forked from Minki/linux
76a262d274
Our driver while supporting HDR didn't send the proper colorimetry info in the AVI infoframe. Let's add the property needed so that the userspace can let us know what the colorspace is supposed to be. Reviewed-by: Jernej Skrabec <jernej.skrabec@gmail.com> Signed-off-by: Maxime Ripard <maxime@cerno.tech> Link: https://patchwork.freedesktop.org/patch/msgid/20210430094451.2145002-5-maxime@cerno.tech
2235 lines
64 KiB
C
2235 lines
64 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Copyright (C) 2015 Broadcom
|
|
* Copyright (c) 2014 The Linux Foundation. All rights reserved.
|
|
* Copyright (C) 2013 Red Hat
|
|
* Author: Rob Clark <robdclark@gmail.com>
|
|
*/
|
|
|
|
/**
|
|
* DOC: VC4 Falcon HDMI module
|
|
*
|
|
* The HDMI core has a state machine and a PHY. On BCM2835, most of
|
|
* the unit operates off of the HSM clock from CPRMAN. It also
|
|
* internally uses the PLLH_PIX clock for the PHY.
|
|
*
|
|
* HDMI infoframes are kept within a small packet ram, where each
|
|
* packet can be individually enabled for including in a frame.
|
|
*
|
|
* HDMI audio is implemented entirely within the HDMI IP block. A
|
|
* register in the HDMI encoder takes SPDIF frames from the DMA engine
|
|
* and transfers them over an internal MAI (multi-channel audio
|
|
* interconnect) bus to the encoder side for insertion into the video
|
|
* blank regions.
|
|
*
|
|
* The driver's HDMI encoder does not yet support power management.
|
|
* The HDMI encoder's power domain and the HSM/pixel clocks are kept
|
|
* continuously running, and only the HDMI logic and packet ram are
|
|
* powered off/on at disable/enable time.
|
|
*
|
|
* The driver does not yet support CEC control, though the HDMI
|
|
* encoder block has CEC support.
|
|
*/
|
|
|
|
#include <drm/drm_atomic_helper.h>
|
|
#include <drm/drm_edid.h>
|
|
#include <drm/drm_probe_helper.h>
|
|
#include <drm/drm_simple_kms_helper.h>
|
|
#include <linux/clk.h>
|
|
#include <linux/component.h>
|
|
#include <linux/i2c.h>
|
|
#include <linux/of_address.h>
|
|
#include <linux/of_gpio.h>
|
|
#include <linux/of_platform.h>
|
|
#include <linux/pm_runtime.h>
|
|
#include <linux/rational.h>
|
|
#include <linux/reset.h>
|
|
#include <sound/dmaengine_pcm.h>
|
|
#include <sound/pcm_drm_eld.h>
|
|
#include <sound/pcm_params.h>
|
|
#include <sound/soc.h>
|
|
#include "media/cec.h"
|
|
#include "vc4_drv.h"
|
|
#include "vc4_hdmi.h"
|
|
#include "vc4_hdmi_regs.h"
|
|
#include "vc4_regs.h"
|
|
|
|
#define VC5_HDMI_HORZA_HFP_SHIFT 16
|
|
#define VC5_HDMI_HORZA_HFP_MASK VC4_MASK(28, 16)
|
|
#define VC5_HDMI_HORZA_VPOS BIT(15)
|
|
#define VC5_HDMI_HORZA_HPOS BIT(14)
|
|
#define VC5_HDMI_HORZA_HAP_SHIFT 0
|
|
#define VC5_HDMI_HORZA_HAP_MASK VC4_MASK(13, 0)
|
|
|
|
#define VC5_HDMI_HORZB_HBP_SHIFT 16
|
|
#define VC5_HDMI_HORZB_HBP_MASK VC4_MASK(26, 16)
|
|
#define VC5_HDMI_HORZB_HSP_SHIFT 0
|
|
#define VC5_HDMI_HORZB_HSP_MASK VC4_MASK(10, 0)
|
|
|
|
#define VC5_HDMI_VERTA_VSP_SHIFT 24
|
|
#define VC5_HDMI_VERTA_VSP_MASK VC4_MASK(28, 24)
|
|
#define VC5_HDMI_VERTA_VFP_SHIFT 16
|
|
#define VC5_HDMI_VERTA_VFP_MASK VC4_MASK(22, 16)
|
|
#define VC5_HDMI_VERTA_VAL_SHIFT 0
|
|
#define VC5_HDMI_VERTA_VAL_MASK VC4_MASK(12, 0)
|
|
|
|
#define VC5_HDMI_VERTB_VSPO_SHIFT 16
|
|
#define VC5_HDMI_VERTB_VSPO_MASK VC4_MASK(29, 16)
|
|
|
|
#define VC5_HDMI_DEEP_COLOR_CONFIG_1_INIT_PACK_PHASE_SHIFT 8
|
|
#define VC5_HDMI_DEEP_COLOR_CONFIG_1_INIT_PACK_PHASE_MASK VC4_MASK(10, 8)
|
|
|
|
#define VC5_HDMI_DEEP_COLOR_CONFIG_1_COLOR_DEPTH_SHIFT 0
|
|
#define VC5_HDMI_DEEP_COLOR_CONFIG_1_COLOR_DEPTH_MASK VC4_MASK(3, 0)
|
|
|
|
#define VC5_HDMI_GCP_CONFIG_GCP_ENABLE BIT(31)
|
|
|
|
#define VC5_HDMI_GCP_WORD_1_GCP_SUBPACKET_BYTE_1_SHIFT 8
|
|
#define VC5_HDMI_GCP_WORD_1_GCP_SUBPACKET_BYTE_1_MASK VC4_MASK(15, 8)
|
|
|
|
# define VC4_HD_M_SW_RST BIT(2)
|
|
# define VC4_HD_M_ENABLE BIT(0)
|
|
|
|
#define CEC_CLOCK_FREQ 40000
|
|
#define VC4_HSM_MID_CLOCK 149985000
|
|
|
|
#define HDMI_14_MAX_TMDS_CLK (340 * 1000 * 1000)
|
|
|
|
static int vc4_hdmi_debugfs_regs(struct seq_file *m, void *unused)
|
|
{
|
|
struct drm_info_node *node = (struct drm_info_node *)m->private;
|
|
struct vc4_hdmi *vc4_hdmi = node->info_ent->data;
|
|
struct drm_printer p = drm_seq_file_printer(m);
|
|
|
|
drm_print_regset32(&p, &vc4_hdmi->hdmi_regset);
|
|
drm_print_regset32(&p, &vc4_hdmi->hd_regset);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void vc4_hdmi_reset(struct vc4_hdmi *vc4_hdmi)
|
|
{
|
|
HDMI_WRITE(HDMI_M_CTL, VC4_HD_M_SW_RST);
|
|
udelay(1);
|
|
HDMI_WRITE(HDMI_M_CTL, 0);
|
|
|
|
HDMI_WRITE(HDMI_M_CTL, VC4_HD_M_ENABLE);
|
|
|
|
HDMI_WRITE(HDMI_SW_RESET_CONTROL,
|
|
VC4_HDMI_SW_RESET_HDMI |
|
|
VC4_HDMI_SW_RESET_FORMAT_DETECT);
|
|
|
|
HDMI_WRITE(HDMI_SW_RESET_CONTROL, 0);
|
|
}
|
|
|
|
static void vc5_hdmi_reset(struct vc4_hdmi *vc4_hdmi)
|
|
{
|
|
reset_control_reset(vc4_hdmi->reset);
|
|
|
|
HDMI_WRITE(HDMI_DVP_CTL, 0);
|
|
|
|
HDMI_WRITE(HDMI_CLOCK_STOP,
|
|
HDMI_READ(HDMI_CLOCK_STOP) | VC4_DVP_HT_CLOCK_STOP_PIXEL);
|
|
}
|
|
|
|
#ifdef CONFIG_DRM_VC4_HDMI_CEC
|
|
static void vc4_hdmi_cec_update_clk_div(struct vc4_hdmi *vc4_hdmi)
|
|
{
|
|
u16 clk_cnt;
|
|
u32 value;
|
|
|
|
value = HDMI_READ(HDMI_CEC_CNTRL_1);
|
|
value &= ~VC4_HDMI_CEC_DIV_CLK_CNT_MASK;
|
|
|
|
/*
|
|
* Set the clock divider: the hsm_clock rate and this divider
|
|
* setting will give a 40 kHz CEC clock.
|
|
*/
|
|
clk_cnt = clk_get_rate(vc4_hdmi->cec_clock) / CEC_CLOCK_FREQ;
|
|
value |= clk_cnt << VC4_HDMI_CEC_DIV_CLK_CNT_SHIFT;
|
|
HDMI_WRITE(HDMI_CEC_CNTRL_1, value);
|
|
}
|
|
#else
|
|
static void vc4_hdmi_cec_update_clk_div(struct vc4_hdmi *vc4_hdmi) {}
|
|
#endif
|
|
|
|
static enum drm_connector_status
|
|
vc4_hdmi_connector_detect(struct drm_connector *connector, bool force)
|
|
{
|
|
struct vc4_hdmi *vc4_hdmi = connector_to_vc4_hdmi(connector);
|
|
bool connected = false;
|
|
|
|
if (vc4_hdmi->hpd_gpio) {
|
|
if (gpio_get_value_cansleep(vc4_hdmi->hpd_gpio) ^
|
|
vc4_hdmi->hpd_active_low)
|
|
connected = true;
|
|
} else if (drm_probe_ddc(vc4_hdmi->ddc)) {
|
|
connected = true;
|
|
} else if (HDMI_READ(HDMI_HOTPLUG) & VC4_HDMI_HOTPLUG_CONNECTED) {
|
|
connected = true;
|
|
}
|
|
|
|
if (connected) {
|
|
if (connector->status != connector_status_connected) {
|
|
struct edid *edid = drm_get_edid(connector, vc4_hdmi->ddc);
|
|
|
|
if (edid) {
|
|
cec_s_phys_addr_from_edid(vc4_hdmi->cec_adap, edid);
|
|
vc4_hdmi->encoder.hdmi_monitor = drm_detect_hdmi_monitor(edid);
|
|
kfree(edid);
|
|
}
|
|
}
|
|
|
|
return connector_status_connected;
|
|
}
|
|
|
|
cec_phys_addr_invalidate(vc4_hdmi->cec_adap);
|
|
return connector_status_disconnected;
|
|
}
|
|
|
|
static void vc4_hdmi_connector_destroy(struct drm_connector *connector)
|
|
{
|
|
drm_connector_unregister(connector);
|
|
drm_connector_cleanup(connector);
|
|
}
|
|
|
|
static int vc4_hdmi_connector_get_modes(struct drm_connector *connector)
|
|
{
|
|
struct vc4_hdmi *vc4_hdmi = connector_to_vc4_hdmi(connector);
|
|
struct vc4_hdmi_encoder *vc4_encoder = &vc4_hdmi->encoder;
|
|
int ret = 0;
|
|
struct edid *edid;
|
|
|
|
edid = drm_get_edid(connector, vc4_hdmi->ddc);
|
|
cec_s_phys_addr_from_edid(vc4_hdmi->cec_adap, edid);
|
|
if (!edid)
|
|
return -ENODEV;
|
|
|
|
vc4_encoder->hdmi_monitor = drm_detect_hdmi_monitor(edid);
|
|
|
|
drm_connector_update_edid_property(connector, edid);
|
|
ret = drm_add_edid_modes(connector, edid);
|
|
kfree(edid);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int vc4_hdmi_connector_atomic_check(struct drm_connector *connector,
|
|
struct drm_atomic_state *state)
|
|
{
|
|
struct drm_connector_state *old_state =
|
|
drm_atomic_get_old_connector_state(state, connector);
|
|
struct drm_connector_state *new_state =
|
|
drm_atomic_get_new_connector_state(state, connector);
|
|
struct drm_crtc *crtc = new_state->crtc;
|
|
|
|
if (!crtc)
|
|
return 0;
|
|
|
|
if (old_state->colorspace != new_state->colorspace ||
|
|
!drm_connector_atomic_hdr_metadata_equal(old_state, new_state)) {
|
|
struct drm_crtc_state *crtc_state;
|
|
|
|
crtc_state = drm_atomic_get_crtc_state(state, crtc);
|
|
if (IS_ERR(crtc_state))
|
|
return PTR_ERR(crtc_state);
|
|
|
|
crtc_state->mode_changed = true;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void vc4_hdmi_connector_reset(struct drm_connector *connector)
|
|
{
|
|
struct vc4_hdmi_connector_state *old_state =
|
|
conn_state_to_vc4_hdmi_conn_state(connector->state);
|
|
struct vc4_hdmi_connector_state *new_state =
|
|
kzalloc(sizeof(*new_state), GFP_KERNEL);
|
|
|
|
if (connector->state)
|
|
__drm_atomic_helper_connector_destroy_state(connector->state);
|
|
|
|
kfree(old_state);
|
|
__drm_atomic_helper_connector_reset(connector, &new_state->base);
|
|
|
|
if (!new_state)
|
|
return;
|
|
|
|
new_state->base.max_bpc = 8;
|
|
new_state->base.max_requested_bpc = 8;
|
|
drm_atomic_helper_connector_tv_reset(connector);
|
|
}
|
|
|
|
static struct drm_connector_state *
|
|
vc4_hdmi_connector_duplicate_state(struct drm_connector *connector)
|
|
{
|
|
struct drm_connector_state *conn_state = connector->state;
|
|
struct vc4_hdmi_connector_state *vc4_state = conn_state_to_vc4_hdmi_conn_state(conn_state);
|
|
struct vc4_hdmi_connector_state *new_state;
|
|
|
|
new_state = kzalloc(sizeof(*new_state), GFP_KERNEL);
|
|
if (!new_state)
|
|
return NULL;
|
|
|
|
new_state->pixel_rate = vc4_state->pixel_rate;
|
|
__drm_atomic_helper_connector_duplicate_state(connector, &new_state->base);
|
|
|
|
return &new_state->base;
|
|
}
|
|
|
|
static const struct drm_connector_funcs vc4_hdmi_connector_funcs = {
|
|
.detect = vc4_hdmi_connector_detect,
|
|
.fill_modes = drm_helper_probe_single_connector_modes,
|
|
.destroy = vc4_hdmi_connector_destroy,
|
|
.reset = vc4_hdmi_connector_reset,
|
|
.atomic_duplicate_state = vc4_hdmi_connector_duplicate_state,
|
|
.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
|
|
};
|
|
|
|
static const struct drm_connector_helper_funcs vc4_hdmi_connector_helper_funcs = {
|
|
.get_modes = vc4_hdmi_connector_get_modes,
|
|
.atomic_check = vc4_hdmi_connector_atomic_check,
|
|
};
|
|
|
|
static int vc4_hdmi_connector_init(struct drm_device *dev,
|
|
struct vc4_hdmi *vc4_hdmi)
|
|
{
|
|
struct drm_connector *connector = &vc4_hdmi->connector;
|
|
struct drm_encoder *encoder = &vc4_hdmi->encoder.base.base;
|
|
int ret;
|
|
|
|
drm_connector_init_with_ddc(dev, connector,
|
|
&vc4_hdmi_connector_funcs,
|
|
DRM_MODE_CONNECTOR_HDMIA,
|
|
vc4_hdmi->ddc);
|
|
drm_connector_helper_add(connector, &vc4_hdmi_connector_helper_funcs);
|
|
|
|
/*
|
|
* Some of the properties below require access to state, like bpc.
