linux/drivers/gpu/drm/i915/i915_utils.h
Ville Syrjälä 0868b1ce87 drm/i915: Add enabledisable()
'enable ? "enable" : "disable"' is a fairly common pattern in
our debug prints. Let's introduce a helper for it.

Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20210416171011.19012-8-ville.syrjala@linux.intel.com
Reviewed-by: Jani Nikula <jani.nikula@intel.com>
2021-04-21 01:48:36 +03:00

470 lines
13 KiB
C

/*
* Copyright © 2016 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
*/
#ifndef __I915_UTILS_H
#define __I915_UTILS_H
#include <linux/list.h>
#include <linux/overflow.h>
#include <linux/sched.h>
#include <linux/types.h>
#include <linux/workqueue.h>
struct drm_i915_private;
struct timer_list;
#define FDO_BUG_URL "https://gitlab.freedesktop.org/drm/intel/-/wikis/How-to-file-i915-bugs"
#undef WARN_ON
/* Many gcc seem to no see through this and fall over :( */
#if 0
#define WARN_ON(x) ({ \
bool __i915_warn_cond = (x); \
if (__builtin_constant_p(__i915_warn_cond)) \
BUILD_BUG_ON(__i915_warn_cond); \
WARN(__i915_warn_cond, "WARN_ON(" #x ")"); })
#else
#define WARN_ON(x) WARN((x), "%s", "WARN_ON(" __stringify(x) ")")
#endif
#undef WARN_ON_ONCE
#define WARN_ON_ONCE(x) WARN_ONCE((x), "%s", "WARN_ON_ONCE(" __stringify(x) ")")
#define MISSING_CASE(x) WARN(1, "Missing case (%s == %ld)\n", \
__stringify(x), (long)(x))
void __printf(3, 4)
__i915_printk(struct drm_i915_private *dev_priv, const char *level,
const char *fmt, ...);
#define i915_report_error(dev_priv, fmt, ...) \
__i915_printk(dev_priv, KERN_ERR, fmt, ##__VA_ARGS__)
#if IS_ENABLED(CONFIG_DRM_I915_DEBUG)
int __i915_inject_probe_error(struct drm_i915_private *i915, int err,
const char *func, int line);
#define i915_inject_probe_error(_i915, _err) \
__i915_inject_probe_error((_i915), (_err), __func__, __LINE__)
bool i915_error_injected(void);
#else
#define i915_inject_probe_error(i915, e) ({ BUILD_BUG_ON_INVALID(i915); 0; })
#define i915_error_injected() false
#endif
#define i915_inject_probe_failure(i915) i915_inject_probe_error((i915), -ENODEV)
#define i915_probe_error(i915, fmt, ...) \
__i915_printk(i915, i915_error_injected() ? KERN_DEBUG : KERN_ERR, \
fmt, ##__VA_ARGS__)
#if defined(GCC_VERSION) && GCC_VERSION >= 70000
#define add_overflows_t(T, A, B) \
__builtin_add_overflow_p((A), (B), (T)0)
#else
#define add_overflows_t(T, A, B) ({ \
typeof(A) a = (A); \
typeof(B) b = (B); \
(T)(a + b) < a; \
})
#endif
#define add_overflows(A, B) \
add_overflows_t(typeof((A) + (B)), (A), (B))
#define range_overflows(start, size, max) ({ \
typeof(start) start__ = (start); \
typeof(size) size__ = (size); \
typeof(max) max__ = (max); \
(void)(&start__ == &size__); \
(void)(&start__ == &max__); \
start__ >= max__ || size__ > max__ - start__; \
})
#define range_overflows_t(type, start, size, max) \
range_overflows((type)(start), (type)(size), (type)(max))
#define range_overflows_end(start, size, max) ({ \
typeof(start) start__ = (start); \
typeof(size) size__ = (size); \
typeof(max) max__ = (max); \
(void)(&start__ == &size__); \
(void)(&start__ == &max__); \
start__ > max__ || size__ > max__ - start__; \
})
#define range_overflows_end_t(type, start, size, max) \
range_overflows_end((type)(start), (type)(size), (type)(max))
/* Note we don't consider signbits :| */
#define overflows_type(x, T) \
(sizeof(x) > sizeof(T) && (x) >> BITS_PER_TYPE(T))
static inline bool
__check_struct_size(size_t base, size_t arr, size_t count, size_t *size)
{
size_t sz;
if (check_mul_overflow(count, arr, &sz))
return false;
if (check_add_overflow(sz, base, &sz))
return false;
*size = sz;
return true;
}
/**
* check_struct_size() - Calculate size of structure with trailing array.
* @p: Pointer to the structure.
* @member: Name of the array member.
* @n: Number of elements in the array.
* @sz: Total size of structure and array
*
* Calculates size of memory needed for structure @p followed by an
* array of @n @member elements, like struct_size() but reports
* whether it overflowed, and the resultant size in @sz
*
* Return: false if the calculation overflowed.
