time,
 | |
| 		       struct stats_general_data *rx_info)
 | |
| {
 | |
| 	u32 max_nrg_cck = 0;
 | |
| 	int i = 0;
 | |
| 	u8 max_silence_rssi = 0;
 | |
| 	u32 silence_ref = 0;
 | |
| 	u8 silence_rssi_a = 0;
 | |
| 	u8 silence_rssi_b = 0;
 | |
| 	u8 silence_rssi_c = 0;
 | |
| 	u32 val;
 | |
| 
 | |
| 	/* "false_alarms" values below are cross-multiplications to assess the
 | |
| 	 *   numbers of false alarms within the measured period of actual Rx
 | |
| 	 *   (Rx is off when we're txing), vs the min/max expected false alarms
 | |
| 	 *   (some should be expected if rx is sensitive enough) in a
 | |
| 	 *   hypothetical listening period of 200 time units (TU), 204.8 msec:
 | |
| 	 *
 | |
| 	 * MIN_FA/fixed-time < false_alarms/actual-rx-time < MAX_FA/beacon-time
 | |
| 	 *
 | |
| 	 * */
 | |
| 	u32 false_alarms = norm_fa * 200 * 1024;
 | |
| 	u32 max_false_alarms = MAX_FA_CCK * rx_enable_time;
 | |
| 	u32 min_false_alarms = MIN_FA_CCK * rx_enable_time;
 | |
| 	struct il_sensitivity_data *data = NULL;
 | |
| 	const struct il_sensitivity_ranges *ranges = il->hw_params.sens;
 | |
| 
 | |
| 	data = &(il->sensitivity_data);
 | |
| 
 | |
| 	data->nrg_auto_corr_silence_diff = 0;
 | |
| 
 | |
| 	/* Find max silence rssi among all 3 receivers.
 | |
| 	 * This is background noise, which may include transmissions from other
 | |
| 	 *    networks, measured during silence before our network's beacon */
 | |
| 	silence_rssi_a =
 | |
| 	    (u8) ((rx_info->beacon_silence_rssi_a & ALL_BAND_FILTER) >> 8);
 | |
| 	silence_rssi_b =
 | |
| 	    (u8) ((rx_info->beacon_silence_rssi_b & ALL_BAND_FILTER) >> 8);
 | |
| 	silence_rssi_c =
 | |
| 	    (u8) ((rx_info->beacon_silence_rssi_c & ALL_BAND_FILTER) >> 8);
 | |
| 
 | |
| 	val = max(silence_rssi_b, silence_rssi_c);
 | |
| 	max_silence_rssi = max(silence_rssi_a, (u8) val);
 | |
| 
 | |
| 	/* Store silence rssi in 20-beacon history table */
 | |
| 	data->nrg_silence_rssi[data->nrg_silence_idx] = max_silence_rssi;
 | |
| 	data->nrg_silence_idx++;
 | |
| 	if (data->nrg_silence_idx >= NRG_NUM_PREV_STAT_L)
 | |
| 		data->nrg_silence_idx = 0;
 | |
| 
 | |
| 	/* Find max silence rssi across 20 beacon history */
 | |
| 	for (i = 0; i < NRG_NUM_PREV_STAT_L; i++) {
 | |
| 		val = data->nrg_silence_rssi[i];
 | |
| 		silence_ref = max(silence_ref, val);
 | |
| 	}
 | |
| 	D_CALIB("silence a %u, b %u, c %u, 20-bcn max %u\n", silence_rssi_a,
 | |
| 		silence_rssi_b, silence_rssi_c, silence_ref);
 | |
| 
 | |
| 	/* Find max rx energy (min value!) among all 3 receivers,
 | |
| 	 *   measured during beacon frame.
 | |
| 	 * Save it in 10-beacon history table. */
 | |
| 	i = data->nrg_energy_idx;
 | |
| 	val = min(rx_info->beacon_energy_b, rx_info->beacon_energy_c);
 | |
| 	data->nrg_value[i] = min(rx_info->beacon_energy_a, val);
 | |
| 
 | |
| 	data->nrg_energy_idx++;
 | |
| 	if (data->nrg_energy_idx >= 10)
 | |
| 		data->nrg_energy_idx = 0;
 | |
| 
 | |
| 	/* Find min rx energy (max value) across 10 beacon history.
 | |
| 	 * This is the minimum signal level that we want to receive well.
 | |
| 	 * Add backoff (margin so we don't miss slightly lower energy frames).