|
|
* Allocate some default initial connector state with our reset helper.
|
|
*/
|
|
if (connector->funcs->reset)
|
|
connector->funcs->reset(connector);
|
|
|
|
/* Create and attach TV margin props to this connector. */
|
|
ret = drm_mode_create_tv_margin_properties(dev);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = drm_mode_create_hdmi_colorspace_property(connector);
|
|
if (ret)
|
|
return ret;
|
|
|
|
drm_connector_attach_colorspace_property(connector);
|
|
drm_connector_attach_tv_margin_properties(connector);
|
|
drm_connector_attach_max_bpc_property(connector, 8, 12);
|
|
|
|
connector->polled = (DRM_CONNECTOR_POLL_CONNECT |
|
|
DRM_CONNECTOR_POLL_DISCONNECT);
|
|
|
|
connector->interlace_allowed = 1;
|
|
connector->doublescan_allowed = 0;
|
|
|
|
if (vc4_hdmi->variant->supports_hdr)
|
|
drm_connector_attach_hdr_output_metadata_property(connector);
|
|
|
|
drm_connector_attach_encoder(connector, encoder);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int vc4_hdmi_stop_packet(struct drm_encoder *encoder,
|
|
enum hdmi_infoframe_type type,
|
|
bool poll)
|
|
{
|
|
struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder);
|
|
u32 packet_id = type - 0x80;
|
|
|
|
HDMI_WRITE(HDMI_RAM_PACKET_CONFIG,
|
|
HDMI_READ(HDMI_RAM_PACKET_CONFIG) & ~BIT(packet_id));
|
|
|
|
if (!poll)
|
|
return 0;
|
|
|
|
return wait_for(!(HDMI_READ(HDMI_RAM_PACKET_STATUS) &
|
|
BIT(packet_id)), 100);
|
|
}
|
|
|
|
static void vc4_hdmi_write_infoframe(struct drm_encoder *encoder,
|
|
union hdmi_infoframe *frame)
|
|
{
|
|
struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder);
|
|
u32 packet_id = frame->any.type - 0x80;
|
|
const struct vc4_hdmi_register *ram_packet_start =
|
|
&vc4_hdmi->variant->registers[HDMI_RAM_PACKET_START];
|
|
u32 packet_reg = ram_packet_start->offset + VC4_HDMI_PACKET_STRIDE * packet_id;
|
|
void __iomem *base = __vc4_hdmi_get_field_base(vc4_hdmi,
|
|
ram_packet_start->reg);
|
|
uint8_t buffer[VC4_HDMI_PACKET_STRIDE];
|
|
ssize_t len, i;
|
|
int ret;
|
|
|
|
WARN_ONCE(!(HDMI_READ(HDMI_RAM_PACKET_CONFIG) &
|
|
VC4_HDMI_RAM_PACKET_ENABLE),
|
|
"Packet RAM has to be on to store the packet.");
|
|
|
|
len = hdmi_infoframe_pack(frame, buffer, sizeof(buffer));
|
|
if (len < 0)
|
|
return;
|
|
|
|
ret = vc4_hdmi_stop_packet(encoder, frame->any.type, true);
|
|
if (ret) {
|
|
DRM_ERROR("Failed to wait for infoframe to go idle: %d\n", ret);
|
|
return;
|
|
}
|
|
|
|
for (i = 0; i < len; i += 7) {
|
|
writel(buffer[i + 0] << 0 |
|
|
buffer[i + 1] << 8 |
|
|
buffer[i + 2] << 16,
|
|
base + packet_reg);
|
|
packet_reg += 4;
|
|
|
|
writel(buffer[i + 3] << 0 |
|
|
buffer[i + 4] << 8 |
|
|
buffer[i + 5] << 16 |
|
|
buffer[i + 6] << 24,
|
|
base + packet_reg);
|
|
packet_reg += 4;
|
|
}
|
|
|
|
HDMI_WRITE(HDMI_RAM_PACKET_CONFIG,
|
|
HDMI_READ(HDMI_RAM_PACKET_CONFIG) | BIT(packet_id));
|
|
ret = wait_for((HDMI_READ(HDMI_RAM_PACKET_STATUS) &
|
|
BIT(packet_id)), 100);
|
|
if (ret)
|
|
DRM_ERROR("Failed to wait for infoframe to start: %d\n", ret);
|
|
}
|
|
|
|
static void vc4_hdmi_set_avi_infoframe(struct drm_encoder *encoder)
|
|
{
|
|
struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder);
|
|
struct vc4_hdmi_encoder *vc4_encoder = to_vc4_hdmi_encoder(encoder);
|
|
struct drm_connector *connector = &vc4_hdmi->connector;
|
|
struct drm_connector_state *cstate = connector->state;
|
|
struct drm_crtc *crtc = encoder->crtc;
|
|
const struct drm_display_mode *mode = &crtc->state->adjusted_mode;
|
|
union hdmi_infoframe frame;
|
|
int ret;
|
|
|
|
ret = drm_hdmi_avi_infoframe_from_display_mode(&frame.avi,
|
|
connector, mode);
|
|
if (ret < 0) {
|
|
DRM_ERROR("couldn't fill AVI infoframe\n");
|
|
return;
|
|
}
|
|
|
|
drm_hdmi_avi_infoframe_quant_range(&frame.avi,
|
|
connector, mode,
|
|
vc4_encoder->limited_rgb_range ?
|
|
HDMI_QUANTIZATION_RANGE_LIMITED :
|
|
HDMI_QUANTIZATION_RANGE_FULL);
|
|
drm_hdmi_avi_infoframe_colorspace(&frame.avi, cstate);
|
|
drm_hdmi_avi_infoframe_bars(&frame.avi, cstate);
|
|
|
|
vc4_hdmi_write_infoframe(encoder, &frame);
|
|
}
|
|
|
|
static void vc4_hdmi_set_spd_infoframe(struct drm_encoder *encoder)
|
|
{
|
|
union hdmi_infoframe frame;
|
|
int ret;
|
|
|
|
ret = hdmi_spd_infoframe_init(&frame.spd, "Broadcom", "Videocore");
|
|
if (ret < 0) {
|
|
DRM_ERROR("couldn't fill SPD infoframe\n");
|
|
return;
|
|
}
|
|
|
|
frame.spd.sdi = HDMI_SPD_SDI_PC;
|
|
|
|
vc4_hdmi_write_infoframe(encoder, &frame);
|
|
}
|
|
|
|
static void vc4_hdmi_set_audio_infoframe(struct drm_encoder *encoder)
|
|
{
|
|
struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder);
|
|
union hdmi_infoframe frame;
|
|
|
|
hdmi_audio_infoframe_init(&frame.audio);
|
|
|
|
frame.audio.coding_type = HDMI_AUDIO_CODING_TYPE_STREAM;
|
|
frame.audio.sample_frequency = HDMI_AUDIO_SAMPLE_FREQUENCY_STREAM;
|
|
frame.audio.sample_size = HDMI_AUDIO_SAMPLE_SIZE_STREAM;
|
|
frame.audio.channels = vc4_hdmi->audio.channels;
|
|
|
|
vc4_hdmi_write_infoframe(encoder, &frame);
|
|
}
|
|
|
|
static void vc4_hdmi_set_hdr_infoframe(struct drm_encoder *encoder)
|
|
{
|
|
struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder);
|
|
struct drm_connector *connector = &vc4_hdmi->connector;
|
|
struct drm_connector_state *conn_state = connector->state;
|
|
union hdmi_infoframe frame;
|
|
|
|
if (!vc4_hdmi->variant->supports_hdr)
|
|
return;
|
|
|
|
if (!conn_state->hdr_output_metadata)
|
|
return;
|
|
|
|
if (drm_hdmi_infoframe_set_hdr_metadata(&frame.drm, conn_state))
|
|
return;
|
|
|
|
vc4_hdmi_write_infoframe(encoder, &frame);
|
|
}
|
|
|
|
static void vc4_hdmi_set_infoframes(struct drm_encoder *encoder)
|
|
{
|
|
struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder);
|
|
|
|
vc4_hdmi_set_avi_infoframe(encoder);
|
|
vc4_hdmi_set_spd_infoframe(encoder);
|
|
/*
|
|
* If audio was streaming, then we need to reenabled the audio
|
|
* infoframe here during encoder_enable.
|
|
*/
|
|
if (vc4_hdmi->audio.streaming)
|
|
vc4_hdmi_set_audio_infoframe(encoder);
|
|
|
|
vc4_hdmi_set_hdr_infoframe(encoder);
|
|
}
|
|
|
|
static void vc4_hdmi_encoder_post_crtc_disable(struct drm_encoder *encoder,
|
|
struct drm_atomic_state *state)
|
|
{
|
|
struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder);
|
|
|
|
HDMI_WRITE(HDMI_RAM_PACKET_CONFIG, 0);
|
|
|
|
HDMI_WRITE(HDMI_VID_CTL, HDMI_READ(HDMI_VID_CTL) |
|
|
VC4_HD_VID_CTL_CLRRGB | VC4_HD_VID_CTL_CLRSYNC);
|
|
|
|
HDMI_WRITE(HDMI_VID_CTL,
|
|
HDMI_READ(HDMI_VID_CTL) | VC4_HD_VID_CTL_BLANKPIX);
|
|
}
|
|
|
|
static void vc4_hdmi_encoder_post_crtc_powerdown(struct drm_encoder *encoder,
|
|
struct drm_atomic_state *state)
|
|
{
|
|
struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder);
|
|
int ret;
|
|
|
|
if (vc4_hdmi->variant->phy_disable)
|
|
vc4_hdmi->variant->phy_disable(vc4_hdmi);
|
|
|
|
HDMI_WRITE(HDMI_VID_CTL,
|
|
HDMI_READ(HDMI_VID_CTL) & ~VC4_HD_VID_CTL_ENABLE);
|
|
|
|
clk_disable_unprepare(vc4_hdmi->pixel_bvb_clock);
|
|
clk_disable_unprepare(vc4_hdmi->hsm_clock);
|
|
clk_disable_unprepare(vc4_hdmi->pixel_clock);
|
|
|
|
ret = pm_runtime_put(&vc4_hdmi->pdev->dev);
|
|
if (ret < 0)
|
|
DRM_ERROR("Failed to release power domain: %d\n", ret);
|
|
}
|
|
|
|
static void vc4_hdmi_encoder_disable(struct drm_encoder *encoder)
|
|
{
|
|
}
|
|
|
|
static void vc4_hdmi_csc_setup(struct vc4_hdmi *vc4_hdmi, bool enable)
|
|
{
|
|
u32 csc_ctl;
|
|
|
|
csc_ctl = VC4_SET_FIELD(VC4_HD_CSC_CTL_ORDER_BGR,
|
|
VC4_HD_CSC_CTL_ORDER);
|
|
|
|
if (enable) {
|
|
/* CEA VICs other than #1 requre limited range RGB
|
|
* output unless overridden by an AVI infoframe.
|
|
* Apply a colorspace conversion to squash 0-255 down
|
|
* to 16-235. The matrix here is:
|
|
*
|
|
* [ 0 0 0.8594 16]
|
|
* [ 0 0.8594 0 16]
|
|
* [ 0.8594 0 0 16]
|
|
* [ 0 0 0 1]
|
|
*/
|
|
csc_ctl |= VC4_HD_CSC_CTL_ENABLE;
|
|
csc_ctl |= VC4_HD_CSC_CTL_RGB2YCC;
|
|
csc_ctl |= VC4_SET_FIELD(VC4_HD_CSC_CTL_MODE_CUSTOM,
|
|
VC4_HD_CSC_CTL_MODE);
|
|
|
|
HDMI_WRITE(HDMI_CSC_12_11, (0x000 << 16) | 0x000);
|
|
HDMI_WRITE(HDMI_CSC_14_13, (0x100 << 16) | 0x6e0);
|
|
HDMI_WRITE(HDMI_CSC_22_21, (0x6e0 << 16) | 0x000);
|
|
HDMI_WRITE(HDMI_CSC_24_23, (0x100 << 16) | 0x000);
|
|
HDMI_WRITE(HDMI_CSC_32_31, (0x000 << 16) | 0x6e0);
|
|
HDMI_WRITE(HDMI_CSC_34_33, (0x100 << 16) | 0x000);
|
|
}
|
|
|
|
/* The RGB order applies even when CSC is disabled. */
|
|
HDMI_WRITE(HDMI_CSC_CTL, csc_ctl);
|
|
}
|
|
|
|
static void vc5_hdmi_csc_setup(struct vc4_hdmi *vc4_hdmi, bool enable)
|
|
{
|
|
u32 csc_ctl;
|
|
|
|
csc_ctl = 0x07; /* RGB_CONVERT_MODE = custom matrix, || USE_RGB_TO_YCBCR */
|
|
|
|
if (enable) {
|
|
/* CEA VICs other than #1 requre limited range RGB
|
|
* output unless overridden by an AVI infoframe.
