linux/drivers/scsi/aic7xxx/aic7xxx_core.c
Hannes Reinecke d8cd784ff7 scsi: aic7xxx: aic79xx: Drop internal SCSI message definition
Use the standard SCSI message definitions instead of the driver-internal
ones.

Link: https://lore.kernel.org/r/20210113090500.129644-20-hare@suse.de
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Hannes Reinecke <hare@suse.de>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2021-01-22 21:14:10 -05:00

7902 lines
209 KiB
C

/*
* Core routines and tables shareable across OS platforms.
*
* Copyright (c) 1994-2002 Justin T. Gibbs.
* Copyright (c) 2000-2002 Adaptec Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions, and the following disclaimer,
* without modification.
* 2. Redistributions in binary form must reproduce at minimum a disclaimer
* substantially similar to the "NO WARRANTY" disclaimer below
* ("Disclaimer") and any redistribution must be conditioned upon
* including a substantially similar Disclaimer requirement for further
* binary redistribution.
* 3. Neither the names of the above-listed copyright holders nor the names
* of any contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* Alternatively, this software may be distributed under the terms of the
* GNU General Public License ("GPL") version 2 as published by the Free
* Software Foundation.
*
* NO WARRANTY
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGES.
*
* $Id: //depot/aic7xxx/aic7xxx/aic7xxx.c#155 $
*/
#include "aic7xxx_osm.h"
#include "aic7xxx_inline.h"
#include "aicasm/aicasm_insformat.h"
/***************************** Lookup Tables **********************************/
static const char *const ahc_chip_names[] = {
"NONE",
"aic7770",
"aic7850",
"aic7855",
"aic7859",
"aic7860",
"aic7870",
"aic7880",
"aic7895",
"aic7895C",
"aic7890/91",
"aic7896/97",
"aic7892",
"aic7899"
};
/*
* Hardware error codes.
*/
struct ahc_hard_error_entry {
uint8_t errno;
const char *errmesg;
};
static const struct ahc_hard_error_entry ahc_hard_errors[] = {
{ ILLHADDR, "Illegal Host Access" },
{ ILLSADDR, "Illegal Sequencer Address referenced" },
{ ILLOPCODE, "Illegal Opcode in sequencer program" },
{ SQPARERR, "Sequencer Parity Error" },
{ DPARERR, "Data-path Parity Error" },
{ MPARERR, "Scratch or SCB Memory Parity Error" },
{ PCIERRSTAT, "PCI Error detected" },
{ CIOPARERR, "CIOBUS Parity Error" },
};
static const u_int num_errors = ARRAY_SIZE(ahc_hard_errors);
static const struct ahc_phase_table_entry ahc_phase_table[] =
{
{ P_DATAOUT, NOP, "in Data-out phase" },
{ P_DATAIN, INITIATOR_ERROR, "in Data-in phase" },
{ P_DATAOUT_DT, NOP, "in DT Data-out phase" },
{ P_DATAIN_DT, INITIATOR_ERROR, "in DT Data-in phase" },
{ P_COMMAND, NOP, "in Command phase" },
{ P_MESGOUT, NOP, "in Message-out phase" },
{ P_STATUS, INITIATOR_ERROR, "in Status phase" },
{ P_MESGIN, MSG_PARITY_ERROR, "in Message-in phase" },
{ P_BUSFREE, NOP, "while idle" },
{ 0, NOP, "in unknown phase" }
};
/*
* In most cases we only wish to itterate over real phases, so
* exclude the last element from the count.
*/
static const u_int num_phases = ARRAY_SIZE(ahc_phase_table) - 1;
/*
* Valid SCSIRATE values. (p. 3-17)
* Provides a mapping of tranfer periods in ns to the proper value to
* stick in the scsixfer reg.
*/
static const struct ahc_syncrate ahc_syncrates[] =
{
/* ultra2 fast/ultra period rate */
{ 0x42, 0x000, 9, "80.0" },
{ 0x03, 0x000, 10, "40.0" },
{ 0x04, 0x000, 11, "33.0" },
{ 0x05, 0x100, 12, "20.0" },
{ 0x06, 0x110, 15, "16.0" },
{ 0x07, 0x120, 18, "13.4" },
{ 0x08, 0x000, 25, "10.0" },
{ 0x19, 0x010, 31, "8.0" },
{ 0x1a, 0x020, 37, "6.67" },
{ 0x1b, 0x030, 43, "5.7" },
{ 0x1c, 0x040, 50, "5.0" },
{ 0x00, 0x050, 56, "4.4" },
{ 0x00, 0x060, 62, "4.0" },
{ 0x00, 0x070, 68, "3.6" },
{ 0x00, 0x000, 0, NULL }
};
/* Our Sequencer Program */
#include "aic7xxx_seq.h"
/**************************** Function Declarations ***************************/
static void ahc_force_renegotiation(struct ahc_softc *ahc,
struct ahc_devinfo *devinfo);
static struct ahc_tmode_tstate*
ahc_alloc_tstate(struct ahc_softc *ahc,
u_int scsi_id, char channel);
#ifdef AHC_TARGET_MODE
static void ahc_free_tstate(struct ahc_softc *ahc,
u_int scsi_id, char channel, int force);
#endif
static const struct ahc_syncrate*
ahc_devlimited_syncrate(struct ahc_softc *ahc,
struct ahc_initiator_tinfo *,
u_int *period,
u_int *ppr_options,
role_t role);
static void ahc_update_pending_scbs(struct ahc_softc *ahc);
static void ahc_fetch_devinfo(struct ahc_softc *ahc,
struct ahc_devinfo *devinfo);
static void ahc_scb_devinfo(struct ahc_softc *ahc,
struct ahc_devinfo *devinfo,
struct scb *scb);
static void ahc_assert_atn(struct ahc_softc *ahc);
static void ahc_setup_initiator_msgout(struct ahc_softc *ahc,
struct ahc_devinfo *devinfo,
struct scb *scb);
static void ahc_build_transfer_msg(struct ahc_softc *ahc,
struct ahc_devinfo *devinfo);
static void ahc_construct_sdtr(struct ahc_softc *ahc,
struct ahc_devinfo *devinfo,
u_int period, u_int offset);
static void ahc_construct_wdtr(struct ahc_softc *ahc,
struct ahc_devinfo *devinfo,
u_int bus_width);
static void ahc_construct_ppr(struct ahc_softc *ahc,
struct ahc_devinfo *devinfo,
u_int period, u_int offset,
u_int bus_width, u_int ppr_options);
static void ahc_clear_msg_state(struct ahc_softc *ahc);
static void ahc_handle_proto_violation(struct ahc_softc *ahc);
static void ahc_handle_message_phase(struct ahc_softc *ahc);
typedef enum {
AHCMSG_1B,
AHCMSG_2B,
AHCMSG_EXT
} ahc_msgtype;
static int ahc_sent_msg(struct ahc_softc *ahc, ahc_msgtype type,
u_int msgval, int full);
static int ahc_parse_msg(struct ahc_softc *ahc,
struct ahc_devinfo *devinfo);
static int ahc_handle_msg_reject(struct ahc_softc *ahc,
struct ahc_devinfo *devinfo);
static void ahc_handle_ign_wide_residue(struct ahc_softc *ahc,
struct ahc_devinfo *devinfo);
static void ahc_reinitialize_dataptrs(struct ahc_softc *ahc);
static void ahc_handle_devreset(struct ahc_softc *ahc,
struct ahc_devinfo *devinfo,
cam_status status, char *message,
int verbose_level);
#ifdef AHC_TARGET_MODE
static void ahc_setup_target_msgin(struct ahc_softc *ahc,
struct ahc_devinfo *devinfo,
struct scb *scb);
#endif
static bus_dmamap_callback_t ahc_dmamap_cb;
static void ahc_build_free_scb_list(struct ahc_softc *ahc);
static int ahc_init_scbdata(struct ahc_softc *ahc);
static void ahc_fini_scbdata(struct ahc_softc *ahc);
static void ahc_qinfifo_requeue(struct ahc_softc *ahc,
struct scb *prev_scb,
struct scb *scb);
static int ahc_qinfifo_count(struct ahc_softc *ahc);
static u_int ahc_rem_scb_from_disc_list(struct ahc_softc *ahc,
u_int prev, u_int scbptr);
static void ahc_add_curscb_to_free_list(struct ahc_softc *ahc);
static u_int ahc_rem_wscb(struct ahc_softc *ahc,
u_int scbpos, u_int prev);
static void ahc_reset_current_bus(struct ahc_softc *ahc);
#ifdef AHC_DUMP_SEQ
static void ahc_dumpseq(struct ahc_softc *ahc);
#endif
static int ahc_loadseq(struct ahc_softc *ahc);
static int ahc_check_patch(struct ahc_softc *ahc,
const struct patch **start_patch,
u_int start_instr, u_int *skip_addr);
static void ahc_download_instr(struct ahc_softc *ahc,
u_int instrptr, uint8_t *dconsts);
#ifdef AHC_TARGET_MODE
static void ahc_queue_lstate_event(struct ahc_softc *ahc,
struct ahc_tmode_lstate *lstate,
u_int initiator_id,
u_int event_type,
u_int event_arg);
static void ahc_update_scsiid(struct ahc_softc *ahc,
u_int targid_mask);
static int ahc_handle_target_cmd(struct ahc_softc *ahc,
struct target_cmd *cmd);
#endif
static u_int ahc_index_busy_tcl(struct ahc_softc *ahc, u_int tcl);
static void ahc_unbusy_tcl(struct ahc_softc *ahc, u_int tcl);
static void ahc_busy_tcl(struct ahc_softc *ahc,
u_int tcl, u_int busyid);
/************************** SCB and SCB queue management **********************/
static void ahc_run_untagged_queues(struct ahc_softc *ahc);
static void ahc_run_untagged_queue(struct ahc_softc *ahc,
struct scb_tailq *queue);
/****************************** Initialization ********************************/
static void ahc_alloc_scbs(struct ahc_softc *ahc);
static void ahc_shutdown(void *arg);
/*************************** Interrupt Services *******************************/
static void ahc_clear_intstat(struct ahc_softc *ahc);
static void ahc_run_qoutfifo(struct ahc_softc *ahc);
#ifdef AHC_TARGET_MODE
static void ahc_run_tqinfifo(struct ahc_softc *ahc, int paused);
#endif
static void ahc_handle_brkadrint(struct ahc_softc *ahc);
static void ahc_handle_seqint(struct ahc_softc *ahc, u_int intstat);
static void ahc_handle_scsiint(struct ahc_softc *ahc,
u_int intstat);
static void ahc_clear_critical_section(struct ahc_softc *ahc);
/***************************** Error Recovery *********************************/
static void ahc_freeze_devq(struct ahc_softc *ahc, struct scb *scb);
static int ahc_abort_scbs(struct ahc_softc *ahc, int target,
char channel, int lun, u_int tag,
role_t role, uint32_t status);
static void ahc_calc_residual(struct ahc_softc *ahc,
struct scb *scb);
/*********************** Untagged Transaction Routines ************************/
static inline void ahc_freeze_untagged_queues(struct ahc_softc *ahc);
static inline void ahc_release_untagged_queues(struct ahc_softc *ahc);
/*
* Block our completion routine from starting the next untagged
* transaction for this target or target lun.
*/
static inline void
ahc_freeze_untagged_queues(struct ahc_softc *ahc)
{
if ((ahc->flags & AHC_SCB_BTT) == 0)
ahc->untagged_queue_lock++;
}
/*
* Allow the next untagged transaction for this target or target lun
* to be executed. We use a counting semaphore to allow the lock
* to be acquired recursively. Once the count drops to zero, the
* transaction queues will be run.
*/
static inline void
ahc_release_untagged_queues(struct ahc_softc *ahc)
{
if ((ahc->flags & AHC_SCB_BTT) == 0) {
ahc->untagged_queue_lock--;
if (ahc->untagged_queue_lock == 0)
ahc_run_untagged_queues(ahc);
}
}
/************************* Sequencer Execution Control ************************/
/*
* Work around any chip bugs related to halting sequencer execution.
* On Ultra2 controllers, we must clear the CIOBUS stretch signal by
* reading a register that will set this signal and deassert it.
* Without this workaround, if the chip is paused, by an interrupt or
* manual pause while accessing scb ram, accesses to certain registers
* will hang the system (infinite pci retries).
*/
static void
ahc_pause_bug_fix(struct ahc_softc *ahc)
{
if ((ahc->features & AHC_ULTRA2) != 0)
(void)ahc_inb(ahc, CCSCBCTL);
}
/*
* Determine whether the sequencer has halted code execution.
* Returns non-zero status if the sequencer is stopped.
*/
int
ahc_is_paused(struct ahc_softc *ahc)
{
return ((ahc_inb(ahc, HCNTRL) & PAUSE) != 0);
}
/*
* Request that the sequencer stop and wait, indefinitely, for it
* to stop. The sequencer will only acknowledge that it is paused
* once it has reached an instruction boundary and PAUSEDIS is
* cleared in the SEQCTL register. The sequencer may use PAUSEDIS
* for critical sections.
*/
void
ahc_pause(struct ahc_softc *ahc)
{
ahc_outb(ahc, HCNTRL, ahc->pause);
/*
* Since the sequencer can disable pausing in a critical section, we
* must loop until it actually stops.
*/
while (ahc_is_paused(ahc) == 0)
;
ahc_pause_bug_fix(ahc);
}
/*
* Allow the sequencer to continue program execution.
* We check here to ensure that no additional interrupt
* sources that would cause the sequencer to halt have been
* asserted. If, for example, a SCSI bus reset is detected
* while we are fielding a different, pausing, interrupt type,
* we don't want to release the sequencer before going back
* into our interrupt handler and dealing with this new
* condition.
*/
void
ahc_unpause(struct ahc_softc *ahc)
{
if ((ahc_inb(ahc, INTSTAT) & (SCSIINT | SEQINT | BRKADRINT)) == 0)
ahc_outb(ahc, HCNTRL, ahc->unpause);
}
/************************** Memory mapping routines ***************************/
static struct ahc_dma_seg *
ahc_sg_bus_to_virt(struct scb *scb, uint32_t sg_busaddr)
{
int sg_index;
sg_index = (sg_busaddr - scb->sg_list_phys)/sizeof(struct ahc_dma_seg);
/* sg_list_phys points to entry 1, not 0 */
sg_index++;
return (&scb->sg_list[sg_index]);
}
static uint32_t
ahc_sg_virt_to_bus(struct scb *scb, struct ahc_dma_seg *sg)
{
int sg_index;
/* sg_list_phys points to entry 1, not 0 */
sg_index = sg - &scb->sg_list[1];
return (scb->sg_list_phys + (sg_index * sizeof(*scb->sg_list)));
}
static uint32_t
ahc_hscb_busaddr(struct ahc_softc *ahc, u_int index)
{
return (ahc->scb_data->hscb_busaddr
+ (sizeof(struct hardware_scb) * index));
}
static void
ahc_sync_scb(struct ahc_softc *ahc, struct scb *scb, int op)
{
ahc_dmamap_sync(ahc, ahc->scb_data->hscb_dmat,
ahc->scb_data->hscb_dmamap,
/*offset*/(scb->hscb - ahc->hscbs) * sizeof(*scb->hscb),
/*len*/sizeof(*scb->hscb), op);
}
void
ahc_sync_sglist(struct ahc_softc *ahc, struct scb *scb, int op)
{
if (scb->sg_count == 0)
return;
ahc_dmamap_sync(ahc, ahc->scb_data->sg_dmat, scb->sg_map->sg_dmamap,
/*offset*/(scb->sg_list - scb->sg_map->sg_vaddr)
* sizeof(struct ahc_dma_seg),
/*len*/sizeof(struct ahc_dma_seg) * scb->sg_count, op);
}
#ifdef AHC_TARGET_MODE
static uint32_t
ahc_targetcmd_offset(struct ahc_softc *ahc, u_int index)
{
return (((uint8_t *)&ahc->targetcmds[index]) - ahc->qoutfifo);
}
#endif
/*********************** Miscellaneous Support Functions ***********************/
/*
* Determine whether the sequencer reported a residual
* for this SCB/transaction.
*/
static void
ahc_update_residual(struct ahc_softc *ahc, struct scb *scb)
{
uint32_t sgptr;
sgptr = ahc_le32toh(scb->hscb->sgptr);
if ((sgptr & SG_RESID_VALID) != 0)
ahc_calc_residual(ahc, scb);
}
/*
* Return pointers to the transfer negotiation information
* for the specified our_id/remote_id pair.
*/
struct ahc_initiator_tinfo *
ahc_fetch_transinfo(struct ahc_softc *ahc, char channel, u_int our_id,
u_int remote_id, struct ahc_tmode_tstate **tstate)
{
/*
* Transfer data structures are stored from the perspective
* of the target role. Since the parameters for a connection
* in the initiator role to a given target are the same as
* when the roles are reversed, we pretend we are the target.
*/
if (channel == 'B')
our_id += 8;
*tstate = ahc->enabled_targets[our_id];
return (&(*tstate)->transinfo[remote_id]);
}
uint16_t
ahc_inw(struct ahc_softc *ahc, u_int port)
{
uint16_t r = ahc_inb(ahc, port+1) << 8;
return r | ahc_inb(ahc, port);
}
void
ahc_outw(struct ahc_softc *ahc, u_int port, u_int value)
{
ahc_outb(ahc, port, value & 0xFF);
ahc_outb(ahc, port+1, (value >> 8) & 0xFF);
}
uint32_t
ahc_inl(struct ahc_softc *ahc, u_int port)
{
return ((ahc_inb(ahc, port))
| (ahc_inb(ahc, port+1) << 8)
| (ahc_inb(ahc, port+2) << 16)
| (ahc_inb(ahc, port+3) << 24));
}
void
ahc_outl(struct ahc_softc *ahc, u_int port, uint32_t value)
{
ahc_outb(ahc, port, (value) & 0xFF);
ahc_outb(ahc, port+1, ((value) >> 8) & 0xFF);
ahc_outb(ahc, port+2, ((value) >> 16) & 0xFF);
ahc_outb(ahc, port+3, ((value) >> 24) & 0xFF);
}
uint64_t
ahc_inq(struct ahc_softc *ahc, u_int port)
{
return ((ahc_inb(ahc, port))
| (ahc_inb(ahc, port+1) << 8)
| (ahc_inb(ahc, port+2) << 16)
| (ahc_inb(ahc, port+3) << 24)
| (((uint64_t)ahc_inb(ahc, port+4)) << 32)
| (((uint64_t)ahc_inb(ahc, port+5)) << 40)
| (((uint64_t)ahc_inb(ahc, port+6)) << 48)
| (((uint64_t)ahc_inb(ahc, port+7)) << 56));
}
void
ahc_outq(struct ahc_softc *ahc, u_int port, uint64_t value)
{
ahc_outb(ahc, port, value & 0xFF);
ahc_outb(ahc, port+1, (value >> 8) & 0xFF);
ahc_outb(ahc, port+2, (value >> 16) & 0xFF);
ahc_outb(ahc, port+3, (value >> 24) & 0xFF);
ahc_outb(ahc, port+4, (value >> 32) & 0xFF);
ahc_outb(ahc, port+5, (value >> 40) & 0xFF);
ahc_outb(ahc, port+6, (value >> 48) & 0xFF);
ahc_outb(ahc, port+7, (value >> 56) & 0xFF);
}
/*
* Get a free scb. If there are none, see if we can allocate a new SCB.
*/
struct scb *
ahc_get_scb(struct ahc_softc *ahc)
{
struct scb *scb;
if ((scb = SLIST_FIRST(&ahc->scb_data->free_scbs)) == NULL) {
ahc_alloc_scbs(ahc);
scb = SLIST_FIRST(&ahc->scb_data->free_scbs);
if (scb == NULL)
return (NULL);
}
SLIST_REMOVE_HEAD(&ahc->scb_data->free_scbs, links.sle);
return (scb);
}
/*
* Return an SCB resource to the free list.
*/
void
ahc_free_scb(struct ahc_softc *ahc, struct scb *scb)
{
struct hardware_scb *hscb;
hscb = scb->hscb;
/* Clean up for the next user */
ahc->scb_data->scbindex[hscb->tag] = NULL;
scb->flags = SCB_FREE;
hscb->control = 0;
SLIST_INSERT_HEAD(&ahc->scb_data->free_scbs, scb, links.sle);
/* Notify the OSM that a resource is now available. */
ahc_platform_scb_free(ahc, scb);
}
struct scb *
ahc_lookup_scb(struct ahc_softc *ahc, u_int tag)
{
struct scb* scb;
scb = ahc->scb_data->scbindex[tag];
if (scb != NULL)
ahc_sync_scb(ahc, scb,
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
return (scb);
}
static void
ahc_swap_with_next_hscb(struct ahc_softc *ahc, struct scb *scb)
{
struct hardware_scb *q_hscb;
u_int saved_tag;
/*
* Our queuing method is a bit tricky. The card
* knows in advance which HSCB to download, and we
* can't disappoint it. To achieve this, the next
* SCB to download is saved off in ahc->next_queued_scb.
* When we are called to queue "an arbitrary scb",
* we copy the contents of the incoming HSCB to the one
* the sequencer knows about, swap HSCB pointers and
* finally assign the SCB to the tag indexed location
* in the scb_array. This makes sure that we can still
* locate the correct SCB by SCB_TAG.
*/
q_hscb = ahc->next_queued_scb->hscb;
saved_tag = q_hscb->tag;
memcpy(q_hscb, scb->hscb, sizeof(*scb->hscb));
if ((scb->flags & SCB_CDB32_PTR) != 0) {
q_hscb->shared_data.cdb_ptr =
ahc_htole32(ahc_hscb_busaddr(ahc, q_hscb->tag)
+ offsetof(struct hardware_scb, cdb32));
}
q_hscb->tag = saved_tag;
q_hscb->next = scb->hscb->tag;
/* Now swap HSCB pointers. */
ahc->next_queued_scb->hscb = scb->hscb;
scb->hscb = q_hscb;
/* Now define the mapping from tag to SCB in the scbindex */
ahc->scb_data->scbindex[scb->hscb->tag] = scb;
}
/*
* Tell the sequencer about a new transaction to execute.
*/
void
ahc_queue_scb(struct ahc_softc *ahc, struct scb *scb)
{
ahc_swap_with_next_hscb(ahc, scb);
if (scb->hscb->tag == SCB_LIST_NULL
|| scb->hscb->next == SCB_LIST_NULL)
panic("Attempt to queue invalid SCB tag %x:%x\n",
scb->hscb->tag, scb->hscb->next);
/*
* Setup data "oddness".
*/
scb->hscb->lun &= LID;
if (ahc_get_transfer_length(scb) & 0x1)
scb->hscb->lun |= SCB_XFERLEN_ODD;
/*
* Keep a history of SCBs we've downloaded in the qinfifo.
*/
ahc->qinfifo[ahc->qinfifonext++] = scb->hscb->tag;
/*
* Make sure our data is consistent from the
* perspective of the adapter.
*/
ahc_sync_scb(ahc, scb, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
/* Tell the adapter about the newly queued SCB */
if ((ahc->features & AHC_QUEUE_REGS) != 0) {
ahc_outb(ahc, HNSCB_QOFF, ahc->qinfifonext);
} else {
if ((ahc->features & AHC_AUTOPAUSE) == 0)
ahc_pause(ahc);
ahc_outb(ahc, KERNEL_QINPOS, ahc->qinfifonext);
if ((ahc->features & AHC_AUTOPAUSE) == 0)
ahc_unpause(ahc);
}
}
struct scsi_sense_data *
ahc_get_sense_buf(struct ahc_softc *ahc, struct scb *scb)
{
int offset;
offset = scb - ahc->scb_data->scbarray;
return (&ahc->scb_data->sense[offset]);
}
static uint32_t
ahc_get_sense_bufaddr(struct ahc_softc *ahc, struct scb *scb)
{
int offset;
offset = scb - ahc->scb_data->scbarray;
return (ahc->scb_data->sense_busaddr
+ (offset * sizeof(struct scsi_sense_data)));
}
/************************** Interrupt Processing ******************************/
static void
ahc_sync_qoutfifo(struct ahc_softc *ahc, int op)
{
ahc_dmamap_sync(ahc, ahc->shared_data_dmat, ahc->shared_data_dmamap,
/*offset*/0, /*len*/256, op);
}
static void
ahc_sync_tqinfifo(struct ahc_softc *ahc, int op)
{
#ifdef AHC_TARGET_MODE
if ((ahc->flags & AHC_TARGETROLE) != 0) {
ahc_dmamap_sync(ahc, ahc->shared_data_dmat,
ahc->shared_data_dmamap,
ahc_targetcmd_offset(ahc, 0),
sizeof(struct target_cmd) * AHC_TMODE_CMDS,
op);
}
#endif
}
/*
* See if the firmware has posted any completed commands
* into our in-core command complete fifos.
*/
#define AHC_RUN_QOUTFIFO 0x1
#define AHC_RUN_TQINFIFO 0x2
static u_int
ahc_check_cmdcmpltqueues(struct ahc_softc *ahc)
{
u_int retval;
retval = 0;
ahc_dmamap_sync(ahc, ahc->shared_data_dmat, ahc->shared_data_dmamap,
/*offset*/ahc->qoutfifonext, /*len*/1,
BUS_DMASYNC_POSTREAD);
if (ahc->qoutfifo[ahc->qoutfifonext] != SCB_LIST_NULL)
retval |= AHC_RUN_QOUTFIFO;
#ifdef AHC_TARGET_MODE
if ((ahc->flags & AHC_TARGETROLE) != 0
&& (ahc->flags & AHC_TQINFIFO_BLOCKED) == 0) {
ahc_dmamap_sync(ahc, ahc->shared_data_dmat,
ahc->shared_data_dmamap,
ahc_targetcmd_offset(ahc, ahc->tqinfifofnext),
/*len*/sizeof(struct target_cmd),
BUS_DMASYNC_POSTREAD);
if (ahc->targetcmds[ahc->tqinfifonext].cmd_valid != 0)
retval |= AHC_RUN_TQINFIFO;
}
#endif
return (retval);
}
/*
* Catch an interrupt from the adapter
*/
int
ahc_intr(struct ahc_softc *ahc)
{
u_int intstat;
if ((ahc->pause & INTEN) == 0) {
/*
* Our interrupt is not enabled on the chip
* and may be disabled for re-entrancy reasons,
* so just return. This is likely just a shared
* interrupt.
*/
return (0);
}
/*
* Instead of directly reading the interrupt status register,
* infer the cause of the interrupt by checking our in-core
* completion queues. This avoids a costly PCI bus read in
* most cases.
*/
if ((ahc->flags & (AHC_ALL_INTERRUPTS|AHC_EDGE_INTERRUPT)) == 0
&& (ahc_check_cmdcmpltqueues(ahc) != 0))
intstat = CMDCMPLT;
else {
intstat = ahc_inb(ahc, INTSTAT);
}
if ((intstat & INT_PEND) == 0) {
#if AHC_PCI_CONFIG > 0
if (ahc->unsolicited_ints > 500) {
ahc->unsolicited_ints = 0;
if ((ahc->chip & AHC_PCI) != 0
&& (ahc_inb(ahc, ERROR) & PCIERRSTAT) != 0)
ahc->bus_intr(ahc);
}
#endif
ahc->unsolicited_ints++;
return (0);
}
ahc->unsolicited_ints = 0;
if (intstat & CMDCMPLT) {
ahc_outb(ahc, CLRINT, CLRCMDINT);
/*
* Ensure that the chip sees that we've cleared
* this interrupt before we walk the output fifo.
* Otherwise, we may, due to posted bus writes,
* clear the interrupt after we finish the scan,
* and after the sequencer has added new entries
* and asserted the interrupt again.
*/
ahc_flush_device_writes(ahc);
ahc_run_qoutfifo(ahc);
#ifdef AHC_TARGET_MODE
if ((ahc->flags & AHC_TARGETROLE) != 0)
ahc_run_tqinfifo(ahc, /*paused*/FALSE);
#endif
}
/*
* Handle statuses that may invalidate our cached
* copy of INTSTAT separately.
*/
if (intstat == 0xFF && (ahc->features & AHC_REMOVABLE) != 0) {
/* Hot eject. Do nothing */
} else if (intstat & BRKADRINT) {
ahc_handle_brkadrint(ahc);
} else if ((intstat & (SEQINT|SCSIINT)) != 0) {
ahc_pause_bug_fix(ahc);
if ((intstat & SEQINT) != 0)
ahc_handle_seqint(ahc, intstat);
if ((intstat & SCSIINT) != 0)
ahc_handle_scsiint(ahc, intstat);
}
return (1);
}
/************************* Sequencer Execution Control ************************/
/*
* Restart the sequencer program from address zero
*/
static void
ahc_restart(struct ahc_softc *ahc)
{
uint8_t sblkctl;
ahc_pause(ahc);
/* No more pending messages. */
ahc_clear_msg_state(ahc);
ahc_outb(ahc, SCSISIGO, 0); /* De-assert BSY */
ahc_outb(ahc, MSG_OUT, NOP); /* No message to send */
ahc_outb(ahc, SXFRCTL1, ahc_inb(ahc, SXFRCTL1) & ~BITBUCKET);
ahc_outb(ahc, LASTPHASE, P_BUSFREE);
ahc_outb(ahc, SAVED_SCSIID, 0xFF);
ahc_outb(ahc, SAVED_LUN, 0xFF);
/*
* Ensure that the sequencer's idea of TQINPOS
* matches our own. The sequencer increments TQINPOS
* only after it sees a DMA complete and a reset could
* occur before the increment leaving the kernel to believe
* the command arrived but the sequencer to not.
*/
ahc_outb(ahc, TQINPOS, ahc->tqinfifonext);
/* Always allow reselection */
ahc_outb(ahc, SCSISEQ,
ahc_inb(ahc, SCSISEQ_TEMPLATE) & (ENSELI|ENRSELI|ENAUTOATNP));
if ((ahc->features & AHC_CMD_CHAN) != 0) {
/* Ensure that no DMA operations are in progress */
ahc_outb(ahc, CCSCBCNT, 0);
ahc_outb(ahc, CCSGCTL, 0);
ahc_outb(ahc, CCSCBCTL, 0);
}
/*
* If we were in the process of DMA'ing SCB data into
* an SCB, replace that SCB on the free list. This prevents
* an SCB leak.
*/
if ((ahc_inb(ahc, SEQ_FLAGS2) & SCB_DMA) != 0) {
ahc_add_curscb_to_free_list(ahc);
ahc_outb(ahc, SEQ_FLAGS2,
ahc_inb(ahc, SEQ_FLAGS2) & ~SCB_DMA);
}
/*
* Clear any pending sequencer interrupt. It is no
* longer relevant since we're resetting the Program
* Counter.