 | |
| 	 * This establishes an upper bound (min value) for energy threshold. */
 | |
| 	max_nrg_cck = data->nrg_value[0];
 | |
| 	for (i = 1; i < 10; i++)
 | |
| 		max_nrg_cck = (u32) max(max_nrg_cck, (data->nrg_value[i]));
 | |
| 	max_nrg_cck += 6;
 | |
| 
 | |
| 	D_CALIB("rx energy a %u, b %u, c %u, 10-bcn max/min %u\n",
 | |
| 		rx_info->beacon_energy_a, rx_info->beacon_energy_b,
 | |
| 		rx_info->beacon_energy_c, max_nrg_cck - 6);
 | |
| 
 | |
| 	/* Count number of consecutive beacons with fewer-than-desired
 | |
| 	 *   false alarms. */
 | |
| 	if (false_alarms < min_false_alarms)
 | |
| 		data->num_in_cck_no_fa++;
 | |
| 	else
 | |
| 		data->num_in_cck_no_fa = 0;
 | |
| 	D_CALIB("consecutive bcns with few false alarms = %u\n",
 | |
| 		data->num_in_cck_no_fa);
 | |
| 
 | |
| 	/* If we got too many false alarms this time, reduce sensitivity */
 | |
| 	if (false_alarms > max_false_alarms &&
 | |
| 	    data->auto_corr_cck > AUTO_CORR_MAX_TH_CCK) {
 | |
| 		D_CALIB("norm FA %u > max FA %u\n", false_alarms,
 | |
| 			max_false_alarms);
 | |
| 		D_CALIB("... reducing sensitivity\n");
 | |
| 		data->nrg_curr_state = IL_FA_TOO_MANY;
 | |
| 		/* Store for "fewer than desired" on later beacon */
 | |
| 		data->nrg_silence_ref = silence_ref;
 | |
| 
 | |
| 		/* increase energy threshold (reduce nrg value)
 | |
| 		 *   to decrease sensitivity */
 | |
| 		data->nrg_th_cck = data->nrg_th_cck - NRG_STEP_CCK;
 | |
| 		/* Else if we got fewer than desired, increase sensitivity */
 | |
| 	} else if (false_alarms < min_false_alarms) {
 | |
| 		data->nrg_curr_state = IL_FA_TOO_FEW;
 | |
| 
 | |
| 		/* Compare silence level with silence level for most recent
 | |
| 		 *   healthy number or too many false alarms */
 | |
| 		data->nrg_auto_corr_silence_diff =
 | |
| 		    (s32) data->nrg_silence_ref - (s32) silence_ref;
 | |
| 
 | |
| 		D_CALIB("norm FA %u < min FA %u, silence diff %d\n",
 | |
| 			false_alarms, min_false_alarms,
 | |
| 			data->nrg_auto_corr_silence_diff);
 | |
| 
 | |
| 		/* Increase value to increase sensitivity, but only if:
 | |
| 		 * 1a) previous beacon did *not* have *too many* false alarms
 | |
| 		 * 1b) AND there's a significant difference in Rx levels
 | |
| 		 *      from a previous beacon with too many, or healthy # FAs
 | |
| 		 * OR 2) We've seen a lot of beacons (100) with too few
 | |
| 		 *       false alarms */
 | |
| 		if (data->nrg_prev_state != IL_FA_TOO_MANY &&
 | |
| 		    (data->nrg_auto_corr_silence_diff > NRG_DIFF ||
 | |
| 		     data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA)) {
 | |
| 
 | |
| 			D_CALIB("... increasing sensitivity\n");
 | |
| 			/* Increase nrg value to increase sensitivity */
 | |
| 			val = data->nrg_th_cck + NRG_STEP_CCK;
 | |
| 			data->nrg_th_cck = min((u32) ranges->min_nrg_cck, val);
 | |
| 		} else {
 | |
| 			D_CALIB("... but not changing sensitivity\n");
 | |
| 		}
 | |
| 
 | |
| 		/* Else we got a healthy number of false alarms, keep status quo */
 | |
| 	} else {
 | |
| 		D_CALIB(" FA in safe zone\n");
 | |
| 		data->nrg_curr_state = IL_FA_GOOD_RANGE;
 | |
| 
 | |
| 		/* Store for use in "fewer than desired" with later beacon */
 | |
| 		data->nrg_silence_ref = silence_ref;
 | |
| 
 | |
| 		/* If previous beacon had too many false alarms,
 | |
| 		 *   give it some extra margin by reducing sensitivity again
 | |
| 		 *   (but don't go below measured energy of desired Rx) */
 | |
| 		if (IL_FA_TOO_MANY == data->nrg_prev_state) {
 | |
| 			D_CALIB("... increasing margin\n");
 | |
| 			if (data->nrg_th_cck > (max_nrg_cck + NRG_MARGIN))
 | |
| 				data->nrg_th_cck -= NRG_MARGIN;
 | |
| 			else
 | |
| 				data->nrg_th_cck = max_nrg_cck;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Make sure the energy threshold does not go above the measured
 | |
| 	 * energy of the desired Rx signals (reduced by backoff margin),
 | |
| 	 * or else we might start missing Rx frames.
 | |
| 	 * Lower value is higher energy, so we use max()!
 | |
| 	 */
 | |
| 	data->nrg_th_cck = max(max_nrg_cck, data->nrg_th_cck);
 | |
| 	D_CALIB("new nrg_th_cck %u\n", data->nrg_th_cck);
 | |
| 
 | |
| 	data->nrg_prev_state = data->nrg_curr_state;
 | |
| 
 | |
| 	/* Auto-correlation CCK algorithm */
 | |