|
|
* Apply a colorspace conversion to squash 0-255 down
|
|
* to 16-235. The matrix here is:
|
|
*
|
|
* [ 0.8594 0 0 16]
|
|
* [ 0 0.8594 0 16]
|
|
* [ 0 0 0.8594 16]
|
|
* [ 0 0 0 1]
|
|
* Matrix is signed 2p13 fixed point, with signed 9p6 offsets
|
|
*/
|
|
HDMI_WRITE(HDMI_CSC_12_11, (0x0000 << 16) | 0x1b80);
|
|
HDMI_WRITE(HDMI_CSC_14_13, (0x0400 << 16) | 0x0000);
|
|
HDMI_WRITE(HDMI_CSC_22_21, (0x1b80 << 16) | 0x0000);
|
|
HDMI_WRITE(HDMI_CSC_24_23, (0x0400 << 16) | 0x0000);
|
|
HDMI_WRITE(HDMI_CSC_32_31, (0x0000 << 16) | 0x0000);
|
|
HDMI_WRITE(HDMI_CSC_34_33, (0x0400 << 16) | 0x1b80);
|
|
} else {
|
|
/* Still use the matrix for full range, but make it unity.
|
|
* Matrix is signed 2p13 fixed point, with signed 9p6 offsets
|
|
*/
|
|
HDMI_WRITE(HDMI_CSC_12_11, (0x0000 << 16) | 0x2000);
|
|
HDMI_WRITE(HDMI_CSC_14_13, (0x0000 << 16) | 0x0000);
|
|
HDMI_WRITE(HDMI_CSC_22_21, (0x2000 << 16) | 0x0000);
|
|
HDMI_WRITE(HDMI_CSC_24_23, (0x0000 << 16) | 0x0000);
|
|
HDMI_WRITE(HDMI_CSC_32_31, (0x0000 << 16) | 0x0000);
|
|
HDMI_WRITE(HDMI_CSC_34_33, (0x0000 << 16) | 0x2000);
|
|
}
|
|
|
|
HDMI_WRITE(HDMI_CSC_CTL, csc_ctl);
|
|
}
|
|
|
|
static void vc4_hdmi_set_timings(struct vc4_hdmi *vc4_hdmi,
|
|
struct drm_connector_state *state,
|
|
struct drm_display_mode *mode)
|
|
{
|
|
bool hsync_pos = mode->flags & DRM_MODE_FLAG_PHSYNC;
|
|
bool vsync_pos = mode->flags & DRM_MODE_FLAG_PVSYNC;
|
|
bool interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE;
|
|
u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1;
|
|
u32 verta = (VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start,
|
|
VC4_HDMI_VERTA_VSP) |
|
|
VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay,
|
|
VC4_HDMI_VERTA_VFP) |
|
|
VC4_SET_FIELD(mode->crtc_vdisplay, VC4_HDMI_VERTA_VAL));
|
|
u32 vertb = (VC4_SET_FIELD(0, VC4_HDMI_VERTB_VSPO) |
|
|
VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end,
|
|
VC4_HDMI_VERTB_VBP));
|
|
u32 vertb_even = (VC4_SET_FIELD(0, VC4_HDMI_VERTB_VSPO) |
|
|
VC4_SET_FIELD(mode->crtc_vtotal -
|
|
mode->crtc_vsync_end -
|
|
interlaced,
|
|
VC4_HDMI_VERTB_VBP));
|
|
|
|
HDMI_WRITE(HDMI_HORZA,
|
|
(vsync_pos ? VC4_HDMI_HORZA_VPOS : 0) |
|
|
(hsync_pos ? VC4_HDMI_HORZA_HPOS : 0) |
|
|
VC4_SET_FIELD(mode->hdisplay * pixel_rep,
|
|
VC4_HDMI_HORZA_HAP));
|
|
|
|
HDMI_WRITE(HDMI_HORZB,
|
|
VC4_SET_FIELD((mode->htotal -
|
|
mode->hsync_end) * pixel_rep,
|
|
VC4_HDMI_HORZB_HBP) |
|
|
VC4_SET_FIELD((mode->hsync_end -
|
|
mode->hsync_start) * pixel_rep,
|
|
VC4_HDMI_HORZB_HSP) |
|
|
VC4_SET_FIELD((mode->hsync_start -
|
|
mode->hdisplay) * pixel_rep,
|
|
VC4_HDMI_HORZB_HFP));
|
|
|
|
HDMI_WRITE(HDMI_VERTA0, verta);
|
|
HDMI_WRITE(HDMI_VERTA1, verta);
|
|
|
|
HDMI_WRITE(HDMI_VERTB0, vertb_even);
|
|
HDMI_WRITE(HDMI_VERTB1, vertb);
|
|
}
|
|
|
|
static void vc5_hdmi_set_timings(struct vc4_hdmi *vc4_hdmi,
|
|
struct drm_connector_state *state,
|
|
struct drm_display_mode *mode)
|
|
{
|
|
bool hsync_pos = mode->flags & DRM_MODE_FLAG_PHSYNC;
|
|
bool vsync_pos = mode->flags & DRM_MODE_FLAG_PVSYNC;
|
|
bool interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE;
|
|
u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1;
|
|
u32 verta = (VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start,
|
|
VC5_HDMI_VERTA_VSP) |
|
|
VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay,
|
|
VC5_HDMI_VERTA_VFP) |
|
|
VC4_SET_FIELD(mode->crtc_vdisplay, VC5_HDMI_VERTA_VAL));
|
|
u32 vertb = (VC4_SET_FIELD(0, VC5_HDMI_VERTB_VSPO) |
|
|
VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end,
|
|
VC4_HDMI_VERTB_VBP));
|
|
u32 vertb_even = (VC4_SET_FIELD(0, VC5_HDMI_VERTB_VSPO) |
|
|
VC4_SET_FIELD(mode->crtc_vtotal -
|
|
mode->crtc_vsync_end -
|
|
interlaced,
|
|
VC4_HDMI_VERTB_VBP));
|
|
unsigned char gcp;
|
|
bool gcp_en;
|
|
u32 reg;
|
|
|
|
HDMI_WRITE(HDMI_VEC_INTERFACE_XBAR, 0x354021);
|
|
HDMI_WRITE(HDMI_HORZA,
|
|
(vsync_pos ? VC5_HDMI_HORZA_VPOS : 0) |
|
|
(hsync_pos ? VC5_HDMI_HORZA_HPOS : 0) |
|
|
VC4_SET_FIELD(mode->hdisplay * pixel_rep,
|
|
VC5_HDMI_HORZA_HAP) |
|
|
VC4_SET_FIELD((mode->hsync_start -
|
|
mode->hdisplay) * pixel_rep,
|
|
VC5_HDMI_HORZA_HFP));
|
|
|
|
HDMI_WRITE(HDMI_HORZB,
|
|
VC4_SET_FIELD((mode->htotal -
|
|
mode->hsync_end) * pixel_rep,
|
|
VC5_HDMI_HORZB_HBP) |
|
|
VC4_SET_FIELD((mode->hsync_end -
|
|
mode->hsync_start) * pixel_rep,
|
|
VC5_HDMI_HORZB_HSP));
|
|
|
|
HDMI_WRITE(HDMI_VERTA0, verta);
|
|
HDMI_WRITE(HDMI_VERTA1, verta);
|
|
|
|
HDMI_WRITE(HDMI_VERTB0, vertb_even);
|
|
HDMI_WRITE(HDMI_VERTB1, vertb);
|
|
|
|
switch (state->max_bpc) {
|
|
case 12:
|
|
gcp = 6;
|
|
gcp_en = true;
|
|
break;
|
|
case 10:
|
|
gcp = 5;
|
|
gcp_en = true;
|
|
break;
|
|
case 8:
|
|
default:
|
|
gcp = 4;
|
|
gcp_en = false;
|
|
break;
|
|
}
|
|
|
|
reg = HDMI_READ(HDMI_DEEP_COLOR_CONFIG_1);
|
|
reg &= ~(VC5_HDMI_DEEP_COLOR_CONFIG_1_INIT_PACK_PHASE_MASK |
|
|
VC5_HDMI_DEEP_COLOR_CONFIG_1_COLOR_DEPTH_MASK);
|
|
reg |= VC4_SET_FIELD(2, VC5_HDMI_DEEP_COLOR_CONFIG_1_INIT_PACK_PHASE) |
|
|
VC4_SET_FIELD(gcp, VC5_HDMI_DEEP_COLOR_CONFIG_1_COLOR_DEPTH);
|
|
HDMI_WRITE(HDMI_DEEP_COLOR_CONFIG_1, reg);
|
|
|
|
reg = HDMI_READ(HDMI_GCP_WORD_1);
|
|
reg &= ~VC5_HDMI_GCP_WORD_1_GCP_SUBPACKET_BYTE_1_MASK;
|
|
reg |= VC4_SET_FIELD(gcp, VC5_HDMI_GCP_WORD_1_GCP_SUBPACKET_BYTE_1);
|
|
HDMI_WRITE(HDMI_GCP_WORD_1, reg);
|
|
|
|
reg = HDMI_READ(HDMI_GCP_CONFIG);
|
|
reg &= ~VC5_HDMI_GCP_CONFIG_GCP_ENABLE;
|
|
reg |= gcp_en ? VC5_HDMI_GCP_CONFIG_GCP_ENABLE : 0;
|
|
HDMI_WRITE(HDMI_GCP_CONFIG, reg);
|
|
|
|
HDMI_WRITE(HDMI_CLOCK_STOP, 0);
|
|
}
|
|
|
|
static void vc4_hdmi_recenter_fifo(struct vc4_hdmi *vc4_hdmi)
|
|
{
|
|
u32 drift;
|
|
int ret;
|
|
|
|
drift = HDMI_READ(HDMI_FIFO_CTL);
|
|
drift &= VC4_HDMI_FIFO_VALID_WRITE_MASK;
|
|
|
|
HDMI_WRITE(HDMI_FIFO_CTL,
|
|
drift & ~VC4_HDMI_FIFO_CTL_RECENTER);
|
|
HDMI_WRITE(HDMI_FIFO_CTL,
|
|
drift | VC4_HDMI_FIFO_CTL_RECENTER);
|
|
usleep_range(1000, 1100);
|
|
HDMI_WRITE(HDMI_FIFO_CTL,
|
|
drift & ~VC4_HDMI_FIFO_CTL_RECENTER);
|
|
HDMI_WRITE(HDMI_FIFO_CTL,
|
|
drift | VC4_HDMI_FIFO_CTL_RECENTER);
|
|
|
|
ret = wait_for(HDMI_READ(HDMI_FIFO_CTL) &
|
|
VC4_HDMI_FIFO_CTL_RECENTER_DONE, 1);
|
|
WARN_ONCE(ret, "Timeout waiting for "
|
|
"VC4_HDMI_FIFO_CTL_RECENTER_DONE");
|
|
}
|
|
|
|
static struct drm_connector_state *
|
|
vc4_hdmi_encoder_get_connector_state(struct drm_encoder *encoder,
|
|
struct drm_atomic_state *state)
|
|
{
|
|
struct drm_connector_state *conn_state;
|
|
struct drm_connector *connector;
|
|
unsigned int i;
|
|
|
|
for_each_new_connector_in_state(state, connector, conn_state, i) {
|
|
if (conn_state->best_encoder == encoder)
|
|
return conn_state;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static void vc4_hdmi_encoder_pre_crtc_configure(struct drm_encoder *encoder,
|
|
struct drm_atomic_state *state)
|
|
{
|
|
struct drm_connector_state *conn_state =
|
|
vc4_hdmi_encoder_get_connector_state(encoder, state);
|
|
struct vc4_hdmi_connector_state *vc4_conn_state =
|
|
conn_state_to_vc4_hdmi_conn_state(conn_state);
|
|
struct drm_display_mode *mode = &encoder->crtc->state->adjusted_mode;
|
|
struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder);
|
|
unsigned long pixel_rate, hsm_rate;
|
|
int ret;
|
|
|
|
ret = pm_runtime_get_sync(&vc4_hdmi->pdev->dev);
|
|
if (ret < 0) {
|
|
DRM_ERROR("Failed to retain power domain: %d\n", ret);
|
|
return;
|
|
}
|
|
|
|
pixel_rate = vc4_conn_state->pixel_rate;
|
|
ret = clk_set_rate(vc4_hdmi->pixel_clock, pixel_rate);
|
|
if (ret) {
|
|
DRM_ERROR("Failed to set pixel clock rate: %d\n", ret);
|
|
return;
|
|
}
|
|
|
|
ret = clk_prepare_enable(vc4_hdmi->pixel_clock);
|
|
if (ret) {
|
|
DRM_ERROR("Failed to turn on pixel clock: %d\n", ret);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* As stated in RPi's vc4 firmware "HDMI state machine (HSM) clock must
|
|
* be faster than pixel clock, infinitesimally faster, tested in
|
|
* simulation. Otherwise, exact value is unimportant for HDMI
|
|
* operation." This conflicts with bcm2835's vc4 documentation, which
|
|
* states HSM's clock has to be at least 108% of the pixel clock.