*/
ahc_outb(ahc, CLRINT, CLRSEQINT);
ahc_outb(ahc, MWI_RESIDUAL, 0);
ahc_outb(ahc, SEQCTL, ahc->seqctl);
ahc_outb(ahc, SEQADDR0, 0);
ahc_outb(ahc, SEQADDR1, 0);
/*
* Take the LED out of diagnostic mode on PM resume, too
*/
sblkctl = ahc_inb(ahc, SBLKCTL);
ahc_outb(ahc, SBLKCTL, (sblkctl & ~(DIAGLEDEN|DIAGLEDON)));
ahc_unpause(ahc);
}
/************************* Input/Output Queues ********************************/
static void
ahc_run_qoutfifo(struct ahc_softc *ahc)
{
struct scb *scb;
u_int scb_index;
ahc_sync_qoutfifo(ahc, BUS_DMASYNC_POSTREAD);
while (ahc->qoutfifo[ahc->qoutfifonext] != SCB_LIST_NULL) {
scb_index = ahc->qoutfifo[ahc->qoutfifonext];
if ((ahc->qoutfifonext & 0x03) == 0x03) {
u_int modnext;
/*
* Clear 32bits of QOUTFIFO at a time
* so that we don't clobber an incoming
* byte DMA to the array on architectures
* that only support 32bit load and store
* operations.
*/
modnext = ahc->qoutfifonext & ~0x3;
*((uint32_t *)(&ahc->qoutfifo[modnext])) = 0xFFFFFFFFUL;
ahc_dmamap_sync(ahc, ahc->shared_data_dmat,
ahc->shared_data_dmamap,
/*offset*/modnext, /*len*/4,
BUS_DMASYNC_PREREAD);
}
ahc->qoutfifonext++;
scb = ahc_lookup_scb(ahc, scb_index);
if (scb == NULL) {
printk("%s: WARNING no command for scb %d "
"(cmdcmplt)\nQOUTPOS = %d\n",
ahc_name(ahc), scb_index,
(ahc->qoutfifonext - 1) & 0xFF);
continue;
}
/*
* Save off the residual
* if there is one.
*/
ahc_update_residual(ahc, scb);
ahc_done(ahc, scb);
}
}
static void
ahc_run_untagged_queues(struct ahc_softc *ahc)
{
int i;
for (i = 0; i < 16; i++)
ahc_run_untagged_queue(ahc, &ahc->untagged_queues[i]);
}
static void
ahc_run_untagged_queue(struct ahc_softc *ahc, struct scb_tailq *queue)
{
struct scb *scb;
if (ahc->untagged_queue_lock != 0)
return;
if ((scb = TAILQ_FIRST(queue)) != NULL
&& (scb->flags & SCB_ACTIVE) == 0) {
scb->flags |= SCB_ACTIVE;
ahc_queue_scb(ahc, scb);
}
}
/************************* Interrupt Handling *********************************/
static void
ahc_handle_brkadrint(struct ahc_softc *ahc)
{
/*
* We upset the sequencer :-(
* Lookup the error message
*/
int i;
int error;
error = ahc_inb(ahc, ERROR);
for (i = 0; error != 1 && i < num_errors; i++)
error >>= 1;
printk("%s: brkadrint, %s at seqaddr = 0x%x\n",
ahc_name(ahc), ahc_hard_errors[i].errmesg,
ahc_inb(ahc, SEQADDR0) |
(ahc_inb(ahc, SEQADDR1) << 8));
ahc_dump_card_state(ahc);
/* Tell everyone that this HBA is no longer available */
ahc_abort_scbs(ahc, CAM_TARGET_WILDCARD, ALL_CHANNELS,
CAM_LUN_WILDCARD, SCB_LIST_NULL, ROLE_UNKNOWN,
CAM_NO_HBA);
/* Disable all interrupt sources by resetting the controller */
ahc_shutdown(ahc);
}
static void
ahc_handle_seqint(struct ahc_softc *ahc, u_int intstat)
{
struct scb *scb;
struct ahc_devinfo devinfo;
ahc_fetch_devinfo(ahc, &devinfo);
/*
* Clear the upper byte that holds SEQINT status
* codes and clear the SEQINT bit. We will unpause
* the sequencer, if appropriate, after servicing
* the request.
*/
ahc_outb(ahc, CLRINT, CLRSEQINT);
switch (intstat & SEQINT_MASK) {
case BAD_STATUS:
{
u_int scb_index;
struct hardware_scb *hscb;
/*
* Set the default return value to 0 (don't
* send sense). The sense code will change
* this if needed.
*/
ahc_outb(ahc, RETURN_1, 0);
/*
* The sequencer will notify us when a command
* has an error that would be of interest to
* the kernel. This allows us to leave the sequencer
* running in the common case of command completes
* without error. The sequencer will already have
* dma'd the SCB back up to us, so we can reference
* the in kernel copy directly.
*/
scb_index = ahc_inb(ahc, SCB_TAG);
scb = ahc_lookup_scb(ahc, scb_index);
if (scb == NULL) {
ahc_print_devinfo(ahc, &devinfo);
printk("ahc_intr - referenced scb "
"not valid during seqint 0x%x scb(%d)\n",
intstat, scb_index);
ahc_dump_card_state(ahc);
panic("for safety");
goto unpause;
}
hscb = scb->hscb;
/* Don't want to clobber the original sense code */
if ((scb->flags & SCB_SENSE) != 0) {
/*
* Clear the SCB_SENSE Flag and have
* the sequencer do a normal command
* complete.
*/
scb->flags &= ~SCB_SENSE;
ahc_set_transaction_status(scb, CAM_AUTOSENSE_FAIL);
break;
}
ahc_set_transaction_status(scb, CAM_SCSI_STATUS_ERROR);
/* Freeze the queue until the client sees the error. */
ahc_freeze_devq(ahc, scb);
ahc_freeze_scb(scb);
ahc_set_scsi_status(scb, hscb->shared_data.status.scsi_status);
switch (hscb->shared_data.status.scsi_status) {
case SAM_STAT_GOOD:
printk("%s: Interrupted for status of 0???\n",
ahc_name(ahc));
break;
case SAM_STAT_COMMAND_TERMINATED:
case SAM_STAT_CHECK_CONDITION:
{
struct ahc_dma_seg *sg;
struct scsi_sense *sc;
struct ahc_initiator_tinfo *targ_info;
struct ahc_tmode_tstate *tstate;
struct ahc_transinfo *tinfo;
#ifdef AHC_DEBUG
if (ahc_debug & AHC_SHOW_SENSE) {
ahc_print_path(ahc, scb);
printk("SCB %d: requests Check Status\n",
scb->hscb->tag);
}
#endif
if (ahc_perform_autosense(scb) == 0)
break;
targ_info = ahc_fetch_transinfo(ahc,
devinfo.channel,
devinfo.our_scsiid,
devinfo.target,
&tstate);
tinfo = &targ_info->curr;
sg = scb->sg_list;
sc = (struct scsi_sense *)(&hscb->shared_data.cdb);
/*
* Save off the residual if there is one.
*/
ahc_update_residual(ahc, scb);
#ifdef AHC_DEBUG
if (ahc_debug & AHC_SHOW_SENSE) {
ahc_print_path(ahc, scb);
printk("Sending Sense\n");
}
#endif
sg->addr = ahc_get_sense_bufaddr(ahc, scb);
sg->len = ahc_get_sense_bufsize(ahc, scb);
sg->len |= AHC_DMA_LAST_SEG;
/* Fixup byte order */
sg->addr = ahc_htole32(sg->addr);
sg->len = ahc_htole32(sg->len);
sc->opcode = REQUEST_SENSE;
sc->byte2 = 0;
if (tinfo->protocol_version <= SCSI_REV_2
&& SCB_GET_LUN(scb) < 8)
sc->byte2 = SCB_GET_LUN(scb) << 5;
sc->unused[0] = 0;
sc->unused[1] = 0;
sc->length = sg->len;
sc->control = 0;
/*
* We can't allow the target to disconnect.
* This will be an untagged transaction and
* having the target disconnect will make this
* transaction indestinguishable from outstanding
* tagged transactions.
*/
hscb->control = 0;
/*
* This request sense could be because the
* the device lost power or in some other
* way has lost our transfer negotiations.
* Renegotiate if appropriate. Unit attention
* errors will be reported before any data
* phases occur.
*/
if (ahc_get_residual(scb)
== ahc_get_transfer_length(scb)) {
ahc_update_neg_request(ahc, &devinfo,
tstate, targ_info,
AHC_NEG_IF_NON_ASYNC);
}
if (tstate->auto_negotiate & devinfo.target_mask) {
hscb->control |= MK_MESSAGE;
scb->flags &= ~SCB_NEGOTIATE;
scb->flags |= SCB_AUTO_NEGOTIATE;
}
hscb->cdb_len = sizeof(*sc);
hscb->dataptr = sg->addr;
hscb->datacnt = sg->len;
hscb->sgptr = scb->sg_list_phys | SG_FULL_RESID;
hscb->sgptr = ahc_htole32(hscb->sgptr);
scb->sg_count = 1;
scb->flags |= SCB_SENSE;
ahc_qinfifo_requeue_tail(ahc, scb);
ahc_outb(ahc, RETURN_1, SEND_SENSE);
/*
* Ensure we have enough time to actually
* retrieve the sense.
*/
ahc_scb_timer_reset(scb, 5 * 1000000);
break;
}
default:
break;
}
break;
}
case NO_MATCH:
{
/* Ensure we don't leave the selection hardware on */
ahc_outb(ahc, SCSISEQ,
ahc_inb(ahc, SCSISEQ) & (ENSELI|ENRSELI|ENAUTOATNP));
printk("%s:%c:%d: no active SCB for reconnecting "
"target - issuing BUS DEVICE RESET\n",
ahc_name(ahc), devinfo.channel, devinfo.target);
printk("SAVED_SCSIID == 0x%x, SAVED_LUN == 0x%x, "
"ARG_1 == 0x%x ACCUM = 0x%x\n",
ahc_inb(ahc, SAVED_SCSIID), ahc_inb(ahc, SAVED_LUN),
ahc_inb(ahc, ARG_1), ahc_inb(ahc, ACCUM));
printk("SEQ_FLAGS == 0x%x, SCBPTR == 0x%x, BTT == 0x%x, "
"SINDEX == 0x%x\n",
ahc_inb(ahc, SEQ_FLAGS), ahc_inb(ahc, SCBPTR),
ahc_index_busy_tcl(ahc,
BUILD_TCL(ahc_inb(ahc, SAVED_SCSIID),
ahc_inb(ahc, SAVED_LUN))),
ahc_inb(ahc, SINDEX));
printk("SCSIID == 0x%x, SCB_SCSIID == 0x%x, SCB_LUN == 0x%x, "
"SCB_TAG == 0x%x, SCB_CONTROL == 0x%x\n",
ahc_inb(ahc, SCSIID), ahc_inb(ahc, SCB_SCSIID),
ahc_inb(ahc, SCB_LUN), ahc_inb(ahc, SCB_TAG),
ahc_inb(ahc, SCB_CONTROL));
printk("SCSIBUSL == 0x%x, SCSISIGI == 0x%x\n",
ahc_inb(ahc, SCSIBUSL), ahc_inb(ahc, SCSISIGI));
printk("SXFRCTL0 == 0x%x\n", ahc_inb(ahc, SXFRCTL0));
printk("SEQCTL == 0x%x\n", ahc_inb(ahc, SEQCTL));
ahc_dump_card_state(ahc);
ahc->msgout_buf[0] = TARGET_RESET;
ahc->msgout_len = 1;
ahc->msgout_index = 0;
ahc->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
ahc_outb(ahc, MSG_OUT, HOST_MSG);
ahc_assert_atn(ahc);
break;
}
case SEND_REJECT:
{
u_int rejbyte = ahc_inb(ahc, ACCUM);
printk("%s:%c:%d: Warning - unknown message received from "
"target (0x%x). Rejecting\n",
ahc_name(ahc), devinfo.channel, devinfo.target, rejbyte);
break;
}
case PROTO_VIOLATION:
{
ahc_handle_proto_violation(ahc);
break;
}
case IGN_WIDE_RES:
ahc_handle_ign_wide_residue(ahc, &devinfo);
break;
case PDATA_REINIT:
ahc_reinitialize_dataptrs(ahc);
break;
case BAD_PHASE:
{
u_int lastphase;
lastphase = ahc_inb(ahc, LASTPHASE);
printk("%s:%c:%d: unknown scsi bus phase %x, "
"lastphase = 0x%x. Attempting to continue\n",
ahc_name(ahc), devinfo.channel, devinfo.target,
lastphase, ahc_inb(ahc, SCSISIGI));
break;
}
case MISSED_BUSFREE:
{
u_int lastphase;
lastphase = ahc_inb(ahc, LASTPHASE);
printk("%s:%c:%d: Missed busfree. "
"Lastphase = 0x%x, Curphase = 0x%x\n",
ahc_name(ahc), devinfo.channel, devinfo.target,
lastphase, ahc_inb(ahc, SCSISIGI));
ahc_restart(ahc);
return;
}
case HOST_MSG_LOOP:
{
/*
* The sequencer has encountered a message phase
* that requires host assistance for completion.
* While handling the message phase(s), we will be
* notified by the sequencer after each byte is
* transferred so we can track bus phase changes.
*
* If this is the first time we've seen a HOST_MSG_LOOP
* interrupt, initialize the state of the host message
* loop.
*/
if (ahc->msg_type == MSG_TYPE_NONE) {
struct scb *scb;
u_int scb_index;
u_int bus_phase;
bus_phase = ahc_inb(ahc, SCSISIGI) & PHASE_MASK;
if (bus_phase != P_MESGIN
&& bus_phase != P_MESGOUT) {
printk("ahc_intr: HOST_MSG_LOOP bad "
"phase 0x%x\n",
bus_phase);
/*
* Probably transitioned to bus free before
* we got here. Just punt the message.
*/
ahc_clear_intstat(ahc);
ahc_restart(ahc);
return;
}
scb_index = ahc_inb(ahc, SCB_TAG);
scb = ahc_lookup_scb(ahc, scb_index);
if (devinfo.role == ROLE_INITIATOR) {
if (bus_phase == P_MESGOUT) {
if (scb == NULL)
panic("HOST_MSG_LOOP with "
"invalid SCB %x\n",
scb_index);
ahc_setup_initiator_msgout(ahc,
&devinfo,
scb);
} else {
ahc->msg_type =
MSG_TYPE_INITIATOR_MSGIN;
ahc->msgin_index = 0;
}
}
#ifdef AHC_TARGET_MODE
else {
if (bus_phase == P_MESGOUT) {
ahc->msg_type =
MSG_TYPE_TARGET_MSGOUT;
ahc->msgin_index = 0;
} else
ahc_setup_target_msgin(ahc,
&devinfo,
scb);
}
#endif
}
ahc_handle_message_phase(ahc);
break;
}
case PERR_DETECTED:
{
/*
* If we've cleared the parity error interrupt
* but the sequencer still believes that SCSIPERR
* is true, it must be that the parity error is
* for the currently presented byte on the bus,
* and we are not in a phase (data-in) where we will
* eventually ack this byte. Ack the byte and
* throw it away in the hope that the target will
* take us to message out to deliver the appropriate
* error message.
*/
if ((intstat & SCSIINT) == 0
&& (ahc_inb(ahc, SSTAT1) & SCSIPERR) != 0) {
if ((ahc->features & AHC_DT) == 0) {
u_int curphase;
/*
* The hardware will only let you ack bytes
* if the expected phase in SCSISIGO matches
* the current phase. Make sure this is
* currently the case.
*/
curphase = ahc_inb(ahc, SCSISIGI) & PHASE_MASK;
ahc_outb(ahc, LASTPHASE, curphase);
ahc_outb(ahc, SCSISIGO, curphase);
}
if ((ahc_inb(ahc, SCSISIGI) & (CDI|MSGI)) == 0) {
int wait;
/*
* In a data phase. Faster to bitbucket
* the data than to individually ack each
* byte. This is also the only strategy
* that will work with AUTOACK enabled.
*/
ahc_outb(ahc, SXFRCTL1,
ahc_inb(ahc, SXFRCTL1) | BITBUCKET);
wait = 5000;
while (--wait != 0) {
if ((ahc_inb(ahc, SCSISIGI)
& (CDI|MSGI)) != 0)
break;
ahc_delay(100);
}
ahc_outb(ahc, SXFRCTL1,
ahc_inb(ahc, SXFRCTL1) & ~BITBUCKET);
if (wait == 0) {
struct scb *scb;
u_int scb_index;
ahc_print_devinfo(ahc, &devinfo);
printk("Unable to clear parity error. "
"Resetting bus.\n");
scb_index = ahc_inb(ahc, SCB_TAG);
scb = ahc_lookup_scb(ahc, scb_index);
if (scb != NULL)
ahc_set_transaction_status(scb,
CAM_UNCOR_PARITY);
ahc_reset_channel(ahc, devinfo.channel,
/*init reset*/TRUE);
}
} else {
ahc_inb(ahc, SCSIDATL);
}
}
break;
}
case DATA_OVERRUN:
{
/*
* When the sequencer detects an overrun, it
* places the controller in "BITBUCKET" mode
* and allows the target to complete its transfer.
* Unfortunately, none of the counters get updated
* when the controller is in this mode, so we have
* no way of knowing how large the overrun was.
*/
u_int scbindex = ahc_inb(ahc, SCB_TAG);
u_int lastphase = ahc_inb(ahc, LASTPHASE);
u_int i;
scb = ahc_lookup_scb(ahc, scbindex);
for (i = 0; i < num_phases; i++) {
if (lastphase == ahc_phase_table[i].phase)
break;
}
ahc_print_path(ahc, scb);
printk("data overrun detected %s."
" Tag == 0x%x.\n",
ahc_phase_table[i].phasemsg,
scb->hscb->tag);
ahc_print_path(ahc, scb);
printk("%s seen Data Phase. Length = %ld. NumSGs = %d.\n",
ahc_inb(ahc, SEQ_FLAGS) & DPHASE ? "Have" : "Haven't",
ahc_get_transfer_length(scb), scb->sg_count);
if (scb->sg_count > 0) {
for (i = 0; i < scb->sg_count; i++) {
printk("sg[%d] - Addr 0x%x%x : Length %d\n",
i,
(ahc_le32toh(scb->sg_list[i].len) >> 24
& SG_HIGH_ADDR_BITS),
ahc_le32toh(scb->sg_list[i].addr),
ahc_le32toh(scb->sg_list[i].len)
& AHC_SG_LEN_MASK);
}
}
/*
* Set this and it will take effect when the
* target does a command complete.
*/
ahc_freeze_devq(ahc, scb);
if ((scb->flags & SCB_SENSE) == 0) {
ahc_set_transaction_status(scb, CAM_DATA_RUN_ERR);
} else {
scb->flags &= ~SCB_SENSE;
ahc_set_transaction_status(scb, CAM_AUTOSENSE_FAIL);
}
ahc_freeze_scb(scb);
if ((ahc->features & AHC_ULTRA2) != 0) {
/*
* Clear the channel in case we return
* to data phase later.
*/
ahc_outb(ahc, SXFRCTL0,
ahc_inb(ahc, SXFRCTL0) | CLRSTCNT|CLRCHN);
ahc_outb(ahc, SXFRCTL0,
ahc_inb(ahc, SXFRCTL0) | CLRSTCNT|CLRCHN);
}
if ((ahc->flags & AHC_39BIT_ADDRESSING) != 0) {
u_int dscommand1;
/* Ensure HHADDR is 0 for future DMA operations. */
dscommand1 = ahc_inb(ahc, DSCOMMAND1);
ahc_outb(ahc, DSCOMMAND1, dscommand1 | HADDLDSEL0);
ahc_outb(ahc, HADDR, 0);
ahc_outb(ahc, DSCOMMAND1, dscommand1);
}
break;
}
case MKMSG_FAILED:
{
u_int scbindex;
printk("%s:%c:%d:%d: Attempt to issue message failed\n",
ahc_name(ahc), devinfo.channel, devinfo.target,
devinfo.lun);
scbindex = ahc_inb(ahc, SCB_TAG);
scb = ahc_lookup_scb(ahc, scbindex);
if (scb != NULL
&& (scb->flags & SCB_RECOVERY_SCB) != 0)
/*
* Ensure that we didn't put a second instance of this
* SCB into the QINFIFO.
*/
ahc_search_qinfifo(ahc, SCB_GET_TARGET(ahc, scb),
SCB_GET_CHANNEL(ahc, scb),
SCB_GET_LUN(scb), scb->hscb->tag,
ROLE_INITIATOR, /*status*/0,
SEARCH_REMOVE);
break;
}
case NO_FREE_SCB:
{
printk("%s: No free or disconnected SCBs\n", ahc_name(ahc));
ahc_dump_card_state(ahc);
panic("for safety");
break;
}
case SCB_MISMATCH:
{
u_int scbptr;
scbptr = ahc_inb(ahc, SCBPTR);
printk("Bogus TAG after DMA. SCBPTR %d, tag %d, our tag %d\n",
scbptr, ahc_inb(ahc, ARG_1),
ahc->scb_data->hscbs[scbptr].tag);
ahc_dump_card_state(ahc);
panic("for safety");
break;
}
case OUT_OF_RANGE:
{
printk("%s: BTT calculation out of range\n", ahc_name(ahc));
printk("SAVED_SCSIID == 0x%x, SAVED_LUN == 0x%x, "
"ARG_1 == 0x%x ACCUM = 0x%x\n",
ahc_inb(ahc, SAVED_SCSIID), ahc_inb(ahc, SAVED_LUN),
ahc_inb(ahc, ARG_1), ahc_inb(ahc, ACCUM));
printk("SEQ_FLAGS == 0x%x, SCBPTR == 0x%x, BTT == 0x%x, "
"SINDEX == 0x%x\n, A == 0x%x\n",
ahc_inb(ahc, SEQ_FLAGS), ahc_inb(ahc, SCBPTR),
ahc_index_busy_tcl(ahc,
BUILD_TCL(ahc_inb(ahc, SAVED_SCSIID),
ahc_inb(ahc, SAVED_LUN))),
ahc_inb(ahc, SINDEX),
ahc_inb(ahc, ACCUM));
printk("SCSIID == 0x%x, SCB_SCSIID == 0x%x, SCB_LUN == 0x%x, "
"SCB_TAG == 0x%x, SCB_CONTROL == 0x%x\n",
ahc_inb(ahc, SCSIID), ahc_inb(ahc, SCB_SCSIID),
ahc_inb(ahc, SCB_LUN), ahc_inb(ahc, SCB_TAG),
ahc_inb(ahc, SCB_CONTROL));
printk("SCSIBUSL == 0x%x, SCSISIGI == 0x%x\n",
ahc_inb(ahc, SCSIBUSL), ahc_inb(ahc, SCSISIGI));
ahc_dump_card_state(ahc);
panic("for safety");
break;
}
default:
printk("ahc_intr: seqint, "
"intstat == 0x%x, scsisigi = 0x%x\n",
intstat, ahc_inb(ahc, SCSISIGI));
break;
}
unpause:
/*
* The sequencer is paused immediately on
* a SEQINT, so we should restart it when
* we're done.
*/
ahc_unpause(ahc);
}
static void
ahc_handle_scsiint(struct ahc_softc *ahc, u_int intstat)
{
u_int scb_index;
u_int status0;
u_int status;
struct scb *scb;
char cur_channel;
char intr_channel;
if ((ahc->features & AHC_TWIN) != 0
&& ((ahc_inb(ahc, SBLKCTL) & SELBUSB) != 0))
cur_channel = 'B';
else
cur_channel = 'A';
intr_channel = cur_channel;
if ((ahc->features & AHC_ULTRA2) != 0)
status0 = ahc_inb(ahc, SSTAT0) & IOERR;
else
status0 = 0;
status = ahc_inb(ahc, SSTAT1) & (SELTO|SCSIRSTI|BUSFREE|SCSIPERR);
if (status == 0 && status0 == 0) {
if ((ahc->features & AHC_TWIN) != 0) {
/* Try the other channel */
ahc_outb(ahc, SBLKCTL, ahc_inb(ahc, SBLKCTL) ^ SELBUSB);
status = ahc_inb(ahc, SSTAT1)
& (SELTO|SCSIRSTI|BUSFREE|SCSIPERR);
intr_channel = (cur_channel == 'A') ? 'B' : 'A';
}
if (status == 0) {
printk("%s: Spurious SCSI interrupt\n", ahc_name(ahc));
ahc_outb(ahc, CLRINT, CLRSCSIINT);
ahc_unpause(ahc);
return;
}
}
/* Make sure the sequencer is in a safe location. */
ahc_clear_critical_section(ahc);
scb_index = ahc_inb(ahc, SCB_TAG);
scb = ahc_lookup_scb(ahc, scb_index);
if (scb != NULL
&& (ahc_inb(ahc, SEQ_FLAGS) & NOT_IDENTIFIED) != 0)
scb = NULL;
if ((ahc->features & AHC_ULTRA2) != 0
&& (status0 & IOERR) != 0) {
int now_lvd;
now_lvd = ahc_inb(ahc, SBLKCTL) & ENAB40;
printk("%s: Transceiver State Has Changed to %s mode\n",
ahc_name(ahc), now_lvd ? "LVD" : "SE");
ahc_outb(ahc, CLRSINT0, CLRIOERR);
/*
* When transitioning to SE mode, the reset line
* glitches, triggering an arbitration bug in some
* Ultra2 controllers. This bug is cleared when we
* assert the reset line. Since a reset glitch has
* already occurred with this transition and a
* transceiver state change is handled just like
* a bus reset anyway, asserting the reset line
* ourselves is safe.
*/
ahc_reset_channel(ahc, intr_channel,
/*Initiate Reset*/now_lvd == 0);
} else if ((status & SCSIRSTI) != 0) {
printk("%s: Someone reset channel %c\n",
ahc_name(ahc), intr_channel);
if (intr_channel != cur_channel)
ahc_outb(ahc, SBLKCTL, ahc_inb(ahc, SBLKCTL) ^ SELBUSB);
ahc_reset_channel(ahc, intr_channel, /*Initiate Reset*/FALSE);
} else if ((status & SCSIPERR) != 0) {
/*
* Determine the bus phase and queue an appropriate message.
* SCSIPERR is latched true as soon as a parity error
* occurs. If the sequencer acked the transfer that
* caused the parity error and the currently presented
* transfer on the bus has correct parity, SCSIPERR will
* be cleared by CLRSCSIPERR. Use this to determine if
* we should look at the last phase the sequencer recorded,
* or the current phase presented on the bus.
*/
struct ahc_devinfo devinfo;
u_int mesg_out;
u_int curphase;
u_int errorphase;
u_int lastphase;
u_int scsirate;
u_int i;
u_int sstat2;
int silent;
lastphase = ahc_inb(ahc, LASTPHASE);
curphase = ahc_inb(ahc, SCSISIGI) & PHASE_MASK;
sstat2 = ahc_inb(ahc, SSTAT2);
ahc_outb(ahc, CLRSINT1, CLRSCSIPERR);
/*
* For all phases save DATA, the sequencer won't
* automatically ack a byte that has a parity error
* in it. So the only way that the current phase
* could be 'data-in' is if the parity error is for
* an already acked byte in the data phase. During
* synchronous data-in transfers, we may actually
* ack bytes before latching the current phase in
* LASTPHASE, leading to the discrepancy between
* curphase and lastphase.
*/
if ((ahc_inb(ahc, SSTAT1) & SCSIPERR) != 0
|| curphase == P_DATAIN || curphase == P_DATAIN_DT)
errorphase = curphase;
else
errorphase = lastphase;
for (i = 0; i < num_phases; i++) {
if (errorphase == ahc_phase_table[i].phase)
break;
}
mesg_out = ahc_phase_table[i].mesg_out;
silent = FALSE;
if (scb != NULL) {
if (SCB_IS_SILENT(scb))
silent = TRUE;
else
ahc_print_path(ahc, scb);
scb->flags |= SCB_TRANSMISSION_ERROR;
} else
printk("%s:%c:%d: ", ahc_name(ahc), intr_channel,
SCSIID_TARGET(ahc, ahc_inb(ahc, SAVED_SCSIID)));
scsirate = ahc_inb(ahc, SCSIRATE);
if (silent == FALSE) {
printk("parity error detected %s. "
"SEQADDR(0x%x) SCSIRATE(0x%x)\n",
ahc_phase_table[i].phasemsg,
ahc_inw(ahc, SEQADDR0),
scsirate);
if ((ahc->features & AHC_DT) != 0) {
if ((sstat2 & CRCVALERR) != 0)
printk("\tCRC Value Mismatch\n");
if ((sstat2 & CRCENDERR) != 0)
printk("\tNo terminal CRC packet "
"received\n");
if ((sstat2 & CRCREQERR) != 0)
printk("\tIllegal CRC packet "
"request\n");
if ((sstat2 & DUAL_EDGE_ERR) != 0)
printk("\tUnexpected %sDT Data Phase\n",
(scsirate & SINGLE_EDGE)
? "" : "non-");
}
}
if ((ahc->features & AHC_DT) != 0
&& (sstat2 & DUAL_EDGE_ERR) != 0) {
/*
* This error applies regardless of
* data direction, so ignore the value
* in the phase table.
*/
mesg_out = INITIATOR_ERROR;
}
/*
* We've set the hardware to assert ATN if we
* get a parity error on "in" phases, so all we
* need to do is stuff the message buffer with
* the appropriate message. "In" phases have set
* mesg_out to something other than MSG_NOP.
*/
if (mesg_out != NOP) {
if (ahc->msg_type != MSG_TYPE_NONE)
ahc->send_msg_perror = TRUE;
else
ahc_outb(ahc, MSG_OUT, mesg_out);
}
/*
* Force a renegotiation with this target just in
* case we are out of sync for some external reason
* unknown (or unreported) by the target.
*/
ahc_fetch_devinfo(ahc, &devinfo);
ahc_force_renegotiation(ahc, &devinfo);
ahc_outb(ahc, CLRINT, CLRSCSIINT);
ahc_unpause(ahc);
} else if ((status & SELTO) != 0) {
u_int scbptr;
/* Stop the selection */
ahc_outb(ahc, SCSISEQ, 0);
/* No more pending messages */
ahc_clear_msg_state(ahc);
/* Clear interrupt state */
ahc_outb(ahc, SIMODE1, ahc_inb(ahc, SIMODE1) & ~ENBUSFREE);
ahc_outb(ahc, CLRSINT1, CLRSELTIMEO|CLRBUSFREE|CLRSCSIPERR);
/*
* Although the driver does not care about the
* 'Selection in Progress' status bit, the busy
* LED does. SELINGO is only cleared by a successful
* selection, so we must manually clear it to insure
* the LED turns off just incase no future successful
* selections occur (e.g. no devices on the bus).