| 	if (false_alarms > min_false_alarms) {
 | |
| 
 | |
| 		/* increase auto_corr values to decrease sensitivity
 | |
| 		 * so the DSP won't be disturbed by the noise
 | |
| 		 */
 | |
| 		if (data->auto_corr_cck < AUTO_CORR_MAX_TH_CCK)
 | |
| 			data->auto_corr_cck = AUTO_CORR_MAX_TH_CCK + 1;
 | |
| 		else {
 | |
| 			val = data->auto_corr_cck + AUTO_CORR_STEP_CCK;
 | |
| 			data->auto_corr_cck =
 | |
| 			    min((u32) ranges->auto_corr_max_cck, val);
 | |
| 		}
 | |
| 		val = data->auto_corr_cck_mrc + AUTO_CORR_STEP_CCK;
 | |
| 		data->auto_corr_cck_mrc =
 | |
| 		    min((u32) ranges->auto_corr_max_cck_mrc, val);
 | |
| 	} else if (false_alarms < min_false_alarms &&
 | |
| 		   (data->nrg_auto_corr_silence_diff > NRG_DIFF ||
 | |
| 		    data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA)) {
 | |
| 
 | |
| 		/* Decrease auto_corr values to increase sensitivity */
 | |
| 		val = data->auto_corr_cck - AUTO_CORR_STEP_CCK;
 | |
| 		data->auto_corr_cck = max((u32) ranges->auto_corr_min_cck, val);
 | |
| 		val = data->auto_corr_cck_mrc - AUTO_CORR_STEP_CCK;
 | |
| 		data->auto_corr_cck_mrc =
 | |
| 		    max((u32) ranges->auto_corr_min_cck_mrc, val);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int
 | |
| il4965_sens_auto_corr_ofdm(struct il_priv *il, u32 norm_fa, u32 rx_enable_time)
 | |
| {
 | |
| 	u32 val;
 | |
| 	u32 false_alarms = norm_fa * 200 * 1024;
 | |
| 	u32 max_false_alarms = MAX_FA_OFDM * rx_enable_time;
 | |
| 	u32 min_false_alarms = MIN_FA_OFDM * rx_enable_time;
 | |
| 	struct il_sensitivity_data *data = NULL;
 | |
| 	const struct il_sensitivity_ranges *ranges = il->hw_params.sens;
 | |
| 
 | |
| 	data = &(il->sensitivity_data);
 | |
| 
 | |
| 	/* If we got too many false alarms this time, reduce sensitivity */
 | |
| 	if (false_alarms > max_false_alarms) {
 | |
| 
 | |
| 		D_CALIB("norm FA %u > max FA %u)\n", false_alarms,
 | |
| 			max_false_alarms);
 | |
| 
 | |
| 		val = data->auto_corr_ofdm + AUTO_CORR_STEP_OFDM;
 | |
| 		data->auto_corr_ofdm =
 | |
| 		    min((u32) ranges->auto_corr_max_ofdm, val);
 | |
| 
 | |
| 		val = data->auto_corr_ofdm_mrc + AUTO_CORR_STEP_OFDM;
 | |
| 		data->auto_corr_ofdm_mrc =
 | |
| 		    min((u32) ranges->auto_corr_max_ofdm_mrc, val);
 | |
| 
 | |
| 		val = data->auto_corr_ofdm_x1 + AUTO_CORR_STEP_OFDM;
 | |
| 		data->auto_corr_ofdm_x1 =
 | |
| 		    min((u32) ranges->auto_corr_max_ofdm_x1, val);
 | |
| 
 | |
| 		val = data->auto_corr_ofdm_mrc_x1 + AUTO_CORR_STEP_OFDM;
 | |
| 		data->auto_corr_ofdm_mrc_x1 =
 | |
| 		    min((u32) ranges->auto_corr_max_ofdm_mrc_x1, val);
 | |
| 	}
 | |
| 
 | |
| 	/* Else if we got fewer than desired, increase sensitivity */
 | |
| 	else if (false_alarms < min_false_alarms) {
 | |
| 
 | |
| 		D_CALIB("norm FA %u < min FA %u\n", false_alarms,
 | |
| 			min_false_alarms);
 | |
| 
 | |
| 		val = data->auto_corr_ofdm - AUTO_CORR_STEP_OFDM;
 | |
| 		data->auto_corr_ofdm =
 | |
| 		    max((u32) ranges->auto_corr_min_ofdm, val);
 | |
| 
 | |
| 		val = data->auto_corr_ofdm_mrc - AUTO_CORR_STEP_OFDM;
 | |
| 		data->auto_corr_ofdm_mrc =
 | |
| 		    max((u32) ranges->auto_corr_min_ofdm_mrc, val);
 | |
| 
 | |
| 		val = data->auto_corr_ofdm_x1 - AUTO_CORR_STEP_OFDM;
 | |
| 		data->auto_corr_ofdm_x1 =
 | |
| 		    max((u32) ranges->auto_corr_min_ofdm_x1, val);
 | |
| 
 | |
| 		val = data->auto_corr_ofdm_mrc_x1 - AUTO_CORR_STEP_OFDM;
 | |
| 		data->auto_corr_ofdm_mrc_x1 =
 | |
| 		    max((u32) ranges->auto_corr_min_ofdm_mrc_x1, val);
 | |
| 	} else {
 | |
| 		D_CALIB("min FA %u < norm FA %u < max FA %u OK\n",
 | |
| 			min_false_alarms, false_alarms, max_false_alarms);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void
 | |
| il4965_prepare_legacy_sensitivity_tbl(struct il_priv *il,
 | |
| 				      struct il_sensitivity_data *data,
 | |
| 				      __le16 *tbl)
 | |
| {
 | |
| 	tbl[HD_AUTO_CORR32_X4_TH_ADD_MIN_IDX] =
 | |
| 	    cpu_to_le16((u16) data->auto_corr_ofdm);
 | |
| 	tbl[HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_IDX] =
 | |
| 	    cpu_to_le16((u16) data->auto_corr_ofdm_mrc);
 | |
| 	tbl[HD_AUTO_CORR32_X1_TH_ADD_MIN_IDX] =
 | |
| 	    cpu_to_le16((u16) data->auto_corr_ofdm_x1);
 | |
| 	tbl[HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_IDX] =