|
|
*
|
|
* Real life tests reveal that vc4's firmware statement holds up, and
|
|
* users are able to use pixel clocks closer to HSM's, namely for
|
|
* 1920x1200@60Hz. So it was decided to have leave a 1% margin between
|
|
* both clocks. Which, for RPi0-3 implies a maximum pixel clock of
|
|
* 162MHz.
|
|
*
|
|
* Additionally, the AXI clock needs to be at least 25% of
|
|
* pixel clock, but HSM ends up being the limiting factor.
|
|
*/
|
|
hsm_rate = max_t(unsigned long, 120000000, (pixel_rate / 100) * 101);
|
|
ret = clk_set_min_rate(vc4_hdmi->hsm_clock, hsm_rate);
|
|
if (ret) {
|
|
DRM_ERROR("Failed to set HSM clock rate: %d\n", ret);
|
|
return;
|
|
}
|
|
|
|
ret = clk_prepare_enable(vc4_hdmi->hsm_clock);
|
|
if (ret) {
|
|
DRM_ERROR("Failed to turn on HSM clock: %d\n", ret);
|
|
clk_disable_unprepare(vc4_hdmi->pixel_clock);
|
|
return;
|
|
}
|
|
|
|
vc4_hdmi_cec_update_clk_div(vc4_hdmi);
|
|
|
|
/*
|
|
* FIXME: When the pixel freq is 594MHz (4k60), this needs to be setup
|
|
* at 300MHz.
|
|
*/
|
|
ret = clk_set_min_rate(vc4_hdmi->pixel_bvb_clock,
|
|
(hsm_rate > VC4_HSM_MID_CLOCK ? 150000000 : 75000000));
|
|
if (ret) {
|
|
DRM_ERROR("Failed to set pixel bvb clock rate: %d\n", ret);
|
|
clk_disable_unprepare(vc4_hdmi->hsm_clock);
|
|
clk_disable_unprepare(vc4_hdmi->pixel_clock);
|
|
return;
|
|
}
|
|
|
|
ret = clk_prepare_enable(vc4_hdmi->pixel_bvb_clock);
|
|
if (ret) {
|
|
DRM_ERROR("Failed to turn on pixel bvb clock: %d\n", ret);
|
|
clk_disable_unprepare(vc4_hdmi->hsm_clock);
|
|
clk_disable_unprepare(vc4_hdmi->pixel_clock);
|
|
return;
|
|
}
|
|
|
|
if (vc4_hdmi->variant->phy_init)
|
|
vc4_hdmi->variant->phy_init(vc4_hdmi, vc4_conn_state);
|
|
|
|
HDMI_WRITE(HDMI_SCHEDULER_CONTROL,
|
|
HDMI_READ(HDMI_SCHEDULER_CONTROL) |
|
|
VC4_HDMI_SCHEDULER_CONTROL_MANUAL_FORMAT |
|
|
VC4_HDMI_SCHEDULER_CONTROL_IGNORE_VSYNC_PREDICTS);
|
|
|
|
if (vc4_hdmi->variant->set_timings)
|
|
vc4_hdmi->variant->set_timings(vc4_hdmi, conn_state, mode);
|
|
}
|
|
|
|
static void vc4_hdmi_encoder_pre_crtc_enable(struct drm_encoder *encoder,
|
|
struct drm_atomic_state *state)
|
|
{
|
|
struct drm_display_mode *mode = &encoder->crtc->state->adjusted_mode;
|
|
struct vc4_hdmi_encoder *vc4_encoder = to_vc4_hdmi_encoder(encoder);
|
|
struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder);
|
|
|
|
if (vc4_encoder->hdmi_monitor &&
|
|
drm_default_rgb_quant_range(mode) == HDMI_QUANTIZATION_RANGE_LIMITED) {
|
|
if (vc4_hdmi->variant->csc_setup)
|
|
vc4_hdmi->variant->csc_setup(vc4_hdmi, true);
|
|
|
|
vc4_encoder->limited_rgb_range = true;
|
|
} else {
|
|
if (vc4_hdmi->variant->csc_setup)
|
|
vc4_hdmi->variant->csc_setup(vc4_hdmi, false);
|
|
|
|
vc4_encoder->limited_rgb_range = false;
|
|
}
|
|
|
|
HDMI_WRITE(HDMI_FIFO_CTL, VC4_HDMI_FIFO_CTL_MASTER_SLAVE_N);
|
|
}
|
|
|
|
static void vc4_hdmi_encoder_post_crtc_enable(struct drm_encoder *encoder,
|
|
struct drm_atomic_state *state)
|
|
{
|
|
struct drm_display_mode *mode = &encoder->crtc->state->adjusted_mode;
|
|
struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder);
|
|
struct vc4_hdmi_encoder *vc4_encoder = to_vc4_hdmi_encoder(encoder);
|
|
bool hsync_pos = mode->flags & DRM_MODE_FLAG_PHSYNC;
|
|
bool vsync_pos = mode->flags & DRM_MODE_FLAG_PVSYNC;
|
|
int ret;
|
|
|
|
HDMI_WRITE(HDMI_VID_CTL,
|
|
VC4_HD_VID_CTL_ENABLE |
|
|
VC4_HD_VID_CTL_UNDERFLOW_ENABLE |
|
|
VC4_HD_VID_CTL_FRAME_COUNTER_RESET |
|
|
(vsync_pos ? 0 : VC4_HD_VID_CTL_VSYNC_LOW) |
|
|
(hsync_pos ? 0 : VC4_HD_VID_CTL_HSYNC_LOW));
|
|
|
|
HDMI_WRITE(HDMI_VID_CTL,
|
|
HDMI_READ(HDMI_VID_CTL) & ~VC4_HD_VID_CTL_BLANKPIX);
|
|
|
|
if (vc4_encoder->hdmi_monitor) {
|
|
HDMI_WRITE(HDMI_SCHEDULER_CONTROL,
|
|
HDMI_READ(HDMI_SCHEDULER_CONTROL) |
|
|
VC4_HDMI_SCHEDULER_CONTROL_MODE_HDMI);
|
|
|
|
ret = wait_for(HDMI_READ(HDMI_SCHEDULER_CONTROL) &
|
|
VC4_HDMI_SCHEDULER_CONTROL_HDMI_ACTIVE, 1000);
|
|
WARN_ONCE(ret, "Timeout waiting for "
|
|
"VC4_HDMI_SCHEDULER_CONTROL_HDMI_ACTIVE\n");
|
|
} else {
|
|
HDMI_WRITE(HDMI_RAM_PACKET_CONFIG,
|
|
HDMI_READ(HDMI_RAM_PACKET_CONFIG) &
|
|
~(VC4_HDMI_RAM_PACKET_ENABLE));
|
|
HDMI_WRITE(HDMI_SCHEDULER_CONTROL,
|
|
HDMI_READ(HDMI_SCHEDULER_CONTROL) &
|
|
~VC4_HDMI_SCHEDULER_CONTROL_MODE_HDMI);
|
|
|
|
ret = wait_for(!(HDMI_READ(HDMI_SCHEDULER_CONTROL) &
|
|
VC4_HDMI_SCHEDULER_CONTROL_HDMI_ACTIVE), 1000);
|
|
WARN_ONCE(ret, "Timeout waiting for "
|
|
"!VC4_HDMI_SCHEDULER_CONTROL_HDMI_ACTIVE\n");
|
|
}
|
|
|
|
if (vc4_encoder->hdmi_monitor) {
|
|
WARN_ON(!(HDMI_READ(HDMI_SCHEDULER_CONTROL) &
|
|
VC4_HDMI_SCHEDULER_CONTROL_HDMI_ACTIVE));
|
|
HDMI_WRITE(HDMI_SCHEDULER_CONTROL,
|
|
HDMI_READ(HDMI_SCHEDULER_CONTROL) |
|
|
VC4_HDMI_SCHEDULER_CONTROL_VERT_ALWAYS_KEEPOUT);
|
|
|
|
HDMI_WRITE(HDMI_RAM_PACKET_CONFIG,
|
|
VC4_HDMI_RAM_PACKET_ENABLE);
|
|
|
|
vc4_hdmi_set_infoframes(encoder);
|
|
}
|
|
|
|
vc4_hdmi_recenter_fifo(vc4_hdmi);
|
|
}
|
|
|
|
static void vc4_hdmi_encoder_enable(struct drm_encoder *encoder)
|
|
{
|
|
}
|
|
|
|
#define WIFI_2_4GHz_CH1_MIN_FREQ 2400000000ULL
|
|
#define WIFI_2_4GHz_CH1_MAX_FREQ 2422000000ULL
|
|
|
|
static int vc4_hdmi_encoder_atomic_check(struct drm_encoder *encoder,
|
|
struct drm_crtc_state *crtc_state,
|
|
struct drm_connector_state *conn_state)
|
|
{
|
|
struct vc4_hdmi_connector_state *vc4_state = conn_state_to_vc4_hdmi_conn_state(conn_state);
|
|
struct drm_display_mode *mode = &crtc_state->adjusted_mode;
|
|
struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder);
|
|
unsigned long long pixel_rate = mode->clock * 1000;
|
|
unsigned long long tmds_rate;
|
|
|
|
if (vc4_hdmi->variant->unsupported_odd_h_timings &&
|
|
((mode->hdisplay % 2) || (mode->hsync_start % 2) ||
|
|
(mode->hsync_end % 2) || (mode->htotal % 2)))
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* The 1440p@60 pixel rate is in the same range than the first
|
|
* WiFi channel (between 2.4GHz and 2.422GHz with 22MHz
|
|
* bandwidth). Slightly lower the frequency to bring it out of
|
|
* the WiFi range.
|
|
*/
|
|
tmds_rate = pixel_rate * 10;
|
|
if (vc4_hdmi->disable_wifi_frequencies &&
|
|
(tmds_rate >= WIFI_2_4GHz_CH1_MIN_FREQ &&
|
|
tmds_rate <= WIFI_2_4GHz_CH1_MAX_FREQ)) {
|
|
mode->clock = 238560;
|
|
pixel_rate = mode->clock * 1000;
|
|
}
|
|
|
|
if (conn_state->max_bpc == 12) {
|
|
pixel_rate = pixel_rate * 150;
|
|
do_div(pixel_rate, 100);
|
|
} else if (conn_state->max_bpc == 10) {
|
|
pixel_rate = pixel_rate * 125;
|
|
do_div(pixel_rate, 100);
|
|
}
|
|
|
|
if (mode->flags & DRM_MODE_FLAG_DBLCLK)
|
|
pixel_rate = pixel_rate * 2;
|
|
|
|
if (pixel_rate > vc4_hdmi->variant->max_pixel_clock)
|
|
return -EINVAL;
|
|
|
|
vc4_state->pixel_rate = pixel_rate;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static enum drm_mode_status
|
|
vc4_hdmi_encoder_mode_valid(struct drm_encoder *encoder,
|
|
const struct drm_display_mode *mode)
|
|
{
|
|
struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder);
|
|
|
|
if (vc4_hdmi->variant->unsupported_odd_h_timings &&
|
|
((mode->hdisplay % 2) || (mode->hsync_start % 2) ||
|
|
(mode->hsync_end % 2) || (mode->htotal % 2)))
|
|
return MODE_H_ILLEGAL;
|
|
|
|
if ((mode->clock * 1000) > vc4_hdmi->variant->max_pixel_clock)
|
|
return MODE_CLOCK_HIGH;
|
|
|
|
return MODE_OK;
|
|
}
|
|
|
|
static const struct drm_encoder_helper_funcs vc4_hdmi_encoder_helper_funcs = {
|
|
.atomic_check = vc4_hdmi_encoder_atomic_check,
|
|
.mode_valid = vc4_hdmi_encoder_mode_valid,
|
|
.disable = vc4_hdmi_encoder_disable,
|
|
.enable = vc4_hdmi_encoder_enable,
|
|
};
|
|
|
|
static u32 vc4_hdmi_channel_map(struct vc4_hdmi *vc4_hdmi, u32 channel_mask)
|
|
{
|
|
int i;
|
|
u32 channel_map = 0;
|
|
|
|
for (i = 0; i < 8; i++) {
|
|
if (channel_mask & BIT(i))
|
|
channel_map |= i << (3 * i);
|
|
}
|
|
return channel_map;
|
|
}
|
|
|
|
static u32 vc5_hdmi_channel_map(struct vc4_hdmi *vc4_hdmi, u32 channel_mask)
|
|
{
|
|
int i;
|
|
u32 channel_map = 0;
|
|
|
|
for (i = 0; i < 8; i++) {
|
|
if (channel_mask & BIT(i))
|
|
channel_map |= i << (4 * i);
|
|
}
|
|
return channel_map;
|
|
}
|
|
|
|
/* HDMI audio codec callbacks */
|
|
static void vc4_hdmi_audio_set_mai_clock(struct vc4_hdmi *vc4_hdmi)
|
|
{
|
|
u32 hsm_clock = clk_get_rate(vc4_hdmi->audio_clock);
|
|
unsigned long n, m;
|
|
|
|
rational_best_approximation(hsm_clock, vc4_hdmi->audio.samplerate,
|
|
VC4_HD_MAI_SMP_N_MASK >>
|
|
VC4_HD_MAI_SMP_N_SHIFT,
|
|
(VC4_HD_MAI_SMP_M_MASK >>
|
|
VC4_HD_MAI_SMP_M_SHIFT) + 1,
|
|
&n, &m);
|
|
|
|
HDMI_WRITE(HDMI_MAI_SMP,
|
|
VC4_SET_FIELD(n, VC4_HD_MAI_SMP_N) |
|
|
VC4_SET_FIELD(m - 1, VC4_HD_MAI_SMP_M));
|
|
}
|
|
|
|
static void vc4_hdmi_set_n_cts(struct vc4_hdmi *vc4_hdmi)
|
|
{
|
|
struct drm_encoder *encoder = &vc4_hdmi->encoder.base.base;
|
|
struct drm_crtc *crtc = encoder->crtc;
|
|
const struct drm_display_mode *mode = &crtc->state->adjusted_mode;
|
|
u32 samplerate = vc4_hdmi->audio.samplerate;
|
|
u32 n, cts;
|
|
u64 tmp;
|
|
|
|
n = 128 * samplerate / 1000;
|
|
tmp = (u64)(mode->clock * 1000) * n;
|
|
do_div(tmp, 128 * samplerate);
|
|
cts = tmp;
|
|
|
|
HDMI_WRITE(HDMI_CRP_CFG,
|
|
VC4_HDMI_CRP_CFG_EXTERNAL_CTS_EN |
|
|
VC4_SET_FIELD(n, VC4_HDMI_CRP_CFG_N));
|
|
|
|
/*
|
|
* We could get slightly more accurate clocks in some cases by
|
|
* providing a CTS_1 value. The two CTS values are alternated
|
|
* between based on the period fields
|
|
*/
|
|
HDMI_WRITE(HDMI_CTS_0, cts);
|
|
HDMI_WRITE(HDMI_CTS_1, cts);
|
|
}
|
|
|
|
static inline struct vc4_hdmi *dai_to_hdmi(struct snd_soc_dai *dai)
|
|
{
|
|
struct snd_soc_card *card = snd_soc_dai_get_drvdata(dai);
|
|
|
|
return snd_soc_card_get_drvdata(card);
|
|
}
|
|
|
|
static int vc4_hdmi_audio_startup(struct snd_pcm_substream *substream,
|
|
struct snd_soc_dai *dai)
|
|
{
|
|
struct vc4_hdmi *vc4_hdmi = dai_to_hdmi(dai);
|
|
struct drm_encoder *encoder = &vc4_hdmi->encoder.base.base;
|
|
struct drm_connector *connector = &vc4_hdmi->connector;
|
|
int ret;
|
|
|
|
if (vc4_hdmi->audio.substream && vc4_hdmi->audio.substream != substream)
|
|
return -EINVAL;
|
|
|
|
vc4_hdmi->audio.substream = substream;
|
|
|
|
/*
|
|
* If the HDMI encoder hasn't probed, or the encoder is
|
|
* currently in DVI mode, treat the codec dai as missing.