*/
ahc_outb(ahc, CLRSINT0, CLRSELINGO);
scbptr = ahc_inb(ahc, WAITING_SCBH);
ahc_outb(ahc, SCBPTR, scbptr);
scb_index = ahc_inb(ahc, SCB_TAG);
scb = ahc_lookup_scb(ahc, scb_index);
if (scb == NULL) {
printk("%s: ahc_intr - referenced scb not "
"valid during SELTO scb(%d, %d)\n",
ahc_name(ahc), scbptr, scb_index);
ahc_dump_card_state(ahc);
} else {
struct ahc_devinfo devinfo;
#ifdef AHC_DEBUG
if ((ahc_debug & AHC_SHOW_SELTO) != 0) {
ahc_print_path(ahc, scb);
printk("Saw Selection Timeout for SCB 0x%x\n",
scb_index);
}
#endif
ahc_scb_devinfo(ahc, &devinfo, scb);
ahc_set_transaction_status(scb, CAM_SEL_TIMEOUT);
ahc_freeze_devq(ahc, scb);
/*
* Cancel any pending transactions on the device
* now that it seems to be missing. This will
* also revert us to async/narrow transfers until
* we can renegotiate with the device.
*/
ahc_handle_devreset(ahc, &devinfo,
CAM_SEL_TIMEOUT,
"Selection Timeout",
/*verbose_level*/1);
}
ahc_outb(ahc, CLRINT, CLRSCSIINT);
ahc_restart(ahc);
} else if ((status & BUSFREE) != 0
&& (ahc_inb(ahc, SIMODE1) & ENBUSFREE) != 0) {
struct ahc_devinfo devinfo;
u_int lastphase;
u_int saved_scsiid;
u_int saved_lun;
u_int target;
u_int initiator_role_id;
char channel;
int printerror;
/*
* Clear our selection hardware as soon as possible.
* We may have an entry in the waiting Q for this target,
* that is affected by this busfree and we don't want to
* go about selecting the target while we handle the event.
*/
ahc_outb(ahc, SCSISEQ,
ahc_inb(ahc, SCSISEQ) & (ENSELI|ENRSELI|ENAUTOATNP));
/*
* Disable busfree interrupts and clear the busfree
* interrupt status. We do this here so that several
* bus transactions occur prior to clearing the SCSIINT
* latch. It can take a bit for the clearing to take effect.
*/
ahc_outb(ahc, SIMODE1, ahc_inb(ahc, SIMODE1) & ~ENBUSFREE);
ahc_outb(ahc, CLRSINT1, CLRBUSFREE|CLRSCSIPERR);
/*
* Look at what phase we were last in.
* If its message out, chances are pretty good
* that the busfree was in response to one of
* our abort requests.
*/
lastphase = ahc_inb(ahc, LASTPHASE);
saved_scsiid = ahc_inb(ahc, SAVED_SCSIID);
saved_lun = ahc_inb(ahc, SAVED_LUN);
target = SCSIID_TARGET(ahc, saved_scsiid);
initiator_role_id = SCSIID_OUR_ID(saved_scsiid);
channel = SCSIID_CHANNEL(ahc, saved_scsiid);
ahc_compile_devinfo(&devinfo, initiator_role_id,
target, saved_lun, channel, ROLE_INITIATOR);
printerror = 1;
if (lastphase == P_MESGOUT) {
u_int tag;
tag = SCB_LIST_NULL;
if (ahc_sent_msg(ahc, AHCMSG_1B, ABORT_TASK, TRUE)
|| ahc_sent_msg(ahc, AHCMSG_1B, ABORT_TASK_SET, TRUE)) {
if (ahc->msgout_buf[ahc->msgout_index - 1]
== ABORT_TASK)
tag = scb->hscb->tag;
ahc_print_path(ahc, scb);
printk("SCB %d - Abort%s Completed.\n",
scb->hscb->tag, tag == SCB_LIST_NULL ?
"" : " Tag");
ahc_abort_scbs(ahc, target, channel,
saved_lun, tag,
ROLE_INITIATOR,
CAM_REQ_ABORTED);
printerror = 0;
} else if (ahc_sent_msg(ahc, AHCMSG_1B,
TARGET_RESET, TRUE)) {
ahc_compile_devinfo(&devinfo,
initiator_role_id,
target,
CAM_LUN_WILDCARD,
channel,
ROLE_INITIATOR);
ahc_handle_devreset(ahc, &devinfo,
CAM_BDR_SENT,
"Bus Device Reset",
/*verbose_level*/0);
printerror = 0;
} else if (ahc_sent_msg(ahc, AHCMSG_EXT,
EXTENDED_PPR, FALSE)) {
struct ahc_initiator_tinfo *tinfo;
struct ahc_tmode_tstate *tstate;
/*
* PPR Rejected. Try non-ppr negotiation
* and retry command.
*/
tinfo = ahc_fetch_transinfo(ahc,
devinfo.channel,
devinfo.our_scsiid,
devinfo.target,
&tstate);
tinfo->curr.transport_version = 2;
tinfo->goal.transport_version = 2;
tinfo->goal.ppr_options = 0;
ahc_qinfifo_requeue_tail(ahc, scb);
printerror = 0;
} else if (ahc_sent_msg(ahc, AHCMSG_EXT,
EXTENDED_WDTR, FALSE)) {
/*
* Negotiation Rejected. Go-narrow and
* retry command.
*/
ahc_set_width(ahc, &devinfo,
MSG_EXT_WDTR_BUS_8_BIT,
AHC_TRANS_CUR|AHC_TRANS_GOAL,
/*paused*/TRUE);
ahc_qinfifo_requeue_tail(ahc, scb);
printerror = 0;
} else if (ahc_sent_msg(ahc, AHCMSG_EXT,
EXTENDED_SDTR, FALSE)) {
/*
* Negotiation Rejected. Go-async and
* retry command.
*/
ahc_set_syncrate(ahc, &devinfo,
/*syncrate*/NULL,
/*period*/0, /*offset*/0,
/*ppr_options*/0,
AHC_TRANS_CUR|AHC_TRANS_GOAL,
/*paused*/TRUE);
ahc_qinfifo_requeue_tail(ahc, scb);
printerror = 0;
}
}
if (printerror != 0) {
u_int i;
if (scb != NULL) {
u_int tag;
if ((scb->hscb->control & TAG_ENB) != 0)
tag = scb->hscb->tag;
else
tag = SCB_LIST_NULL;
ahc_print_path(ahc, scb);
ahc_abort_scbs(ahc, target, channel,
SCB_GET_LUN(scb), tag,
ROLE_INITIATOR,
CAM_UNEXP_BUSFREE);
} else {
/*
* We had not fully identified this connection,
* so we cannot abort anything.
*/
printk("%s: ", ahc_name(ahc));
}
for (i = 0; i < num_phases; i++) {
if (lastphase == ahc_phase_table[i].phase)
break;
}
if (lastphase != P_BUSFREE) {
/*
* Renegotiate with this device at the
* next opportunity just in case this busfree
* is due to a negotiation mismatch with the
* device.
*/
ahc_force_renegotiation(ahc, &devinfo);
}
printk("Unexpected busfree %s\n"
"SEQADDR == 0x%x\n",
ahc_phase_table[i].phasemsg,
ahc_inb(ahc, SEQADDR0)
| (ahc_inb(ahc, SEQADDR1) << 8));
}
ahc_outb(ahc, CLRINT, CLRSCSIINT);
ahc_restart(ahc);
} else {
printk("%s: Missing case in ahc_handle_scsiint. status = %x\n",
ahc_name(ahc), status);
ahc_outb(ahc, CLRINT, CLRSCSIINT);
}
}
/*
* Force renegotiation to occur the next time we initiate
* a command to the current device.
*/
static void
ahc_force_renegotiation(struct ahc_softc *ahc, struct ahc_devinfo *devinfo)
{
struct ahc_initiator_tinfo *targ_info;
struct ahc_tmode_tstate *tstate;
targ_info = ahc_fetch_transinfo(ahc,
devinfo->channel,
devinfo->our_scsiid,
devinfo->target,
&tstate);
ahc_update_neg_request(ahc, devinfo, tstate,
targ_info, AHC_NEG_IF_NON_ASYNC);
}
#define AHC_MAX_STEPS 2000
static void
ahc_clear_critical_section(struct ahc_softc *ahc)
{
int stepping;
int steps;
u_int simode0;
u_int simode1;
if (ahc->num_critical_sections == 0)
return;
stepping = FALSE;
steps = 0;
simode0 = 0;
simode1 = 0;
for (;;) {
struct cs *cs;
u_int seqaddr;
u_int i;
seqaddr = ahc_inb(ahc, SEQADDR0)
| (ahc_inb(ahc, SEQADDR1) << 8);
/*
* Seqaddr represents the next instruction to execute,
* so we are really executing the instruction just
* before it.
*/
if (seqaddr != 0)
seqaddr -= 1;
cs = ahc->critical_sections;
for (i = 0; i < ahc->num_critical_sections; i++, cs++) {
if (cs->begin < seqaddr && cs->end >= seqaddr)
break;
}
if (i == ahc->num_critical_sections)
break;
if (steps > AHC_MAX_STEPS) {
printk("%s: Infinite loop in critical section\n",
ahc_name(ahc));
ahc_dump_card_state(ahc);
panic("critical section loop");
}
steps++;
if (stepping == FALSE) {
/*
* Disable all interrupt sources so that the
* sequencer will not be stuck by a pausing
* interrupt condition while we attempt to
* leave a critical section.
*/
simode0 = ahc_inb(ahc, SIMODE0);
ahc_outb(ahc, SIMODE0, 0);
simode1 = ahc_inb(ahc, SIMODE1);
if ((ahc->features & AHC_DT) != 0)
/*
* On DT class controllers, we
* use the enhanced busfree logic.
* Unfortunately we cannot re-enable
* busfree detection within the
* current connection, so we must
* leave it on while single stepping.
*/
ahc_outb(ahc, SIMODE1, simode1 & ENBUSFREE);
else
ahc_outb(ahc, SIMODE1, 0);
ahc_outb(ahc, CLRINT, CLRSCSIINT);
ahc_outb(ahc, SEQCTL, ahc->seqctl | STEP);
stepping = TRUE;
}
if ((ahc->features & AHC_DT) != 0) {
ahc_outb(ahc, CLRSINT1, CLRBUSFREE);
ahc_outb(ahc, CLRINT, CLRSCSIINT);
}
ahc_outb(ahc, HCNTRL, ahc->unpause);
while (!ahc_is_paused(ahc))
ahc_delay(200);
}
if (stepping) {
ahc_outb(ahc, SIMODE0, simode0);
ahc_outb(ahc, SIMODE1, simode1);
ahc_outb(ahc, SEQCTL, ahc->seqctl);
}
}
/*
* Clear any pending interrupt status.
*/
static void
ahc_clear_intstat(struct ahc_softc *ahc)
{
/* Clear any interrupt conditions this may have caused */
ahc_outb(ahc, CLRSINT1, CLRSELTIMEO|CLRATNO|CLRSCSIRSTI
|CLRBUSFREE|CLRSCSIPERR|CLRPHASECHG|
CLRREQINIT);
ahc_flush_device_writes(ahc);
ahc_outb(ahc, CLRSINT0, CLRSELDO|CLRSELDI|CLRSELINGO);
ahc_flush_device_writes(ahc);
ahc_outb(ahc, CLRINT, CLRSCSIINT);
ahc_flush_device_writes(ahc);
}
/**************************** Debugging Routines ******************************/
#ifdef AHC_DEBUG
uint32_t ahc_debug = AHC_DEBUG_OPTS;
#endif
#if 0 /* unused */
static void
ahc_print_scb(struct scb *scb)
{
int i;
struct hardware_scb *hscb = scb->hscb;
printk("scb:%p control:0x%x scsiid:0x%x lun:%d cdb_len:%d\n",
(void *)scb,
hscb->control,
hscb->scsiid,
hscb->lun,
hscb->cdb_len);
printk("Shared Data: ");
for (i = 0; i < sizeof(hscb->shared_data.cdb); i++)
printk("%#02x", hscb->shared_data.cdb[i]);
printk(" dataptr:%#x datacnt:%#x sgptr:%#x tag:%#x\n",
ahc_le32toh(hscb->dataptr),
ahc_le32toh(hscb->datacnt),
ahc_le32toh(hscb->sgptr),
hscb->tag);
if (scb->sg_count > 0) {
for (i = 0; i < scb->sg_count; i++) {
printk("sg[%d] - Addr 0x%x%x : Length %d\n",
i,
(ahc_le32toh(scb->sg_list[i].len) >> 24
& SG_HIGH_ADDR_BITS),
ahc_le32toh(scb->sg_list[i].addr),
ahc_le32toh(scb->sg_list[i].len));
}
}
}
#endif
/************************* Transfer Negotiation *******************************/
/*
* Allocate per target mode instance (ID we respond to as a target)
* transfer negotiation data structures.
*/
static struct ahc_tmode_tstate *
ahc_alloc_tstate(struct ahc_softc *ahc, u_int scsi_id, char channel)
{
struct ahc_tmode_tstate *master_tstate;
struct ahc_tmode_tstate *tstate;
int i;
master_tstate = ahc->enabled_targets[ahc->our_id];
if (channel == 'B') {
scsi_id += 8;
master_tstate = ahc->enabled_targets[ahc->our_id_b + 8];
}
if (ahc->enabled_targets[scsi_id] != NULL
&& ahc->enabled_targets[scsi_id] != master_tstate)
panic("%s: ahc_alloc_tstate - Target already allocated",
ahc_name(ahc));
tstate = kmalloc(sizeof(*tstate), GFP_ATOMIC);
if (tstate == NULL)
return (NULL);
/*
* If we have allocated a master tstate, copy user settings from
* the master tstate (taken from SRAM or the EEPROM) for this
* channel, but reset our current and goal settings to async/narrow
* until an initiator talks to us.
*/
if (master_tstate != NULL) {
memcpy(tstate, master_tstate, sizeof(*tstate));
memset(tstate->enabled_luns, 0, sizeof(tstate->enabled_luns));
tstate->ultraenb = 0;
for (i = 0; i < AHC_NUM_TARGETS; i++) {
memset(&tstate->transinfo[i].curr, 0,
sizeof(tstate->transinfo[i].curr));
memset(&tstate->transinfo[i].goal, 0,
sizeof(tstate->transinfo[i].goal));
}
} else
memset(tstate, 0, sizeof(*tstate));
ahc->enabled_targets[scsi_id] = tstate;
return (tstate);
}
#ifdef AHC_TARGET_MODE
/*
* Free per target mode instance (ID we respond to as a target)
* transfer negotiation data structures.
*/
static void
ahc_free_tstate(struct ahc_softc *ahc, u_int scsi_id, char channel, int force)
{
struct ahc_tmode_tstate *tstate;
/*
* Don't clean up our "master" tstate.
* It has our default user settings.
*/
if (((channel == 'B' && scsi_id == ahc->our_id_b)
|| (channel == 'A' && scsi_id == ahc->our_id))
&& force == FALSE)
return;
if (channel == 'B')
scsi_id += 8;
tstate = ahc->enabled_targets[scsi_id];
kfree(tstate);
ahc->enabled_targets[scsi_id] = NULL;
}
#endif
/*
* Called when we have an active connection to a target on the bus,
* this function finds the nearest syncrate to the input period limited
* by the capabilities of the bus connectivity of and sync settings for
* the target.
*/
static const struct ahc_syncrate *
ahc_devlimited_syncrate(struct ahc_softc *ahc,
struct ahc_initiator_tinfo *tinfo,
u_int *period, u_int *ppr_options, role_t role)
{
struct ahc_transinfo *transinfo;
u_int maxsync;
if ((ahc->features & AHC_ULTRA2) != 0) {
if ((ahc_inb(ahc, SBLKCTL) & ENAB40) != 0
&& (ahc_inb(ahc, SSTAT2) & EXP_ACTIVE) == 0) {
maxsync = AHC_SYNCRATE_DT;
} else {
maxsync = AHC_SYNCRATE_ULTRA;
/* Can't do DT on an SE bus */
*ppr_options &= ~MSG_EXT_PPR_DT_REQ;
}
} else if ((ahc->features & AHC_ULTRA) != 0) {
maxsync = AHC_SYNCRATE_ULTRA;
} else {
maxsync = AHC_SYNCRATE_FAST;
}
/*
* Never allow a value higher than our current goal
* period otherwise we may allow a target initiated
* negotiation to go above the limit as set by the
* user. In the case of an initiator initiated
* sync negotiation, we limit based on the user
* setting. This allows the system to still accept
* incoming negotiations even if target initiated
* negotiation is not performed.
*/
if (role == ROLE_TARGET)
transinfo = &tinfo->user;
else
transinfo = &tinfo->goal;
*ppr_options &= transinfo->ppr_options;
if (transinfo->width == MSG_EXT_WDTR_BUS_8_BIT) {
maxsync = max(maxsync, (u_int)AHC_SYNCRATE_ULTRA2);
*ppr_options &= ~MSG_EXT_PPR_DT_REQ;
}
if (transinfo->period == 0) {
*period = 0;
*ppr_options = 0;
return (NULL);
}
*period = max(*period, (u_int)transinfo->period);
return (ahc_find_syncrate(ahc, period, ppr_options, maxsync));
}
/*
* Look up the valid period to SCSIRATE conversion in our table.
* Return the period and offset that should be sent to the target
* if this was the beginning of an SDTR.
*/
const struct ahc_syncrate *
ahc_find_syncrate(struct ahc_softc *ahc, u_int *period,
u_int *ppr_options, u_int maxsync)
{
const struct ahc_syncrate *syncrate;
if ((ahc->features & AHC_DT) == 0)
*ppr_options &= ~MSG_EXT_PPR_DT_REQ;
/* Skip all DT only entries if DT is not available */
if ((*ppr_options & MSG_EXT_PPR_DT_REQ) == 0
&& maxsync < AHC_SYNCRATE_ULTRA2)
maxsync = AHC_SYNCRATE_ULTRA2;
/* Now set the maxsync based on the card capabilities
* DT is already done above */
if ((ahc->features & (AHC_DT | AHC_ULTRA2)) == 0
&& maxsync < AHC_SYNCRATE_ULTRA)
maxsync = AHC_SYNCRATE_ULTRA;
if ((ahc->features & (AHC_DT | AHC_ULTRA2 | AHC_ULTRA)) == 0
&& maxsync < AHC_SYNCRATE_FAST)
maxsync = AHC_SYNCRATE_FAST;
for (syncrate = &ahc_syncrates[maxsync];
syncrate->rate != NULL;
syncrate++) {
/*
* The Ultra2 table doesn't go as low
* as for the Fast/Ultra cards.
*/
if ((ahc->features & AHC_ULTRA2) != 0
&& (syncrate->sxfr_u2 == 0))
break;
if (*period <= syncrate->period) {
/*
* When responding to a target that requests
* sync, the requested rate may fall between
* two rates that we can output, but still be
* a rate that we can receive. Because of this,
* we want to respond to the target with
* the same rate that it sent to us even
* if the period we use to send data to it
* is lower. Only lower the response period
* if we must.
*/
if (syncrate == &ahc_syncrates[maxsync])
*period = syncrate->period;
/*
* At some speeds, we only support
* ST transfers.
*/
if ((syncrate->sxfr_u2 & ST_SXFR) != 0)
*ppr_options &= ~MSG_EXT_PPR_DT_REQ;
break;
}
}
if ((*period == 0)
|| (syncrate->rate == NULL)
|| ((ahc->features & AHC_ULTRA2) != 0
&& (syncrate->sxfr_u2 == 0))) {
/* Use asynchronous transfers. */
*period = 0;
syncrate = NULL;
*ppr_options &= ~MSG_EXT_PPR_DT_REQ;
}
return (syncrate);
}
/*
* Convert from an entry in our syncrate table to the SCSI equivalent
* sync "period" factor.
*/
u_int
ahc_find_period(struct ahc_softc *ahc, u_int scsirate, u_int maxsync)
{
const struct ahc_syncrate *syncrate;
if ((ahc->features & AHC_ULTRA2) != 0)
scsirate &= SXFR_ULTRA2;
else
scsirate &= SXFR;
/* now set maxsync based on card capabilities */
if ((ahc->features & AHC_DT) == 0 && maxsync < AHC_SYNCRATE_ULTRA2)
maxsync = AHC_SYNCRATE_ULTRA2;
if ((ahc->features & (AHC_DT | AHC_ULTRA2)) == 0
&& maxsync < AHC_SYNCRATE_ULTRA)
maxsync = AHC_SYNCRATE_ULTRA;
if ((ahc->features & (AHC_DT | AHC_ULTRA2 | AHC_ULTRA)) == 0
&& maxsync < AHC_SYNCRATE_FAST)
maxsync = AHC_SYNCRATE_FAST;
syncrate = &ahc_syncrates[maxsync];
while (syncrate->rate != NULL) {
if ((ahc->features & AHC_ULTRA2) != 0) {
if (syncrate->sxfr_u2 == 0)
break;
else if (scsirate == (syncrate->sxfr_u2 & SXFR_ULTRA2))
return (syncrate->period);
} else if (scsirate == (syncrate->sxfr & SXFR)) {
return (syncrate->period);
}
syncrate++;
}
return (0); /* async */
}
/*
* Truncate the given synchronous offset to a value the
* current adapter type and syncrate are capable of.
*/
static void
ahc_validate_offset(struct ahc_softc *ahc,
struct ahc_initiator_tinfo *tinfo,
const struct ahc_syncrate *syncrate,
u_int *offset, int wide, role_t role)
{
u_int maxoffset;
/* Limit offset to what we can do */
if (syncrate == NULL) {
maxoffset = 0;
} else if ((ahc->features & AHC_ULTRA2) != 0) {
maxoffset = MAX_OFFSET_ULTRA2;
} else {
if (wide)
maxoffset = MAX_OFFSET_16BIT;
else
maxoffset = MAX_OFFSET_8BIT;
}
*offset = min(*offset, maxoffset);
if (tinfo != NULL) {
if (role == ROLE_TARGET)
*offset = min(*offset, (u_int)tinfo->user.offset);
else
*offset = min(*offset, (u_int)tinfo->goal.offset);
}
}
/*
* Truncate the given transfer width parameter to a value the
* current adapter type is capable of.
*/
static void
ahc_validate_width(struct ahc_softc *ahc, struct ahc_initiator_tinfo *tinfo,
u_int *bus_width, role_t role)
{
switch (*bus_width) {
default:
if (ahc->features & AHC_WIDE) {
/* Respond Wide */
*bus_width = MSG_EXT_WDTR_BUS_16_BIT;
break;
}
fallthrough;
case MSG_EXT_WDTR_BUS_8_BIT:
*bus_width = MSG_EXT_WDTR_BUS_8_BIT;
break;
}
if (tinfo != NULL) {
if (role == ROLE_TARGET)
*bus_width = min((u_int)tinfo->user.width, *bus_width);
else
*bus_width = min((u_int)tinfo->goal.width, *bus_width);
}
}
/*
* Update the bitmask of targets for which the controller should
* negotiate with at the next convenient opportunity. This currently
* means the next time we send the initial identify messages for
* a new transaction.
*/
int
ahc_update_neg_request(struct ahc_softc *ahc, struct ahc_devinfo *devinfo,
struct ahc_tmode_tstate *tstate,
struct ahc_initiator_tinfo *tinfo, ahc_neg_type neg_type)
{
u_int auto_negotiate_orig;
auto_negotiate_orig = tstate->auto_negotiate;
if (neg_type == AHC_NEG_ALWAYS) {
/*
* Force our "current" settings to be
* unknown so that unless a bus reset
* occurs the need to renegotiate is
* recorded persistently.
*/
if ((ahc->features & AHC_WIDE) != 0)
tinfo->curr.width = AHC_WIDTH_UNKNOWN;
tinfo->curr.period = AHC_PERIOD_UNKNOWN;
tinfo->curr.offset = AHC_OFFSET_UNKNOWN;
}
if (tinfo->curr.period != tinfo->goal.period
|| tinfo->curr.width != tinfo->goal.width
|| tinfo->curr.offset != tinfo->goal.offset
|| tinfo->curr.ppr_options != tinfo->goal.ppr_options
|| (neg_type == AHC_NEG_IF_NON_ASYNC
&& (tinfo->goal.offset != 0
|| tinfo->goal.width != MSG_EXT_WDTR_BUS_8_BIT
|| tinfo->goal.ppr_options != 0)))
tstate->auto_negotiate |= devinfo->target_mask;
else
tstate->auto_negotiate &= ~devinfo->target_mask;
return (auto_negotiate_orig != tstate->auto_negotiate);
}
/*
* Update the user/goal/curr tables of synchronous negotiation
* parameters as well as, in the case of a current or active update,
* any data structures on the host controller. In the case of an
* active update, the specified target is currently talking to us on
* the bus, so the transfer parameter update must take effect
* immediately.
*/
void
ahc_set_syncrate(struct ahc_softc *ahc, struct ahc_devinfo *devinfo,
const struct ahc_syncrate *syncrate, u_int period,
u_int offset, u_int ppr_options, u_int type, int paused)
{
struct ahc_initiator_tinfo *tinfo;
struct ahc_tmode_tstate *tstate;
u_int old_period;
u_int old_offset;
u_int old_ppr;
int active;
int update_needed;
active = (type & AHC_TRANS_ACTIVE) == AHC_TRANS_ACTIVE;
update_needed = 0;
if (syncrate == NULL) {
period = 0;
offset = 0;
}
tinfo = ahc_fetch_transinfo(ahc, devinfo->channel, devinfo->our_scsiid,
devinfo->target, &tstate);
if ((type & AHC_TRANS_USER) != 0) {
tinfo->user.period = period;
tinfo->user.offset = offset;
tinfo->user.ppr_options = ppr_options;
}
if ((type & AHC_TRANS_GOAL) != 0) {
tinfo->goal.period = period;
tinfo->goal.offset = offset;
tinfo->goal.ppr_options = ppr_options;
}
old_period = tinfo->curr.period;
old_offset = tinfo->curr.offset;
old_ppr = tinfo->curr.ppr_options;
if ((type & AHC_TRANS_CUR) != 0
&& (old_period != period
|| old_offset != offset
|| old_ppr != ppr_options)) {
u_int scsirate;
update_needed++;
scsirate = tinfo->scsirate;
if ((ahc->features & AHC_ULTRA2) != 0) {
scsirate &= ~(SXFR_ULTRA2|SINGLE_EDGE|ENABLE_CRC);
if (syncrate != NULL) {
scsirate |= syncrate->sxfr_u2;
if ((ppr_options & MSG_EXT_PPR_DT_REQ) != 0)
scsirate |= ENABLE_CRC;
else
scsirate |= SINGLE_EDGE;
}
} else {
scsirate &= ~(SXFR|SOFS);
/*
* Ensure Ultra mode is set properly for
* this target.
*/
tstate->ultraenb &= ~devinfo->target_mask;
if (syncrate != NULL) {
if (syncrate->sxfr & ULTRA_SXFR) {
tstate->ultraenb |=
devinfo->target_mask;
}
scsirate |= syncrate->sxfr & SXFR;
scsirate |= offset & SOFS;
}
if (active) {
u_int sxfrctl0;
sxfrctl0 = ahc_inb(ahc, SXFRCTL0);
sxfrctl0 &= ~FAST20;
if (tstate->ultraenb & devinfo->target_mask)
sxfrctl0 |= FAST20;
ahc_outb(ahc, SXFRCTL0, sxfrctl0);
}
}
if (active) {
ahc_outb(ahc, SCSIRATE, scsirate);
if ((ahc->features & AHC_ULTRA2) != 0)
ahc_outb(ahc, SCSIOFFSET, offset);
}
tinfo->scsirate = scsirate;
tinfo->curr.period = period;
tinfo->curr.offset = offset;
tinfo->curr.ppr_options = ppr_options;
ahc_send_async(ahc, devinfo->channel, devinfo->target,
CAM_LUN_WILDCARD, AC_TRANSFER_NEG);
if (bootverbose) {
if (offset != 0) {
printk("%s: target %d synchronous at %sMHz%s, "
"offset = 0x%x\n", ahc_name(ahc),
devinfo->target, syncrate->rate,
(ppr_options & MSG_EXT_PPR_DT_REQ)
? " DT" : "", offset);
} else {
printk("%s: target %d using "
"asynchronous transfers\n",
ahc_name(ahc), devinfo->target);
}
}
}
update_needed += ahc_update_neg_request(ahc, devinfo, tstate,
tinfo, AHC_NEG_TO_GOAL);
if (update_needed)
ahc_update_pending_scbs(ahc);
}
/*
* Update the user/goal/curr tables of wide negotiation
* parameters as well as, in the case of a current or active update,
* any data structures on the host controller. In the case of an
* active update, the specified target is currently talking to us on
* the bus, so the transfer parameter update must take effect
* immediately.
*/
void
ahc_set_width(struct ahc_softc *ahc, struct ahc_devinfo *devinfo,
u_int width, u_int type, int paused)
{
struct ahc_initiator_tinfo *tinfo;
struct ahc_tmode_tstate *tstate;
u_int oldwidth;
int active;
int update_needed;
active = (type & AHC_TRANS_ACTIVE) == AHC_TRANS_ACTIVE;
update_needed = 0;
tinfo = ahc_fetch_transinfo(ahc, devinfo->channel, devinfo->our_scsiid,
devinfo->target, &tstate);
if ((type & AHC_TRANS_USER) != 0)
tinfo->user.width = width;
if ((type & AHC_TRANS_GOAL) != 0)
tinfo->goal.width = width;
oldwidth = tinfo->curr.width;
if ((type & AHC_TRANS_CUR) != 0 && oldwidth != width) {
u_int scsirate;
update_needed++;
scsirate = tinfo->scsirate;
scsirate &= ~WIDEXFER;
if (width == MSG_EXT_WDTR_BUS_16_BIT)
scsirate |= WIDEXFER;
tinfo->scsirate = scsirate;
if (active)
ahc_outb(ahc, SCSIRATE, scsirate);
tinfo->curr.width = width;
ahc_send_async(ahc, devinfo->channel, devinfo->target,
CAM_LUN_WILDCARD, AC_TRANSFER_NEG);
if (bootverbose) {
printk("%s: target %d using %dbit transfers\n",
ahc_name(ahc), devinfo->target,
8 * (0x01 << width));
}
}
update_needed += ahc_update_neg_request(ahc, devinfo, tstate,
tinfo, AHC_NEG_TO_GOAL);
if (update_needed)
ahc_update_pending_scbs(ahc);
}
/*
* Update the current state of tagged queuing for a given target.