 | |
| 	    cpu_to_le16((u16) data->auto_corr_ofdm_mrc_x1);
 | |
| 
 | |
| 	tbl[HD_AUTO_CORR40_X4_TH_ADD_MIN_IDX] =
 | |
| 	    cpu_to_le16((u16) data->auto_corr_cck);
 | |
| 	tbl[HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_IDX] =
 | |
| 	    cpu_to_le16((u16) data->auto_corr_cck_mrc);
 | |
| 
 | |
| 	tbl[HD_MIN_ENERGY_CCK_DET_IDX] = cpu_to_le16((u16) data->nrg_th_cck);
 | |
| 	tbl[HD_MIN_ENERGY_OFDM_DET_IDX] = cpu_to_le16((u16) data->nrg_th_ofdm);
 | |
| 
 | |
| 	tbl[HD_BARKER_CORR_TH_ADD_MIN_IDX] =
 | |
| 	    cpu_to_le16(data->barker_corr_th_min);
 | |
| 	tbl[HD_BARKER_CORR_TH_ADD_MIN_MRC_IDX] =
 | |
| 	    cpu_to_le16(data->barker_corr_th_min_mrc);
 | |
| 	tbl[HD_OFDM_ENERGY_TH_IN_IDX] = cpu_to_le16(data->nrg_th_cca);
 | |
| 
 | |
| 	D_CALIB("ofdm: ac %u mrc %u x1 %u mrc_x1 %u thresh %u\n",
 | |
| 		data->auto_corr_ofdm, data->auto_corr_ofdm_mrc,
 | |
| 		data->auto_corr_ofdm_x1, data->auto_corr_ofdm_mrc_x1,
 | |
| 		data->nrg_th_ofdm);
 | |
| 
 | |
| 	D_CALIB("cck: ac %u mrc %u thresh %u\n", data->auto_corr_cck,
 | |
| 		data->auto_corr_cck_mrc, data->nrg_th_cck);
 | |
| }
 | |
| 
 | |
| /* Prepare a C_SENSITIVITY, send to uCode if values have changed */
 | |
| static int
 | |
| il4965_sensitivity_write(struct il_priv *il)
 | |
| {
 | |
| 	struct il_sensitivity_cmd cmd;
 | |
| 	struct il_sensitivity_data *data = NULL;
 | |
| 	struct il_host_cmd cmd_out = {
 | |
| 		.id = C_SENSITIVITY,
 | |
| 		.len = sizeof(struct il_sensitivity_cmd),
 | |
| 		.flags = CMD_ASYNC,
 | |
| 		.data = &cmd,
 | |
| 	};
 | |
| 
 | |
| 	data = &(il->sensitivity_data);
 | |
| 
 | |
| 	memset(&cmd, 0, sizeof(cmd));
 | |
| 
 | |
| 	il4965_prepare_legacy_sensitivity_tbl(il, data, &cmd.table[0]);
 | |
| 
 | |
| 	/* Update uCode's "work" table, and copy it to DSP */
 | |
| 	cmd.control = C_SENSITIVITY_CONTROL_WORK_TBL;
 | |
| 
 | |
| 	/* Don't send command to uCode if nothing has changed */
 | |
| 	if (!memcmp
 | |
| 	    (&cmd.table[0], &(il->sensitivity_tbl[0]),
 | |
| 	     sizeof(u16) * HD_TBL_SIZE)) {
 | |
| 		D_CALIB("No change in C_SENSITIVITY\n");
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* Copy table for comparison next time */
 | |
| 	memcpy(&(il->sensitivity_tbl[0]), &(cmd.table[0]),
 | |
| 	       sizeof(u16) * HD_TBL_SIZE);
 | |
| 
 | |
| 	return il_send_cmd(il, &cmd_out);
 | |
| }
 | |
| 
 | |
| void
 | |
| il4965_init_sensitivity(struct il_priv *il)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	int i;
 | |
| 	struct il_sensitivity_data *data = NULL;
 | |
| 	const struct il_sensitivity_ranges *ranges = il->hw_params.sens;
 | |
| 
 | |
| 	if (il->disable_sens_cal)
 | |
| 		return;
 | |
| 
 | |
| 	D_CALIB("Start il4965_init_sensitivity\n");
 | |
| 
 | |
| 	/* Clear driver's sensitivity algo data */
 | |
| 	data = &(il->sensitivity_data);
 | |
| 
 | |
| 	if (ranges == NULL)
 | |
| 		return;
 | |
| 
 | |
| 	memset(data, 0, sizeof(struct il_sensitivity_data));
 | |
| 
 | |
| 	data->num_in_cck_no_fa = 0;
 | |
| 	data->nrg_curr_state = IL_FA_TOO_MANY;
 | |
| 	data->nrg_prev_state = IL_FA_TOO_MANY;
 | |
| 	data->nrg_silence_ref = 0;
 | |
| 	data->nrg_silence_idx = 0;
 | |
| 	data->nrg_energy_idx = 0;
 | |
| 
 | |
| 	for (i = 0; i < 10; i++)
 | |
| 		data->nrg_value[i] = 0;
 | |
| 
 | |
| 	for (i = 0; i < NRG_NUM_PREV_STAT_L; i++)
 | |
| 		data->nrg_silence_rssi[i] = 0;
 | |
| 
 | |
| 	data->auto_corr_ofdm = ranges->auto_corr_min_ofdm;
 | |
| 	data->auto_corr_ofdm_mrc = ranges->auto_corr_min_ofdm_mrc;
 | |
| 	data->auto_corr_ofdm_x1 = ranges->auto_corr_min_ofdm_x1;
 | |
| 	data->auto_corr_ofdm_mrc_x1 = ranges->auto_corr_min_ofdm_mrc_x1;
 | |
| 	data->auto_corr_cck = AUTO_CORR_CCK_MIN_VAL_DEF;
 | |
| 	data->auto_corr_cck_mrc = ranges->auto_corr_min_cck_mrc;
 | |
| 	data->nrg_th_cck = ranges->nrg_th_cck;
 | |
| 	data->nrg_th_ofdm = ranges->nrg_th_ofdm;
 | |
| 	data->barker_corr_th_min = ranges->barker_corr_th_min;
 | |
| 	data->barker_corr_th_min_mrc = ranges->barker_corr_th_min_mrc;
 | |
| 	data->nrg_th_cca = ranges->nrg_th_cca;
 | |
| 
 | |
| 	data->last_bad_plcp_cnt_ofdm = 0;
 | |
| 	data->last_fa_cnt_ofdm = 0;
 | |
| 	data->last_bad_plcp_cnt_cck = 0;
 | |
| 	data->last_fa_cnt_cck = 0;
 | |
| 
 | |
| 	ret |= il4965_sensitivity_write(il);
 | |