|
|
*/
|
|
if (!encoder->crtc || !(HDMI_READ(HDMI_RAM_PACKET_CONFIG) &
|
|
VC4_HDMI_RAM_PACKET_ENABLE))
|
|
return -ENODEV;
|
|
|
|
ret = snd_pcm_hw_constraint_eld(substream->runtime, connector->eld);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int vc4_hdmi_audio_set_fmt(struct snd_soc_dai *dai, unsigned int fmt)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static void vc4_hdmi_audio_reset(struct vc4_hdmi *vc4_hdmi)
|
|
{
|
|
struct drm_encoder *encoder = &vc4_hdmi->encoder.base.base;
|
|
struct device *dev = &vc4_hdmi->pdev->dev;
|
|
int ret;
|
|
|
|
vc4_hdmi->audio.streaming = false;
|
|
ret = vc4_hdmi_stop_packet(encoder, HDMI_INFOFRAME_TYPE_AUDIO, false);
|
|
if (ret)
|
|
dev_err(dev, "Failed to stop audio infoframe: %d\n", ret);
|
|
|
|
HDMI_WRITE(HDMI_MAI_CTL, VC4_HD_MAI_CTL_RESET);
|
|
HDMI_WRITE(HDMI_MAI_CTL, VC4_HD_MAI_CTL_ERRORF);
|
|
HDMI_WRITE(HDMI_MAI_CTL, VC4_HD_MAI_CTL_FLUSH);
|
|
}
|
|
|
|
static void vc4_hdmi_audio_shutdown(struct snd_pcm_substream *substream,
|
|
struct snd_soc_dai *dai)
|
|
{
|
|
struct vc4_hdmi *vc4_hdmi = dai_to_hdmi(dai);
|
|
|
|
if (substream != vc4_hdmi->audio.substream)
|
|
return;
|
|
|
|
vc4_hdmi_audio_reset(vc4_hdmi);
|
|
|
|
vc4_hdmi->audio.substream = NULL;
|
|
}
|
|
|
|
/* HDMI audio codec callbacks */
|
|
static int vc4_hdmi_audio_hw_params(struct snd_pcm_substream *substream,
|
|
struct snd_pcm_hw_params *params,
|
|
struct snd_soc_dai *dai)
|
|
{
|
|
struct vc4_hdmi *vc4_hdmi = dai_to_hdmi(dai);
|
|
struct drm_encoder *encoder = &vc4_hdmi->encoder.base.base;
|
|
struct device *dev = &vc4_hdmi->pdev->dev;
|
|
u32 audio_packet_config, channel_mask;
|
|
u32 channel_map;
|
|
|
|
if (substream != vc4_hdmi->audio.substream)
|
|
return -EINVAL;
|
|
|
|
dev_dbg(dev, "%s: %u Hz, %d bit, %d channels\n", __func__,
|
|
params_rate(params), params_width(params),
|
|
params_channels(params));
|
|
|
|
vc4_hdmi->audio.channels = params_channels(params);
|
|
vc4_hdmi->audio.samplerate = params_rate(params);
|
|
|
|
HDMI_WRITE(HDMI_MAI_CTL,
|
|
VC4_HD_MAI_CTL_RESET |
|
|
VC4_HD_MAI_CTL_FLUSH |
|
|
VC4_HD_MAI_CTL_DLATE |
|
|
VC4_HD_MAI_CTL_ERRORE |
|
|
VC4_HD_MAI_CTL_ERRORF);
|
|
|
|
vc4_hdmi_audio_set_mai_clock(vc4_hdmi);
|
|
|
|
/* The B frame identifier should match the value used by alsa-lib (8) */
|
|
audio_packet_config =
|
|
VC4_HDMI_AUDIO_PACKET_ZERO_DATA_ON_SAMPLE_FLAT |
|
|
VC4_HDMI_AUDIO_PACKET_ZERO_DATA_ON_INACTIVE_CHANNELS |
|
|
VC4_SET_FIELD(0x8, VC4_HDMI_AUDIO_PACKET_B_FRAME_IDENTIFIER);
|
|
|
|
channel_mask = GENMASK(vc4_hdmi->audio.channels - 1, 0);
|
|
audio_packet_config |= VC4_SET_FIELD(channel_mask,
|
|
VC4_HDMI_AUDIO_PACKET_CEA_MASK);
|
|
|
|
/* Set the MAI threshold. This logic mimics the firmware's. */
|
|
if (vc4_hdmi->audio.samplerate > 96000) {
|
|
HDMI_WRITE(HDMI_MAI_THR,
|
|
VC4_SET_FIELD(0x12, VC4_HD_MAI_THR_DREQHIGH) |
|
|
VC4_SET_FIELD(0x12, VC4_HD_MAI_THR_DREQLOW));
|
|
} else if (vc4_hdmi->audio.samplerate > 48000) {
|
|
HDMI_WRITE(HDMI_MAI_THR,
|
|
VC4_SET_FIELD(0x14, VC4_HD_MAI_THR_DREQHIGH) |
|
|
VC4_SET_FIELD(0x12, VC4_HD_MAI_THR_DREQLOW));
|
|
} else {
|
|
HDMI_WRITE(HDMI_MAI_THR,
|
|
VC4_SET_FIELD(0x10, VC4_HD_MAI_THR_PANICHIGH) |
|
|
VC4_SET_FIELD(0x10, VC4_HD_MAI_THR_PANICLOW) |
|
|
VC4_SET_FIELD(0x10, VC4_HD_MAI_THR_DREQHIGH) |
|
|
VC4_SET_FIELD(0x10, VC4_HD_MAI_THR_DREQLOW));
|
|
}
|
|
|
|
HDMI_WRITE(HDMI_MAI_CONFIG,
|
|
VC4_HDMI_MAI_CONFIG_BIT_REVERSE |
|
|
VC4_SET_FIELD(channel_mask, VC4_HDMI_MAI_CHANNEL_MASK));
|
|
|
|
channel_map = vc4_hdmi->variant->channel_map(vc4_hdmi, channel_mask);
|
|
HDMI_WRITE(HDMI_MAI_CHANNEL_MAP, channel_map);
|
|
HDMI_WRITE(HDMI_AUDIO_PACKET_CONFIG, audio_packet_config);
|
|
vc4_hdmi_set_n_cts(vc4_hdmi);
|
|
|
|
vc4_hdmi_set_audio_infoframe(encoder);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int vc4_hdmi_audio_trigger(struct snd_pcm_substream *substream, int cmd,
|
|
struct snd_soc_dai *dai)
|
|
{
|
|
struct vc4_hdmi *vc4_hdmi = dai_to_hdmi(dai);
|
|
|
|
switch (cmd) {
|
|
case SNDRV_PCM_TRIGGER_START:
|
|
vc4_hdmi->audio.streaming = true;
|
|
|
|
if (vc4_hdmi->variant->phy_rng_enable)
|
|
vc4_hdmi->variant->phy_rng_enable(vc4_hdmi);
|
|
|
|
HDMI_WRITE(HDMI_MAI_CTL,
|
|
VC4_SET_FIELD(vc4_hdmi->audio.channels,
|
|
VC4_HD_MAI_CTL_CHNUM) |
|
|
VC4_HD_MAI_CTL_ENABLE);
|
|
break;
|
|
case SNDRV_PCM_TRIGGER_STOP:
|
|
HDMI_WRITE(HDMI_MAI_CTL,
|
|
VC4_HD_MAI_CTL_DLATE |
|
|
VC4_HD_MAI_CTL_ERRORE |
|
|
VC4_HD_MAI_CTL_ERRORF);
|
|
|
|
if (vc4_hdmi->variant->phy_rng_disable)
|
|
vc4_hdmi->variant->phy_rng_disable(vc4_hdmi);
|
|
|
|
vc4_hdmi->audio.streaming = false;
|
|
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline struct vc4_hdmi *
|
|
snd_component_to_hdmi(struct snd_soc_component *component)
|
|
{
|
|
struct snd_soc_card *card = snd_soc_component_get_drvdata(component);
|
|
|
|
return snd_soc_card_get_drvdata(card);
|
|
}
|
|
|
|
static int vc4_hdmi_audio_eld_ctl_info(struct snd_kcontrol *kcontrol,
|
|
struct snd_ctl_elem_info *uinfo)
|
|
{
|
|
struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
|
|
struct vc4_hdmi *vc4_hdmi = snd_component_to_hdmi(component);
|
|
struct drm_connector *connector = &vc4_hdmi->connector;
|
|
|
|
uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
|
|
uinfo->count = sizeof(connector->eld);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int vc4_hdmi_audio_eld_ctl_get(struct snd_kcontrol *kcontrol,
|
|
struct snd_ctl_elem_value *ucontrol)
|
|
{
|
|
struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
|
|
struct vc4_hdmi *vc4_hdmi = snd_component_to_hdmi(component);
|
|
struct drm_connector *connector = &vc4_hdmi->connector;
|
|
|
|
memcpy(ucontrol->value.bytes.data, connector->eld,
|
|
sizeof(connector->eld));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct snd_kcontrol_new vc4_hdmi_audio_controls[] = {
|
|
{
|
|
.access = SNDRV_CTL_ELEM_ACCESS_READ |
|
|
SNDRV_CTL_ELEM_ACCESS_VOLATILE,
|
|
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
|
|
.name = "ELD",
|
|
.info = vc4_hdmi_audio_eld_ctl_info,
|
|
.get = vc4_hdmi_audio_eld_ctl_get,
|
|
},
|
|
};
|
|
|
|
static const struct snd_soc_dapm_widget vc4_hdmi_audio_widgets[] = {
|
|
SND_SOC_DAPM_OUTPUT("TX"),
|
|
};
|
|
|
|
static const struct snd_soc_dapm_route vc4_hdmi_audio_routes[] = {
|
|
{ "TX", NULL, "Playback" },
|
|
};
|
|
|
|
static const struct snd_soc_component_driver vc4_hdmi_audio_component_drv = {
|
|
.name = "vc4-hdmi-codec-dai-component",
|
|
.controls = vc4_hdmi_audio_controls,
|
|
.num_controls = ARRAY_SIZE(vc4_hdmi_audio_controls),
|
|
.dapm_widgets = vc4_hdmi_audio_widgets,
|
|
.num_dapm_widgets = ARRAY_SIZE(vc4_hdmi_audio_widgets),
|
|
.dapm_routes = vc4_hdmi_audio_routes,
|
|
.num_dapm_routes = ARRAY_SIZE(vc4_hdmi_audio_routes),
|
|
.idle_bias_on = 1,
|
|
.use_pmdown_time = 1,
|
|
.endianness = 1,
|
|
.non_legacy_dai_naming = 1,
|
|
};
|
|
|
|
static const struct snd_soc_dai_ops vc4_hdmi_audio_dai_ops = {
|
|
.startup = vc4_hdmi_audio_startup,
|
|
.shutdown = vc4_hdmi_audio_shutdown,
|
|
.hw_params = vc4_hdmi_audio_hw_params,
|
|
.set_fmt = vc4_hdmi_audio_set_fmt,
|
|
.trigger = vc4_hdmi_audio_trigger,
|
|
};
|
|
|
|
static struct snd_soc_dai_driver vc4_hdmi_audio_codec_dai_drv = {
|
|
.name = "vc4-hdmi-hifi",
|
|
.playback = {
|
|
.stream_name = "Playback",
|
|
.channels_min = 2,
|
|
.channels_max = 8,
|
|
.rates = SNDRV_PCM_RATE_32000 | SNDRV_PCM_RATE_44100 |
|
|
SNDRV_PCM_RATE_48000 | SNDRV_PCM_RATE_88200 |
|
|
SNDRV_PCM_RATE_96000 | SNDRV_PCM_RATE_176400 |
|
|
SNDRV_PCM_RATE_192000,
|
|
.formats = SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE,
|
|
},
|
|
};
|
|
|
|
static const struct snd_soc_component_driver vc4_hdmi_audio_cpu_dai_comp = {
|
|
.name = "vc4-hdmi-cpu-dai-component",
|
|
};
|
|
|
|
static int vc4_hdmi_audio_cpu_dai_probe(struct snd_soc_dai *dai)
|
|
{
|
|
struct vc4_hdmi *vc4_hdmi = dai_to_hdmi(dai);
|
|
|
|
snd_soc_dai_init_dma_data(dai, &vc4_hdmi->audio.dma_data, NULL);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct snd_soc_dai_driver vc4_hdmi_audio_cpu_dai_drv = {
|
|
.name = "vc4-hdmi-cpu-dai",
|
|
.probe = vc4_hdmi_audio_cpu_dai_probe,
|
|
.playback = {
|
|
.stream_name = "Playback",
|
|
.channels_min = 1,
|
|
.channels_max = 8,
|
|
.rates = SNDRV_PCM_RATE_32000 | SNDRV_PCM_RATE_44100 |
|
|
SNDRV_PCM_RATE_48000 | SNDRV_PCM_RATE_88200 |
|
|
SNDRV_PCM_RATE_96000 | SNDRV_PCM_RATE_176400 |
|
|
SNDRV_PCM_RATE_192000,
|
|
.formats = SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE,
|
|
},
|
|
.ops = &vc4_hdmi_audio_dai_ops,
|
|
};
|
|
|
|
static const struct snd_dmaengine_pcm_config pcm_conf = {
|
|
.chan_names[SNDRV_PCM_STREAM_PLAYBACK] = "audio-rx",
|
|
.prepare_slave_config = snd_dmaengine_pcm_prepare_slave_config,
|
|
};
|
|
|
|
static int vc4_hdmi_audio_init(struct vc4_hdmi *vc4_hdmi)
|
|
{
|
|
const struct vc4_hdmi_register *mai_data =
|
|
&vc4_hdmi->variant->registers[HDMI_MAI_DATA];
|
|
struct snd_soc_dai_link *dai_link = &vc4_hdmi->audio.link;
|
|
struct snd_soc_card *card = &vc4_hdmi->audio.card;
|
|
struct device *dev = &vc4_hdmi->pdev->dev;
|
|
const __be32 *addr;
|
|
int index;
|
|
int ret;
|
|
|
|
if (!of_find_property(dev->of_node, "dmas", NULL)) {
|
|
dev_warn(dev,
|
|
"'dmas' DT property is missing, no HDMI audio\n");
|
|
return 0;
|
|
}
|
|
|
|
if (mai_data->reg != VC4_HD) {
|
|
WARN_ONCE(true, "MAI isn't in the HD block\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* Get the physical address of VC4_HD_MAI_DATA. We need to retrieve
|
|
* the bus address specified in the DT, because the physical address
|
|
* (the one returned by platform_get_resource()) is not appropriate
|
|
* for DMA transfers.