*/
static void
ahc_set_tags(struct ahc_softc *ahc, struct scsi_cmnd *cmd,
struct ahc_devinfo *devinfo, ahc_queue_alg alg)
{
struct scsi_device *sdev = cmd->device;
ahc_platform_set_tags(ahc, sdev, devinfo, alg);
ahc_send_async(ahc, devinfo->channel, devinfo->target,
devinfo->lun, AC_TRANSFER_NEG);
}
/*
* When the transfer settings for a connection change, update any
* in-transit SCBs to contain the new data so the hardware will
* be set correctly during future (re)selections.
*/
static void
ahc_update_pending_scbs(struct ahc_softc *ahc)
{
struct scb *pending_scb;
int pending_scb_count;
int i;
int paused;
u_int saved_scbptr;
/*
* Traverse the pending SCB list and ensure that all of the
* SCBs there have the proper settings.
*/
pending_scb_count = 0;
LIST_FOREACH(pending_scb, &ahc->pending_scbs, pending_links) {
struct ahc_devinfo devinfo;
struct hardware_scb *pending_hscb;
struct ahc_initiator_tinfo *tinfo;
struct ahc_tmode_tstate *tstate;
ahc_scb_devinfo(ahc, &devinfo, pending_scb);
tinfo = ahc_fetch_transinfo(ahc, devinfo.channel,
devinfo.our_scsiid,
devinfo.target, &tstate);
pending_hscb = pending_scb->hscb;
pending_hscb->control &= ~ULTRAENB;
if ((tstate->ultraenb & devinfo.target_mask) != 0)
pending_hscb->control |= ULTRAENB;
pending_hscb->scsirate = tinfo->scsirate;
pending_hscb->scsioffset = tinfo->curr.offset;
if ((tstate->auto_negotiate & devinfo.target_mask) == 0
&& (pending_scb->flags & SCB_AUTO_NEGOTIATE) != 0) {
pending_scb->flags &= ~SCB_AUTO_NEGOTIATE;
pending_hscb->control &= ~MK_MESSAGE;
}
ahc_sync_scb(ahc, pending_scb,
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
pending_scb_count++;
}
if (pending_scb_count == 0)
return;
if (ahc_is_paused(ahc)) {
paused = 1;
} else {
paused = 0;
ahc_pause(ahc);
}
saved_scbptr = ahc_inb(ahc, SCBPTR);
/* Ensure that the hscbs down on the card match the new information */
for (i = 0; i < ahc->scb_data->maxhscbs; i++) {
struct hardware_scb *pending_hscb;
u_int control;
u_int scb_tag;
ahc_outb(ahc, SCBPTR, i);
scb_tag = ahc_inb(ahc, SCB_TAG);
pending_scb = ahc_lookup_scb(ahc, scb_tag);
if (pending_scb == NULL)
continue;
pending_hscb = pending_scb->hscb;
control = ahc_inb(ahc, SCB_CONTROL);
control &= ~(ULTRAENB|MK_MESSAGE);
control |= pending_hscb->control & (ULTRAENB|MK_MESSAGE);
ahc_outb(ahc, SCB_CONTROL, control);
ahc_outb(ahc, SCB_SCSIRATE, pending_hscb->scsirate);
ahc_outb(ahc, SCB_SCSIOFFSET, pending_hscb->scsioffset);
}
ahc_outb(ahc, SCBPTR, saved_scbptr);
if (paused == 0)
ahc_unpause(ahc);
}
/**************************** Pathing Information *****************************/
static void
ahc_fetch_devinfo(struct ahc_softc *ahc, struct ahc_devinfo *devinfo)
{
u_int saved_scsiid;
role_t role;
int our_id;
if (ahc_inb(ahc, SSTAT0) & TARGET)
role = ROLE_TARGET;
else
role = ROLE_INITIATOR;
if (role == ROLE_TARGET
&& (ahc->features & AHC_MULTI_TID) != 0
&& (ahc_inb(ahc, SEQ_FLAGS)
& (CMDPHASE_PENDING|TARG_CMD_PENDING|NO_DISCONNECT)) != 0) {
/* We were selected, so pull our id from TARGIDIN */
our_id = ahc_inb(ahc, TARGIDIN) & OID;
} else if ((ahc->features & AHC_ULTRA2) != 0)
our_id = ahc_inb(ahc, SCSIID_ULTRA2) & OID;
else
our_id = ahc_inb(ahc, SCSIID) & OID;
saved_scsiid = ahc_inb(ahc, SAVED_SCSIID);
ahc_compile_devinfo(devinfo,
our_id,
SCSIID_TARGET(ahc, saved_scsiid),
ahc_inb(ahc, SAVED_LUN),
SCSIID_CHANNEL(ahc, saved_scsiid),
role);
}
static const struct ahc_phase_table_entry*
ahc_lookup_phase_entry(int phase)
{
const struct ahc_phase_table_entry *entry;
const struct ahc_phase_table_entry *last_entry;
/*
* num_phases doesn't include the default entry which
* will be returned if the phase doesn't match.
*/
last_entry = &ahc_phase_table[num_phases];
for (entry = ahc_phase_table; entry < last_entry; entry++) {
if (phase == entry->phase)
break;
}
return (entry);
}
void
ahc_compile_devinfo(struct ahc_devinfo *devinfo, u_int our_id, u_int target,
u_int lun, char channel, role_t role)
{
devinfo->our_scsiid = our_id;
devinfo->target = target;
devinfo->lun = lun;
devinfo->target_offset = target;
devinfo->channel = channel;
devinfo->role = role;
if (channel == 'B')
devinfo->target_offset += 8;
devinfo->target_mask = (0x01 << devinfo->target_offset);
}
void
ahc_print_devinfo(struct ahc_softc *ahc, struct ahc_devinfo *devinfo)
{
printk("%s:%c:%d:%d: ", ahc_name(ahc), devinfo->channel,
devinfo->target, devinfo->lun);
}
static void
ahc_scb_devinfo(struct ahc_softc *ahc, struct ahc_devinfo *devinfo,
struct scb *scb)
{
role_t role;
int our_id;
our_id = SCSIID_OUR_ID(scb->hscb->scsiid);
role = ROLE_INITIATOR;
if ((scb->flags & SCB_TARGET_SCB) != 0)
role = ROLE_TARGET;
ahc_compile_devinfo(devinfo, our_id, SCB_GET_TARGET(ahc, scb),
SCB_GET_LUN(scb), SCB_GET_CHANNEL(ahc, scb), role);
}
/************************ Message Phase Processing ****************************/
static void
ahc_assert_atn(struct ahc_softc *ahc)
{
u_int scsisigo;
scsisigo = ATNO;
if ((ahc->features & AHC_DT) == 0)
scsisigo |= ahc_inb(ahc, SCSISIGI);
ahc_outb(ahc, SCSISIGO, scsisigo);
}
/*
* When an initiator transaction with the MK_MESSAGE flag either reconnects
* or enters the initial message out phase, we are interrupted. Fill our
* outgoing message buffer with the appropriate message and beging handing
* the message phase(s) manually.
*/
static void
ahc_setup_initiator_msgout(struct ahc_softc *ahc, struct ahc_devinfo *devinfo,
struct scb *scb)
{
/*
* To facilitate adding multiple messages together,
* each routine should increment the index and len
* variables instead of setting them explicitly.
*/
ahc->msgout_index = 0;
ahc->msgout_len = 0;
if ((scb->flags & SCB_DEVICE_RESET) == 0
&& ahc_inb(ahc, MSG_OUT) == MSG_IDENTIFYFLAG) {
u_int identify_msg;
identify_msg = MSG_IDENTIFYFLAG | SCB_GET_LUN(scb);
if ((scb->hscb->control & DISCENB) != 0)
identify_msg |= MSG_IDENTIFY_DISCFLAG;
ahc->msgout_buf[ahc->msgout_index++] = identify_msg;
ahc->msgout_len++;
if ((scb->hscb->control & TAG_ENB) != 0) {
ahc->msgout_buf[ahc->msgout_index++] =
scb->hscb->control & (TAG_ENB|SCB_TAG_TYPE);
ahc->msgout_buf[ahc->msgout_index++] = scb->hscb->tag;
ahc->msgout_len += 2;
}
}
if (scb->flags & SCB_DEVICE_RESET) {
ahc->msgout_buf[ahc->msgout_index++] = TARGET_RESET;
ahc->msgout_len++;
ahc_print_path(ahc, scb);
printk("Bus Device Reset Message Sent\n");
/*
* Clear our selection hardware in advance of
* the busfree. We may have an entry in the waiting
* Q for this target, and we don't want to go about
* selecting while we handle the busfree and blow it
* away.
*/
ahc_outb(ahc, SCSISEQ, (ahc_inb(ahc, SCSISEQ) & ~ENSELO));
} else if ((scb->flags & SCB_ABORT) != 0) {
if ((scb->hscb->control & TAG_ENB) != 0)
ahc->msgout_buf[ahc->msgout_index++] = ABORT_TASK;
else
ahc->msgout_buf[ahc->msgout_index++] = ABORT_TASK_SET;
ahc->msgout_len++;
ahc_print_path(ahc, scb);
printk("Abort%s Message Sent\n",
(scb->hscb->control & TAG_ENB) != 0 ? " Tag" : "");
/*
* Clear our selection hardware in advance of
* the busfree. We may have an entry in the waiting
* Q for this target, and we don't want to go about
* selecting while we handle the busfree and blow it
* away.
*/
ahc_outb(ahc, SCSISEQ, (ahc_inb(ahc, SCSISEQ) & ~ENSELO));
} else if ((scb->flags & (SCB_AUTO_NEGOTIATE|SCB_NEGOTIATE)) != 0) {
ahc_build_transfer_msg(ahc, devinfo);
} else {
printk("ahc_intr: AWAITING_MSG for an SCB that "
"does not have a waiting message\n");
printk("SCSIID = %x, target_mask = %x\n", scb->hscb->scsiid,
devinfo->target_mask);
panic("SCB = %d, SCB Control = %x, MSG_OUT = %x "
"SCB flags = %x", scb->hscb->tag, scb->hscb->control,
ahc_inb(ahc, MSG_OUT), scb->flags);
}
/*
* Clear the MK_MESSAGE flag from the SCB so we aren't
* asked to send this message again.
*/
ahc_outb(ahc, SCB_CONTROL, ahc_inb(ahc, SCB_CONTROL) & ~MK_MESSAGE);
scb->hscb->control &= ~MK_MESSAGE;
ahc->msgout_index = 0;
ahc->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
}
/*
* Build an appropriate transfer negotiation message for the
* currently active target.
*/
static void
ahc_build_transfer_msg(struct ahc_softc *ahc, struct ahc_devinfo *devinfo)
{
/*
* We need to initiate transfer negotiations.
* If our current and goal settings are identical,
* we want to renegotiate due to a check condition.
*/
struct ahc_initiator_tinfo *tinfo;
struct ahc_tmode_tstate *tstate;
const struct ahc_syncrate *rate;
int dowide;
int dosync;
int doppr;
u_int period;
u_int ppr_options;
u_int offset;
tinfo = ahc_fetch_transinfo(ahc, devinfo->channel, devinfo->our_scsiid,
devinfo->target, &tstate);
/*
* Filter our period based on the current connection.
* If we can't perform DT transfers on this segment (not in LVD
* mode for instance), then our decision to issue a PPR message
* may change.
*/
period = tinfo->goal.period;
offset = tinfo->goal.offset;
ppr_options = tinfo->goal.ppr_options;
/* Target initiated PPR is not allowed in the SCSI spec */
if (devinfo->role == ROLE_TARGET)
ppr_options = 0;
rate = ahc_devlimited_syncrate(ahc, tinfo, &period,
&ppr_options, devinfo->role);
dowide = tinfo->curr.width != tinfo->goal.width;
dosync = tinfo->curr.offset != offset || tinfo->curr.period != period;
/*
* Only use PPR if we have options that need it, even if the device
* claims to support it. There might be an expander in the way
* that doesn't.
*/
doppr = ppr_options != 0;
if (!dowide && !dosync && !doppr) {
dowide = tinfo->goal.width != MSG_EXT_WDTR_BUS_8_BIT;
dosync = tinfo->goal.offset != 0;
}
if (!dowide && !dosync && !doppr) {
/*
* Force async with a WDTR message if we have a wide bus,
* or just issue an SDTR with a 0 offset.
*/
if ((ahc->features & AHC_WIDE) != 0)
dowide = 1;
else
dosync = 1;
if (bootverbose) {
ahc_print_devinfo(ahc, devinfo);
printk("Ensuring async\n");
}
}
/* Target initiated PPR is not allowed in the SCSI spec */
if (devinfo->role == ROLE_TARGET)
doppr = 0;
/*
* Both the PPR message and SDTR message require the
* goal syncrate to be limited to what the target device
* is capable of handling (based on whether an LVD->SE
* expander is on the bus), so combine these two cases.
* Regardless, guarantee that if we are using WDTR and SDTR
* messages that WDTR comes first.
*/
if (doppr || (dosync && !dowide)) {
offset = tinfo->goal.offset;
ahc_validate_offset(ahc, tinfo, rate, &offset,
doppr ? tinfo->goal.width
: tinfo->curr.width,
devinfo->role);
if (doppr) {
ahc_construct_ppr(ahc, devinfo, period, offset,
tinfo->goal.width, ppr_options);
} else {
ahc_construct_sdtr(ahc, devinfo, period, offset);
}
} else {
ahc_construct_wdtr(ahc, devinfo, tinfo->goal.width);
}
}
/*
* Build a synchronous negotiation message in our message
* buffer based on the input parameters.
*/
static void
ahc_construct_sdtr(struct ahc_softc *ahc, struct ahc_devinfo *devinfo,
u_int period, u_int offset)
{
if (offset == 0)
period = AHC_ASYNC_XFER_PERIOD;
ahc->msgout_index += spi_populate_sync_msg(
ahc->msgout_buf + ahc->msgout_index, period, offset);
ahc->msgout_len += 5;
if (bootverbose) {
printk("(%s:%c:%d:%d): Sending SDTR period %x, offset %x\n",
ahc_name(ahc), devinfo->channel, devinfo->target,
devinfo->lun, period, offset);
}
}
/*
* Build a wide negotiation message in our message
* buffer based on the input parameters.
*/
static void
ahc_construct_wdtr(struct ahc_softc *ahc, struct ahc_devinfo *devinfo,
u_int bus_width)
{
ahc->msgout_index += spi_populate_width_msg(
ahc->msgout_buf + ahc->msgout_index, bus_width);
ahc->msgout_len += 4;
if (bootverbose) {
printk("(%s:%c:%d:%d): Sending WDTR %x\n",
ahc_name(ahc), devinfo->channel, devinfo->target,
devinfo->lun, bus_width);
}
}
/*
* Build a parallel protocol request message in our message
* buffer based on the input parameters.
*/
static void
ahc_construct_ppr(struct ahc_softc *ahc, struct ahc_devinfo *devinfo,
u_int period, u_int offset, u_int bus_width,
u_int ppr_options)
{
if (offset == 0)
period = AHC_ASYNC_XFER_PERIOD;
ahc->msgout_index += spi_populate_ppr_msg(
ahc->msgout_buf + ahc->msgout_index, period, offset,
bus_width, ppr_options);
ahc->msgout_len += 8;
if (bootverbose) {
printk("(%s:%c:%d:%d): Sending PPR bus_width %x, period %x, "
"offset %x, ppr_options %x\n", ahc_name(ahc),
devinfo->channel, devinfo->target, devinfo->lun,
bus_width, period, offset, ppr_options);
}
}
/*
* Clear any active message state.
*/
static void
ahc_clear_msg_state(struct ahc_softc *ahc)
{
ahc->msgout_len = 0;
ahc->msgin_index = 0;
ahc->msg_type = MSG_TYPE_NONE;
if ((ahc_inb(ahc, SCSISIGI) & ATNI) != 0) {
/*
* The target didn't care to respond to our
* message request, so clear ATN.
*/
ahc_outb(ahc, CLRSINT1, CLRATNO);
}
ahc_outb(ahc, MSG_OUT, NOP);
ahc_outb(ahc, SEQ_FLAGS2,
ahc_inb(ahc, SEQ_FLAGS2) & ~TARGET_MSG_PENDING);
}
static void
ahc_handle_proto_violation(struct ahc_softc *ahc)
{
struct ahc_devinfo devinfo;
struct scb *scb;
u_int scbid;
u_int seq_flags;
u_int curphase;
u_int lastphase;
int found;
ahc_fetch_devinfo(ahc, &devinfo);
scbid = ahc_inb(ahc, SCB_TAG);
scb = ahc_lookup_scb(ahc, scbid);
seq_flags = ahc_inb(ahc, SEQ_FLAGS);
curphase = ahc_inb(ahc, SCSISIGI) & PHASE_MASK;
lastphase = ahc_inb(ahc, LASTPHASE);
if ((seq_flags & NOT_IDENTIFIED) != 0) {
/*
* The reconnecting target either did not send an
* identify message, or did, but we didn't find an SCB
* to match.
*/
ahc_print_devinfo(ahc, &devinfo);
printk("Target did not send an IDENTIFY message. "
"LASTPHASE = 0x%x.\n", lastphase);
scb = NULL;
} else if (scb == NULL) {
/*
* We don't seem to have an SCB active for this
* transaction. Print an error and reset the bus.
*/
ahc_print_devinfo(ahc, &devinfo);
printk("No SCB found during protocol violation\n");
goto proto_violation_reset;
} else {
ahc_set_transaction_status(scb, CAM_SEQUENCE_FAIL);
if ((seq_flags & NO_CDB_SENT) != 0) {
ahc_print_path(ahc, scb);
printk("No or incomplete CDB sent to device.\n");
} else if ((ahc_inb(ahc, SCB_CONTROL) & STATUS_RCVD) == 0) {
/*
* The target never bothered to provide status to
* us prior to completing the command. Since we don't
* know the disposition of this command, we must attempt
* to abort it. Assert ATN and prepare to send an abort
* message.
*/
ahc_print_path(ahc, scb);
printk("Completed command without status.\n");
} else {
ahc_print_path(ahc, scb);
printk("Unknown protocol violation.\n");
ahc_dump_card_state(ahc);
}
}
if ((lastphase & ~P_DATAIN_DT) == 0
|| lastphase == P_COMMAND) {
proto_violation_reset:
/*
* Target either went directly to data/command
* phase or didn't respond to our ATN.
* The only safe thing to do is to blow
* it away with a bus reset.
*/
found = ahc_reset_channel(ahc, 'A', TRUE);
printk("%s: Issued Channel %c Bus Reset. "
"%d SCBs aborted\n", ahc_name(ahc), 'A', found);
} else {
/*
* Leave the selection hardware off in case
* this abort attempt will affect yet to
* be sent commands.
*/
ahc_outb(ahc, SCSISEQ,
ahc_inb(ahc, SCSISEQ) & ~ENSELO);
ahc_assert_atn(ahc);
ahc_outb(ahc, MSG_OUT, HOST_MSG);
if (scb == NULL) {
ahc_print_devinfo(ahc, &devinfo);
ahc->msgout_buf[0] = ABORT_TASK;
ahc->msgout_len = 1;
ahc->msgout_index = 0;
ahc->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
} else {
ahc_print_path(ahc, scb);
scb->flags |= SCB_ABORT;
}
printk("Protocol violation %s. Attempting to abort.\n",
ahc_lookup_phase_entry(curphase)->phasemsg);
}
}
/*
* Manual message loop handler.
*/
static void
ahc_handle_message_phase(struct ahc_softc *ahc)
{
struct ahc_devinfo devinfo;
u_int bus_phase;
int end_session;
ahc_fetch_devinfo(ahc, &devinfo);
end_session = FALSE;
bus_phase = ahc_inb(ahc, SCSISIGI) & PHASE_MASK;
reswitch:
switch (ahc->msg_type) {
case MSG_TYPE_INITIATOR_MSGOUT:
{
int lastbyte;
int phasemis;
int msgdone;
if (ahc->msgout_len == 0)
panic("HOST_MSG_LOOP interrupt with no active message");
#ifdef AHC_DEBUG
if ((ahc_debug & AHC_SHOW_MESSAGES) != 0) {
ahc_print_devinfo(ahc, &devinfo);
printk("INITIATOR_MSG_OUT");
}
#endif
phasemis = bus_phase != P_MESGOUT;
if (phasemis) {
#ifdef AHC_DEBUG
if ((ahc_debug & AHC_SHOW_MESSAGES) != 0) {
printk(" PHASEMIS %s\n",
ahc_lookup_phase_entry(bus_phase)
->phasemsg);
}
#endif
if (bus_phase == P_MESGIN) {
/*
* Change gears and see if
* this messages is of interest to
* us or should be passed back to
* the sequencer.
*/
ahc_outb(ahc, CLRSINT1, CLRATNO);
ahc->send_msg_perror = FALSE;
ahc->msg_type = MSG_TYPE_INITIATOR_MSGIN;
ahc->msgin_index = 0;
goto reswitch;
}
end_session = TRUE;
break;
}
if (ahc->send_msg_perror) {
ahc_outb(ahc, CLRSINT1, CLRATNO);
ahc_outb(ahc, CLRSINT1, CLRREQINIT);
#ifdef AHC_DEBUG
if ((ahc_debug & AHC_SHOW_MESSAGES) != 0)
printk(" byte 0x%x\n", ahc->send_msg_perror);
#endif
ahc_outb(ahc, SCSIDATL, MSG_PARITY_ERROR);
break;
}
msgdone = ahc->msgout_index == ahc->msgout_len;
if (msgdone) {
/*
* The target has requested a retry.
* Re-assert ATN, reset our message index to
* 0, and try again.
*/
ahc->msgout_index = 0;
ahc_assert_atn(ahc);
}
lastbyte = ahc->msgout_index == (ahc->msgout_len - 1);
if (lastbyte) {
/* Last byte is signified by dropping ATN */
ahc_outb(ahc, CLRSINT1, CLRATNO);
}
/*
* Clear our interrupt status and present
* the next byte on the bus.
*/
ahc_outb(ahc, CLRSINT1, CLRREQINIT);
#ifdef AHC_DEBUG
if ((ahc_debug & AHC_SHOW_MESSAGES) != 0)
printk(" byte 0x%x\n",
ahc->msgout_buf[ahc->msgout_index]);
#endif
ahc_outb(ahc, SCSIDATL, ahc->msgout_buf[ahc->msgout_index++]);
break;
}
case MSG_TYPE_INITIATOR_MSGIN:
{
int phasemis;
int message_done;
#ifdef AHC_DEBUG
if ((ahc_debug & AHC_SHOW_MESSAGES) != 0) {
ahc_print_devinfo(ahc, &devinfo);
printk("INITIATOR_MSG_IN");
}
#endif
phasemis = bus_phase != P_MESGIN;
if (phasemis) {
#ifdef AHC_DEBUG
if ((ahc_debug & AHC_SHOW_MESSAGES) != 0) {
printk(" PHASEMIS %s\n",
ahc_lookup_phase_entry(bus_phase)
->phasemsg);
}
#endif
ahc->msgin_index = 0;
if (bus_phase == P_MESGOUT
&& (ahc->send_msg_perror == TRUE
|| (ahc->msgout_len != 0
&& ahc->msgout_index == 0))) {
ahc->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
goto reswitch;
}
end_session = TRUE;
break;
}
/* Pull the byte in without acking it */
ahc->msgin_buf[ahc->msgin_index] = ahc_inb(ahc, SCSIBUSL);
#ifdef AHC_DEBUG
if ((ahc_debug & AHC_SHOW_MESSAGES) != 0)
printk(" byte 0x%x\n",
ahc->msgin_buf[ahc->msgin_index]);
#endif
message_done = ahc_parse_msg(ahc, &devinfo);
if (message_done) {
/*
* Clear our incoming message buffer in case there
* is another message following this one.
*/
ahc->msgin_index = 0;
/*
* If this message illicited a response,
* assert ATN so the target takes us to the
* message out phase.
*/
if (ahc->msgout_len != 0) {
#ifdef AHC_DEBUG
if ((ahc_debug & AHC_SHOW_MESSAGES) != 0) {
ahc_print_devinfo(ahc, &devinfo);
printk("Asserting ATN for response\n");
}
#endif
ahc_assert_atn(ahc);
}
} else
ahc->msgin_index++;
if (message_done == MSGLOOP_TERMINATED) {
end_session = TRUE;
} else {
/* Ack the byte */
ahc_outb(ahc, CLRSINT1, CLRREQINIT);
ahc_inb(ahc, SCSIDATL);
}
break;
}
case MSG_TYPE_TARGET_MSGIN:
{
int msgdone;
int msgout_request;
if (ahc->msgout_len == 0)
panic("Target MSGIN with no active message");
/*
* If we interrupted a mesgout session, the initiator
* will not know this until our first REQ. So, we
* only honor mesgout requests after we've sent our
* first byte.
*/
if ((ahc_inb(ahc, SCSISIGI) & ATNI) != 0
&& ahc->msgout_index > 0)
msgout_request = TRUE;
else
msgout_request = FALSE;
if (msgout_request) {
/*
* Change gears and see if
* this messages is of interest to
* us or should be passed back to
* the sequencer.
*/
ahc->msg_type = MSG_TYPE_TARGET_MSGOUT;
ahc_outb(ahc, SCSISIGO, P_MESGOUT | BSYO);
ahc->msgin_index = 0;
/* Dummy read to REQ for first byte */
ahc_inb(ahc, SCSIDATL);
ahc_outb(ahc, SXFRCTL0,
ahc_inb(ahc, SXFRCTL0) | SPIOEN);
break;
}
msgdone = ahc->msgout_index == ahc->msgout_len;
if (msgdone) {
ahc_outb(ahc, SXFRCTL0,
ahc_inb(ahc, SXFRCTL0) & ~SPIOEN);
end_session = TRUE;
break;
}
/*
* Present the next byte on the bus.
*/
ahc_outb(ahc, SXFRCTL0, ahc_inb(ahc, SXFRCTL0) | SPIOEN);
ahc_outb(ahc, SCSIDATL, ahc->msgout_buf[ahc->msgout_index++]);
break;
}
case MSG_TYPE_TARGET_MSGOUT:
{
int lastbyte;
int msgdone;
/*
* The initiator signals that this is
* the last byte by dropping ATN.
*/
lastbyte = (ahc_inb(ahc, SCSISIGI) & ATNI) == 0;
/*
* Read the latched byte, but turn off SPIOEN first
* so that we don't inadvertently cause a REQ for the
* next byte.
*/
ahc_outb(ahc, SXFRCTL0, ahc_inb(ahc, SXFRCTL0) & ~SPIOEN);
ahc->msgin_buf[ahc->msgin_index] = ahc_inb(ahc, SCSIDATL);
msgdone = ahc_parse_msg(ahc, &devinfo);
if (msgdone == MSGLOOP_TERMINATED) {
/*
* The message is *really* done in that it caused
* us to go to bus free. The sequencer has already
* been reset at this point, so pull the ejection
* handle.
*/
return;
}
ahc->msgin_index++;
/*
* XXX Read spec about initiator dropping ATN too soon
* and use msgdone to detect it.
*/
if (msgdone == MSGLOOP_MSGCOMPLETE) {
ahc->msgin_index = 0;
/*
* If this message illicited a response, transition
* to the Message in phase and send it.
*/
if (ahc->msgout_len != 0) {
ahc_outb(ahc, SCSISIGO, P_MESGIN | BSYO);
ahc_outb(ahc, SXFRCTL0,
ahc_inb(ahc, SXFRCTL0) | SPIOEN);
ahc->msg_type = MSG_TYPE_TARGET_MSGIN;
ahc->msgin_index = 0;
break;
}
}
if (lastbyte)
end_session = TRUE;
else {
/* Ask for the next byte. */
ahc_outb(ahc, SXFRCTL0,
ahc_inb(ahc, SXFRCTL0) | SPIOEN);
}
break;
}
default:
panic("Unknown REQINIT message type");
}
if (end_session) {
ahc_clear_msg_state(ahc);
ahc_outb(ahc, RETURN_1, EXIT_MSG_LOOP);
} else
ahc_outb(ahc, RETURN_1, CONT_MSG_LOOP);
}
/*
* See if we sent a particular extended message to the target.
* If "full" is true, return true only if the target saw the full
* message. If "full" is false, return true if the target saw at
* least the first byte of the message.
*/
static int
ahc_sent_msg(struct ahc_softc *ahc, ahc_msgtype type, u_int msgval, int full)
{
int found;
u_int index;
found = FALSE;
index = 0;
while (index < ahc->msgout_len) {
if (ahc->msgout_buf[index] == EXTENDED_MESSAGE) {
u_int end_index;
end_index = index + 1 + ahc->msgout_buf[index + 1];
if (ahc->msgout_buf[index+2] == msgval
&& type == AHCMSG_EXT) {
if (full) {
if (ahc->msgout_index > end_index)
found = TRUE;
} else if (ahc->msgout_index > index)
found = TRUE;
}
index = end_index;
} else if (ahc->msgout_buf[index] >= SIMPLE_QUEUE_TAG
&& ahc->msgout_buf[index] <= IGNORE_WIDE_RESIDUE) {
/* Skip tag type and tag id or residue param*/
index += 2;
} else {
/* Single byte message */
if (type == AHCMSG_1B
&& ahc->msgout_buf[index] == msgval
&& ahc->msgout_index > index)
found = TRUE;
index++;
}
if (found)
break;
}
return (found);
}
/*
* Wait for a complete incoming message, parse it, and respond accordingly.
*/
static int
ahc_parse_msg(struct ahc_softc *ahc, struct ahc_devinfo *devinfo)
{
struct ahc_initiator_tinfo *tinfo;
struct ahc_tmode_tstate *tstate;
int reject;
int done;
int response;
u_int targ_scsirate;
done = MSGLOOP_IN_PROG;
response = FALSE;
reject = FALSE;
tinfo = ahc_fetch_transinfo(ahc, devinfo->channel, devinfo->our_scsiid,
devinfo->target, &tstate);
targ_scsirate = tinfo->scsirate;
/*
* Parse as much of the message as is available,
* rejecting it if we don't support it. When
* the entire message is available and has been
* handled, return MSGLOOP_MSGCOMPLETE, indicating
* that we have parsed an entire message.
*
* In the case of extended messages, we accept the length
* byte outright and perform more checking once we know the
* extended message type.