| 	D_CALIB("<<return 0x%X\n", ret);
 | |
| }
 | |
| 
 | |
| void
 | |
| il4965_sensitivity_calibration(struct il_priv *il, void *resp)
 | |
| {
 | |
| 	u32 rx_enable_time;
 | |
| 	u32 fa_cck;
 | |
| 	u32 fa_ofdm;
 | |
| 	u32 bad_plcp_cck;
 | |
| 	u32 bad_plcp_ofdm;
 | |
| 	u32 norm_fa_ofdm;
 | |
| 	u32 norm_fa_cck;
 | |
| 	struct il_sensitivity_data *data = NULL;
 | |
| 	struct stats_rx_non_phy *rx_info;
 | |
| 	struct stats_rx_phy *ofdm, *cck;
 | |
| 	unsigned long flags;
 | |
| 	struct stats_general_data statis;
 | |
| 
 | |
| 	if (il->disable_sens_cal)
 | |
| 		return;
 | |
| 
 | |
| 	data = &(il->sensitivity_data);
 | |
| 
 | |
| 	if (!il_is_any_associated(il)) {
 | |
| 		D_CALIB("<< - not associated\n");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	spin_lock_irqsave(&il->lock, flags);
 | |
| 
 | |
| 	rx_info = &(((struct il_notif_stats *)resp)->rx.general);
 | |
| 	ofdm = &(((struct il_notif_stats *)resp)->rx.ofdm);
 | |
| 	cck = &(((struct il_notif_stats *)resp)->rx.cck);
 | |
| 
 | |
| 	if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) {
 | |
| 		D_CALIB("<< invalid data.\n");
 | |
| 		spin_unlock_irqrestore(&il->lock, flags);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* Extract Statistics: */
 | |
| 	rx_enable_time = le32_to_cpu(rx_info->channel_load);
 | |
| 	fa_cck = le32_to_cpu(cck->false_alarm_cnt);
 | |
| 	fa_ofdm = le32_to_cpu(ofdm->false_alarm_cnt);
 | |
| 	bad_plcp_cck = le32_to_cpu(cck->plcp_err);
 | |
| 	bad_plcp_ofdm = le32_to_cpu(ofdm->plcp_err);
 | |
| 
 | |
| 	statis.beacon_silence_rssi_a =
 | |
| 	    le32_to_cpu(rx_info->beacon_silence_rssi_a);
 | |
| 	statis.beacon_silence_rssi_b =
 | |
| 	    le32_to_cpu(rx_info->beacon_silence_rssi_b);
 | |
| 	statis.beacon_silence_rssi_c =
 | |
| 	    le32_to_cpu(rx_info->beacon_silence_rssi_c);
 | |
| 	statis.beacon_energy_a = le32_to_cpu(rx_info->beacon_energy_a);
 | |
| 	statis.beacon_energy_b = le32_to_cpu(rx_info->beacon_energy_b);
 | |
| 	statis.beacon_energy_c = le32_to_cpu(rx_info->beacon_energy_c);
 | |
| 
 | |
| 	spin_unlock_irqrestore(&il->lock, flags);
 | |
| 
 | |
| 	D_CALIB("rx_enable_time = %u usecs\n", rx_enable_time);
 | |
| 
 | |
| 	if (!rx_enable_time) {
 | |
| 		D_CALIB("<< RX Enable Time == 0!\n");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* These stats increase monotonically, and do not reset
 | |
| 	 *   at each beacon.  Calculate difference from last value, or just
 | |
| 	 *   use the new stats value if it has reset or wrapped around. */
 | |
| 	if (data->last_bad_plcp_cnt_cck > bad_plcp_cck)
 | |
| 		data->last_bad_plcp_cnt_cck = bad_plcp_cck;
 | |
| 	else {
 | |
| 		bad_plcp_cck -= data->last_bad_plcp_cnt_cck;
 | |
| 		data->last_bad_plcp_cnt_cck += bad_plcp_cck;
 | |
| 	}
 | |
| 
 | |
| 	if (data->last_bad_plcp_cnt_ofdm > bad_plcp_ofdm)
 | |
| 		data->last_bad_plcp_cnt_ofdm = bad_plcp_ofdm;
 | |
| 	else {
 | |
| 		bad_plcp_ofdm -= data->last_bad_plcp_cnt_ofdm;
 | |
| 		data->last_bad_plcp_cnt_ofdm += bad_plcp_ofdm;
 | |
| 	}
 | |
| 
 | |
| 	if (data->last_fa_cnt_ofdm > fa_ofdm)
 | |
| 		data->last_fa_cnt_ofdm = fa_ofdm;
 | |
| 	else {
 | |
| 		fa_ofdm -= data->last_fa_cnt_ofdm;
 | |
| 		data->last_fa_cnt_ofdm += fa_ofdm;
 | |
| 	}
 | |
| 
 | |
| 	if (data->last_fa_cnt_cck > fa_cck)
 | |
| 		data->last_fa_cnt_cck = fa_cck;
 | |
| 	else {
 | |
| 		fa_cck -= data->last_fa_cnt_cck;
 | |
| 		data->last_fa_cnt_cck += fa_cck;
 | |
| 	}
 | |
| 
 | |
| 	/* Total aborted signal locks */
 | |
| 	norm_fa_ofdm = fa_ofdm + bad_plcp_ofdm;
 | |
| 	norm_fa_cck = fa_cck + bad_plcp_cck;
 | |
| 
 | |
| 	D_CALIB("cck: fa %u badp %u  ofdm: fa %u badp %u\n", fa_cck,
 | |
| 		bad_plcp_cck, fa_ofdm, bad_plcp_ofdm);
 | |
| 
 | |
| 	il4965_sens_auto_corr_ofdm(il, norm_fa_ofdm, rx_enable_time);
 | |
| 	il4965_sens_energy_cck(il, norm_fa_cck, rx_enable_time, &statis);
 | |
| 
 | |
| 	il4965_sensitivity_write(il);
 | |
| }
 | |
| 
 | |
| static inline u8
 | |
| il4965_find_first_chain(u8 mask)
 | |
| {
 | |
| 	if (mask & ANT_A)
 | |
| 		return CHAIN_A;
 | |
| 	if (mask & ANT_B)
 | |
| 		return CHAIN_B;
 | |
| 	return CHAIN_C;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Run disconnected antenna algorithm to find out which antennas are
 | |
|  * disconnected.