|
|
* This VC/MMU should probably be exposed to avoid this kind of hacks.
|
|
*/
|
|
index = of_property_match_string(dev->of_node, "reg-names", "hd");
|
|
/* Before BCM2711, we don't have a named register range */
|
|
if (index < 0)
|
|
index = 1;
|
|
|
|
addr = of_get_address(dev->of_node, index, NULL, NULL);
|
|
|
|
vc4_hdmi->audio.dma_data.addr = be32_to_cpup(addr) + mai_data->offset;
|
|
vc4_hdmi->audio.dma_data.addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
|
|
vc4_hdmi->audio.dma_data.maxburst = 2;
|
|
|
|
ret = devm_snd_dmaengine_pcm_register(dev, &pcm_conf, 0);
|
|
if (ret) {
|
|
dev_err(dev, "Could not register PCM component: %d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
ret = devm_snd_soc_register_component(dev, &vc4_hdmi_audio_cpu_dai_comp,
|
|
&vc4_hdmi_audio_cpu_dai_drv, 1);
|
|
if (ret) {
|
|
dev_err(dev, "Could not register CPU DAI: %d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
/* register component and codec dai */
|
|
ret = devm_snd_soc_register_component(dev, &vc4_hdmi_audio_component_drv,
|
|
&vc4_hdmi_audio_codec_dai_drv, 1);
|
|
if (ret) {
|
|
dev_err(dev, "Could not register component: %d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
dai_link->cpus = &vc4_hdmi->audio.cpu;
|
|
dai_link->codecs = &vc4_hdmi->audio.codec;
|
|
dai_link->platforms = &vc4_hdmi->audio.platform;
|
|
|
|
dai_link->num_cpus = 1;
|
|
dai_link->num_codecs = 1;
|
|
dai_link->num_platforms = 1;
|
|
|
|
dai_link->name = "MAI";
|
|
dai_link->stream_name = "MAI PCM";
|
|
dai_link->codecs->dai_name = vc4_hdmi_audio_codec_dai_drv.name;
|
|
dai_link->cpus->dai_name = dev_name(dev);
|
|
dai_link->codecs->name = dev_name(dev);
|
|
dai_link->platforms->name = dev_name(dev);
|
|
|
|
card->dai_link = dai_link;
|
|
card->num_links = 1;
|
|
card->name = vc4_hdmi->variant->card_name;
|
|
card->driver_name = "vc4-hdmi";
|
|
card->dev = dev;
|
|
card->owner = THIS_MODULE;
|
|
|
|
/*
|
|
* Be careful, snd_soc_register_card() calls dev_set_drvdata() and
|
|
* stores a pointer to the snd card object in dev->driver_data. This
|
|
* means we cannot use it for something else. The hdmi back-pointer is
|
|
* now stored in card->drvdata and should be retrieved with
|
|
* snd_soc_card_get_drvdata() if needed.
|
|
*/
|
|
snd_soc_card_set_drvdata(card, vc4_hdmi);
|
|
ret = devm_snd_soc_register_card(dev, card);
|
|
if (ret)
|
|
dev_err(dev, "Could not register sound card: %d\n", ret);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
#ifdef CONFIG_DRM_VC4_HDMI_CEC
|
|
static irqreturn_t vc4_cec_irq_handler_rx_thread(int irq, void *priv)
|
|
{
|
|
struct vc4_hdmi *vc4_hdmi = priv;
|
|
|
|
if (vc4_hdmi->cec_rx_msg.len)
|
|
cec_received_msg(vc4_hdmi->cec_adap,
|
|
&vc4_hdmi->cec_rx_msg);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static irqreturn_t vc4_cec_irq_handler_tx_thread(int irq, void *priv)
|
|
{
|
|
struct vc4_hdmi *vc4_hdmi = priv;
|
|
|
|
if (vc4_hdmi->cec_tx_ok) {
|
|
cec_transmit_done(vc4_hdmi->cec_adap, CEC_TX_STATUS_OK,
|
|
0, 0, 0, 0);
|
|
} else {
|
|
/*
|
|
* This CEC implementation makes 1 retry, so if we
|
|
* get a NACK, then that means it made 2 attempts.
|
|
*/
|
|
cec_transmit_done(vc4_hdmi->cec_adap, CEC_TX_STATUS_NACK,
|
|
0, 2, 0, 0);
|
|
}
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static irqreturn_t vc4_cec_irq_handler_thread(int irq, void *priv)
|
|
{
|
|
struct vc4_hdmi *vc4_hdmi = priv;
|
|
irqreturn_t ret;
|
|
|
|
if (vc4_hdmi->cec_irq_was_rx)
|
|
ret = vc4_cec_irq_handler_rx_thread(irq, priv);
|
|
else
|
|
ret = vc4_cec_irq_handler_tx_thread(irq, priv);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void vc4_cec_read_msg(struct vc4_hdmi *vc4_hdmi, u32 cntrl1)
|
|
{
|
|
struct drm_device *dev = vc4_hdmi->connector.dev;
|
|
struct cec_msg *msg = &vc4_hdmi->cec_rx_msg;
|
|
unsigned int i;
|
|
|
|
msg->len = 1 + ((cntrl1 & VC4_HDMI_CEC_REC_WRD_CNT_MASK) >>
|
|
VC4_HDMI_CEC_REC_WRD_CNT_SHIFT);
|
|
|
|
if (msg->len > 16) {
|
|
drm_err(dev, "Attempting to read too much data (%d)\n", msg->len);
|
|
return;
|
|
}
|
|
|
|
for (i = 0; i < msg->len; i += 4) {
|
|
u32 val = HDMI_READ(HDMI_CEC_RX_DATA_1 + (i >> 2));
|
|
|
|
msg->msg[i] = val & 0xff;
|
|
msg->msg[i + 1] = (val >> 8) & 0xff;
|
|
msg->msg[i + 2] = (val >> 16) & 0xff;
|
|
msg->msg[i + 3] = (val >> 24) & 0xff;
|
|
}
|
|
}
|
|
|
|
static irqreturn_t vc4_cec_irq_handler_tx_bare(int irq, void *priv)
|
|
{
|
|
struct vc4_hdmi *vc4_hdmi = priv;
|
|
u32 cntrl1;
|
|
|
|
cntrl1 = HDMI_READ(HDMI_CEC_CNTRL_1);
|
|
vc4_hdmi->cec_tx_ok = cntrl1 & VC4_HDMI_CEC_TX_STATUS_GOOD;
|
|
cntrl1 &= ~VC4_HDMI_CEC_START_XMIT_BEGIN;
|
|
HDMI_WRITE(HDMI_CEC_CNTRL_1, cntrl1);
|
|
|
|
return IRQ_WAKE_THREAD;
|
|
}
|
|
|
|
static irqreturn_t vc4_cec_irq_handler_rx_bare(int irq, void *priv)
|
|
{
|
|
struct vc4_hdmi *vc4_hdmi = priv;
|
|
u32 cntrl1;
|
|
|
|
vc4_hdmi->cec_rx_msg.len = 0;
|
|
cntrl1 = HDMI_READ(HDMI_CEC_CNTRL_1);
|
|
vc4_cec_read_msg(vc4_hdmi, cntrl1);
|
|
cntrl1 |= VC4_HDMI_CEC_CLEAR_RECEIVE_OFF;
|
|
HDMI_WRITE(HDMI_CEC_CNTRL_1, cntrl1);
|
|
cntrl1 &= ~VC4_HDMI_CEC_CLEAR_RECEIVE_OFF;
|
|
|
|
HDMI_WRITE(HDMI_CEC_CNTRL_1, cntrl1);
|
|
|
|
return IRQ_WAKE_THREAD;
|
|
}
|
|
|
|
static irqreturn_t vc4_cec_irq_handler(int irq, void *priv)
|
|
{
|
|
struct vc4_hdmi *vc4_hdmi = priv;
|
|
u32 stat = HDMI_READ(HDMI_CEC_CPU_STATUS);
|
|
irqreturn_t ret;
|
|
u32 cntrl5;
|
|
|
|
if (!(stat & VC4_HDMI_CPU_CEC))
|
|
return IRQ_NONE;
|
|
|
|
cntrl5 = HDMI_READ(HDMI_CEC_CNTRL_5);
|
|
vc4_hdmi->cec_irq_was_rx = cntrl5 & VC4_HDMI_CEC_RX_CEC_INT;
|
|
if (vc4_hdmi->cec_irq_was_rx)
|
|
ret = vc4_cec_irq_handler_rx_bare(irq, priv);
|
|
else
|
|
ret = vc4_cec_irq_handler_tx_bare(irq, priv);
|
|
|
|
HDMI_WRITE(HDMI_CEC_CPU_CLEAR, VC4_HDMI_CPU_CEC);
|
|
return ret;
|
|
}
|
|
|
|
static int vc4_hdmi_cec_adap_enable(struct cec_adapter *adap, bool enable)
|
|
{
|
|
struct vc4_hdmi *vc4_hdmi = cec_get_drvdata(adap);
|
|
/* clock period in microseconds */
|
|
const u32 usecs = 1000000 / CEC_CLOCK_FREQ;
|
|
u32 val = HDMI_READ(HDMI_CEC_CNTRL_5);
|
|
|
|
val &= ~(VC4_HDMI_CEC_TX_SW_RESET | VC4_HDMI_CEC_RX_SW_RESET |
|
|
VC4_HDMI_CEC_CNT_TO_4700_US_MASK |
|
|
VC4_HDMI_CEC_CNT_TO_4500_US_MASK);
|
|
val |= ((4700 / usecs) << VC4_HDMI_CEC_CNT_TO_4700_US_SHIFT) |
|
|
((4500 / usecs) << VC4_HDMI_CEC_CNT_TO_4500_US_SHIFT);
|
|
|
|
if (enable) {
|
|
HDMI_WRITE(HDMI_CEC_CNTRL_5, val |
|
|
VC4_HDMI_CEC_TX_SW_RESET | VC4_HDMI_CEC_RX_SW_RESET);
|
|
HDMI_WRITE(HDMI_CEC_CNTRL_5, val);
|
|
HDMI_WRITE(HDMI_CEC_CNTRL_2,
|
|
((1500 / usecs) << VC4_HDMI_CEC_CNT_TO_1500_US_SHIFT) |
|
|
((1300 / usecs) << VC4_HDMI_CEC_CNT_TO_1300_US_SHIFT) |
|
|
((800 / usecs) << VC4_HDMI_CEC_CNT_TO_800_US_SHIFT) |
|
|
((600 / usecs) << VC4_HDMI_CEC_CNT_TO_600_US_SHIFT) |
|
|
((400 / usecs) << VC4_HDMI_CEC_CNT_TO_400_US_SHIFT));
|
|
HDMI_WRITE(HDMI_CEC_CNTRL_3,
|
|
((2750 / usecs) << VC4_HDMI_CEC_CNT_TO_2750_US_SHIFT) |
|
|
((2400 / usecs) << VC4_HDMI_CEC_CNT_TO_2400_US_SHIFT) |
|
|
((2050 / usecs) << VC4_HDMI_CEC_CNT_TO_2050_US_SHIFT) |
|
|
((1700 / usecs) << VC4_HDMI_CEC_CNT_TO_1700_US_SHIFT));
|
|
HDMI_WRITE(HDMI_CEC_CNTRL_4,
|
|
((4300 / usecs) << VC4_HDMI_CEC_CNT_TO_4300_US_SHIFT) |
|
|
((3900 / usecs) << VC4_HDMI_CEC_CNT_TO_3900_US_SHIFT) |
|
|
((3600 / usecs) << VC4_HDMI_CEC_CNT_TO_3600_US_SHIFT) |
|
|
((3500 / usecs) << VC4_HDMI_CEC_CNT_TO_3500_US_SHIFT));
|
|
|
|
if (!vc4_hdmi->variant->external_irq_controller)
|
|
HDMI_WRITE(HDMI_CEC_CPU_MASK_CLEAR, VC4_HDMI_CPU_CEC);
|
|
} else {
|
|
if (!vc4_hdmi->variant->external_irq_controller)
|
|
HDMI_WRITE(HDMI_CEC_CPU_MASK_SET, VC4_HDMI_CPU_CEC);
|
|
HDMI_WRITE(HDMI_CEC_CNTRL_5, val |
|
|
VC4_HDMI_CEC_TX_SW_RESET | VC4_HDMI_CEC_RX_SW_RESET);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int vc4_hdmi_cec_adap_log_addr(struct cec_adapter *adap, u8 log_addr)
|
|
{
|
|
struct vc4_hdmi *vc4_hdmi = cec_get_drvdata(adap);
|
|
|
|
HDMI_WRITE(HDMI_CEC_CNTRL_1,
|
|
(HDMI_READ(HDMI_CEC_CNTRL_1) & ~VC4_HDMI_CEC_ADDR_MASK) |
|
|
(log_addr & 0xf) << VC4_HDMI_CEC_ADDR_SHIFT);
|
|
return 0;
|
|
}
|
|
|
|
static int vc4_hdmi_cec_adap_transmit(struct cec_adapter *adap, u8 attempts,
|
|
u32 signal_free_time, struct cec_msg *msg)
|
|
{
|
|
struct vc4_hdmi *vc4_hdmi = cec_get_drvdata(adap);
|
|
struct drm_device *dev = vc4_hdmi->connector.dev;