*/
switch (ahc->msgin_buf[0]) {
case DISCONNECT:
case SAVE_POINTERS:
case COMMAND_COMPLETE:
case RESTORE_POINTERS:
case IGNORE_WIDE_RESIDUE:
/*
* End our message loop as these are messages
* the sequencer handles on its own.
*/
done = MSGLOOP_TERMINATED;
break;
case MESSAGE_REJECT:
response = ahc_handle_msg_reject(ahc, devinfo);
fallthrough;
case NOP:
done = MSGLOOP_MSGCOMPLETE;
break;
case EXTENDED_MESSAGE:
{
/* Wait for enough of the message to begin validation */
if (ahc->msgin_index < 2)
break;
switch (ahc->msgin_buf[2]) {
case EXTENDED_SDTR:
{
const struct ahc_syncrate *syncrate;
u_int period;
u_int ppr_options;
u_int offset;
u_int saved_offset;
if (ahc->msgin_buf[1] != MSG_EXT_SDTR_LEN) {
reject = TRUE;
break;
}
/*
* Wait until we have both args before validating
* and acting on this message.
*
* Add one to MSG_EXT_SDTR_LEN to account for
* the extended message preamble.
*/
if (ahc->msgin_index < (MSG_EXT_SDTR_LEN + 1))
break;
period = ahc->msgin_buf[3];
ppr_options = 0;
saved_offset = offset = ahc->msgin_buf[4];
syncrate = ahc_devlimited_syncrate(ahc, tinfo, &period,
&ppr_options,
devinfo->role);
ahc_validate_offset(ahc, tinfo, syncrate, &offset,
targ_scsirate & WIDEXFER,
devinfo->role);
if (bootverbose) {
printk("(%s:%c:%d:%d): Received "
"SDTR period %x, offset %x\n\t"
"Filtered to period %x, offset %x\n",
ahc_name(ahc), devinfo->channel,
devinfo->target, devinfo->lun,
ahc->msgin_buf[3], saved_offset,
period, offset);
}
ahc_set_syncrate(ahc, devinfo,
syncrate, period,
offset, ppr_options,
AHC_TRANS_ACTIVE|AHC_TRANS_GOAL,
/*paused*/TRUE);
/*
* See if we initiated Sync Negotiation
* and didn't have to fall down to async
* transfers.
*/
if (ahc_sent_msg(ahc, AHCMSG_EXT, EXTENDED_SDTR, TRUE)) {
/* We started it */
if (saved_offset != offset) {
/* Went too low - force async */
reject = TRUE;
}
} else {
/*
* Send our own SDTR in reply
*/
if (bootverbose
&& devinfo->role == ROLE_INITIATOR) {
printk("(%s:%c:%d:%d): Target "
"Initiated SDTR\n",
ahc_name(ahc), devinfo->channel,
devinfo->target, devinfo->lun);
}
ahc->msgout_index = 0;
ahc->msgout_len = 0;
ahc_construct_sdtr(ahc, devinfo,
period, offset);
ahc->msgout_index = 0;
response = TRUE;
}
done = MSGLOOP_MSGCOMPLETE;
break;
}
case EXTENDED_WDTR:
{
u_int bus_width;
u_int saved_width;
u_int sending_reply;
sending_reply = FALSE;
if (ahc->msgin_buf[1] != MSG_EXT_WDTR_LEN) {
reject = TRUE;
break;
}
/*
* Wait until we have our arg before validating
* and acting on this message.
*
* Add one to MSG_EXT_WDTR_LEN to account for
* the extended message preamble.
*/
if (ahc->msgin_index < (MSG_EXT_WDTR_LEN + 1))
break;
bus_width = ahc->msgin_buf[3];
saved_width = bus_width;
ahc_validate_width(ahc, tinfo, &bus_width,
devinfo->role);
if (bootverbose) {
printk("(%s:%c:%d:%d): Received WDTR "
"%x filtered to %x\n",
ahc_name(ahc), devinfo->channel,
devinfo->target, devinfo->lun,
saved_width, bus_width);
}
if (ahc_sent_msg(ahc, AHCMSG_EXT, EXTENDED_WDTR, TRUE)) {
/*
* Don't send a WDTR back to the
* target, since we asked first.
* If the width went higher than our
* request, reject it.
*/
if (saved_width > bus_width) {
reject = TRUE;
printk("(%s:%c:%d:%d): requested %dBit "
"transfers. Rejecting...\n",
ahc_name(ahc), devinfo->channel,
devinfo->target, devinfo->lun,
8 * (0x01 << bus_width));
bus_width = 0;
}
} else {
/*
* Send our own WDTR in reply
*/
if (bootverbose
&& devinfo->role == ROLE_INITIATOR) {
printk("(%s:%c:%d:%d): Target "
"Initiated WDTR\n",
ahc_name(ahc), devinfo->channel,
devinfo->target, devinfo->lun);
}
ahc->msgout_index = 0;
ahc->msgout_len = 0;
ahc_construct_wdtr(ahc, devinfo, bus_width);
ahc->msgout_index = 0;
response = TRUE;
sending_reply = TRUE;
}
/*
* After a wide message, we are async, but
* some devices don't seem to honor this portion
* of the spec. Force a renegotiation of the
* sync component of our transfer agreement even
* if our goal is async. By updating our width
* after forcing the negotiation, we avoid
* renegotiating for width.
*/
ahc_update_neg_request(ahc, devinfo, tstate,
tinfo, AHC_NEG_ALWAYS);
ahc_set_width(ahc, devinfo, bus_width,
AHC_TRANS_ACTIVE|AHC_TRANS_GOAL,
/*paused*/TRUE);
if (sending_reply == FALSE && reject == FALSE) {
/*
* We will always have an SDTR to send.
*/
ahc->msgout_index = 0;
ahc->msgout_len = 0;
ahc_build_transfer_msg(ahc, devinfo);
ahc->msgout_index = 0;
response = TRUE;
}
done = MSGLOOP_MSGCOMPLETE;
break;
}
case EXTENDED_PPR:
{
const struct ahc_syncrate *syncrate;
u_int period;
u_int offset;
u_int bus_width;
u_int ppr_options;
u_int saved_width;
u_int saved_offset;
u_int saved_ppr_options;
if (ahc->msgin_buf[1] != MSG_EXT_PPR_LEN) {
reject = TRUE;
break;
}
/*
* Wait until we have all args before validating
* and acting on this message.
*
* Add one to MSG_EXT_PPR_LEN to account for
* the extended message preamble.
*/
if (ahc->msgin_index < (MSG_EXT_PPR_LEN + 1))
break;
period = ahc->msgin_buf[3];
offset = ahc->msgin_buf[5];
bus_width = ahc->msgin_buf[6];
saved_width = bus_width;
ppr_options = ahc->msgin_buf[7];
/*
* According to the spec, a DT only
* period factor with no DT option
* set implies async.
*/
if ((ppr_options & MSG_EXT_PPR_DT_REQ) == 0
&& period == 9)
offset = 0;
saved_ppr_options = ppr_options;
saved_offset = offset;
/*
* Mask out any options we don't support
* on any controller. Transfer options are
* only available if we are negotiating wide.
*/
ppr_options &= MSG_EXT_PPR_DT_REQ;
if (bus_width == 0)
ppr_options = 0;
ahc_validate_width(ahc, tinfo, &bus_width,
devinfo->role);
syncrate = ahc_devlimited_syncrate(ahc, tinfo, &period,
&ppr_options,
devinfo->role);
ahc_validate_offset(ahc, tinfo, syncrate,
&offset, bus_width,
devinfo->role);
if (ahc_sent_msg(ahc, AHCMSG_EXT, EXTENDED_PPR, TRUE)) {
/*
* If we are unable to do any of the
* requested options (we went too low),
* then we'll have to reject the message.
*/
if (saved_width > bus_width
|| saved_offset != offset
|| saved_ppr_options != ppr_options) {
reject = TRUE;
period = 0;
offset = 0;
bus_width = 0;
ppr_options = 0;
syncrate = NULL;
}
} else {
if (devinfo->role != ROLE_TARGET)
printk("(%s:%c:%d:%d): Target "
"Initiated PPR\n",
ahc_name(ahc), devinfo->channel,
devinfo->target, devinfo->lun);
else
printk("(%s:%c:%d:%d): Initiator "
"Initiated PPR\n",
ahc_name(ahc), devinfo->channel,
devinfo->target, devinfo->lun);
ahc->msgout_index = 0;
ahc->msgout_len = 0;
ahc_construct_ppr(ahc, devinfo, period, offset,
bus_width, ppr_options);
ahc->msgout_index = 0;
response = TRUE;
}
if (bootverbose) {
printk("(%s:%c:%d:%d): Received PPR width %x, "
"period %x, offset %x,options %x\n"
"\tFiltered to width %x, period %x, "
"offset %x, options %x\n",
ahc_name(ahc), devinfo->channel,
devinfo->target, devinfo->lun,
saved_width, ahc->msgin_buf[3],
saved_offset, saved_ppr_options,
bus_width, period, offset, ppr_options);
}
ahc_set_width(ahc, devinfo, bus_width,
AHC_TRANS_ACTIVE|AHC_TRANS_GOAL,
/*paused*/TRUE);
ahc_set_syncrate(ahc, devinfo,
syncrate, period,
offset, ppr_options,
AHC_TRANS_ACTIVE|AHC_TRANS_GOAL,
/*paused*/TRUE);
done = MSGLOOP_MSGCOMPLETE;
break;
}
default:
/* Unknown extended message. Reject it. */
reject = TRUE;
break;
}
break;
}
#ifdef AHC_TARGET_MODE
case TARGET_RESET:
ahc_handle_devreset(ahc, devinfo,
CAM_BDR_SENT,
"Bus Device Reset Received",
/*verbose_level*/0);
ahc_restart(ahc);
done = MSGLOOP_TERMINATED;
break;
case ABORT_TASK:
case ABORT_TASK_SET:
case CLEAR_QUEUE_TASK_SET:
{
int tag;
/* Target mode messages */
if (devinfo->role != ROLE_TARGET) {
reject = TRUE;
break;
}
tag = SCB_LIST_NULL;
if (ahc->msgin_buf[0] == ABORT_TASK)
tag = ahc_inb(ahc, INITIATOR_TAG);
ahc_abort_scbs(ahc, devinfo->target, devinfo->channel,
devinfo->lun, tag, ROLE_TARGET,
CAM_REQ_ABORTED);
tstate = ahc->enabled_targets[devinfo->our_scsiid];
if (tstate != NULL) {
struct ahc_tmode_lstate* lstate;
lstate = tstate->enabled_luns[devinfo->lun];
if (lstate != NULL) {
ahc_queue_lstate_event(ahc, lstate,
devinfo->our_scsiid,
ahc->msgin_buf[0],
/*arg*/tag);
ahc_send_lstate_events(ahc, lstate);
}
}
ahc_restart(ahc);
done = MSGLOOP_TERMINATED;
break;
}
#endif
case TERMINATE_IO_PROC:
default:
reject = TRUE;
break;
}
if (reject) {
/*
* Setup to reject the message.
*/
ahc->msgout_index = 0;
ahc->msgout_len = 1;
ahc->msgout_buf[0] = MESSAGE_REJECT;
done = MSGLOOP_MSGCOMPLETE;
response = TRUE;
}
if (done != MSGLOOP_IN_PROG && !response)
/* Clear the outgoing message buffer */
ahc->msgout_len = 0;
return (done);
}
/*
* Process a message reject message.
*/
static int
ahc_handle_msg_reject(struct ahc_softc *ahc, struct ahc_devinfo *devinfo)
{
/*
* What we care about here is if we had an
* outstanding SDTR or WDTR message for this
* target. If we did, this is a signal that
* the target is refusing negotiation.
*/
struct scb *scb;
struct ahc_initiator_tinfo *tinfo;
struct ahc_tmode_tstate *tstate;
u_int scb_index;
u_int last_msg;
int response = 0;
scb_index = ahc_inb(ahc, SCB_TAG);
scb = ahc_lookup_scb(ahc, scb_index);
tinfo = ahc_fetch_transinfo(ahc, devinfo->channel,
devinfo->our_scsiid,
devinfo->target, &tstate);
/* Might be necessary */
last_msg = ahc_inb(ahc, LAST_MSG);
if (ahc_sent_msg(ahc, AHCMSG_EXT, EXTENDED_PPR, /*full*/FALSE)) {
/*
* Target does not support the PPR message.
* Attempt to negotiate SPI-2 style.
*/
if (bootverbose) {
printk("(%s:%c:%d:%d): PPR Rejected. "
"Trying WDTR/SDTR\n",
ahc_name(ahc), devinfo->channel,
devinfo->target, devinfo->lun);
}
tinfo->goal.ppr_options = 0;
tinfo->curr.transport_version = 2;
tinfo->goal.transport_version = 2;
ahc->msgout_index = 0;
ahc->msgout_len = 0;
ahc_build_transfer_msg(ahc, devinfo);
ahc->msgout_index = 0;
response = 1;
} else if (ahc_sent_msg(ahc, AHCMSG_EXT, EXTENDED_WDTR, /*full*/FALSE)) {
/* note 8bit xfers */
printk("(%s:%c:%d:%d): refuses WIDE negotiation. Using "
"8bit transfers\n", ahc_name(ahc),
devinfo->channel, devinfo->target, devinfo->lun);
ahc_set_width(ahc, devinfo, MSG_EXT_WDTR_BUS_8_BIT,
AHC_TRANS_ACTIVE|AHC_TRANS_GOAL,
/*paused*/TRUE);
/*
* No need to clear the sync rate. If the target
* did not accept the command, our syncrate is
* unaffected. If the target started the negotiation,
* but rejected our response, we already cleared the
* sync rate before sending our WDTR.
*/
if (tinfo->goal.offset != tinfo->curr.offset) {
/* Start the sync negotiation */
ahc->msgout_index = 0;
ahc->msgout_len = 0;
ahc_build_transfer_msg(ahc, devinfo);
ahc->msgout_index = 0;
response = 1;
}
} else if (ahc_sent_msg(ahc, AHCMSG_EXT, EXTENDED_SDTR, /*full*/FALSE)) {
/* note asynch xfers and clear flag */
ahc_set_syncrate(ahc, devinfo, /*syncrate*/NULL, /*period*/0,
/*offset*/0, /*ppr_options*/0,
AHC_TRANS_ACTIVE|AHC_TRANS_GOAL,
/*paused*/TRUE);
printk("(%s:%c:%d:%d): refuses synchronous negotiation. "
"Using asynchronous transfers\n",
ahc_name(ahc), devinfo->channel,
devinfo->target, devinfo->lun);
} else if ((scb->hscb->control & SIMPLE_QUEUE_TAG) != 0) {
int tag_type;
int mask;
tag_type = (scb->hscb->control & SIMPLE_QUEUE_TAG);
if (tag_type == SIMPLE_QUEUE_TAG) {
printk("(%s:%c:%d:%d): refuses tagged commands. "
"Performing non-tagged I/O\n", ahc_name(ahc),
devinfo->channel, devinfo->target, devinfo->lun);
ahc_set_tags(ahc, scb->io_ctx, devinfo, AHC_QUEUE_NONE);
mask = ~0x23;
} else {
printk("(%s:%c:%d:%d): refuses %s tagged commands. "
"Performing simple queue tagged I/O only\n",
ahc_name(ahc), devinfo->channel, devinfo->target,
devinfo->lun, tag_type == ORDERED_QUEUE_TAG
? "ordered" : "head of queue");
ahc_set_tags(ahc, scb->io_ctx, devinfo, AHC_QUEUE_BASIC);
mask = ~0x03;
}
/*
* Resend the identify for this CCB as the target
* may believe that the selection is invalid otherwise.
*/
ahc_outb(ahc, SCB_CONTROL,
ahc_inb(ahc, SCB_CONTROL) & mask);
scb->hscb->control &= mask;
ahc_set_transaction_tag(scb, /*enabled*/FALSE,
/*type*/SIMPLE_QUEUE_TAG);
ahc_outb(ahc, MSG_OUT, MSG_IDENTIFYFLAG);
ahc_assert_atn(ahc);
/*
* This transaction is now at the head of
* the untagged queue for this target.
*/
if ((ahc->flags & AHC_SCB_BTT) == 0) {
struct scb_tailq *untagged_q;
untagged_q =
&(ahc->untagged_queues[devinfo->target_offset]);
TAILQ_INSERT_HEAD(untagged_q, scb, links.tqe);
scb->flags |= SCB_UNTAGGEDQ;
}
ahc_busy_tcl(ahc, BUILD_TCL(scb->hscb->scsiid, devinfo->lun),
scb->hscb->tag);
/*
* Requeue all tagged commands for this target
* currently in our possession so they can be
* converted to untagged commands.
*/
ahc_search_qinfifo(ahc, SCB_GET_TARGET(ahc, scb),
SCB_GET_CHANNEL(ahc, scb),
SCB_GET_LUN(scb), /*tag*/SCB_LIST_NULL,
ROLE_INITIATOR, CAM_REQUEUE_REQ,
SEARCH_COMPLETE);
} else {
/*
* Otherwise, we ignore it.
*/
printk("%s:%c:%d: Message reject for %x -- ignored\n",
ahc_name(ahc), devinfo->channel, devinfo->target,
last_msg);
}
return (response);
}
/*
* Process an ingnore wide residue message.
*/
static void
ahc_handle_ign_wide_residue(struct ahc_softc *ahc, struct ahc_devinfo *devinfo)
{
u_int scb_index;
struct scb *scb;
scb_index = ahc_inb(ahc, SCB_TAG);
scb = ahc_lookup_scb(ahc, scb_index);
/*
* XXX Actually check data direction in the sequencer?
* Perhaps add datadir to some spare bits in the hscb?
*/
if ((ahc_inb(ahc, SEQ_FLAGS) & DPHASE) == 0
|| ahc_get_transfer_dir(scb) != CAM_DIR_IN) {
/*
* Ignore the message if we haven't
* seen an appropriate data phase yet.
*/
} else {
/*
* If the residual occurred on the last
* transfer and the transfer request was
* expected to end on an odd count, do
* nothing. Otherwise, subtract a byte
* and update the residual count accordingly.
*/
uint32_t sgptr;
sgptr = ahc_inb(ahc, SCB_RESIDUAL_SGPTR);
if ((sgptr & SG_LIST_NULL) != 0
&& (ahc_inb(ahc, SCB_LUN) & SCB_XFERLEN_ODD) != 0) {
/*
* If the residual occurred on the last
* transfer and the transfer request was
* expected to end on an odd count, do
* nothing.
*/
} else {
struct ahc_dma_seg *sg;
uint32_t data_cnt;
uint32_t data_addr;
uint32_t sglen;
/* Pull in all of the sgptr */
sgptr = ahc_inl(ahc, SCB_RESIDUAL_SGPTR);
data_cnt = ahc_inl(ahc, SCB_RESIDUAL_DATACNT);
if ((sgptr & SG_LIST_NULL) != 0) {
/*
* The residual data count is not updated
* for the command run to completion case.
* Explicitly zero the count.
*/
data_cnt &= ~AHC_SG_LEN_MASK;
}
data_addr = ahc_inl(ahc, SHADDR);
data_cnt += 1;
data_addr -= 1;
sgptr &= SG_PTR_MASK;
sg = ahc_sg_bus_to_virt(scb, sgptr);
/*
* The residual sg ptr points to the next S/G
* to load so we must go back one.
*/
sg--;
sglen = ahc_le32toh(sg->len) & AHC_SG_LEN_MASK;
if (sg != scb->sg_list
&& sglen < (data_cnt & AHC_SG_LEN_MASK)) {
sg--;
sglen = ahc_le32toh(sg->len);
/*
* Preserve High Address and SG_LIST bits
* while setting the count to 1.
*/
data_cnt = 1 | (sglen & (~AHC_SG_LEN_MASK));
data_addr = ahc_le32toh(sg->addr)
+ (sglen & AHC_SG_LEN_MASK) - 1;
/*
* Increment sg so it points to the
* "next" sg.
*/
sg++;
sgptr = ahc_sg_virt_to_bus(scb, sg);
}
ahc_outl(ahc, SCB_RESIDUAL_SGPTR, sgptr);
ahc_outl(ahc, SCB_RESIDUAL_DATACNT, data_cnt);
/*
* Toggle the "oddness" of the transfer length
* to handle this mid-transfer ignore wide
* residue. This ensures that the oddness is
* correct for subsequent data transfers.
*/
ahc_outb(ahc, SCB_LUN,
ahc_inb(ahc, SCB_LUN) ^ SCB_XFERLEN_ODD);
}
}
}
/*
* Reinitialize the data pointers for the active transfer
* based on its current residual.
*/
static void
ahc_reinitialize_dataptrs(struct ahc_softc *ahc)
{
struct scb *scb;
struct ahc_dma_seg *sg;
u_int scb_index;
uint32_t sgptr;
uint32_t resid;
uint32_t dataptr;
scb_index = ahc_inb(ahc, SCB_TAG);
scb = ahc_lookup_scb(ahc, scb_index);
sgptr = (ahc_inb(ahc, SCB_RESIDUAL_SGPTR + 3) << 24)
| (ahc_inb(ahc, SCB_RESIDUAL_SGPTR + 2) << 16)
| (ahc_inb(ahc, SCB_RESIDUAL_SGPTR + 1) << 8)
| ahc_inb(ahc, SCB_RESIDUAL_SGPTR);
sgptr &= SG_PTR_MASK;
sg = ahc_sg_bus_to_virt(scb, sgptr);
/* The residual sg_ptr always points to the next sg */
sg--;
resid = (ahc_inb(ahc, SCB_RESIDUAL_DATACNT + 2) << 16)
| (ahc_inb(ahc, SCB_RESIDUAL_DATACNT + 1) << 8)
| ahc_inb(ahc, SCB_RESIDUAL_DATACNT);
dataptr = ahc_le32toh(sg->addr)
+ (ahc_le32toh(sg->len) & AHC_SG_LEN_MASK)
- resid;
if ((ahc->flags & AHC_39BIT_ADDRESSING) != 0) {
u_int dscommand1;
dscommand1 = ahc_inb(ahc, DSCOMMAND1);
ahc_outb(ahc, DSCOMMAND1, dscommand1 | HADDLDSEL0);
ahc_outb(ahc, HADDR,
(ahc_le32toh(sg->len) >> 24) & SG_HIGH_ADDR_BITS);
ahc_outb(ahc, DSCOMMAND1, dscommand1);
}
ahc_outb(ahc, HADDR + 3, dataptr >> 24);
ahc_outb(ahc, HADDR + 2, dataptr >> 16);
ahc_outb(ahc, HADDR + 1, dataptr >> 8);
ahc_outb(ahc, HADDR, dataptr);
ahc_outb(ahc, HCNT + 2, resid >> 16);
ahc_outb(ahc, HCNT + 1, resid >> 8);
ahc_outb(ahc, HCNT, resid);
if ((ahc->features & AHC_ULTRA2) == 0) {
ahc_outb(ahc, STCNT + 2, resid >> 16);
ahc_outb(ahc, STCNT + 1, resid >> 8);
ahc_outb(ahc, STCNT, resid);
}
}
/*
* Handle the effects of issuing a bus device reset message.
*/
static void
ahc_handle_devreset(struct ahc_softc *ahc, struct ahc_devinfo *devinfo,
cam_status status, char *message, int verbose_level)
{
#ifdef AHC_TARGET_MODE
struct ahc_tmode_tstate* tstate;
u_int lun;
#endif
int found;
found = ahc_abort_scbs(ahc, devinfo->target, devinfo->channel,
CAM_LUN_WILDCARD, SCB_LIST_NULL, devinfo->role,
status);
#ifdef AHC_TARGET_MODE
/*
* Send an immediate notify ccb to all target mord peripheral
* drivers affected by this action.
*/
tstate = ahc->enabled_targets[devinfo->our_scsiid];
if (tstate != NULL) {
for (lun = 0; lun < AHC_NUM_LUNS; lun++) {
struct ahc_tmode_lstate* lstate;
lstate = tstate->enabled_luns[lun];
if (lstate == NULL)
continue;
ahc_queue_lstate_event(ahc, lstate, devinfo->our_scsiid,
TARGET_RESET, /*arg*/0);
ahc_send_lstate_events(ahc, lstate);
}
}
#endif
/*
* Go back to async/narrow transfers and renegotiate.
*/
ahc_set_width(ahc, devinfo, MSG_EXT_WDTR_BUS_8_BIT,
AHC_TRANS_CUR, /*paused*/TRUE);
ahc_set_syncrate(ahc, devinfo, /*syncrate*/NULL,
/*period*/0, /*offset*/0, /*ppr_options*/0,
AHC_TRANS_CUR, /*paused*/TRUE);
if (status != CAM_SEL_TIMEOUT)
ahc_send_async(ahc, devinfo->channel, devinfo->target,
CAM_LUN_WILDCARD, AC_SENT_BDR);
if (message != NULL
&& (verbose_level <= bootverbose))
printk("%s: %s on %c:%d. %d SCBs aborted\n", ahc_name(ahc),
message, devinfo->channel, devinfo->target, found);
}
#ifdef AHC_TARGET_MODE
static void
ahc_setup_target_msgin(struct ahc_softc *ahc, struct ahc_devinfo *devinfo,
struct scb *scb)
{
/*
* To facilitate adding multiple messages together,
* each routine should increment the index and len
* variables instead of setting them explicitly.
*/
ahc->msgout_index = 0;
ahc->msgout_len = 0;
if (scb != NULL && (scb->flags & SCB_AUTO_NEGOTIATE) != 0)
ahc_build_transfer_msg(ahc, devinfo);
else
panic("ahc_intr: AWAITING target message with no message");
ahc->msgout_index = 0;
ahc->msg_type = MSG_TYPE_TARGET_MSGIN;
}
#endif
/**************************** Initialization **********************************/
/*
* Allocate a controller structure for a new device
* and perform initial initializion.
*/
struct ahc_softc *
ahc_alloc(void *platform_arg, char *name)
{
struct ahc_softc *ahc;
int i;
ahc = kzalloc(sizeof(*ahc), GFP_ATOMIC);
if (!ahc) {
printk("aic7xxx: cannot malloc softc!\n");
kfree(name);
return NULL;
}
ahc->seep_config = kmalloc(sizeof(*ahc->seep_config), GFP_ATOMIC);
if (ahc->seep_config == NULL) {
kfree(ahc);
kfree(name);
return (NULL);
}
LIST_INIT(&ahc->pending_scbs);
/* We don't know our unit number until the OSM sets it */
ahc->name = name;
ahc->unit = -1;
ahc->description = NULL;
ahc->channel = 'A';
ahc->channel_b = 'B';
ahc->chip = AHC_NONE;
ahc->features = AHC_FENONE;
ahc->bugs = AHC_BUGNONE;
ahc->flags = AHC_FNONE;
/*
* Default to all error reporting enabled with the
* sequencer operating at its fastest speed.
* The bus attach code may modify this.
*/
ahc->seqctl = FASTMODE;
for (i = 0; i < AHC_NUM_TARGETS; i++)
TAILQ_INIT(&ahc->untagged_queues[i]);
if (ahc_platform_alloc(ahc, platform_arg) != 0) {
ahc_free(ahc);
ahc = NULL;
}
return (ahc);
}
int
ahc_softc_init(struct ahc_softc *ahc)
{
/* The IRQMS bit is only valid on VL and EISA chips */
if ((ahc->chip & AHC_PCI) == 0)
ahc->unpause = ahc_inb(ahc, HCNTRL) & IRQMS;
else
ahc->unpause = 0;
ahc->pause = ahc->unpause | PAUSE;
/* XXX The shared scb data stuff should be deprecated */
if (ahc->scb_data == NULL) {
ahc->scb_data = kzalloc(sizeof(*ahc->scb_data), GFP_ATOMIC);
if (ahc->scb_data == NULL)
return (ENOMEM);
}
return (0);
}
void
ahc_set_unit(struct ahc_softc *ahc, int unit)
{
ahc->unit = unit;
}
void
ahc_set_name(struct ahc_softc *ahc, char *name)
{
kfree(ahc->name);
ahc->name = name;
}
void
ahc_free(struct ahc_softc *ahc)
{
int i;
switch (ahc->init_level) {
default:
case 5:
ahc_shutdown(ahc);
fallthrough;
case 4:
ahc_dmamap_unload(ahc, ahc->shared_data_dmat,
ahc->shared_data_dmamap);
fallthrough;
case 3:
ahc_dmamem_free(ahc, ahc->shared_data_dmat, ahc->qoutfifo,
ahc->shared_data_dmamap);
ahc_dmamap_destroy(ahc, ahc->shared_data_dmat,
ahc->shared_data_dmamap);
fallthrough;
case 2:
ahc_dma_tag_destroy(ahc, ahc->shared_data_dmat);
fallthrough;
case 1:
break;
case 0:
break;
}
ahc_platform_free(ahc);
ahc_fini_scbdata(ahc);
for (i = 0; i < AHC_NUM_TARGETS; i++) {
struct ahc_tmode_tstate *tstate;
tstate = ahc->enabled_targets[i];
if (tstate != NULL) {
#ifdef AHC_TARGET_MODE
int j;
for (j = 0; j < AHC_NUM_LUNS; j++) {
struct ahc_tmode_lstate *lstate;
lstate = tstate->enabled_luns[j];
if (lstate != NULL) {
xpt_free_path(lstate->path);
kfree(lstate);
}
}
#endif
kfree(tstate);
}
}
#ifdef AHC_TARGET_MODE
if (ahc->black_hole != NULL) {
xpt_free_path(ahc->black_hole->path);
kfree(ahc->black_hole);
}
#endif
kfree(ahc->name);
kfree(ahc->seep_config);
kfree(ahc);
return;
}
static void
ahc_shutdown(void *arg)
{
struct ahc_softc *ahc;
int i;
ahc = (struct ahc_softc *)arg;
/* This will reset most registers to 0, but not all */
ahc_reset(ahc, /*reinit*/FALSE);
ahc_outb(ahc, SCSISEQ, 0);
ahc_outb(ahc, SXFRCTL0, 0);
ahc_outb(ahc, DSPCISTATUS, 0);
for (i = TARG_SCSIRATE; i < SCSICONF; i++)
ahc_outb(ahc, i, 0);
}
/*
* Reset the controller and record some information about it
* that is only available just after a reset. If "reinit" is
* non-zero, this reset occurred after initial configuration
* and the caller requests that the chip be fully reinitialized
* to a runable state. Chip interrupts are *not* enabled after
* a reinitialization. The caller must enable interrupts via
* ahc_intr_enable().
*/
int
ahc_reset(struct ahc_softc *ahc, int reinit)
{
u_int sblkctl;
u_int sxfrctl1_a, sxfrctl1_b;
int error;
int wait;
/*
* Preserve the value of the SXFRCTL1 register for all channels.