 | |
|  */
 | |
| static void
 | |
| il4965_find_disconn_antenna(struct il_priv *il, u32 * average_sig,
 | |
| 			    struct il_chain_noise_data *data)
 | |
| {
 | |
| 	u32 active_chains = 0;
 | |
| 	u32 max_average_sig;
 | |
| 	u16 max_average_sig_antenna_i;
 | |
| 	u8 num_tx_chains;
 | |
| 	u8 first_chain;
 | |
| 	u16 i = 0;
 | |
| 
 | |
| 	average_sig[0] =
 | |
| 	    data->chain_signal_a /
 | |
| 	    il->cfg->chain_noise_num_beacons;
 | |
| 	average_sig[1] =
 | |
| 	    data->chain_signal_b /
 | |
| 	    il->cfg->chain_noise_num_beacons;
 | |
| 	average_sig[2] =
 | |
| 	    data->chain_signal_c /
 | |
| 	    il->cfg->chain_noise_num_beacons;
 | |
| 
 | |
| 	if (average_sig[0] >= average_sig[1]) {
 | |
| 		max_average_sig = average_sig[0];
 | |
| 		max_average_sig_antenna_i = 0;
 | |
| 		active_chains = (1 << max_average_sig_antenna_i);
 | |
| 	} else {
 | |
| 		max_average_sig = average_sig[1];
 | |
| 		max_average_sig_antenna_i = 1;
 | |
| 		active_chains = (1 << max_average_sig_antenna_i);
 | |
| 	}
 | |
| 
 | |
| 	if (average_sig[2] >= max_average_sig) {
 | |
| 		max_average_sig = average_sig[2];
 | |
| 		max_average_sig_antenna_i = 2;
 | |
| 		active_chains = (1 << max_average_sig_antenna_i);
 | |
| 	}
 | |
| 
 | |
| 	D_CALIB("average_sig: a %d b %d c %d\n", average_sig[0], average_sig[1],
 | |
| 		average_sig[2]);
 | |
| 	D_CALIB("max_average_sig = %d, antenna %d\n", max_average_sig,
 | |
| 		max_average_sig_antenna_i);
 | |
| 
 | |
| 	/* Compare signal strengths for all 3 receivers. */
 | |
| 	for (i = 0; i < NUM_RX_CHAINS; i++) {
 | |
| 		if (i != max_average_sig_antenna_i) {
 | |
| 			s32 rssi_delta = (max_average_sig - average_sig[i]);
 | |
| 
 | |
| 			/* If signal is very weak, compared with
 | |
| 			 * strongest, mark it as disconnected. */
 | |
| 			if (rssi_delta > MAXIMUM_ALLOWED_PATHLOSS)
 | |
| 				data->disconn_array[i] = 1;
 | |
| 			else
 | |
| 				active_chains |= (1 << i);
 | |
| 			D_CALIB("i = %d  rssiDelta = %d  "
 | |
| 				"disconn_array[i] = %d\n", i, rssi_delta,
 | |
| 				data->disconn_array[i]);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * The above algorithm sometimes fails when the ucode
 | |
| 	 * reports 0 for all chains. It's not clear why that
 | |
| 	 * happens to start with, but it is then causing trouble
 | |
| 	 * because this can make us enable more chains than the
 | |
| 	 * hardware really has.
 | |
| 	 *
 | |
| 	 * To be safe, simply mask out any chains that we know
 | |
| 	 * are not on the device.
 | |
| 	 */
 | |
| 	active_chains &= il->hw_params.valid_rx_ant;
 | |
| 
 | |
| 	num_tx_chains = 0;
 | |
| 	for (i = 0; i < NUM_RX_CHAINS; i++) {
 | |
| 		/* loops on all the bits of
 | |
| 		 * il->hw_setting.valid_tx_ant */
 | |
| 		u8 ant_msk = (1 << i);
 | |
| 		if (!(il->hw_params.valid_tx_ant & ant_msk))
 | |
| 			continue;
 | |
| 
 | |
| 		num_tx_chains++;
 | |
| 		if (data->disconn_array[i] == 0)
 | |
| 			/* there is a Tx antenna connected */
 | |
| 			break;
 | |
| 		if (num_tx_chains == il->hw_params.tx_chains_num &&
 | |
| 		    data->disconn_array[i]) {
 | |
| 			/*
 | |
| 			 * If all chains are disconnected
 | |
| 			 * connect the first valid tx chain
 | |
| 			 */
 | |
| 			first_chain =
 | |
| 			    il4965_find_first_chain(il->cfg->valid_tx_ant);
 | |
| 			data->disconn_array[first_chain] = 0;
 | |
| 			active_chains |= BIT(first_chain);
 | |
| 			D_CALIB("All Tx chains are disconnected"
 | |
| 				"- declare %d as connected\n", first_chain);
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (active_chains != il->hw_params.valid_rx_ant &&
 | |
| 	    active_chains != il->chain_noise_data.active_chains)
 | |