|
|
u32 val;
|
|
unsigned int i;
|
|
|
|
if (msg->len > 16) {
|
|
drm_err(dev, "Attempting to transmit too much data (%d)\n", msg->len);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
for (i = 0; i < msg->len; i += 4)
|
|
HDMI_WRITE(HDMI_CEC_TX_DATA_1 + (i >> 2),
|
|
(msg->msg[i]) |
|
|
(msg->msg[i + 1] << 8) |
|
|
(msg->msg[i + 2] << 16) |
|
|
(msg->msg[i + 3] << 24));
|
|
|
|
val = HDMI_READ(HDMI_CEC_CNTRL_1);
|
|
val &= ~VC4_HDMI_CEC_START_XMIT_BEGIN;
|
|
HDMI_WRITE(HDMI_CEC_CNTRL_1, val);
|
|
val &= ~VC4_HDMI_CEC_MESSAGE_LENGTH_MASK;
|
|
val |= (msg->len - 1) << VC4_HDMI_CEC_MESSAGE_LENGTH_SHIFT;
|
|
val |= VC4_HDMI_CEC_START_XMIT_BEGIN;
|
|
|
|
HDMI_WRITE(HDMI_CEC_CNTRL_1, val);
|
|
return 0;
|
|
}
|
|
|
|
static const struct cec_adap_ops vc4_hdmi_cec_adap_ops = {
|
|
.adap_enable = vc4_hdmi_cec_adap_enable,
|
|
.adap_log_addr = vc4_hdmi_cec_adap_log_addr,
|
|
.adap_transmit = vc4_hdmi_cec_adap_transmit,
|
|
};
|
|
|
|
static int vc4_hdmi_cec_init(struct vc4_hdmi *vc4_hdmi)
|
|
{
|
|
struct cec_connector_info conn_info;
|
|
struct platform_device *pdev = vc4_hdmi->pdev;
|
|
struct device *dev = &pdev->dev;
|
|
u32 value;
|
|
int ret;
|
|
|
|
if (!of_find_property(dev->of_node, "interrupts", NULL)) {
|
|
dev_warn(dev, "'interrupts' DT property is missing, no CEC\n");
|
|
return 0;
|
|
}
|
|
|
|
vc4_hdmi->cec_adap = cec_allocate_adapter(&vc4_hdmi_cec_adap_ops,
|
|
vc4_hdmi, "vc4",
|
|
CEC_CAP_DEFAULTS |
|
|
CEC_CAP_CONNECTOR_INFO, 1);
|
|
ret = PTR_ERR_OR_ZERO(vc4_hdmi->cec_adap);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
cec_fill_conn_info_from_drm(&conn_info, &vc4_hdmi->connector);
|
|
cec_s_conn_info(vc4_hdmi->cec_adap, &conn_info);
|
|
|
|
value = HDMI_READ(HDMI_CEC_CNTRL_1);
|
|
/* Set the logical address to Unregistered */
|
|
value |= VC4_HDMI_CEC_ADDR_MASK;
|
|
HDMI_WRITE(HDMI_CEC_CNTRL_1, value);
|
|
|
|
vc4_hdmi_cec_update_clk_div(vc4_hdmi);
|
|
|
|
if (vc4_hdmi->variant->external_irq_controller) {
|
|
ret = devm_request_threaded_irq(&pdev->dev,
|
|
platform_get_irq_byname(pdev, "cec-rx"),
|
|
vc4_cec_irq_handler_rx_bare,
|
|
vc4_cec_irq_handler_rx_thread, 0,
|
|
"vc4 hdmi cec rx", vc4_hdmi);
|
|
if (ret)
|
|
goto err_delete_cec_adap;
|
|
|
|
ret = devm_request_threaded_irq(&pdev->dev,
|
|
platform_get_irq_byname(pdev, "cec-tx"),
|
|
vc4_cec_irq_handler_tx_bare,
|
|
vc4_cec_irq_handler_tx_thread, 0,
|
|
"vc4 hdmi cec tx", vc4_hdmi);
|
|
if (ret)
|
|
goto err_delete_cec_adap;
|
|
} else {
|
|
HDMI_WRITE(HDMI_CEC_CPU_MASK_SET, 0xffffffff);
|
|
|
|
ret = devm_request_threaded_irq(&pdev->dev, platform_get_irq(pdev, 0),
|
|
vc4_cec_irq_handler,
|
|
vc4_cec_irq_handler_thread, 0,
|
|
"vc4 hdmi cec", vc4_hdmi);
|
|
if (ret)
|
|
goto err_delete_cec_adap;
|
|
}
|
|
|
|
ret = cec_register_adapter(vc4_hdmi->cec_adap, &pdev->dev);
|
|
if (ret < 0)
|
|
goto err_delete_cec_adap;
|
|
|
|
return 0;
|
|
|
|
err_delete_cec_adap:
|
|
cec_delete_adapter(vc4_hdmi->cec_adap);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void vc4_hdmi_cec_exit(struct vc4_hdmi *vc4_hdmi)
|
|
{
|
|
cec_unregister_adapter(vc4_hdmi->cec_adap);
|
|
}
|
|
#else
|
|
static int vc4_hdmi_cec_init(struct vc4_hdmi *vc4_hdmi)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static void vc4_hdmi_cec_exit(struct vc4_hdmi *vc4_hdmi) {};
|
|
|
|
#endif
|
|
|
|
static int vc4_hdmi_build_regset(struct vc4_hdmi *vc4_hdmi,
|
|
struct debugfs_regset32 *regset,
|
|
enum vc4_hdmi_regs reg)
|
|
{
|
|
const struct vc4_hdmi_variant *variant = vc4_hdmi->variant;
|
|
struct debugfs_reg32 *regs, *new_regs;
|
|
unsigned int count = 0;
|
|
unsigned int i;
|
|
|
|
regs = kcalloc(variant->num_registers, sizeof(*regs),
|
|
GFP_KERNEL);
|
|
if (!regs)
|
|
return -ENOMEM;
|
|
|
|
for (i = 0; i < variant->num_registers; i++) {
|
|
const struct vc4_hdmi_register *field = &variant->registers[i];
|
|
|
|
if (field->reg != reg)
|
|
continue;
|
|
|
|
regs[count].name = field->name;
|
|
regs[count].offset = field->offset;
|
|
count++;
|
|
}
|
|
|
|
new_regs = krealloc(regs, count * sizeof(*regs), GFP_KERNEL);
|
|
if (!new_regs)
|
|
return -ENOMEM;
|
|
|
|
regset->base = __vc4_hdmi_get_field_base(vc4_hdmi, reg);
|
|
regset->regs = new_regs;
|
|
regset->nregs = count;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int vc4_hdmi_init_resources(struct vc4_hdmi *vc4_hdmi)
|
|
{
|
|
struct platform_device *pdev = vc4_hdmi->pdev;
|
|
struct device *dev = &pdev->dev;
|
|
int ret;
|
|
|
|
vc4_hdmi->hdmicore_regs = vc4_ioremap_regs(pdev, 0);
|
|
if (IS_ERR(vc4_hdmi->hdmicore_regs))
|
|
return PTR_ERR(vc4_hdmi->hdmicore_regs);
|
|
|
|
vc4_hdmi->hd_regs = vc4_ioremap_regs(pdev, 1);
|
|
if (IS_ERR(vc4_hdmi->hd_regs))
|
|
return PTR_ERR(vc4_hdmi->hd_regs);
|
|
|
|
ret = vc4_hdmi_build_regset(vc4_hdmi, &vc4_hdmi->hd_regset, VC4_HD);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = vc4_hdmi_build_regset(vc4_hdmi, &vc4_hdmi->hdmi_regset, VC4_HDMI);
|
|
if (ret)
|
|
return ret;
|
|
|
|
vc4_hdmi->pixel_clock = devm_clk_get(dev, "pixel");
|
|
if (IS_ERR(vc4_hdmi->pixel_clock)) {
|
|
ret = PTR_ERR(vc4_hdmi->pixel_clock);
|
|
if (ret != -EPROBE_DEFER)
|
|
DRM_ERROR("Failed to get pixel clock\n");
|
|
return ret;
|
|
}
|
|
|
|
vc4_hdmi->hsm_clock = devm_clk_get(dev, "hdmi");
|
|
if (IS_ERR(vc4_hdmi->hsm_clock)) {
|
|
DRM_ERROR("Failed to get HDMI state machine clock\n");
|
|
return PTR_ERR(vc4_hdmi->hsm_clock);
|
|
}
|
|
vc4_hdmi->audio_clock = vc4_hdmi->hsm_clock;
|
|
vc4_hdmi->cec_clock = vc4_hdmi->hsm_clock;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int vc5_hdmi_init_resources(struct vc4_hdmi *vc4_hdmi)
|
|
{
|
|
struct platform_device *pdev = vc4_hdmi->pdev;
|
|
struct device *dev = &pdev->dev;
|
|
struct resource *res;
|
|
|
|
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "hdmi");
|
|
if (!res)
|
|
return -ENODEV;
|
|
|
|
vc4_hdmi->hdmicore_regs = devm_ioremap(dev, res->start,
|
|
resource_size(res));
|
|
if (!vc4_hdmi->hdmicore_regs)
|
|
return -ENOMEM;
|
|
|
|
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "hd");
|
|
if (!res)
|
|
return -ENODEV;
|
|
|
|
vc4_hdmi->hd_regs = devm_ioremap(dev, res->start, resource_size(res));
|
|
if (!vc4_hdmi->hd_regs)
|
|
return -ENOMEM;
|
|
|
|
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "cec");
|
|
if (!res)
|
|
return -ENODEV;
|
|
|
|
vc4_hdmi->cec_regs = devm_ioremap(dev, res->start, resource_size(res));
|
|
if (!vc4_hdmi->cec_regs)
|
|
return -ENOMEM;
|
|
|
|
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "csc");
|
|
if (!res)
|
|
return -ENODEV;
|
|
|
|
vc4_hdmi->csc_regs = devm_ioremap(dev, res->start, resource_size(res));
|
|
if (!vc4_hdmi->csc_regs)
|
|
return -ENOMEM;
|
|
|
|
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dvp");
|
|
if (!res)
|
|
return -ENODEV;
|
|
|
|
vc4_hdmi->dvp_regs = devm_ioremap(dev, res->start, resource_size(res));
|
|
if (!vc4_hdmi->dvp_regs)
|
|
return -ENOMEM;
|
|
|
|
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "phy");
|
|
if (!res)
|
|
return -ENODEV;
|
|
|
|
vc4_hdmi->phy_regs = devm_ioremap(dev, res->start, resource_size(res));
|
|
if (!vc4_hdmi->phy_regs)
|
|
return -ENOMEM;
|
|
|
|
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "packet");
|
|
if (!res)
|
|
return -ENODEV;
|
|
|
|
vc4_hdmi->ram_regs = devm_ioremap(dev, res->start, resource_size(res));
|
|
if (!vc4_hdmi->ram_regs)
|
|
return -ENOMEM;
|
|
|
|
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "rm");
|
|
if (!res)
|
|
return -ENODEV;
|
|
|
|
vc4_hdmi->rm_regs = devm_ioremap(dev, res->start, resource_size(res));
|
|
if (!vc4_hdmi->rm_regs)
|
|
return -ENOMEM;
|
|
|
|
vc4_hdmi->hsm_clock = devm_clk_get(dev, "hdmi");
|
|
if (IS_ERR(vc4_hdmi->hsm_clock)) {
|
|
DRM_ERROR("Failed to get HDMI state machine clock\n");
|
|
return PTR_ERR(vc4_hdmi->hsm_clock);
|
|
}
|
|
|
|
vc4_hdmi->pixel_bvb_clock = devm_clk_get(dev, "bvb");
|
|
if (IS_ERR(vc4_hdmi->pixel_bvb_clock)) {
|
|
DRM_ERROR("Failed to get pixel bvb clock\n");
|
|
return PTR_ERR(vc4_hdmi->pixel_bvb_clock);
|
|
}
|
|
|
|
vc4_hdmi->audio_clock = devm_clk_get(dev, "audio");
|
|
if (IS_ERR(vc4_hdmi->audio_clock)) {
|
|
DRM_ERROR("Failed to get audio clock\n");
|
|
return PTR_ERR(vc4_hdmi->audio_clock);
|
|
}
|
|
|
|
vc4_hdmi->cec_clock = devm_clk_get(dev, "cec");
|
|
if (IS_ERR(vc4_hdmi->cec_clock)) {