* It contains settings that affect termination and we don't want
* to disturb the integrity of the bus.
*/
ahc_pause(ahc);
sxfrctl1_b = 0;
if ((ahc->chip & AHC_CHIPID_MASK) == AHC_AIC7770) {
u_int sblkctl;
/*
* Save channel B's settings in case this chip
* is setup for TWIN channel operation.
*/
sblkctl = ahc_inb(ahc, SBLKCTL);
ahc_outb(ahc, SBLKCTL, sblkctl | SELBUSB);
sxfrctl1_b = ahc_inb(ahc, SXFRCTL1);
ahc_outb(ahc, SBLKCTL, sblkctl & ~SELBUSB);
}
sxfrctl1_a = ahc_inb(ahc, SXFRCTL1);
ahc_outb(ahc, HCNTRL, CHIPRST | ahc->pause);
/*
* Ensure that the reset has finished. We delay 1000us
* prior to reading the register to make sure the chip
* has sufficiently completed its reset to handle register
* accesses.
*/
wait = 1000;
do {
ahc_delay(1000);
} while (--wait && !(ahc_inb(ahc, HCNTRL) & CHIPRSTACK));
if (wait == 0) {
printk("%s: WARNING - Failed chip reset! "
"Trying to initialize anyway.\n", ahc_name(ahc));
}
ahc_outb(ahc, HCNTRL, ahc->pause);
/* Determine channel configuration */
sblkctl = ahc_inb(ahc, SBLKCTL) & (SELBUSB|SELWIDE);
/* No Twin Channel PCI cards */
if ((ahc->chip & AHC_PCI) != 0)
sblkctl &= ~SELBUSB;
switch (sblkctl) {
case 0:
/* Single Narrow Channel */
break;
case 2:
/* Wide Channel */
ahc->features |= AHC_WIDE;
break;
case 8:
/* Twin Channel */
ahc->features |= AHC_TWIN;
break;
default:
printk(" Unsupported adapter type. Ignoring\n");
return(-1);
}
/*
* Reload sxfrctl1.
*
* We must always initialize STPWEN to 1 before we
* restore the saved values. STPWEN is initialized
* to a tri-state condition which can only be cleared
* by turning it on.
*/
if ((ahc->features & AHC_TWIN) != 0) {
u_int sblkctl;
sblkctl = ahc_inb(ahc, SBLKCTL);
ahc_outb(ahc, SBLKCTL, sblkctl | SELBUSB);
ahc_outb(ahc, SXFRCTL1, sxfrctl1_b);
ahc_outb(ahc, SBLKCTL, sblkctl & ~SELBUSB);
}
ahc_outb(ahc, SXFRCTL1, sxfrctl1_a);
error = 0;
if (reinit != 0)
/*
* If a recovery action has forced a chip reset,
* re-initialize the chip to our liking.
*/
error = ahc->bus_chip_init(ahc);
#ifdef AHC_DUMP_SEQ
else
ahc_dumpseq(ahc);
#endif
return (error);
}
/*
* Determine the number of SCBs available on the controller
*/
int
ahc_probe_scbs(struct ahc_softc *ahc) {
int i;
for (i = 0; i < AHC_SCB_MAX; i++) {
ahc_outb(ahc, SCBPTR, i);
ahc_outb(ahc, SCB_BASE, i);
if (ahc_inb(ahc, SCB_BASE) != i)
break;
ahc_outb(ahc, SCBPTR, 0);
if (ahc_inb(ahc, SCB_BASE) != 0)
break;
}
return (i);
}
static void
ahc_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
dma_addr_t *baddr;
baddr = (dma_addr_t *)arg;
*baddr = segs->ds_addr;
}
static void
ahc_build_free_scb_list(struct ahc_softc *ahc)
{
int scbsize;
int i;
scbsize = 32;
if ((ahc->flags & AHC_LSCBS_ENABLED) != 0)
scbsize = 64;
for (i = 0; i < ahc->scb_data->maxhscbs; i++) {
int j;
ahc_outb(ahc, SCBPTR, i);
/*
* Touch all SCB bytes to avoid parity errors
* should one of our debugging routines read
* an otherwise uninitiatlized byte.
*/
for (j = 0; j < scbsize; j++)
ahc_outb(ahc, SCB_BASE+j, 0xFF);
/* Clear the control byte. */
ahc_outb(ahc, SCB_CONTROL, 0);
/* Set the next pointer */
if ((ahc->flags & AHC_PAGESCBS) != 0)
ahc_outb(ahc, SCB_NEXT, i+1);
else
ahc_outb(ahc, SCB_NEXT, SCB_LIST_NULL);
/* Make the tag number, SCSIID, and lun invalid */
ahc_outb(ahc, SCB_TAG, SCB_LIST_NULL);
ahc_outb(ahc, SCB_SCSIID, 0xFF);
ahc_outb(ahc, SCB_LUN, 0xFF);
}
if ((ahc->flags & AHC_PAGESCBS) != 0) {
/* SCB 0 heads the free list. */
ahc_outb(ahc, FREE_SCBH, 0);
} else {
/* No free list. */
ahc_outb(ahc, FREE_SCBH, SCB_LIST_NULL);
}
/* Make sure that the last SCB terminates the free list */
ahc_outb(ahc, SCBPTR, i-1);
ahc_outb(ahc, SCB_NEXT, SCB_LIST_NULL);
}
static int
ahc_init_scbdata(struct ahc_softc *ahc)
{
struct scb_data *scb_data;
scb_data = ahc->scb_data;
SLIST_INIT(&scb_data->free_scbs);
SLIST_INIT(&scb_data->sg_maps);
/* Allocate SCB resources */
scb_data->scbarray = kcalloc(AHC_SCB_MAX_ALLOC, sizeof(struct scb),
GFP_ATOMIC);
if (scb_data->scbarray == NULL)
return (ENOMEM);
/* Determine the number of hardware SCBs and initialize them */
scb_data->maxhscbs = ahc_probe_scbs(ahc);
if (ahc->scb_data->maxhscbs == 0) {
printk("%s: No SCB space found\n", ahc_name(ahc));
return (ENXIO);
}
/*
* Create our DMA tags. These tags define the kinds of device
* accessible memory allocations and memory mappings we will
* need to perform during normal operation.
*
* Unless we need to further restrict the allocation, we rely
* on the restrictions of the parent dmat, hence the common
* use of MAXADDR and MAXSIZE.
*/
/* DMA tag for our hardware scb structures */
if (ahc_dma_tag_create(ahc, ahc->parent_dmat, /*alignment*/1,
/*boundary*/BUS_SPACE_MAXADDR_32BIT + 1,
/*lowaddr*/BUS_SPACE_MAXADDR_32BIT,
/*highaddr*/BUS_SPACE_MAXADDR,
/*filter*/NULL, /*filterarg*/NULL,
AHC_SCB_MAX_ALLOC * sizeof(struct hardware_scb),
/*nsegments*/1,
/*maxsegsz*/BUS_SPACE_MAXSIZE_32BIT,
/*flags*/0, &scb_data->hscb_dmat) != 0) {
goto error_exit;
}
scb_data->init_level++;
/* Allocation for our hscbs */
if (ahc_dmamem_alloc(ahc, scb_data->hscb_dmat,
(void **)&scb_data->hscbs,
BUS_DMA_NOWAIT, &scb_data->hscb_dmamap) != 0) {
goto error_exit;
}
scb_data->init_level++;
/* And permanently map them */
ahc_dmamap_load(ahc, scb_data->hscb_dmat, scb_data->hscb_dmamap,
scb_data->hscbs,
AHC_SCB_MAX_ALLOC * sizeof(struct hardware_scb),
ahc_dmamap_cb, &scb_data->hscb_busaddr, /*flags*/0);
scb_data->init_level++;
/* DMA tag for our sense buffers */
if (ahc_dma_tag_create(ahc, ahc->parent_dmat, /*alignment*/1,
/*boundary*/BUS_SPACE_MAXADDR_32BIT + 1,
/*lowaddr*/BUS_SPACE_MAXADDR_32BIT,
/*highaddr*/BUS_SPACE_MAXADDR,
/*filter*/NULL, /*filterarg*/NULL,
AHC_SCB_MAX_ALLOC * sizeof(struct scsi_sense_data),
/*nsegments*/1,
/*maxsegsz*/BUS_SPACE_MAXSIZE_32BIT,
/*flags*/0, &scb_data->sense_dmat) != 0) {
goto error_exit;
}
scb_data->init_level++;
/* Allocate them */
if (ahc_dmamem_alloc(ahc, scb_data->sense_dmat,
(void **)&scb_data->sense,
BUS_DMA_NOWAIT, &scb_data->sense_dmamap) != 0) {
goto error_exit;
}
scb_data->init_level++;
/* And permanently map them */
ahc_dmamap_load(ahc, scb_data->sense_dmat, scb_data->sense_dmamap,
scb_data->sense,
AHC_SCB_MAX_ALLOC * sizeof(struct scsi_sense_data),
ahc_dmamap_cb, &scb_data->sense_busaddr, /*flags*/0);
scb_data->init_level++;
/* DMA tag for our S/G structures. We allocate in page sized chunks */
if (ahc_dma_tag_create(ahc, ahc->parent_dmat, /*alignment*/8,
/*boundary*/BUS_SPACE_MAXADDR_32BIT + 1,
/*lowaddr*/BUS_SPACE_MAXADDR_32BIT,
/*highaddr*/BUS_SPACE_MAXADDR,
/*filter*/NULL, /*filterarg*/NULL,
PAGE_SIZE, /*nsegments*/1,
/*maxsegsz*/BUS_SPACE_MAXSIZE_32BIT,
/*flags*/0, &scb_data->sg_dmat) != 0) {
goto error_exit;
}
scb_data->init_level++;
/* Perform initial CCB allocation */
memset(scb_data->hscbs, 0,
AHC_SCB_MAX_ALLOC * sizeof(struct hardware_scb));
ahc_alloc_scbs(ahc);
if (scb_data->numscbs == 0) {
printk("%s: ahc_init_scbdata - "
"Unable to allocate initial scbs\n",
ahc_name(ahc));
goto error_exit;
}
/*
* Reserve the next queued SCB.
*/
ahc->next_queued_scb = ahc_get_scb(ahc);
/*
* Note that we were successful
*/
return (0);
error_exit:
return (ENOMEM);
}
static void
ahc_fini_scbdata(struct ahc_softc *ahc)
{
struct scb_data *scb_data;
scb_data = ahc->scb_data;
if (scb_data == NULL)
return;
switch (scb_data->init_level) {
default:
case 7:
{
struct sg_map_node *sg_map;
while ((sg_map = SLIST_FIRST(&scb_data->sg_maps))!= NULL) {
SLIST_REMOVE_HEAD(&scb_data->sg_maps, links);
ahc_dmamap_unload(ahc, scb_data->sg_dmat,
sg_map->sg_dmamap);
ahc_dmamem_free(ahc, scb_data->sg_dmat,
sg_map->sg_vaddr,
sg_map->sg_dmamap);
kfree(sg_map);
}
ahc_dma_tag_destroy(ahc, scb_data->sg_dmat);
}
fallthrough;
case 6:
ahc_dmamap_unload(ahc, scb_data->sense_dmat,
scb_data->sense_dmamap);
fallthrough;
case 5:
ahc_dmamem_free(ahc, scb_data->sense_dmat, scb_data->sense,
scb_data->sense_dmamap);
ahc_dmamap_destroy(ahc, scb_data->sense_dmat,
scb_data->sense_dmamap);
fallthrough;
case 4:
ahc_dma_tag_destroy(ahc, scb_data->sense_dmat);
fallthrough;
case 3:
ahc_dmamap_unload(ahc, scb_data->hscb_dmat,
scb_data->hscb_dmamap);
fallthrough;
case 2:
ahc_dmamem_free(ahc, scb_data->hscb_dmat, scb_data->hscbs,
scb_data->hscb_dmamap);
ahc_dmamap_destroy(ahc, scb_data->hscb_dmat,
scb_data->hscb_dmamap);
fallthrough;
case 1:
ahc_dma_tag_destroy(ahc, scb_data->hscb_dmat);
break;
case 0:
break;
}
kfree(scb_data->scbarray);
}
static void
ahc_alloc_scbs(struct ahc_softc *ahc)
{
struct scb_data *scb_data;
struct scb *next_scb;
struct sg_map_node *sg_map;
dma_addr_t physaddr;
struct ahc_dma_seg *segs;
int newcount;
int i;
scb_data = ahc->scb_data;
if (scb_data->numscbs >= AHC_SCB_MAX_ALLOC)
/* Can't allocate any more */
return;
next_scb = &scb_data->scbarray[scb_data->numscbs];
sg_map = kmalloc(sizeof(*sg_map), GFP_ATOMIC);
if (sg_map == NULL)
return;
/* Allocate S/G space for the next batch of SCBS */
if (ahc_dmamem_alloc(ahc, scb_data->sg_dmat,
(void **)&sg_map->sg_vaddr,
BUS_DMA_NOWAIT, &sg_map->sg_dmamap) != 0) {
kfree(sg_map);
return;
}
SLIST_INSERT_HEAD(&scb_data->sg_maps, sg_map, links);
ahc_dmamap_load(ahc, scb_data->sg_dmat, sg_map->sg_dmamap,
sg_map->sg_vaddr, PAGE_SIZE, ahc_dmamap_cb,
&sg_map->sg_physaddr, /*flags*/0);
segs = sg_map->sg_vaddr;
physaddr = sg_map->sg_physaddr;
newcount = (PAGE_SIZE / (AHC_NSEG * sizeof(struct ahc_dma_seg)));
newcount = min(newcount, (AHC_SCB_MAX_ALLOC - scb_data->numscbs));
for (i = 0; i < newcount; i++) {
struct scb_platform_data *pdata;
pdata = kmalloc(sizeof(*pdata), GFP_ATOMIC);
if (pdata == NULL)
break;
next_scb->platform_data = pdata;
next_scb->sg_map = sg_map;
next_scb->sg_list = segs;
/*
* The sequencer always starts with the second entry.
* The first entry is embedded in the scb.
*/
next_scb->sg_list_phys = physaddr + sizeof(struct ahc_dma_seg);
next_scb->ahc_softc = ahc;
next_scb->flags = SCB_FREE;
next_scb->hscb = &scb_data->hscbs[scb_data->numscbs];
next_scb->hscb->tag = ahc->scb_data->numscbs;
SLIST_INSERT_HEAD(&ahc->scb_data->free_scbs,
next_scb, links.sle);
segs += AHC_NSEG;
physaddr += (AHC_NSEG * sizeof(struct ahc_dma_seg));
next_scb++;
ahc->scb_data->numscbs++;
}
}
void
ahc_controller_info(struct ahc_softc *ahc, char *buf)
{
int len;
len = sprintf(buf, "%s: ", ahc_chip_names[ahc->chip & AHC_CHIPID_MASK]);
buf += len;
if ((ahc->features & AHC_TWIN) != 0)
len = sprintf(buf, "Twin Channel, A SCSI Id=%d, "
"B SCSI Id=%d, primary %c, ",
ahc->our_id, ahc->our_id_b,
(ahc->flags & AHC_PRIMARY_CHANNEL) + 'A');
else {
const char *speed;
const char *type;
speed = "";
if ((ahc->features & AHC_ULTRA) != 0) {
speed = "Ultra ";
} else if ((ahc->features & AHC_DT) != 0) {
speed = "Ultra160 ";
} else if ((ahc->features & AHC_ULTRA2) != 0) {
speed = "Ultra2 ";
}
if ((ahc->features & AHC_WIDE) != 0) {
type = "Wide";
} else {
type = "Single";
}
len = sprintf(buf, "%s%s Channel %c, SCSI Id=%d, ",
speed, type, ahc->channel, ahc->our_id);
}
buf += len;
if ((ahc->flags & AHC_PAGESCBS) != 0)
sprintf(buf, "%d/%d SCBs",
ahc->scb_data->maxhscbs, AHC_MAX_QUEUE);
else
sprintf(buf, "%d SCBs", ahc->scb_data->maxhscbs);
}
int
ahc_chip_init(struct ahc_softc *ahc)
{
int term;
int error;
u_int i;
u_int scsi_conf;
u_int scsiseq_template;
uint32_t physaddr;
ahc_outb(ahc, SEQ_FLAGS, 0);
ahc_outb(ahc, SEQ_FLAGS2, 0);
/* Set the SCSI Id, SXFRCTL0, SXFRCTL1, and SIMODE1, for both channels*/
if (ahc->features & AHC_TWIN) {
/*
* Setup Channel B first.
*/
ahc_outb(ahc, SBLKCTL, ahc_inb(ahc, SBLKCTL) | SELBUSB);
term = (ahc->flags & AHC_TERM_ENB_B) != 0 ? STPWEN : 0;
ahc_outb(ahc, SCSIID, ahc->our_id_b);
scsi_conf = ahc_inb(ahc, SCSICONF + 1);
ahc_outb(ahc, SXFRCTL1, (scsi_conf & (ENSPCHK|STIMESEL))
|term|ahc->seltime_b|ENSTIMER|ACTNEGEN);
if ((ahc->features & AHC_ULTRA2) != 0)
ahc_outb(ahc, SIMODE0, ahc_inb(ahc, SIMODE0)|ENIOERR);
ahc_outb(ahc, SIMODE1, ENSELTIMO|ENSCSIRST|ENSCSIPERR);
ahc_outb(ahc, SXFRCTL0, DFON|SPIOEN);
/* Select Channel A */
ahc_outb(ahc, SBLKCTL, ahc_inb(ahc, SBLKCTL) & ~SELBUSB);
}
term = (ahc->flags & AHC_TERM_ENB_A) != 0 ? STPWEN : 0;
if ((ahc->features & AHC_ULTRA2) != 0)
ahc_outb(ahc, SCSIID_ULTRA2, ahc->our_id);
else
ahc_outb(ahc, SCSIID, ahc->our_id);
scsi_conf = ahc_inb(ahc, SCSICONF);
ahc_outb(ahc, SXFRCTL1, (scsi_conf & (ENSPCHK|STIMESEL))
|term|ahc->seltime
|ENSTIMER|ACTNEGEN);
if ((ahc->features & AHC_ULTRA2) != 0)
ahc_outb(ahc, SIMODE0, ahc_inb(ahc, SIMODE0)|ENIOERR);
ahc_outb(ahc, SIMODE1, ENSELTIMO|ENSCSIRST|ENSCSIPERR);
ahc_outb(ahc, SXFRCTL0, DFON|SPIOEN);
/* There are no untagged SCBs active yet. */
for (i = 0; i < 16; i++) {
ahc_unbusy_tcl(ahc, BUILD_TCL(i << 4, 0));
if ((ahc->flags & AHC_SCB_BTT) != 0) {
int lun;
/*
* The SCB based BTT allows an entry per
* target and lun pair.
*/
for (lun = 1; lun < AHC_NUM_LUNS; lun++)
ahc_unbusy_tcl(ahc, BUILD_TCL(i << 4, lun));
}
}
/* All of our queues are empty */
for (i = 0; i < 256; i++)
ahc->qoutfifo[i] = SCB_LIST_NULL;
ahc_sync_qoutfifo(ahc, BUS_DMASYNC_PREREAD);
for (i = 0; i < 256; i++)
ahc->qinfifo[i] = SCB_LIST_NULL;
if ((ahc->features & AHC_MULTI_TID) != 0) {
ahc_outb(ahc, TARGID, 0);
ahc_outb(ahc, TARGID + 1, 0);
}
/*
* Tell the sequencer where it can find our arrays in memory.
*/
physaddr = ahc->scb_data->hscb_busaddr;
ahc_outb(ahc, HSCB_ADDR, physaddr & 0xFF);
ahc_outb(ahc, HSCB_ADDR + 1, (physaddr >> 8) & 0xFF);
ahc_outb(ahc, HSCB_ADDR + 2, (physaddr >> 16) & 0xFF);
ahc_outb(ahc, HSCB_ADDR + 3, (physaddr >> 24) & 0xFF);
physaddr = ahc->shared_data_busaddr;
ahc_outb(ahc, SHARED_DATA_ADDR, physaddr & 0xFF);
ahc_outb(ahc, SHARED_DATA_ADDR + 1, (physaddr >> 8) & 0xFF);
ahc_outb(ahc, SHARED_DATA_ADDR + 2, (physaddr >> 16) & 0xFF);
ahc_outb(ahc, SHARED_DATA_ADDR + 3, (physaddr >> 24) & 0xFF);
/*
* Initialize the group code to command length table.
* This overrides the values in TARG_SCSIRATE, so only
* setup the table after we have processed that information.
*/
ahc_outb(ahc, CMDSIZE_TABLE, 5);
ahc_outb(ahc, CMDSIZE_TABLE + 1, 9);
ahc_outb(ahc, CMDSIZE_TABLE + 2, 9);
ahc_outb(ahc, CMDSIZE_TABLE + 3, 0);
ahc_outb(ahc, CMDSIZE_TABLE + 4, 15);
ahc_outb(ahc, CMDSIZE_TABLE + 5, 11);
ahc_outb(ahc, CMDSIZE_TABLE + 6, 0);
ahc_outb(ahc, CMDSIZE_TABLE + 7, 0);
if ((ahc->features & AHC_HS_MAILBOX) != 0)
ahc_outb(ahc, HS_MAILBOX, 0);
/* Tell the sequencer of our initial queue positions */
if ((ahc->features & AHC_TARGETMODE) != 0) {
ahc->tqinfifonext = 1;
ahc_outb(ahc, KERNEL_TQINPOS, ahc->tqinfifonext - 1);
ahc_outb(ahc, TQINPOS, ahc->tqinfifonext);
}
ahc->qinfifonext = 0;
ahc->qoutfifonext = 0;
if ((ahc->features & AHC_QUEUE_REGS) != 0) {
ahc_outb(ahc, QOFF_CTLSTA, SCB_QSIZE_256);
ahc_outb(ahc, HNSCB_QOFF, ahc->qinfifonext);
ahc_outb(ahc, SNSCB_QOFF, ahc->qinfifonext);
ahc_outb(ahc, SDSCB_QOFF, 0);
} else {
ahc_outb(ahc, KERNEL_QINPOS, ahc->qinfifonext);
ahc_outb(ahc, QINPOS, ahc->qinfifonext);
ahc_outb(ahc, QOUTPOS, ahc->qoutfifonext);
}
/* We don't have any waiting selections */
ahc_outb(ahc, WAITING_SCBH, SCB_LIST_NULL);
/* Our disconnection list is empty too */
ahc_outb(ahc, DISCONNECTED_SCBH, SCB_LIST_NULL);
/* Message out buffer starts empty */
ahc_outb(ahc, MSG_OUT, NOP);
/*
* Setup the allowed SCSI Sequences based on operational mode.
* If we are a target, we'll enable select in operations once
* we've had a lun enabled.
*/
scsiseq_template = ENSELO|ENAUTOATNO|ENAUTOATNP;
if ((ahc->flags & AHC_INITIATORROLE) != 0)
scsiseq_template |= ENRSELI;
ahc_outb(ahc, SCSISEQ_TEMPLATE, scsiseq_template);
/* Initialize our list of free SCBs. */
ahc_build_free_scb_list(ahc);
/*
* Tell the sequencer which SCB will be the next one it receives.
*/
ahc_outb(ahc, NEXT_QUEUED_SCB, ahc->next_queued_scb->hscb->tag);
/*
* Load the Sequencer program and Enable the adapter
* in "fast" mode.
*/
if (bootverbose)
printk("%s: Downloading Sequencer Program...",
ahc_name(ahc));
error = ahc_loadseq(ahc);
if (error != 0)
return (error);
if ((ahc->features & AHC_ULTRA2) != 0) {
int wait;
/*
* Wait for up to 500ms for our transceivers
* to settle. If the adapter does not have
* a cable attached, the transceivers may
* never settle, so don't complain if we
* fail here.
*/
for (wait = 5000;
(ahc_inb(ahc, SBLKCTL) & (ENAB40|ENAB20)) == 0 && wait;
wait--)
ahc_delay(100);
}
ahc_restart(ahc);
return (0);
}
/*
* Start the board, ready for normal operation
*/
int
ahc_init(struct ahc_softc *ahc)
{
int max_targ;
u_int i;
u_int scsi_conf;
u_int ultraenb;
u_int discenable;
u_int tagenable;
size_t driver_data_size;
#ifdef AHC_DEBUG
if ((ahc_debug & AHC_DEBUG_SEQUENCER) != 0)
ahc->flags |= AHC_SEQUENCER_DEBUG;
#endif
#ifdef AHC_PRINT_SRAM
printk("Scratch Ram:");
for (i = 0x20; i < 0x5f; i++) {
if (((i % 8) == 0) && (i != 0)) {
printk ("\n ");
}
printk (" 0x%x", ahc_inb(ahc, i));
}
if ((ahc->features & AHC_MORE_SRAM) != 0) {
for (i = 0x70; i < 0x7f; i++) {
if (((i % 8) == 0) && (i != 0)) {
printk ("\n ");
}
printk (" 0x%x", ahc_inb(ahc, i));
}
}
printk ("\n");
/*
* Reading uninitialized scratch ram may
* generate parity errors.
*/
ahc_outb(ahc, CLRINT, CLRPARERR);
ahc_outb(ahc, CLRINT, CLRBRKADRINT);
#endif
max_targ = 15;
/*
* Assume we have a board at this stage and it has been reset.
*/
if ((ahc->flags & AHC_USEDEFAULTS) != 0)
ahc->our_id = ahc->our_id_b = 7;
/*
* Default to allowing initiator operations.
*/
ahc->flags |= AHC_INITIATORROLE;
/*
* Only allow target mode features if this unit has them enabled.
*/
if ((AHC_TMODE_ENABLE & (0x1 << ahc->unit)) == 0)
ahc->features &= ~AHC_TARGETMODE;
ahc->init_level++;
/*
* DMA tag for our command fifos and other data in system memory
* the card's sequencer must be able to access. For initiator
* roles, we need to allocate space for the qinfifo and qoutfifo.
* The qinfifo and qoutfifo are composed of 256 1 byte elements.
* When providing for the target mode role, we must additionally
* provide space for the incoming target command fifo and an extra
* byte to deal with a dma bug in some chip versions.
*/
driver_data_size = 2 * 256 * sizeof(uint8_t);
if ((ahc->features & AHC_TARGETMODE) != 0)
driver_data_size += AHC_TMODE_CMDS * sizeof(struct target_cmd)
+ /*DMA WideOdd Bug Buffer*/1;
if (ahc_dma_tag_create(ahc, ahc->parent_dmat, /*alignment*/1,
/*boundary*/BUS_SPACE_MAXADDR_32BIT + 1,
/*lowaddr*/BUS_SPACE_MAXADDR_32BIT,
/*highaddr*/BUS_SPACE_MAXADDR,
/*filter*/NULL, /*filterarg*/NULL,
driver_data_size,
/*nsegments*/1,
/*maxsegsz*/BUS_SPACE_MAXSIZE_32BIT,
/*flags*/0, &ahc->shared_data_dmat) != 0) {
return (ENOMEM);
}
ahc->init_level++;
/* Allocation of driver data */
if (ahc_dmamem_alloc(ahc, ahc->shared_data_dmat,
(void **)&ahc->qoutfifo,
BUS_DMA_NOWAIT, &ahc->shared_data_dmamap) != 0) {
return (ENOMEM);
}
ahc->init_level++;
/* And permanently map it in */
ahc_dmamap_load(ahc, ahc->shared_data_dmat, ahc->shared_data_dmamap,
ahc->qoutfifo, driver_data_size, ahc_dmamap_cb,
&ahc->shared_data_busaddr, /*flags*/0);
if ((ahc->features & AHC_TARGETMODE) != 0) {
ahc->targetcmds = (struct target_cmd *)ahc->qoutfifo;
ahc->qoutfifo = (uint8_t *)&ahc->targetcmds[AHC_TMODE_CMDS];
ahc->dma_bug_buf = ahc->shared_data_busaddr
+ driver_data_size - 1;
/* All target command blocks start out invalid. */
for (i = 0; i < AHC_TMODE_CMDS; i++)
ahc->targetcmds[i].cmd_valid = 0;
ahc_sync_tqinfifo(ahc, BUS_DMASYNC_PREREAD);
ahc->qoutfifo = (uint8_t *)&ahc->targetcmds[256];
}
ahc->qinfifo = &ahc->qoutfifo[256];
ahc->init_level++;
/* Allocate SCB data now that buffer_dmat is initialized */
if (ahc->scb_data->maxhscbs == 0)
if (ahc_init_scbdata(ahc) != 0)
return (ENOMEM);
/*
* Allocate a tstate to house information for our
* initiator presence on the bus as well as the user
* data for any target mode initiator.
*/
if (ahc_alloc_tstate(ahc, ahc->our_id, 'A') == NULL) {
printk("%s: unable to allocate ahc_tmode_tstate. "
"Failing attach\n", ahc_name(ahc));
return (ENOMEM);
}
if ((ahc->features & AHC_TWIN) != 0) {
if (ahc_alloc_tstate(ahc, ahc->our_id_b, 'B') == NULL) {
printk("%s: unable to allocate ahc_tmode_tstate. "
"Failing attach\n", ahc_name(ahc));
return (ENOMEM);
}
}
if (ahc->scb_data->maxhscbs < AHC_SCB_MAX_ALLOC) {
ahc->flags |= AHC_PAGESCBS;
} else {
ahc->flags &= ~AHC_PAGESCBS;
}
#ifdef AHC_DEBUG
if (ahc_debug & AHC_SHOW_MISC) {
printk("%s: hardware scb %u bytes; kernel scb %u bytes; "
"ahc_dma %u bytes\n",
ahc_name(ahc),
(u_int)sizeof(struct hardware_scb),
(u_int)sizeof(struct scb),
(u_int)sizeof(struct ahc_dma_seg));
}
#endif /* AHC_DEBUG */
/*
* Look at the information that board initialization or
* the board bios has left us.