| 		D_CALIB("Detected that not all antennas are connected! "
 | |
| 			"Connected: %#x, valid: %#x.\n", active_chains,
 | |
| 			il->hw_params.valid_rx_ant);
 | |
| 
 | |
| 	/* Save for use within RXON, TX, SCAN commands, etc. */
 | |
| 	data->active_chains = active_chains;
 | |
| 	D_CALIB("active_chains (bitwise) = 0x%x\n", active_chains);
 | |
| }
 | |
| 
 | |
| static void
 | |
| il4965_gain_computation(struct il_priv *il, u32 * average_noise,
 | |
| 			u16 min_average_noise_antenna_i, u32 min_average_noise,
 | |
| 			u8 default_chain)
 | |
| {
 | |
| 	int i, ret;
 | |
| 	struct il_chain_noise_data *data = &il->chain_noise_data;
 | |
| 
 | |
| 	data->delta_gain_code[min_average_noise_antenna_i] = 0;
 | |
| 
 | |
| 	for (i = default_chain; i < NUM_RX_CHAINS; i++) {
 | |
| 		s32 delta_g = 0;
 | |
| 
 | |
| 		if (!data->disconn_array[i] &&
 | |
| 		    data->delta_gain_code[i] ==
 | |
| 		    CHAIN_NOISE_DELTA_GAIN_INIT_VAL) {
 | |
| 			delta_g = average_noise[i] - min_average_noise;
 | |
| 			data->delta_gain_code[i] = (u8) ((delta_g * 10) / 15);
 | |
| 			data->delta_gain_code[i] =
 | |
| 			    min(data->delta_gain_code[i],
 | |
| 				(u8) CHAIN_NOISE_MAX_DELTA_GAIN_CODE);
 | |
| 
 | |
| 			data->delta_gain_code[i] =
 | |
| 			    (data->delta_gain_code[i] | (1 << 2));
 | |
| 		} else {
 | |
| 			data->delta_gain_code[i] = 0;
 | |
| 		}
 | |
| 	}
 | |
| 	D_CALIB("delta_gain_codes: a %d b %d c %d\n", data->delta_gain_code[0],
 | |
| 		data->delta_gain_code[1], data->delta_gain_code[2]);
 | |
| 
 | |
| 	/* Differential gain gets sent to uCode only once */
 | |
| 	if (!data->radio_write) {
 | |
| 		struct il_calib_diff_gain_cmd cmd;
 | |
| 		data->radio_write = 1;
 | |
| 
 | |
| 		memset(&cmd, 0, sizeof(cmd));
 | |
| 		cmd.hdr.op_code = IL_PHY_CALIBRATE_DIFF_GAIN_CMD;
 | |
| 		cmd.diff_gain_a = data->delta_gain_code[0];
 | |
| 		cmd.diff_gain_b = data->delta_gain_code[1];
 | |
| 		cmd.diff_gain_c = data->delta_gain_code[2];
 | |
| 		ret = il_send_cmd_pdu(il, C_PHY_CALIBRATION, sizeof(cmd), &cmd);
 | |
| 		if (ret)
 | |
| 			D_CALIB("fail sending cmd " "C_PHY_CALIBRATION\n");
 | |
| 
 | |
| 		/* TODO we might want recalculate
 | |
| 		 * rx_chain in rxon cmd */
 | |
| 
 | |
| 		/* Mark so we run this algo only once! */
 | |
| 		data->state = IL_CHAIN_NOISE_CALIBRATED;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Accumulate 16 beacons of signal and noise stats for each of
 | |
|  *   3 receivers/antennas/rx-chains, then figure out:
 | |
|  * 1)  Which antennas are connected.
 | |
|  * 2)  Differential rx gain settings to balance the 3 receivers.
 | |
|  */
 | |
| void
 | |
| il4965_chain_noise_calibration(struct il_priv *il, void *stat_resp)
 | |
| {
 | |
| 	struct il_chain_noise_data *data = NULL;
 | |
| 
 | |
| 	u32 chain_noise_a;
 | |
| 	u32 chain_noise_b;
 | |
| 	u32 chain_noise_c;
 | |
| 	u32 chain_sig_a;
 | |
| 	u32 chain_sig_b;
 | |
| 	u32 chain_sig_c;
 | |
| 	u32 average_sig[NUM_RX_CHAINS] = { INITIALIZATION_VALUE };
 | |
| 	u32 average_noise[NUM_RX_CHAINS] = { INITIALIZATION_VALUE };
 | |
| 	u32 min_average_noise = MIN_AVERAGE_NOISE_MAX_VALUE;
 | |
| 	u16 min_average_noise_antenna_i = INITIALIZATION_VALUE;
 | |
| 	u16 i = 0;
 | |
| 	u16 rxon_chnum = INITIALIZATION_VALUE;
 | |
| 	u16 stat_chnum = INITIALIZATION_VALUE;
 | |
| 	u8 rxon_band24;
 | |
| 	u8 stat_band24;
 | |
| 	unsigned long flags;
 | |
| 	struct stats_rx_non_phy *rx_info;
 | |
| 
 | |
| 	if (il->disable_chain_noise_cal)
 | |
| 		return;
 | |
| 
 | |
| 	data = &(il->chain_noise_data);
 | |
| 
 | |
| 	/*
 | |
| 	 * Accumulate just the first "chain_noise_num_beacons" after
 | |
| 	 * the first association, then we're done forever.