*/
#define check_struct_size(p, member, n, sz) \
likely(__check_struct_size(sizeof(*(p)), \
sizeof(*(p)->member) + __must_be_array((p)->member), \
n, sz))
#define ptr_mask_bits(ptr, n) ({ \
unsigned long __v = (unsigned long)(ptr); \
(typeof(ptr))(__v & -BIT(n)); \
})
#define ptr_unmask_bits(ptr, n) ((unsigned long)(ptr) & (BIT(n) - 1))
#define ptr_unpack_bits(ptr, bits, n) ({ \
unsigned long __v = (unsigned long)(ptr); \
*(bits) = __v & (BIT(n) - 1); \
(typeof(ptr))(__v & -BIT(n)); \
})
#define ptr_pack_bits(ptr, bits, n) ({ \
unsigned long __bits = (bits); \
GEM_BUG_ON(__bits & -BIT(n)); \
((typeof(ptr))((unsigned long)(ptr) | __bits)); \
})
#define ptr_dec(ptr) ({ \
unsigned long __v = (unsigned long)(ptr); \
(typeof(ptr))(__v - 1); \
})
#define ptr_inc(ptr) ({ \
unsigned long __v = (unsigned long)(ptr); \
(typeof(ptr))(__v + 1); \
})
#define page_mask_bits(ptr) ptr_mask_bits(ptr, PAGE_SHIFT)
#define page_unmask_bits(ptr) ptr_unmask_bits(ptr, PAGE_SHIFT)
#define page_pack_bits(ptr, bits) ptr_pack_bits(ptr, bits, PAGE_SHIFT)
#define page_unpack_bits(ptr, bits) ptr_unpack_bits(ptr, bits, PAGE_SHIFT)
#define struct_member(T, member) (((T *)0)->member)
#define ptr_offset(ptr, member) offsetof(typeof(*(ptr)), member)
#define fetch_and_zero(ptr) ({ \
typeof(*ptr) __T = *(ptr); \
*(ptr) = (typeof(*ptr))0; \
__T; \
})
/*
* container_of_user: Extract the superclass from a pointer to a member.
*
* Exactly like container_of() with the exception that it plays nicely
* with sparse for __user @ptr.
*/
#define container_of_user(ptr, type, member) ({ \
void __user *__mptr = (void __user *)(ptr); \
BUILD_BUG_ON_MSG(!__same_type(*(ptr), struct_member(type, member)) && \
!__same_type(*(ptr), void), \
"pointer type mismatch in container_of()"); \
((type __user *)(__mptr - offsetof(type, member))); })
/*
* check_user_mbz: Check that a user value exists and is zero
*
* Frequently in our uABI we reserve space for future extensions, and
* two ensure that userspace is prepared we enforce that space must
* be zero. (Then any future extension can safely assume a default value
* of 0.)
*
* check_user_mbz() combines checking that the user pointer is accessible
* and that the contained value is zero.
*
* Returns: -EFAULT if not accessible, -EINVAL if !zero, or 0 on success.
*/
#define check_user_mbz(U) ({ \
typeof(*(U)) mbz__; \
get_user(mbz__, (U)) ? -EFAULT : mbz__ ? -EINVAL : 0; \
})
static inline u64 ptr_to_u64(const void *ptr)
{
return (uintptr_t)ptr;
}
#define u64_to_ptr(T, x) ({ \
typecheck(u64, x); \
(T *)(uintptr_t)(x); \
})
#define __mask_next_bit(mask) ({ \
int __idx = ffs(mask) - 1; \
mask &= ~BIT(__idx); \
__idx; \
})
static inline bool is_power_of_2_u64(u64 n)
{
return (n != 0 && ((n & (n - 1)) == 0));
}
static inline void __list_del_many(struct list_head *head,
struct list_head *first)
{
first->prev = head;
WRITE_ONCE(head->next, first);
}
static inline int list_is_last_rcu(const struct list_head *list,
const struct list_head *head)
{
return READ_ONCE(list->next) == head;
}
static inline unsigned long msecs_to_jiffies_timeout(const unsigned int m)
{
unsigned long j = msecs_to_jiffies(m);
return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
}
/*
* If you need to wait X milliseconds between events A and B, but event B
* doesn't happen exactly after event A, you record the timestamp (jiffies) of
* when event A happened, then just before event B you call this function and
* pass the timestamp as the first argument, and X as the second argument.
*/
static inline void
wait_remaining_ms_from_jiffies(unsigned long timestamp_jiffies, int to_wait_ms)
{
unsigned long target_jiffies, tmp_jiffies, remaining_jiffies;
/*
* Don't re-read the value of "jiffies" every time since it may change
* behind our back and break the math.
*/
tmp_jiffies = jiffies;
target_jiffies = timestamp_jiffies +
msecs_to_jiffies_timeout(to_wait_ms);
if (time_after(target_jiffies, tmp_jiffies)) {
remaining_jiffies = target_jiffies - tmp_jiffies;
while (remaining_jiffies)
remaining_jiffies =
schedule_timeout_uninterruptible(remaining_jiffies);
}
}
/**
* __wait_for - magic wait macro
*
* Macro to help avoid open coding check/wait/timeout patterns. Note that it's
* important that we check the condition again after having timed out, since the
* timeout could be due to preemption or similar and we've never had a chance to
* check the condition before the timeout.