*/
if (ahc->features & AHC_TWIN) {
scsi_conf = ahc_inb(ahc, SCSICONF + 1);
if ((scsi_conf & RESET_SCSI) != 0
&& (ahc->flags & AHC_INITIATORROLE) != 0)
ahc->flags |= AHC_RESET_BUS_B;
}
scsi_conf = ahc_inb(ahc, SCSICONF);
if ((scsi_conf & RESET_SCSI) != 0
&& (ahc->flags & AHC_INITIATORROLE) != 0)
ahc->flags |= AHC_RESET_BUS_A;
ultraenb = 0;
tagenable = ALL_TARGETS_MASK;
/* Grab the disconnection disable table and invert it for our needs */
if ((ahc->flags & AHC_USEDEFAULTS) != 0) {
printk("%s: Host Adapter Bios disabled. Using default SCSI "
"device parameters\n", ahc_name(ahc));
ahc->flags |= AHC_EXTENDED_TRANS_A|AHC_EXTENDED_TRANS_B|
AHC_TERM_ENB_A|AHC_TERM_ENB_B;
discenable = ALL_TARGETS_MASK;
if ((ahc->features & AHC_ULTRA) != 0)
ultraenb = ALL_TARGETS_MASK;
} else {
discenable = ~((ahc_inb(ahc, DISC_DSB + 1) << 8)
| ahc_inb(ahc, DISC_DSB));
if ((ahc->features & (AHC_ULTRA|AHC_ULTRA2)) != 0)
ultraenb = (ahc_inb(ahc, ULTRA_ENB + 1) << 8)
| ahc_inb(ahc, ULTRA_ENB);
}
if ((ahc->features & (AHC_WIDE|AHC_TWIN)) == 0)
max_targ = 7;
for (i = 0; i <= max_targ; i++) {
struct ahc_initiator_tinfo *tinfo;
struct ahc_tmode_tstate *tstate;
u_int our_id;
u_int target_id;
char channel;
channel = 'A';
our_id = ahc->our_id;
target_id = i;
if (i > 7 && (ahc->features & AHC_TWIN) != 0) {
channel = 'B';
our_id = ahc->our_id_b;
target_id = i % 8;
}
tinfo = ahc_fetch_transinfo(ahc, channel, our_id,
target_id, &tstate);
/* Default to async narrow across the board */
memset(tinfo, 0, sizeof(*tinfo));
if (ahc->flags & AHC_USEDEFAULTS) {
if ((ahc->features & AHC_WIDE) != 0)
tinfo->user.width = MSG_EXT_WDTR_BUS_16_BIT;
/*
* These will be truncated when we determine the
* connection type we have with the target.
*/
tinfo->user.period = ahc_syncrates->period;
tinfo->user.offset = MAX_OFFSET;
} else {
u_int scsirate;
uint16_t mask;
/* Take the settings leftover in scratch RAM. */
scsirate = ahc_inb(ahc, TARG_SCSIRATE + i);
mask = (0x01 << i);
if ((ahc->features & AHC_ULTRA2) != 0) {
u_int offset;
u_int maxsync;
if ((scsirate & SOFS) == 0x0F) {
/*
* Haven't negotiated yet,
* so the format is different.
*/
scsirate = (scsirate & SXFR) >> 4
| (ultraenb & mask)
? 0x08 : 0x0
| (scsirate & WIDEXFER);
offset = MAX_OFFSET_ULTRA2;
} else
offset = ahc_inb(ahc, TARG_OFFSET + i);
if ((scsirate & ~WIDEXFER) == 0 && offset != 0)
/* Set to the lowest sync rate, 5MHz */
scsirate |= 0x1c;
maxsync = AHC_SYNCRATE_ULTRA2;
if ((ahc->features & AHC_DT) != 0)
maxsync = AHC_SYNCRATE_DT;
tinfo->user.period =
ahc_find_period(ahc, scsirate, maxsync);
if (offset == 0)
tinfo->user.period = 0;
else
tinfo->user.offset = MAX_OFFSET;
if ((scsirate & SXFR_ULTRA2) <= 8/*10MHz*/
&& (ahc->features & AHC_DT) != 0)
tinfo->user.ppr_options =
MSG_EXT_PPR_DT_REQ;
} else if ((scsirate & SOFS) != 0) {
if ((scsirate & SXFR) == 0x40
&& (ultraenb & mask) != 0) {
/* Treat 10MHz as a non-ultra speed */
scsirate &= ~SXFR;
ultraenb &= ~mask;
}
tinfo->user.period =
ahc_find_period(ahc, scsirate,
(ultraenb & mask)
? AHC_SYNCRATE_ULTRA
: AHC_SYNCRATE_FAST);
if (tinfo->user.period != 0)
tinfo->user.offset = MAX_OFFSET;
}
if (tinfo->user.period == 0)
tinfo->user.offset = 0;
if ((scsirate & WIDEXFER) != 0
&& (ahc->features & AHC_WIDE) != 0)
tinfo->user.width = MSG_EXT_WDTR_BUS_16_BIT;
tinfo->user.protocol_version = 4;
if ((ahc->features & AHC_DT) != 0)
tinfo->user.transport_version = 3;
else
tinfo->user.transport_version = 2;
tinfo->goal.protocol_version = 2;
tinfo->goal.transport_version = 2;
tinfo->curr.protocol_version = 2;
tinfo->curr.transport_version = 2;
}
tstate->ultraenb = 0;
}
ahc->user_discenable = discenable;
ahc->user_tagenable = tagenable;
return (ahc->bus_chip_init(ahc));
}
void
ahc_intr_enable(struct ahc_softc *ahc, int enable)
{
u_int hcntrl;
hcntrl = ahc_inb(ahc, HCNTRL);
hcntrl &= ~INTEN;
ahc->pause &= ~INTEN;
ahc->unpause &= ~INTEN;
if (enable) {
hcntrl |= INTEN;
ahc->pause |= INTEN;
ahc->unpause |= INTEN;
}
ahc_outb(ahc, HCNTRL, hcntrl);
}
/*
* Ensure that the card is paused in a location
* outside of all critical sections and that all
* pending work is completed prior to returning.
* This routine should only be called from outside
* an interrupt context.
*/
void
ahc_pause_and_flushwork(struct ahc_softc *ahc)
{
int intstat;
int maxloops;
int paused;
maxloops = 1000;
ahc->flags |= AHC_ALL_INTERRUPTS;
paused = FALSE;
do {
if (paused) {
ahc_unpause(ahc);
/*
* Give the sequencer some time to service
* any active selections.
*/
ahc_delay(500);
}
ahc_intr(ahc);
ahc_pause(ahc);
paused = TRUE;
ahc_outb(ahc, SCSISEQ, ahc_inb(ahc, SCSISEQ) & ~ENSELO);
intstat = ahc_inb(ahc, INTSTAT);
if ((intstat & INT_PEND) == 0) {
ahc_clear_critical_section(ahc);
intstat = ahc_inb(ahc, INTSTAT);
}
} while (--maxloops
&& (intstat != 0xFF || (ahc->features & AHC_REMOVABLE) == 0)
&& ((intstat & INT_PEND) != 0
|| (ahc_inb(ahc, SSTAT0) & (SELDO|SELINGO)) != 0));
if (maxloops == 0) {
printk("Infinite interrupt loop, INTSTAT = %x",
ahc_inb(ahc, INTSTAT));
}
ahc_platform_flushwork(ahc);
ahc->flags &= ~AHC_ALL_INTERRUPTS;
}
int __maybe_unused
ahc_suspend(struct ahc_softc *ahc)
{
ahc_pause_and_flushwork(ahc);
if (LIST_FIRST(&ahc->pending_scbs) != NULL) {
ahc_unpause(ahc);
return (EBUSY);
}
#ifdef AHC_TARGET_MODE
/*
* XXX What about ATIOs that have not yet been serviced?
* Perhaps we should just refuse to be suspended if we
* are acting in a target role.
*/
if (ahc->pending_device != NULL) {
ahc_unpause(ahc);
return (EBUSY);
}
#endif
ahc_shutdown(ahc);
return (0);
}
int __maybe_unused
ahc_resume(struct ahc_softc *ahc)
{
ahc_reset(ahc, /*reinit*/TRUE);
ahc_intr_enable(ahc, TRUE);
ahc_restart(ahc);
return (0);
}
/************************** Busy Target Table *********************************/
/*
* Return the untagged transaction id for a given target/channel lun.
* Optionally, clear the entry.
*/
static u_int
ahc_index_busy_tcl(struct ahc_softc *ahc, u_int tcl)
{
u_int scbid;
u_int target_offset;
if ((ahc->flags & AHC_SCB_BTT) != 0) {
u_int saved_scbptr;
saved_scbptr = ahc_inb(ahc, SCBPTR);
ahc_outb(ahc, SCBPTR, TCL_LUN(tcl));
scbid = ahc_inb(ahc, SCB_64_BTT + TCL_TARGET_OFFSET(tcl));
ahc_outb(ahc, SCBPTR, saved_scbptr);
} else {
target_offset = TCL_TARGET_OFFSET(tcl);
scbid = ahc_inb(ahc, BUSY_TARGETS + target_offset);
}
return (scbid);
}
static void
ahc_unbusy_tcl(struct ahc_softc *ahc, u_int tcl)
{
u_int target_offset;
if ((ahc->flags & AHC_SCB_BTT) != 0) {
u_int saved_scbptr;
saved_scbptr = ahc_inb(ahc, SCBPTR);
ahc_outb(ahc, SCBPTR, TCL_LUN(tcl));
ahc_outb(ahc, SCB_64_BTT+TCL_TARGET_OFFSET(tcl), SCB_LIST_NULL);
ahc_outb(ahc, SCBPTR, saved_scbptr);
} else {
target_offset = TCL_TARGET_OFFSET(tcl);
ahc_outb(ahc, BUSY_TARGETS + target_offset, SCB_LIST_NULL);
}
}
static void
ahc_busy_tcl(struct ahc_softc *ahc, u_int tcl, u_int scbid)
{
u_int target_offset;
if ((ahc->flags & AHC_SCB_BTT) != 0) {
u_int saved_scbptr;
saved_scbptr = ahc_inb(ahc, SCBPTR);
ahc_outb(ahc, SCBPTR, TCL_LUN(tcl));
ahc_outb(ahc, SCB_64_BTT + TCL_TARGET_OFFSET(tcl), scbid);
ahc_outb(ahc, SCBPTR, saved_scbptr);
} else {
target_offset = TCL_TARGET_OFFSET(tcl);
ahc_outb(ahc, BUSY_TARGETS + target_offset, scbid);
}
}
/************************** SCB and SCB queue management **********************/
int
ahc_match_scb(struct ahc_softc *ahc, struct scb *scb, int target,
char channel, int lun, u_int tag, role_t role)
{
int targ = SCB_GET_TARGET(ahc, scb);
char chan = SCB_GET_CHANNEL(ahc, scb);
int slun = SCB_GET_LUN(scb);
int match;
match = ((chan == channel) || (channel == ALL_CHANNELS));
if (match != 0)
match = ((targ == target) || (target == CAM_TARGET_WILDCARD));
if (match != 0)
match = ((lun == slun) || (lun == CAM_LUN_WILDCARD));
if (match != 0) {
#ifdef AHC_TARGET_MODE
int group;
group = XPT_FC_GROUP(scb->io_ctx->ccb_h.func_code);
if (role == ROLE_INITIATOR) {
match = (group != XPT_FC_GROUP_TMODE)
&& ((tag == scb->hscb->tag)
|| (tag == SCB_LIST_NULL));
} else if (role == ROLE_TARGET) {
match = (group == XPT_FC_GROUP_TMODE)
&& ((tag == scb->io_ctx->csio.tag_id)
|| (tag == SCB_LIST_NULL));
}
#else /* !AHC_TARGET_MODE */
match = ((tag == scb->hscb->tag) || (tag == SCB_LIST_NULL));
#endif /* AHC_TARGET_MODE */
}
return match;
}
static void
ahc_freeze_devq(struct ahc_softc *ahc, struct scb *scb)
{
int target;
char channel;
int lun;
target = SCB_GET_TARGET(ahc, scb);
lun = SCB_GET_LUN(scb);
channel = SCB_GET_CHANNEL(ahc, scb);
ahc_search_qinfifo(ahc, target, channel, lun,
/*tag*/SCB_LIST_NULL, ROLE_UNKNOWN,
CAM_REQUEUE_REQ, SEARCH_COMPLETE);
ahc_platform_freeze_devq(ahc, scb);
}
void
ahc_qinfifo_requeue_tail(struct ahc_softc *ahc, struct scb *scb)
{
struct scb *prev_scb;
prev_scb = NULL;
if (ahc_qinfifo_count(ahc) != 0) {
u_int prev_tag;
uint8_t prev_pos;
prev_pos = ahc->qinfifonext - 1;
prev_tag = ahc->qinfifo[prev_pos];
prev_scb = ahc_lookup_scb(ahc, prev_tag);
}
ahc_qinfifo_requeue(ahc, prev_scb, scb);
if ((ahc->features & AHC_QUEUE_REGS) != 0) {
ahc_outb(ahc, HNSCB_QOFF, ahc->qinfifonext);
} else {
ahc_outb(ahc, KERNEL_QINPOS, ahc->qinfifonext);
}
}
static void
ahc_qinfifo_requeue(struct ahc_softc *ahc, struct scb *prev_scb,
struct scb *scb)
{
if (prev_scb == NULL) {
ahc_outb(ahc, NEXT_QUEUED_SCB, scb->hscb->tag);
} else {
prev_scb->hscb->next = scb->hscb->tag;
ahc_sync_scb(ahc, prev_scb,
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
}
ahc->qinfifo[ahc->qinfifonext++] = scb->hscb->tag;
scb->hscb->next = ahc->next_queued_scb->hscb->tag;
ahc_sync_scb(ahc, scb, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
}
static int
ahc_qinfifo_count(struct ahc_softc *ahc)
{
uint8_t qinpos;
uint8_t diff;
if ((ahc->features & AHC_QUEUE_REGS) != 0) {
qinpos = ahc_inb(ahc, SNSCB_QOFF);
ahc_outb(ahc, SNSCB_QOFF, qinpos);
} else
qinpos = ahc_inb(ahc, QINPOS);
diff = ahc->qinfifonext - qinpos;
return (diff);
}
int
ahc_search_qinfifo(struct ahc_softc *ahc, int target, char channel,
int lun, u_int tag, role_t role, uint32_t status,
ahc_search_action action)
{
struct scb *scb;
struct scb *prev_scb;
uint8_t qinstart;
uint8_t qinpos;
uint8_t qintail;
uint8_t next;
uint8_t prev;
uint8_t curscbptr;
int found;
int have_qregs;
qintail = ahc->qinfifonext;
have_qregs = (ahc->features & AHC_QUEUE_REGS) != 0;
if (have_qregs) {
qinstart = ahc_inb(ahc, SNSCB_QOFF);
ahc_outb(ahc, SNSCB_QOFF, qinstart);
} else
qinstart = ahc_inb(ahc, QINPOS);
qinpos = qinstart;
found = 0;
prev_scb = NULL;
if (action == SEARCH_COMPLETE) {
/*
* Don't attempt to run any queued untagged transactions
* until we are done with the abort process.
*/
ahc_freeze_untagged_queues(ahc);
}
/*
* Start with an empty queue. Entries that are not chosen
* for removal will be re-added to the queue as we go.
*/
ahc->qinfifonext = qinpos;
ahc_outb(ahc, NEXT_QUEUED_SCB, ahc->next_queued_scb->hscb->tag);
while (qinpos != qintail) {
scb = ahc_lookup_scb(ahc, ahc->qinfifo[qinpos]);
if (scb == NULL) {
printk("qinpos = %d, SCB index = %d\n",
qinpos, ahc->qinfifo[qinpos]);
panic("Loop 1\n");
}
if (ahc_match_scb(ahc, scb, target, channel, lun, tag, role)) {
/*
* We found an scb that needs to be acted on.
*/
found++;
switch (action) {
case SEARCH_COMPLETE:
{
cam_status ostat;
cam_status cstat;
ostat = ahc_get_transaction_status(scb);
if (ostat == CAM_REQ_INPROG)
ahc_set_transaction_status(scb, status);
cstat = ahc_get_transaction_status(scb);
if (cstat != CAM_REQ_CMP)
ahc_freeze_scb(scb);
if ((scb->flags & SCB_ACTIVE) == 0)
printk("Inactive SCB in qinfifo\n");
ahc_done(ahc, scb);
}
fallthrough;
case SEARCH_REMOVE:
break;
case SEARCH_COUNT:
ahc_qinfifo_requeue(ahc, prev_scb, scb);
prev_scb = scb;
break;
}
} else {
ahc_qinfifo_requeue(ahc, prev_scb, scb);
prev_scb = scb;
}
qinpos++;
}
if ((ahc->features & AHC_QUEUE_REGS) != 0) {
ahc_outb(ahc, HNSCB_QOFF, ahc->qinfifonext);
} else {
ahc_outb(ahc, KERNEL_QINPOS, ahc->qinfifonext);
}
if (action != SEARCH_COUNT
&& (found != 0)
&& (qinstart != ahc->qinfifonext)) {
/*
* The sequencer may be in the process of dmaing
* down the SCB at the beginning of the queue.
* This could be problematic if either the first,
* or the second SCB is removed from the queue
* (the first SCB includes a pointer to the "next"
* SCB to dma). If we have removed any entries, swap
* the first element in the queue with the next HSCB
* so the sequencer will notice that NEXT_QUEUED_SCB
* has changed during its dma attempt and will retry
* the DMA.
*/
scb = ahc_lookup_scb(ahc, ahc->qinfifo[qinstart]);
if (scb == NULL) {
printk("found = %d, qinstart = %d, qinfifionext = %d\n",
found, qinstart, ahc->qinfifonext);
panic("First/Second Qinfifo fixup\n");
}
/*
* ahc_swap_with_next_hscb forces our next pointer to
* point to the reserved SCB for future commands. Save
* and restore our original next pointer to maintain
* queue integrity.
*/
next = scb->hscb->next;
ahc->scb_data->scbindex[scb->hscb->tag] = NULL;
ahc_swap_with_next_hscb(ahc, scb);
scb->hscb->next = next;
ahc->qinfifo[qinstart] = scb->hscb->tag;
/* Tell the card about the new head of the qinfifo. */
ahc_outb(ahc, NEXT_QUEUED_SCB, scb->hscb->tag);
/* Fixup the tail "next" pointer. */
qintail = ahc->qinfifonext - 1;
scb = ahc_lookup_scb(ahc, ahc->qinfifo[qintail]);
scb->hscb->next = ahc->next_queued_scb->hscb->tag;
}
/*
* Search waiting for selection list.
*/
curscbptr = ahc_inb(ahc, SCBPTR);
next = ahc_inb(ahc, WAITING_SCBH); /* Start at head of list. */
prev = SCB_LIST_NULL;
while (next != SCB_LIST_NULL) {
uint8_t scb_index;
ahc_outb(ahc, SCBPTR, next);
scb_index = ahc_inb(ahc, SCB_TAG);
if (scb_index >= ahc->scb_data->numscbs) {
printk("Waiting List inconsistency. "
"SCB index == %d, yet numscbs == %d.",
scb_index, ahc->scb_data->numscbs);
ahc_dump_card_state(ahc);
panic("for safety");
}
scb = ahc_lookup_scb(ahc, scb_index);
if (scb == NULL) {
printk("scb_index = %d, next = %d\n",
scb_index, next);
panic("Waiting List traversal\n");
}
if (ahc_match_scb(ahc, scb, target, channel,
lun, SCB_LIST_NULL, role)) {
/*
* We found an scb that needs to be acted on.
*/
found++;
switch (action) {
case SEARCH_COMPLETE:
{
cam_status ostat;
cam_status cstat;
ostat = ahc_get_transaction_status(scb);
if (ostat == CAM_REQ_INPROG)
ahc_set_transaction_status(scb,
status);
cstat = ahc_get_transaction_status(scb);
if (cstat != CAM_REQ_CMP)
ahc_freeze_scb(scb);
if ((scb->flags & SCB_ACTIVE) == 0)
printk("Inactive SCB in Waiting List\n");
ahc_done(ahc, scb);
}
fallthrough;
case SEARCH_REMOVE:
next = ahc_rem_wscb(ahc, next, prev);
break;
case SEARCH_COUNT:
prev = next;
next = ahc_inb(ahc, SCB_NEXT);
break;
}
} else {
prev = next;
next = ahc_inb(ahc, SCB_NEXT);
}
}
ahc_outb(ahc, SCBPTR, curscbptr);
found += ahc_search_untagged_queues(ahc, /*ahc_io_ctx_t*/NULL, target,
channel, lun, status, action);
if (action == SEARCH_COMPLETE)
ahc_release_untagged_queues(ahc);
return (found);
}
int
ahc_search_untagged_queues(struct ahc_softc *ahc, ahc_io_ctx_t ctx,
int target, char channel, int lun, uint32_t status,
ahc_search_action action)
{
struct scb *scb;
int maxtarget;
int found;
int i;
if (action == SEARCH_COMPLETE) {
/*
* Don't attempt to run any queued untagged transactions
* until we are done with the abort process.
*/
ahc_freeze_untagged_queues(ahc);
}
found = 0;
i = 0;
if ((ahc->flags & AHC_SCB_BTT) == 0) {
maxtarget = 16;
if (target != CAM_TARGET_WILDCARD) {
i = target;
if (channel == 'B')
i += 8;
maxtarget = i + 1;
}
} else {
maxtarget = 0;
}
for (; i < maxtarget; i++) {
struct scb_tailq *untagged_q;
struct scb *next_scb;
untagged_q = &(ahc->untagged_queues[i]);
next_scb = TAILQ_FIRST(untagged_q);
while (next_scb != NULL) {
scb = next_scb;
next_scb = TAILQ_NEXT(scb, links.tqe);
/*
* The head of the list may be the currently
* active untagged command for a device.
* We're only searching for commands that
* have not been started. A transaction
* marked active but still in the qinfifo
* is removed by the qinfifo scanning code
* above.
*/
if ((scb->flags & SCB_ACTIVE) != 0)
continue;
if (ahc_match_scb(ahc, scb, target, channel, lun,
SCB_LIST_NULL, ROLE_INITIATOR) == 0
|| (ctx != NULL && ctx != scb->io_ctx))
continue;
/*
* We found an scb that needs to be acted on.
*/
found++;
switch (action) {
case SEARCH_COMPLETE:
{
cam_status ostat;
cam_status cstat;
ostat = ahc_get_transaction_status(scb);
if (ostat == CAM_REQ_INPROG)
ahc_set_transaction_status(scb, status);
cstat = ahc_get_transaction_status(scb);
if (cstat != CAM_REQ_CMP)
ahc_freeze_scb(scb);
if ((scb->flags & SCB_ACTIVE) == 0)
printk("Inactive SCB in untaggedQ\n");
ahc_done(ahc, scb);
break;
}
case SEARCH_REMOVE:
scb->flags &= ~SCB_UNTAGGEDQ;
TAILQ_REMOVE(untagged_q, scb, links.tqe);
break;
case SEARCH_COUNT:
break;
}
}
}
if (action == SEARCH_COMPLETE)
ahc_release_untagged_queues(ahc);
return (found);
}
int
ahc_search_disc_list(struct ahc_softc *ahc, int target, char channel,
int lun, u_int tag, int stop_on_first, int remove,
int save_state)
{
struct scb *scbp;
u_int next;
u_int prev;
u_int count;
u_int active_scb;
count = 0;
next = ahc_inb(ahc, DISCONNECTED_SCBH);
prev = SCB_LIST_NULL;
if (save_state) {
/* restore this when we're done */
active_scb = ahc_inb(ahc, SCBPTR);
} else
/* Silence compiler */
active_scb = SCB_LIST_NULL;
while (next != SCB_LIST_NULL) {
u_int scb_index;
ahc_outb(ahc, SCBPTR, next);
scb_index = ahc_inb(ahc, SCB_TAG);
if (scb_index >= ahc->scb_data->numscbs) {
printk("Disconnected List inconsistency. "
"SCB index == %d, yet numscbs == %d.",
scb_index, ahc->scb_data->numscbs);
ahc_dump_card_state(ahc);
panic("for safety");
}
if (next == prev) {
panic("Disconnected List Loop. "
"cur SCBPTR == %x, prev SCBPTR == %x.",
next, prev);
}
scbp = ahc_lookup_scb(ahc, scb_index);
if (ahc_match_scb(ahc, scbp, target, channel, lun,
tag, ROLE_INITIATOR)) {
count++;
if (remove) {
next =
ahc_rem_scb_from_disc_list(ahc, prev, next);
} else {
prev = next;
next = ahc_inb(ahc, SCB_NEXT);
}
if (stop_on_first)
break;
} else {
prev = next;
next = ahc_inb(ahc, SCB_NEXT);
}
}
if (save_state)
ahc_outb(ahc, SCBPTR, active_scb);
return (count);
}
/*
* Remove an SCB from the on chip list of disconnected transactions.
* This is empty/unused if we are not performing SCB paging.
*/
static u_int
ahc_rem_scb_from_disc_list(struct ahc_softc *ahc, u_int prev, u_int scbptr)
{
u_int next;
ahc_outb(ahc, SCBPTR, scbptr);
next = ahc_inb(ahc, SCB_NEXT);
ahc_outb(ahc, SCB_CONTROL, 0);
ahc_add_curscb_to_free_list(ahc);
if (prev != SCB_LIST_NULL) {
ahc_outb(ahc, SCBPTR, prev);
ahc_outb(ahc, SCB_NEXT, next);
} else
ahc_outb(ahc, DISCONNECTED_SCBH, next);
return (next);
}
/*
* Add the SCB as selected by SCBPTR onto the on chip list of
* free hardware SCBs. This list is empty/unused if we are not
* performing SCB paging.
*/
static void
ahc_add_curscb_to_free_list(struct ahc_softc *ahc)
{
/*
* Invalidate the tag so that our abort
* routines don't think it's active.
*/
ahc_outb(ahc, SCB_TAG, SCB_LIST_NULL);
if ((ahc->flags & AHC_PAGESCBS) != 0) {
ahc_outb(ahc, SCB_NEXT, ahc_inb(ahc, FREE_SCBH));
ahc_outb(ahc, FREE_SCBH, ahc_inb(ahc, SCBPTR));
}
}
/*
* Manipulate the waiting for selection list and return the
* scb that follows the one that we remove.
*/
static u_int
ahc_rem_wscb(struct ahc_softc *ahc, u_int scbpos, u_int prev)
{
u_int curscb, next;
/*
* Select the SCB we want to abort and
* pull the next pointer out of it.
*/
curscb = ahc_inb(ahc, SCBPTR);
ahc_outb(ahc, SCBPTR, scbpos);
next = ahc_inb(ahc, SCB_NEXT);
/* Clear the necessary fields */
ahc_outb(ahc, SCB_CONTROL, 0);
ahc_add_curscb_to_free_list(ahc);
/* update the waiting list */
if (prev == SCB_LIST_NULL) {
/* First in the list */
ahc_outb(ahc, WAITING_SCBH, next);
/*
* Ensure we aren't attempting to perform
* selection for this entry.
*/
ahc_outb(ahc, SCSISEQ, (ahc_inb(ahc, SCSISEQ) & ~ENSELO));
} else {
/*
* Select the scb that pointed to us
* and update its next pointer.
*/
ahc_outb(ahc, SCBPTR, prev);
ahc_outb(ahc, SCB_NEXT, next);
}
/*
* Point us back at the original scb position.
*/
ahc_outb(ahc, SCBPTR, curscb);
return next;
}
/******************************** Error Handling ******************************/
/*
* Abort all SCBs that match the given description (target/channel/lun/tag),
* setting their status to the passed in status if the status has not already
* been modified from CAM_REQ_INPROG. This routine assumes that the sequencer
* is paused before it is called.
*/
static int
ahc_abort_scbs(struct ahc_softc *ahc, int target, char channel,
int lun, u_int tag, role_t role, uint32_t status)
{
struct scb *scbp;
struct scb *scbp_next;
u_int active_scb;
int i, j;
int maxtarget;
int minlun;
int maxlun;
int found;
/*
* Don't attempt to run any queued untagged transactions
* until we are done with the abort process.
*/
ahc_freeze_untagged_queues(ahc);
/* restore this when we're done */
active_scb = ahc_inb(ahc, SCBPTR);
found = ahc_search_qinfifo(ahc, target, channel, lun, SCB_LIST_NULL,
role, CAM_REQUEUE_REQ, SEARCH_COMPLETE);
/*
* Clean out the busy target table for any untagged commands.
*/
i = 0;
maxtarget = 16;
if (target != CAM_TARGET_WILDCARD) {
i = target;
if (channel == 'B')
i += 8;
maxtarget = i + 1;
}
if (lun == CAM_LUN_WILDCARD) {
/*
* Unless we are using an SCB based
* busy targets table, there is only
* one table entry for all luns of
* a target.
*/
minlun = 0;
maxlun = 1;
if ((ahc->flags & AHC_SCB_BTT) != 0)
maxlun = AHC_NUM_LUNS;
} else {
minlun = lun;
maxlun = lun + 1;
}
if (role != ROLE_TARGET) {
for (;i < maxtarget; i++) {
for (j = minlun;j < maxlun; j++) {
u_int scbid;
u_int tcl;
tcl = BUILD_TCL(i << 4, j);
scbid = ahc_index_busy_tcl(ahc, tcl);
scbp = ahc_lookup_scb(ahc, scbid);
if (scbp == NULL
|| ahc_match_scb(ahc, scbp, target, channel,
lun, tag, role) == 0)
continue;
ahc_unbusy_tcl(ahc, BUILD_TCL(i << 4, j));
}
}
/*
* Go through the disconnected list and remove any entries we
* have queued for completion, 0'ing their control byte too.
* We save the active SCB and restore it ourselves, so there
* is no reason for this search to restore it too.
*/
ahc_search_disc_list(ahc, target, channel, lun, tag,
/*stop_on_first*/FALSE, /*remove*/TRUE,
/*save_state*/FALSE);
}
/*
* Go through the hardware SCB array looking for commands that
* were active but not on any list. In some cases, these remnants
* might not still have mappings in the scbindex array (e.g. unexpected
* bus free with the same scb queued for an abort). Don't hold this
* against them.
*/
for (i = 0; i < ahc->scb_data->maxhscbs; i++) {
u_int scbid;
ahc_outb(ahc, SCBPTR, i);
scbid = ahc_inb(ahc, SCB_TAG);
scbp = ahc_lookup_scb(ahc, scbid);
if ((scbp == NULL && scbid != SCB_LIST_NULL)
|| (scbp != NULL
&& ahc_match_scb(ahc, scbp, target, channel, lun, tag, role)))
ahc_add_curscb_to_free_list(ahc);
}
/*
* Go through the pending CCB list and look for
* commands for this target that are still active.
* These are other tagged commands that were
* disconnected when the reset occurred.