 | |
| 	 */
 | |
| 	if (data->state != IL_CHAIN_NOISE_ACCUMULATE) {
 | |
| 		if (data->state == IL_CHAIN_NOISE_ALIVE)
 | |
| 			D_CALIB("Wait for noise calib reset\n");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	spin_lock_irqsave(&il->lock, flags);
 | |
| 
 | |
| 	rx_info = &(((struct il_notif_stats *)stat_resp)->rx.general);
 | |
| 
 | |
| 	if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) {
 | |
| 		D_CALIB(" << Interference data unavailable\n");
 | |
| 		spin_unlock_irqrestore(&il->lock, flags);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	rxon_band24 = !!(il->staging.flags & RXON_FLG_BAND_24G_MSK);
 | |
| 	rxon_chnum = le16_to_cpu(il->staging.channel);
 | |
| 
 | |
| 	stat_band24 =
 | |
| 	    !!(((struct il_notif_stats *)stat_resp)->
 | |
| 	       flag & STATS_REPLY_FLG_BAND_24G_MSK);
 | |
| 	stat_chnum =
 | |
| 	    le32_to_cpu(((struct il_notif_stats *)stat_resp)->flag) >> 16;
 | |
| 
 | |
| 	/* Make sure we accumulate data for just the associated channel
 | |
| 	 *   (even if scanning). */
 | |
| 	if (rxon_chnum != stat_chnum || rxon_band24 != stat_band24) {
 | |
| 		D_CALIB("Stats not from chan=%d, band24=%d\n", rxon_chnum,
 | |
| 			rxon_band24);
 | |
| 		spin_unlock_irqrestore(&il->lock, flags);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 *  Accumulate beacon stats values across
 | |
| 	 * "chain_noise_num_beacons"
 | |
| 	 */
 | |
| 	chain_noise_a =
 | |
| 	    le32_to_cpu(rx_info->beacon_silence_rssi_a) & IN_BAND_FILTER;
 | |
| 	chain_noise_b =
 | |
| 	    le32_to_cpu(rx_info->beacon_silence_rssi_b) & IN_BAND_FILTER;
 | |
| 	chain_noise_c =
 | |
| 	    le32_to_cpu(rx_info->beacon_silence_rssi_c) & IN_BAND_FILTER;
 | |
| 
 | |
| 	chain_sig_a = le32_to_cpu(rx_info->beacon_rssi_a) & IN_BAND_FILTER;
 | |
| 	chain_sig_b = le32_to_cpu(rx_info->beacon_rssi_b) & IN_BAND_FILTER;
 | |
| 	chain_sig_c = le32_to_cpu(rx_info->beacon_rssi_c) & IN_BAND_FILTER;
 | |
| 
 | |
| 	spin_unlock_irqrestore(&il->lock, flags);
 | |
| 
 | |
| 	data->beacon_count++;
 | |
| 
 | |
| 	data->chain_noise_a = (chain_noise_a + data->chain_noise_a);
 | |
| 	data->chain_noise_b = (chain_noise_b + data->chain_noise_b);
 | |
| 	data->chain_noise_c = (chain_noise_c + data->chain_noise_c);
 | |
| 
 | |
| 	data->chain_signal_a = (chain_sig_a + data->chain_signal_a);
 | |
| 	data->chain_signal_b = (chain_sig_b + data->chain_signal_b);
 | |
| 	data->chain_signal_c = (chain_sig_c + data->chain_signal_c);
 | |
| 
 | |
| 	D_CALIB("chan=%d, band24=%d, beacon=%d\n", rxon_chnum, rxon_band24,
 | |
| 		data->beacon_count);
 | |
| 	D_CALIB("chain_sig: a %d b %d c %d\n", chain_sig_a, chain_sig_b,
 | |
| 		chain_sig_c);
 | |
| 	D_CALIB("chain_noise: a %d b %d c %d\n", chain_noise_a, chain_noise_b,
 | |
| 		chain_noise_c);
 | |
| 
 | |
| 	/* If this is the "chain_noise_num_beacons", determine:
 | |
| 	 * 1)  Disconnected antennas (using signal strengths)
 | |
| 	 * 2)  Differential gain (using silence noise) to balance receivers */
 | |
| 	if (data->beacon_count != il->cfg->chain_noise_num_beacons)
 | |
| 		return;
 | |
| 
 | |
| 	/* Analyze signal for disconnected antenna */
 | |
| 	il4965_find_disconn_antenna(il, average_sig, data);
 | |
| 
 | |
| 	/* Analyze noise for rx balance */
 | |
| 	average_noise[0] =
 | |
| 	    data->chain_noise_a / il->cfg->chain_noise_num_beacons;
 | |
| 	average_noise[1] =
 | |
| 	    data->chain_noise_b / il->cfg->chain_noise_num_beacons;
 | |
| 	average_noise[2] =
 | |
| 	    data->chain_noise_c / il->cfg->chain_noise_num_beacons;
 | |
| 
 | |
| 	for (i = 0; i < NUM_RX_CHAINS; i++) {
 | |
| 		if (!data->disconn_array[i] &&
 | |
| 		    average_noise[i] <= min_average_noise) {
 | |
| 			/* This means that chain i is active and has
 | |
| 			 * lower noise values so far: */
 | |
| 			min_average_noise = average_noise[i];
 | |
| 			min_average_noise_antenna_i = i;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	D_CALIB("average_noise: a %d b %d c %d\n", average_noise[0],
 | |
| 		average_noise[1], average_noise[2]);
 | |
| 
 | |
| 	D_CALIB("min_average_noise = %d, antenna %d\n", min_average_noise,
 | |
| 		min_average_noise_antenna_i);
 | |
| 
 | |
| 	il4965_gain_computation(il, average_noise, min_average_noise_antenna_i,
 | |
| 				min_average_noise,
 | |
| 				il4965_find_first_chain(il->cfg->valid_rx_ant));
 | |
| 
 | |
| 	/* Some power changes may have been made during the calibration.
 | |
| 	 * Update and commit the RXON
 | |
| 	 */
 | |
| 	if (il->ops->update_chain_flags)
 | |
| 		il->ops->update_chain_flags(il);
 | |
| 
 | |
| 	data->state = IL_CHAIN_NOISE_DONE;
 | |
| 	il_power_update_mode(il, false);
 | |
| }
 | |
| 
 | |
| void
 | |
| il4965_reset_run_time_calib(struct il_priv *il)
 | |
| {
 | |
| 	int i;
 | |
| 	memset(&(il->sensitivity_data), 0, sizeof(struct il_sensitivity_data));
 | |
| 	memset(&(il->chain_noise_data), 0, sizeof(struct il_chain_noise_data));
 | |
| 	for (i = 0; i < NUM_RX_CHAINS; i++)
 | |
| 		il->chain_noise_data.delta_gain_code[i] =
 | |
| 		    CHAIN_NOISE_DELTA_GAIN_INIT_VAL;
 | |
| 
 | |
| 	/* Ask for stats now, the uCode will send notification
 | |
| 	 * periodically after association */
 | |
| 	il_send_stats_request(il, CMD_ASYNC, true);
 | |
| }
 |