|
|
DRM_ERROR("Failed to get CEC clock\n");
|
|
return PTR_ERR(vc4_hdmi->cec_clock);
|
|
}
|
|
|
|
vc4_hdmi->reset = devm_reset_control_get(dev, NULL);
|
|
if (IS_ERR(vc4_hdmi->reset)) {
|
|
DRM_ERROR("Failed to get HDMI reset line\n");
|
|
return PTR_ERR(vc4_hdmi->reset);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int vc4_hdmi_bind(struct device *dev, struct device *master, void *data)
|
|
{
|
|
const struct vc4_hdmi_variant *variant = of_device_get_match_data(dev);
|
|
struct platform_device *pdev = to_platform_device(dev);
|
|
struct drm_device *drm = dev_get_drvdata(master);
|
|
struct vc4_hdmi *vc4_hdmi;
|
|
struct drm_encoder *encoder;
|
|
struct device_node *ddc_node;
|
|
u32 value;
|
|
int ret;
|
|
|
|
vc4_hdmi = devm_kzalloc(dev, sizeof(*vc4_hdmi), GFP_KERNEL);
|
|
if (!vc4_hdmi)
|
|
return -ENOMEM;
|
|
|
|
dev_set_drvdata(dev, vc4_hdmi);
|
|
encoder = &vc4_hdmi->encoder.base.base;
|
|
vc4_hdmi->encoder.base.type = variant->encoder_type;
|
|
vc4_hdmi->encoder.base.pre_crtc_configure = vc4_hdmi_encoder_pre_crtc_configure;
|
|
vc4_hdmi->encoder.base.pre_crtc_enable = vc4_hdmi_encoder_pre_crtc_enable;
|
|
vc4_hdmi->encoder.base.post_crtc_enable = vc4_hdmi_encoder_post_crtc_enable;
|
|
vc4_hdmi->encoder.base.post_crtc_disable = vc4_hdmi_encoder_post_crtc_disable;
|
|
vc4_hdmi->encoder.base.post_crtc_powerdown = vc4_hdmi_encoder_post_crtc_powerdown;
|
|
vc4_hdmi->pdev = pdev;
|
|
vc4_hdmi->variant = variant;
|
|
|
|
ret = variant->init_resources(vc4_hdmi);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ddc_node = of_parse_phandle(dev->of_node, "ddc", 0);
|
|
if (!ddc_node) {
|
|
DRM_ERROR("Failed to find ddc node in device tree\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
vc4_hdmi->ddc = of_find_i2c_adapter_by_node(ddc_node);
|
|
of_node_put(ddc_node);
|
|
if (!vc4_hdmi->ddc) {
|
|
DRM_DEBUG("Failed to get ddc i2c adapter by node\n");
|
|
return -EPROBE_DEFER;
|
|
}
|
|
|
|
/* Only use the GPIO HPD pin if present in the DT, otherwise
|
|
* we'll use the HDMI core's register.
|
|
*/
|
|
if (of_find_property(dev->of_node, "hpd-gpios", &value)) {
|
|
enum of_gpio_flags hpd_gpio_flags;
|
|
|
|
vc4_hdmi->hpd_gpio = of_get_named_gpio_flags(dev->of_node,
|
|
"hpd-gpios", 0,
|
|
&hpd_gpio_flags);
|
|
if (vc4_hdmi->hpd_gpio < 0) {
|
|
ret = vc4_hdmi->hpd_gpio;
|
|
goto err_unprepare_hsm;
|
|
}
|
|
|
|
vc4_hdmi->hpd_active_low = hpd_gpio_flags & OF_GPIO_ACTIVE_LOW;
|
|
}
|
|
|
|
vc4_hdmi->disable_wifi_frequencies =
|
|
of_property_read_bool(dev->of_node, "wifi-2.4ghz-coexistence");
|
|
|
|
if (vc4_hdmi->variant->reset)
|
|
vc4_hdmi->variant->reset(vc4_hdmi);
|
|
|
|
pm_runtime_enable(dev);
|
|
|
|
drm_simple_encoder_init(drm, encoder, DRM_MODE_ENCODER_TMDS);
|
|
drm_encoder_helper_add(encoder, &vc4_hdmi_encoder_helper_funcs);
|
|
|
|
ret = vc4_hdmi_connector_init(drm, vc4_hdmi);
|
|
if (ret)
|
|
goto err_destroy_encoder;
|
|
|
|
ret = vc4_hdmi_cec_init(vc4_hdmi);
|
|
if (ret)
|
|
goto err_destroy_conn;
|
|
|
|
ret = vc4_hdmi_audio_init(vc4_hdmi);
|
|
if (ret)
|
|
goto err_free_cec;
|
|
|
|
vc4_debugfs_add_file(drm, variant->debugfs_name,
|
|
vc4_hdmi_debugfs_regs,
|
|
vc4_hdmi);
|
|
|
|
return 0;
|
|
|
|
err_free_cec:
|
|
vc4_hdmi_cec_exit(vc4_hdmi);
|
|
err_destroy_conn:
|
|
vc4_hdmi_connector_destroy(&vc4_hdmi->connector);
|
|
err_destroy_encoder:
|
|
drm_encoder_cleanup(encoder);
|
|
err_unprepare_hsm:
|
|
pm_runtime_disable(dev);
|
|
put_device(&vc4_hdmi->ddc->dev);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void vc4_hdmi_unbind(struct device *dev, struct device *master,
|
|
void *data)
|
|
{
|
|
struct vc4_hdmi *vc4_hdmi;
|
|
|
|
/*
|
|
* ASoC makes it a bit hard to retrieve a pointer to the
|
|
* vc4_hdmi structure. Registering the card will overwrite our
|
|
* device drvdata with a pointer to the snd_soc_card structure,
|
|
* which can then be used to retrieve whatever drvdata we want
|
|
* to associate.
|
|
*
|
|
* However, that doesn't fly in the case where we wouldn't
|
|
* register an ASoC card (because of an old DT that is missing
|
|
* the dmas properties for example), then the card isn't
|
|
* registered and the device drvdata wouldn't be set.
|
|
*
|
|
* We can deal with both cases by making sure a snd_soc_card
|
|
* pointer and a vc4_hdmi structure are pointing to the same
|
|
* memory address, so we can treat them indistinctly without any
|
|
* issue.
|
|
*/
|
|
BUILD_BUG_ON(offsetof(struct vc4_hdmi_audio, card) != 0);
|
|
BUILD_BUG_ON(offsetof(struct vc4_hdmi, audio) != 0);
|
|
vc4_hdmi = dev_get_drvdata(dev);
|
|
|
|
kfree(vc4_hdmi->hdmi_regset.regs);
|
|
kfree(vc4_hdmi->hd_regset.regs);
|
|
|
|
vc4_hdmi_cec_exit(vc4_hdmi);
|
|
vc4_hdmi_connector_destroy(&vc4_hdmi->connector);
|
|
drm_encoder_cleanup(&vc4_hdmi->encoder.base.base);
|
|
|
|
pm_runtime_disable(dev);
|
|
|
|
put_device(&vc4_hdmi->ddc->dev);
|
|
}
|
|
|
|
static const struct component_ops vc4_hdmi_ops = {
|
|
.bind = vc4_hdmi_bind,
|
|
.unbind = vc4_hdmi_unbind,
|
|
};
|
|
|
|
static int vc4_hdmi_dev_probe(struct platform_device *pdev)
|
|
{
|
|
return component_add(&pdev->dev, &vc4_hdmi_ops);
|
|
}
|
|
|
|
static int vc4_hdmi_dev_remove(struct platform_device *pdev)
|
|
{
|
|
component_del(&pdev->dev, &vc4_hdmi_ops);
|
|
return 0;
|
|
}
|
|
|
|
static const struct vc4_hdmi_variant bcm2835_variant = {
|
|
.encoder_type = VC4_ENCODER_TYPE_HDMI0,
|
|
.debugfs_name = "hdmi_regs",
|
|
.card_name = "vc4-hdmi",
|
|
.max_pixel_clock = 162000000,
|
|
.registers = vc4_hdmi_fields,
|
|
.num_registers = ARRAY_SIZE(vc4_hdmi_fields),
|
|
|
|
.init_resources = vc4_hdmi_init_resources,
|
|
.csc_setup = vc4_hdmi_csc_setup,
|
|
.reset = vc4_hdmi_reset,
|
|
.set_timings = vc4_hdmi_set_timings,
|
|
.phy_init = vc4_hdmi_phy_init,
|
|
.phy_disable = vc4_hdmi_phy_disable,
|
|
.phy_rng_enable = vc4_hdmi_phy_rng_enable,
|
|
.phy_rng_disable = vc4_hdmi_phy_rng_disable,
|
|
.channel_map = vc4_hdmi_channel_map,
|
|
.supports_hdr = false,
|
|
};
|
|
|
|
static const struct vc4_hdmi_variant bcm2711_hdmi0_variant = {
|
|
.encoder_type = VC4_ENCODER_TYPE_HDMI0,
|
|
.debugfs_name = "hdmi0_regs",
|
|
.card_name = "vc4-hdmi-0",
|
|
.max_pixel_clock = HDMI_14_MAX_TMDS_CLK,
|
|
.registers = vc5_hdmi_hdmi0_fields,
|
|
.num_registers = ARRAY_SIZE(vc5_hdmi_hdmi0_fields),
|
|
.phy_lane_mapping = {
|
|
PHY_LANE_0,
|
|
PHY_LANE_1,
|
|
PHY_LANE_2,
|
|
PHY_LANE_CK,
|
|
},
|
|
.unsupported_odd_h_timings = true,
|
|
.external_irq_controller = true,
|
|
|
|
.init_resources = vc5_hdmi_init_resources,
|
|
.csc_setup = vc5_hdmi_csc_setup,
|
|
.reset = vc5_hdmi_reset,
|
|
.set_timings = vc5_hdmi_set_timings,
|
|
.phy_init = vc5_hdmi_phy_init,
|
|
.phy_disable = vc5_hdmi_phy_disable,
|
|
.phy_rng_enable = vc5_hdmi_phy_rng_enable,
|
|
.phy_rng_disable = vc5_hdmi_phy_rng_disable,
|
|
.channel_map = vc5_hdmi_channel_map,
|
|
.supports_hdr = true,
|
|
};
|
|
|
|
static const struct vc4_hdmi_variant bcm2711_hdmi1_variant = {
|
|
.encoder_type = VC4_ENCODER_TYPE_HDMI1,
|
|
.debugfs_name = "hdmi1_regs",
|
|
.card_name = "vc4-hdmi-1",
|
|
.max_pixel_clock = HDMI_14_MAX_TMDS_CLK,
|
|
.registers = vc5_hdmi_hdmi1_fields,
|
|
.num_registers = ARRAY_SIZE(vc5_hdmi_hdmi1_fields),
|
|
.phy_lane_mapping = {
|
|
PHY_LANE_1,
|
|
PHY_LANE_0,
|
|
PHY_LANE_CK,
|
|
PHY_LANE_2,
|
|
},
|
|
.unsupported_odd_h_timings = true,
|
|
.external_irq_controller = true,
|
|
|
|
.init_resources = vc5_hdmi_init_resources,
|
|
.csc_setup = vc5_hdmi_csc_setup,
|
|
.reset = vc5_hdmi_reset,
|
|
.set_timings = vc5_hdmi_set_timings,
|
|
.phy_init = vc5_hdmi_phy_init,
|
|
.phy_disable = vc5_hdmi_phy_disable,
|
|
.phy_rng_enable = vc5_hdmi_phy_rng_enable,
|
|
.phy_rng_disable = vc5_hdmi_phy_rng_disable,
|
|
.channel_map = vc5_hdmi_channel_map,
|
|
.supports_hdr = true,
|
|
};
|
|
|
|
static const struct of_device_id vc4_hdmi_dt_match[] = {
|
|
{ .compatible = "brcm,bcm2835-hdmi", .data = &bcm2835_variant },
|
|
{ .compatible = "brcm,bcm2711-hdmi0", .data = &bcm2711_hdmi0_variant },
|
|
{ .compatible = "brcm,bcm2711-hdmi1", .data = &bcm2711_hdmi1_variant },
|
|
{}
|
|
};
|
|
|
|
struct platform_driver vc4_hdmi_driver = {
|
|
.probe = vc4_hdmi_dev_probe,
|
|
.remove = vc4_hdmi_dev_remove,
|
|
.driver = {
|
|
.name = "vc4_hdmi",
|
|
.of_match_table = vc4_hdmi_dt_match,
|
|
},
|
|
};
|