*/
#define __wait_for(OP, COND, US, Wmin, Wmax) ({ \
const ktime_t end__ = ktime_add_ns(ktime_get_raw(), 1000ll * (US)); \
long wait__ = (Wmin); /* recommended min for usleep is 10 us */ \
int ret__; \
might_sleep(); \
for (;;) { \
const bool expired__ = ktime_after(ktime_get_raw(), end__); \
OP; \
/* Guarantee COND check prior to timeout */ \
barrier(); \
if (COND) { \
ret__ = 0; \
break; \
} \
if (expired__) { \
ret__ = -ETIMEDOUT; \
break; \
} \
usleep_range(wait__, wait__ * 2); \
if (wait__ < (Wmax)) \
wait__ <<= 1; \
} \
ret__; \
})
#define _wait_for(COND, US, Wmin, Wmax) __wait_for(, (COND), (US), (Wmin), \
(Wmax))
#define wait_for(COND, MS) _wait_for((COND), (MS) * 1000, 10, 1000)
/* If CONFIG_PREEMPT_COUNT is disabled, in_atomic() always reports false. */
#if defined(CONFIG_DRM_I915_DEBUG) && defined(CONFIG_PREEMPT_COUNT)
# define _WAIT_FOR_ATOMIC_CHECK(ATOMIC) WARN_ON_ONCE((ATOMIC) && !in_atomic())
#else
# define _WAIT_FOR_ATOMIC_CHECK(ATOMIC) do { } while (0)
#endif
#define _wait_for_atomic(COND, US, ATOMIC) \
({ \
int cpu, ret, timeout = (US) * 1000; \
u64 base; \
_WAIT_FOR_ATOMIC_CHECK(ATOMIC); \
if (!(ATOMIC)) { \
preempt_disable(); \
cpu = smp_processor_id(); \
} \
base = local_clock(); \
for (;;) { \
u64 now = local_clock(); \
if (!(ATOMIC)) \
preempt_enable(); \
/* Guarantee COND check prior to timeout */ \
barrier(); \
if (COND) { \
ret = 0; \
break; \
} \
if (now - base >= timeout) { \
ret = -ETIMEDOUT; \
break; \
} \
cpu_relax(); \
if (!(ATOMIC)) { \
preempt_disable(); \
if (unlikely(cpu != smp_processor_id())) { \
timeout -= now - base; \
cpu = smp_processor_id(); \
base = local_clock(); \
} \
} \
} \
ret; \
})
#define wait_for_us(COND, US) \
({ \
int ret__; \
BUILD_BUG_ON(!__builtin_constant_p(US)); \
if ((US) > 10) \
ret__ = _wait_for((COND), (US), 10, 10); \
else \
ret__ = _wait_for_atomic((COND), (US), 0); \
ret__; \
})
#define wait_for_atomic_us(COND, US) \
({ \
BUILD_BUG_ON(!__builtin_constant_p(US)); \
BUILD_BUG_ON((US) > 50000); \
_wait_for_atomic((COND), (US), 1); \
})
#define wait_for_atomic(COND, MS) wait_for_atomic_us((COND), (MS) * 1000)
#define KHz(x) (1000 * (x))
#define MHz(x) KHz(1000 * (x))
#define KBps(x) (1000 * (x))
#define MBps(x) KBps(1000 * (x))
#define GBps(x) ((u64)1000 * MBps((x)))
static inline const char *yesno(bool v)
{
return v ? "yes" : "no";
}
static inline const char *onoff(bool v)
{
return v ? "on" : "off";
}
static inline const char *enabledisable(bool v)
{
return v ? "enable" : "disable";
}
static inline const char *enableddisabled(bool v)
{
return v ? "enabled" : "disabled";
}
void add_taint_for_CI(struct drm_i915_private *i915, unsigned int taint);
static inline void __add_taint_for_CI(unsigned int taint)
{
/*
* The system is "ok", just about surviving for the user, but
* CI results are now unreliable as the HW is very suspect.
* CI checks the taint state after every test and will reboot
* the machine if the kernel is tainted.
*/
add_taint(taint, LOCKDEP_STILL_OK);
}
void cancel_timer(struct timer_list *t);
void set_timer_ms(struct timer_list *t, unsigned long timeout);
static inline bool timer_active(const struct timer_list *t)
{
return READ_ONCE(t->expires);
}
static inline bool timer_expired(const struct timer_list *t)
{
return timer_active(t) && !timer_pending(t);
}
/*
* This is a lookalike for IS_ENABLED() that takes a kconfig value,
* e.g. CONFIG_DRM_I915_SPIN_REQUEST, and evaluates whether it is non-zero
* i.e. whether the configuration is active. Wrapping up the config inside
* a boolean context prevents clang and smatch from complaining about potential
* issues in confusing logical-&& with bitwise-& for constants.
*
* Sadly IS_ENABLED() itself does not work with kconfig values.
*
* Returns 0 if @config is 0, 1 if set to any value.
*/
#define IS_ACTIVE(config) ((config) != 0)
#endif /* !__I915_UTILS_H */