*/
scbp_next = LIST_FIRST(&ahc->pending_scbs);
while (scbp_next != NULL) {
scbp = scbp_next;
scbp_next = LIST_NEXT(scbp, pending_links);
if (ahc_match_scb(ahc, scbp, target, channel, lun, tag, role)) {
cam_status ostat;
ostat = ahc_get_transaction_status(scbp);
if (ostat == CAM_REQ_INPROG)
ahc_set_transaction_status(scbp, status);
if (ahc_get_transaction_status(scbp) != CAM_REQ_CMP)
ahc_freeze_scb(scbp);
if ((scbp->flags & SCB_ACTIVE) == 0)
printk("Inactive SCB on pending list\n");
ahc_done(ahc, scbp);
found++;
}
}
ahc_outb(ahc, SCBPTR, active_scb);
ahc_platform_abort_scbs(ahc, target, channel, lun, tag, role, status);
ahc_release_untagged_queues(ahc);
return found;
}
static void
ahc_reset_current_bus(struct ahc_softc *ahc)
{
uint8_t scsiseq;
ahc_outb(ahc, SIMODE1, ahc_inb(ahc, SIMODE1) & ~ENSCSIRST);
scsiseq = ahc_inb(ahc, SCSISEQ);
ahc_outb(ahc, SCSISEQ, scsiseq | SCSIRSTO);
ahc_flush_device_writes(ahc);
ahc_delay(AHC_BUSRESET_DELAY);
/* Turn off the bus reset */
ahc_outb(ahc, SCSISEQ, scsiseq & ~SCSIRSTO);
ahc_clear_intstat(ahc);
/* Re-enable reset interrupts */
ahc_outb(ahc, SIMODE1, ahc_inb(ahc, SIMODE1) | ENSCSIRST);
}
int
ahc_reset_channel(struct ahc_softc *ahc, char channel, int initiate_reset)
{
struct ahc_devinfo devinfo;
u_int initiator, target, max_scsiid;
u_int sblkctl;
u_int scsiseq;
u_int simode1;
int found;
int restart_needed;
char cur_channel;
ahc->pending_device = NULL;
ahc_compile_devinfo(&devinfo,
CAM_TARGET_WILDCARD,
CAM_TARGET_WILDCARD,
CAM_LUN_WILDCARD,
channel, ROLE_UNKNOWN);
ahc_pause(ahc);
/* Make sure the sequencer is in a safe location. */
ahc_clear_critical_section(ahc);
/*
* Run our command complete fifos to ensure that we perform
* completion processing on any commands that 'completed'
* before the reset occurred.
*/
ahc_run_qoutfifo(ahc);
#ifdef AHC_TARGET_MODE
/*
* XXX - In Twin mode, the tqinfifo may have commands
* for an unaffected channel in it. However, if
* we have run out of ATIO resources to drain that
* queue, we may not get them all out here. Further,
* the blocked transactions for the reset channel
* should just be killed off, irrespecitve of whether
* we are blocked on ATIO resources. Write a routine
* to compact the tqinfifo appropriately.
*/
if ((ahc->flags & AHC_TARGETROLE) != 0) {
ahc_run_tqinfifo(ahc, /*paused*/TRUE);
}
#endif
/*
* Reset the bus if we are initiating this reset
*/
sblkctl = ahc_inb(ahc, SBLKCTL);
cur_channel = 'A';
if ((ahc->features & AHC_TWIN) != 0
&& ((sblkctl & SELBUSB) != 0))
cur_channel = 'B';
scsiseq = ahc_inb(ahc, SCSISEQ_TEMPLATE);
if (cur_channel != channel) {
/* Case 1: Command for another bus is active
* Stealthily reset the other bus without
* upsetting the current bus.
*/
ahc_outb(ahc, SBLKCTL, sblkctl ^ SELBUSB);
simode1 = ahc_inb(ahc, SIMODE1) & ~(ENBUSFREE|ENSCSIRST);
#ifdef AHC_TARGET_MODE
/*
* Bus resets clear ENSELI, so we cannot
* defer re-enabling bus reset interrupts
* if we are in target mode.
*/
if ((ahc->flags & AHC_TARGETROLE) != 0)
simode1 |= ENSCSIRST;
#endif
ahc_outb(ahc, SIMODE1, simode1);
if (initiate_reset)
ahc_reset_current_bus(ahc);
ahc_clear_intstat(ahc);
ahc_outb(ahc, SCSISEQ, scsiseq & (ENSELI|ENRSELI|ENAUTOATNP));
ahc_outb(ahc, SBLKCTL, sblkctl);
restart_needed = FALSE;
} else {
/* Case 2: A command from this bus is active or we're idle */
simode1 = ahc_inb(ahc, SIMODE1) & ~(ENBUSFREE|ENSCSIRST);
#ifdef AHC_TARGET_MODE
/*
* Bus resets clear ENSELI, so we cannot
* defer re-enabling bus reset interrupts
* if we are in target mode.
*/
if ((ahc->flags & AHC_TARGETROLE) != 0)
simode1 |= ENSCSIRST;
#endif
ahc_outb(ahc, SIMODE1, simode1);
if (initiate_reset)
ahc_reset_current_bus(ahc);
ahc_clear_intstat(ahc);
ahc_outb(ahc, SCSISEQ, scsiseq & (ENSELI|ENRSELI|ENAUTOATNP));
restart_needed = TRUE;
}
/*
* Clean up all the state information for the
* pending transactions on this bus.
*/
found = ahc_abort_scbs(ahc, CAM_TARGET_WILDCARD, channel,
CAM_LUN_WILDCARD, SCB_LIST_NULL,
ROLE_UNKNOWN, CAM_SCSI_BUS_RESET);
max_scsiid = (ahc->features & AHC_WIDE) ? 15 : 7;
#ifdef AHC_TARGET_MODE
/*
* Send an immediate notify ccb to all target more peripheral
* drivers affected by this action.
*/
for (target = 0; target <= max_scsiid; target++) {
struct ahc_tmode_tstate* tstate;
u_int lun;
tstate = ahc->enabled_targets[target];
if (tstate == NULL)
continue;
for (lun = 0; lun < AHC_NUM_LUNS; lun++) {
struct ahc_tmode_lstate* lstate;
lstate = tstate->enabled_luns[lun];
if (lstate == NULL)
continue;
ahc_queue_lstate_event(ahc, lstate, CAM_TARGET_WILDCARD,
EVENT_TYPE_BUS_RESET, /*arg*/0);
ahc_send_lstate_events(ahc, lstate);
}
}
#endif
/* Notify the XPT that a bus reset occurred */
ahc_send_async(ahc, devinfo.channel, CAM_TARGET_WILDCARD,
CAM_LUN_WILDCARD, AC_BUS_RESET);
/*
* Revert to async/narrow transfers until we renegotiate.
*/
for (target = 0; target <= max_scsiid; target++) {
if (ahc->enabled_targets[target] == NULL)
continue;
for (initiator = 0; initiator <= max_scsiid; initiator++) {
struct ahc_devinfo devinfo;
ahc_compile_devinfo(&devinfo, target, initiator,
CAM_LUN_WILDCARD,
channel, ROLE_UNKNOWN);
ahc_set_width(ahc, &devinfo, MSG_EXT_WDTR_BUS_8_BIT,
AHC_TRANS_CUR, /*paused*/TRUE);
ahc_set_syncrate(ahc, &devinfo, /*syncrate*/NULL,
/*period*/0, /*offset*/0,
/*ppr_options*/0, AHC_TRANS_CUR,
/*paused*/TRUE);
}
}
if (restart_needed)
ahc_restart(ahc);
else
ahc_unpause(ahc);
return found;
}
/***************************** Residual Processing ****************************/
/*
* Calculate the residual for a just completed SCB.
*/
static void
ahc_calc_residual(struct ahc_softc *ahc, struct scb *scb)
{
struct hardware_scb *hscb;
struct status_pkt *spkt;
uint32_t sgptr;
uint32_t resid_sgptr;
uint32_t resid;
/*
* 5 cases.
* 1) No residual.
* SG_RESID_VALID clear in sgptr.
* 2) Transferless command
* 3) Never performed any transfers.
* sgptr has SG_FULL_RESID set.
* 4) No residual but target did not
* save data pointers after the
* last transfer, so sgptr was
* never updated.
* 5) We have a partial residual.
* Use residual_sgptr to determine
* where we are.
*/
hscb = scb->hscb;
sgptr = ahc_le32toh(hscb->sgptr);
if ((sgptr & SG_RESID_VALID) == 0)
/* Case 1 */
return;
sgptr &= ~SG_RESID_VALID;
if ((sgptr & SG_LIST_NULL) != 0)
/* Case 2 */
return;
spkt = &hscb->shared_data.status;
resid_sgptr = ahc_le32toh(spkt->residual_sg_ptr);
if ((sgptr & SG_FULL_RESID) != 0) {
/* Case 3 */
resid = ahc_get_transfer_length(scb);
} else if ((resid_sgptr & SG_LIST_NULL) != 0) {
/* Case 4 */
return;
} else if ((resid_sgptr & ~SG_PTR_MASK) != 0) {
panic("Bogus resid sgptr value 0x%x\n", resid_sgptr);
} else {
struct ahc_dma_seg *sg;
/*
* Remainder of the SG where the transfer
* stopped.
*/
resid = ahc_le32toh(spkt->residual_datacnt) & AHC_SG_LEN_MASK;
sg = ahc_sg_bus_to_virt(scb, resid_sgptr & SG_PTR_MASK);
/* The residual sg_ptr always points to the next sg */
sg--;
/*
* Add up the contents of all residual
* SG segments that are after the SG where
* the transfer stopped.
*/
while ((ahc_le32toh(sg->len) & AHC_DMA_LAST_SEG) == 0) {
sg++;
resid += ahc_le32toh(sg->len) & AHC_SG_LEN_MASK;
}
}
if ((scb->flags & SCB_SENSE) == 0)
ahc_set_residual(scb, resid);
else
ahc_set_sense_residual(scb, resid);
#ifdef AHC_DEBUG
if ((ahc_debug & AHC_SHOW_MISC) != 0) {
ahc_print_path(ahc, scb);
printk("Handled %sResidual of %d bytes\n",
(scb->flags & SCB_SENSE) ? "Sense " : "", resid);
}
#endif
}
/******************************* Target Mode **********************************/
#ifdef AHC_TARGET_MODE
/*
* Add a target mode event to this lun's queue
*/
static void
ahc_queue_lstate_event(struct ahc_softc *ahc, struct ahc_tmode_lstate *lstate,
u_int initiator_id, u_int event_type, u_int event_arg)
{
struct ahc_tmode_event *event;
int pending;
xpt_freeze_devq(lstate->path, /*count*/1);
if (lstate->event_w_idx >= lstate->event_r_idx)
pending = lstate->event_w_idx - lstate->event_r_idx;
else
pending = AHC_TMODE_EVENT_BUFFER_SIZE + 1
- (lstate->event_r_idx - lstate->event_w_idx);
if (event_type == EVENT_TYPE_BUS_RESET
|| event_type == TARGET_RESET) {
/*
* Any earlier events are irrelevant, so reset our buffer.
* This has the effect of allowing us to deal with reset
* floods (an external device holding down the reset line)
* without losing the event that is really interesting.
*/
lstate->event_r_idx = 0;
lstate->event_w_idx = 0;
xpt_release_devq(lstate->path, pending, /*runqueue*/FALSE);
}
if (pending == AHC_TMODE_EVENT_BUFFER_SIZE) {
xpt_print_path(lstate->path);
printk("immediate event %x:%x lost\n",
lstate->event_buffer[lstate->event_r_idx].event_type,
lstate->event_buffer[lstate->event_r_idx].event_arg);
lstate->event_r_idx++;
if (lstate->event_r_idx == AHC_TMODE_EVENT_BUFFER_SIZE)
lstate->event_r_idx = 0;
xpt_release_devq(lstate->path, /*count*/1, /*runqueue*/FALSE);
}
event = &lstate->event_buffer[lstate->event_w_idx];
event->initiator_id = initiator_id;
event->event_type = event_type;
event->event_arg = event_arg;
lstate->event_w_idx++;
if (lstate->event_w_idx == AHC_TMODE_EVENT_BUFFER_SIZE)
lstate->event_w_idx = 0;
}
/*
* Send any target mode events queued up waiting
* for immediate notify resources.
*/
void
ahc_send_lstate_events(struct ahc_softc *ahc, struct ahc_tmode_lstate *lstate)
{
struct ccb_hdr *ccbh;
struct ccb_immed_notify *inot;
while (lstate->event_r_idx != lstate->event_w_idx
&& (ccbh = SLIST_FIRST(&lstate->immed_notifies)) != NULL) {
struct ahc_tmode_event *event;
event = &lstate->event_buffer[lstate->event_r_idx];
SLIST_REMOVE_HEAD(&lstate->immed_notifies, sim_links.sle);
inot = (struct ccb_immed_notify *)ccbh;
switch (event->event_type) {
case EVENT_TYPE_BUS_RESET:
ccbh->status = CAM_SCSI_BUS_RESET|CAM_DEV_QFRZN;
break;
default:
ccbh->status = CAM_MESSAGE_RECV|CAM_DEV_QFRZN;
inot->message_args[0] = event->event_type;
inot->message_args[1] = event->event_arg;
break;
}
inot->initiator_id = event->initiator_id;
inot->sense_len = 0;
xpt_done((union ccb *)inot);
lstate->event_r_idx++;
if (lstate->event_r_idx == AHC_TMODE_EVENT_BUFFER_SIZE)
lstate->event_r_idx = 0;
}
}
#endif
/******************** Sequencer Program Patching/Download *********************/
#ifdef AHC_DUMP_SEQ
void
ahc_dumpseq(struct ahc_softc* ahc)
{
int i;
ahc_outb(ahc, SEQCTL, PERRORDIS|FAILDIS|FASTMODE|LOADRAM);
ahc_outb(ahc, SEQADDR0, 0);
ahc_outb(ahc, SEQADDR1, 0);
for (i = 0; i < ahc->instruction_ram_size; i++) {
uint8_t ins_bytes[4];
ahc_insb(ahc, SEQRAM, ins_bytes, 4);
printk("0x%08x\n", ins_bytes[0] << 24
| ins_bytes[1] << 16
| ins_bytes[2] << 8
| ins_bytes[3]);
}
}
#endif
static int
ahc_loadseq(struct ahc_softc *ahc)
{
struct cs cs_table[NUM_CRITICAL_SECTIONS];
u_int begin_set[NUM_CRITICAL_SECTIONS];
u_int end_set[NUM_CRITICAL_SECTIONS];
const struct patch *cur_patch;
u_int cs_count;
u_int cur_cs;
u_int i;
u_int skip_addr;
u_int sg_prefetch_cnt;
int downloaded;
uint8_t download_consts[7];
/*
* Start out with 0 critical sections
* that apply to this firmware load.
*/
cs_count = 0;
cur_cs = 0;
memset(begin_set, 0, sizeof(begin_set));
memset(end_set, 0, sizeof(end_set));
/* Setup downloadable constant table */
download_consts[QOUTFIFO_OFFSET] = 0;
if (ahc->targetcmds != NULL)
download_consts[QOUTFIFO_OFFSET] += 32;
download_consts[QINFIFO_OFFSET] = download_consts[QOUTFIFO_OFFSET] + 1;
download_consts[CACHESIZE_MASK] = ahc->pci_cachesize - 1;
download_consts[INVERTED_CACHESIZE_MASK] = ~(ahc->pci_cachesize - 1);
sg_prefetch_cnt = ahc->pci_cachesize;
if (sg_prefetch_cnt < (2 * sizeof(struct ahc_dma_seg)))
sg_prefetch_cnt = 2 * sizeof(struct ahc_dma_seg);
download_consts[SG_PREFETCH_CNT] = sg_prefetch_cnt;
download_consts[SG_PREFETCH_ALIGN_MASK] = ~(sg_prefetch_cnt - 1);
download_consts[SG_PREFETCH_ADDR_MASK] = (sg_prefetch_cnt - 1);
cur_patch = patches;
downloaded = 0;
skip_addr = 0;
ahc_outb(ahc, SEQCTL, PERRORDIS|FAILDIS|FASTMODE|LOADRAM);
ahc_outb(ahc, SEQADDR0, 0);
ahc_outb(ahc, SEQADDR1, 0);
for (i = 0; i < sizeof(seqprog)/4; i++) {
if (ahc_check_patch(ahc, &cur_patch, i, &skip_addr) == 0) {
/*
* Don't download this instruction as it
* is in a patch that was removed.
*/
continue;
}
if (downloaded == ahc->instruction_ram_size) {
/*
* We're about to exceed the instruction
* storage capacity for this chip. Fail
* the load.
*/
printk("\n%s: Program too large for instruction memory "
"size of %d!\n", ahc_name(ahc),
ahc->instruction_ram_size);
return (ENOMEM);
}
/*
* Move through the CS table until we find a CS
* that might apply to this instruction.
*/
for (; cur_cs < NUM_CRITICAL_SECTIONS; cur_cs++) {
if (critical_sections[cur_cs].end <= i) {
if (begin_set[cs_count] == TRUE
&& end_set[cs_count] == FALSE) {
cs_table[cs_count].end = downloaded;
end_set[cs_count] = TRUE;
cs_count++;
}
continue;
}
if (critical_sections[cur_cs].begin <= i
&& begin_set[cs_count] == FALSE) {
cs_table[cs_count].begin = downloaded;
begin_set[cs_count] = TRUE;
}
break;
}
ahc_download_instr(ahc, i, download_consts);
downloaded++;
}
ahc->num_critical_sections = cs_count;
if (cs_count != 0) {
cs_count *= sizeof(struct cs);
ahc->critical_sections = kmemdup(cs_table, cs_count, GFP_ATOMIC);
if (ahc->critical_sections == NULL)
panic("ahc_loadseq: Could not malloc");
}
ahc_outb(ahc, SEQCTL, PERRORDIS|FAILDIS|FASTMODE);
if (bootverbose) {
printk(" %d instructions downloaded\n", downloaded);
printk("%s: Features 0x%x, Bugs 0x%x, Flags 0x%x\n",
ahc_name(ahc), ahc->features, ahc->bugs, ahc->flags);
}
return (0);
}
static int
ahc_check_patch(struct ahc_softc *ahc, const struct patch **start_patch,
u_int start_instr, u_int *skip_addr)
{
const struct patch *cur_patch;
const struct patch *last_patch;
u_int num_patches;
num_patches = ARRAY_SIZE(patches);
last_patch = &patches[num_patches];
cur_patch = *start_patch;
while (cur_patch < last_patch && start_instr == cur_patch->begin) {
if (cur_patch->patch_func(ahc) == 0) {
/* Start rejecting code */
*skip_addr = start_instr + cur_patch->skip_instr;
cur_patch += cur_patch->skip_patch;
} else {
/* Accepted this patch. Advance to the next
* one and wait for our intruction pointer to
* hit this point.
*/
cur_patch++;
}
}
*start_patch = cur_patch;
if (start_instr < *skip_addr)
/* Still skipping */
return (0);
return (1);
}
static void
ahc_download_instr(struct ahc_softc *ahc, u_int instrptr, uint8_t *dconsts)
{
union ins_formats instr;
struct ins_format1 *fmt1_ins;
struct ins_format3 *fmt3_ins;
u_int opcode;
/*
* The firmware is always compiled into a little endian format.
*/
instr.integer = ahc_le32toh(*(uint32_t*)&seqprog[instrptr * 4]);
fmt1_ins = &instr.format1;
fmt3_ins = NULL;
/* Pull the opcode */
opcode = instr.format1.opcode;
switch (opcode) {
case AIC_OP_JMP:
case AIC_OP_JC:
case AIC_OP_JNC:
case AIC_OP_CALL:
case AIC_OP_JNE:
case AIC_OP_JNZ:
case AIC_OP_JE:
case AIC_OP_JZ:
{
const struct patch *cur_patch;
int address_offset;
u_int address;
u_int skip_addr;
u_int i;
fmt3_ins = &instr.format3;
address_offset = 0;
address = fmt3_ins->address;
cur_patch = patches;
skip_addr = 0;
for (i = 0; i < address;) {
ahc_check_patch(ahc, &cur_patch, i, &skip_addr);
if (skip_addr > i) {
int end_addr;
end_addr = min(address, skip_addr);
address_offset += end_addr - i;
i = skip_addr;
} else {
i++;
}
}
address -= address_offset;
fmt3_ins->address = address;
}
fallthrough;
case AIC_OP_OR:
case AIC_OP_AND:
case AIC_OP_XOR:
case AIC_OP_ADD:
case AIC_OP_ADC:
case AIC_OP_BMOV:
if (fmt1_ins->parity != 0) {
fmt1_ins->immediate = dconsts[fmt1_ins->immediate];
}
fmt1_ins->parity = 0;
if ((ahc->features & AHC_CMD_CHAN) == 0
&& opcode == AIC_OP_BMOV) {
/*
* Block move was added at the same time
* as the command channel. Verify that
* this is only a move of a single element
* and convert the BMOV to a MOV
* (AND with an immediate of FF).
*/
if (fmt1_ins->immediate != 1)
panic("%s: BMOV not supported\n",
ahc_name(ahc));
fmt1_ins->opcode = AIC_OP_AND;
fmt1_ins->immediate = 0xff;
}
fallthrough;
case AIC_OP_ROL:
if ((ahc->features & AHC_ULTRA2) != 0) {
int i, count;
/* Calculate odd parity for the instruction */
for (i = 0, count = 0; i < 31; i++) {
uint32_t mask;
mask = 0x01 << i;
if ((instr.integer & mask) != 0)
count++;
}
if ((count & 0x01) == 0)
instr.format1.parity = 1;
} else {
/* Compress the instruction for older sequencers */
if (fmt3_ins != NULL) {
instr.integer =
fmt3_ins->immediate
| (fmt3_ins->source << 8)
| (fmt3_ins->address << 16)
| (fmt3_ins->opcode << 25);
} else {
instr.integer =
fmt1_ins->immediate
| (fmt1_ins->source << 8)
| (fmt1_ins->destination << 16)
| (fmt1_ins->ret << 24)
| (fmt1_ins->opcode << 25);
}
}
/* The sequencer is a little endian cpu */
instr.integer = ahc_htole32(instr.integer);
ahc_outsb(ahc, SEQRAM, instr.bytes, 4);
break;
default:
panic("Unknown opcode encountered in seq program");
break;
}
}
int
ahc_print_register(const ahc_reg_parse_entry_t *table, u_int num_entries,
const char *name, u_int address, u_int value,
u_int *cur_column, u_int wrap_point)
{
int printed;
u_int printed_mask;
if (cur_column != NULL && *cur_column >= wrap_point) {
printk("\n");
*cur_column = 0;
}
printed = printk("%s[0x%x]", name, value);
if (table == NULL) {
printed += printk(" ");
*cur_column += printed;
return (printed);
}
printed_mask = 0;
while (printed_mask != 0xFF) {
int entry;
for (entry = 0; entry < num_entries; entry++) {
if (((value & table[entry].mask)
!= table[entry].value)
|| ((printed_mask & table[entry].mask)
== table[entry].mask))
continue;
printed += printk("%s%s",
printed_mask == 0 ? ":(" : "|",
table[entry].name);
printed_mask |= table[entry].mask;
break;
}
if (entry >= num_entries)
break;
}
if (printed_mask != 0)
printed += printk(") ");
else
printed += printk(" ");
if (cur_column != NULL)
*cur_column += printed;
return (printed);
}
void
ahc_dump_card_state(struct ahc_softc *ahc)
{
struct scb *scb;
struct scb_tailq *untagged_q;
u_int cur_col;
int paused;
int target;
int maxtarget;
int i;
uint8_t last_phase;
uint8_t qinpos;
uint8_t qintail;
uint8_t qoutpos;
uint8_t scb_index;
uint8_t saved_scbptr;
if (ahc_is_paused(ahc)) {
paused = 1;
} else {
paused = 0;
ahc_pause(ahc);
}
saved_scbptr = ahc_inb(ahc, SCBPTR);
last_phase = ahc_inb(ahc, LASTPHASE);
printk(">>>>>>>>>>>>>>>>>> Dump Card State Begins <<<<<<<<<<<<<<<<<\n"
"%s: Dumping Card State %s, at SEQADDR 0x%x\n",
ahc_name(ahc), ahc_lookup_phase_entry(last_phase)->phasemsg,
ahc_inb(ahc, SEQADDR0) | (ahc_inb(ahc, SEQADDR1) << 8));
if (paused)
printk("Card was paused\n");
printk("ACCUM = 0x%x, SINDEX = 0x%x, DINDEX = 0x%x, ARG_2 = 0x%x\n",
ahc_inb(ahc, ACCUM), ahc_inb(ahc, SINDEX), ahc_inb(ahc, DINDEX),
ahc_inb(ahc, ARG_2));
printk("HCNT = 0x%x SCBPTR = 0x%x\n", ahc_inb(ahc, HCNT),
ahc_inb(ahc, SCBPTR));
cur_col = 0;
if ((ahc->features & AHC_DT) != 0)
ahc_scsiphase_print(ahc_inb(ahc, SCSIPHASE), &cur_col, 50);
ahc_scsisigi_print(ahc_inb(ahc, SCSISIGI), &cur_col, 50);
ahc_error_print(ahc_inb(ahc, ERROR), &cur_col, 50);
ahc_scsibusl_print(ahc_inb(ahc, SCSIBUSL), &cur_col, 50);
ahc_lastphase_print(ahc_inb(ahc, LASTPHASE), &cur_col, 50);
ahc_scsiseq_print(ahc_inb(ahc, SCSISEQ), &cur_col, 50);
ahc_sblkctl_print(ahc_inb(ahc, SBLKCTL), &cur_col, 50);
ahc_scsirate_print(ahc_inb(ahc, SCSIRATE), &cur_col, 50);
ahc_seqctl_print(ahc_inb(ahc, SEQCTL), &cur_col, 50);
ahc_seq_flags_print(ahc_inb(ahc, SEQ_FLAGS), &cur_col, 50);
ahc_sstat0_print(ahc_inb(ahc, SSTAT0), &cur_col, 50);
ahc_sstat1_print(ahc_inb(ahc, SSTAT1), &cur_col, 50);
ahc_sstat2_print(ahc_inb(ahc, SSTAT2), &cur_col, 50);
ahc_sstat3_print(ahc_inb(ahc, SSTAT3), &cur_col, 50);
ahc_simode0_print(ahc_inb(ahc, SIMODE0), &cur_col, 50);
ahc_simode1_print(ahc_inb(ahc, SIMODE1), &cur_col, 50);
ahc_sxfrctl0_print(ahc_inb(ahc, SXFRCTL0), &cur_col, 50);
ahc_dfcntrl_print(ahc_inb(ahc, DFCNTRL), &cur_col, 50);
ahc_dfstatus_print(ahc_inb(ahc, DFSTATUS), &cur_col, 50);
if (cur_col != 0)
printk("\n");
printk("STACK:");
for (i = 0; i < STACK_SIZE; i++)
printk(" 0x%x", ahc_inb(ahc, STACK)|(ahc_inb(ahc, STACK) << 8));
printk("\nSCB count = %d\n", ahc->scb_data->numscbs);
printk("Kernel NEXTQSCB = %d\n", ahc->next_queued_scb->hscb->tag);
printk("Card NEXTQSCB = %d\n", ahc_inb(ahc, NEXT_QUEUED_SCB));
/* QINFIFO */
printk("QINFIFO entries: ");
if ((ahc->features & AHC_QUEUE_REGS) != 0) {
qinpos = ahc_inb(ahc, SNSCB_QOFF);
ahc_outb(ahc, SNSCB_QOFF, qinpos);
} else
qinpos = ahc_inb(ahc, QINPOS);
qintail = ahc->qinfifonext;
while (qinpos != qintail) {
printk("%d ", ahc->qinfifo[qinpos]);
qinpos++;
}
printk("\n");
printk("Waiting Queue entries: ");
scb_index = ahc_inb(ahc, WAITING_SCBH);
i = 0;
while (scb_index != SCB_LIST_NULL && i++ < 256) {
ahc_outb(ahc, SCBPTR, scb_index);
printk("%d:%d ", scb_index, ahc_inb(ahc, SCB_TAG));
scb_index = ahc_inb(ahc, SCB_NEXT);
}
printk("\n");
printk("Disconnected Queue entries: ");
scb_index = ahc_inb(ahc, DISCONNECTED_SCBH);
i = 0;
while (scb_index != SCB_LIST_NULL && i++ < 256) {
ahc_outb(ahc, SCBPTR, scb_index);
printk("%d:%d ", scb_index, ahc_inb(ahc, SCB_TAG));
scb_index = ahc_inb(ahc, SCB_NEXT);
}
printk("\n");
ahc_sync_qoutfifo(ahc, BUS_DMASYNC_POSTREAD);
printk("QOUTFIFO entries: ");
qoutpos = ahc->qoutfifonext;
i = 0;
while (ahc->qoutfifo[qoutpos] != SCB_LIST_NULL && i++ < 256) {
printk("%d ", ahc->qoutfifo[qoutpos]);
qoutpos++;
}
printk("\n");
printk("Sequencer Free SCB List: ");
scb_index = ahc_inb(ahc, FREE_SCBH);
i = 0;
while (scb_index != SCB_LIST_NULL && i++ < 256) {
ahc_outb(ahc, SCBPTR, scb_index);
printk("%d ", scb_index);
scb_index = ahc_inb(ahc, SCB_NEXT);
}
printk("\n");
printk("Sequencer SCB Info: ");
for (i = 0; i < ahc->scb_data->maxhscbs; i++) {
ahc_outb(ahc, SCBPTR, i);
cur_col = printk("\n%3d ", i);
ahc_scb_control_print(ahc_inb(ahc, SCB_CONTROL), &cur_col, 60);
ahc_scb_scsiid_print(ahc_inb(ahc, SCB_SCSIID), &cur_col, 60);
ahc_scb_lun_print(ahc_inb(ahc, SCB_LUN), &cur_col, 60);
ahc_scb_tag_print(ahc_inb(ahc, SCB_TAG), &cur_col, 60);
}
printk("\n");
printk("Pending list: ");
i = 0;
LIST_FOREACH(scb, &ahc->pending_scbs, pending_links) {
if (i++ > 256)
break;
cur_col = printk("\n%3d ", scb->hscb->tag);
ahc_scb_control_print(scb->hscb->control, &cur_col, 60);
ahc_scb_scsiid_print(scb->hscb->scsiid, &cur_col, 60);
ahc_scb_lun_print(scb->hscb->lun, &cur_col, 60);
if ((ahc->flags & AHC_PAGESCBS) == 0) {
ahc_outb(ahc, SCBPTR, scb->hscb->tag);
printk("(");
ahc_scb_control_print(ahc_inb(ahc, SCB_CONTROL),
&cur_col, 60);
ahc_scb_tag_print(ahc_inb(ahc, SCB_TAG), &cur_col, 60);
printk(")");
}
}
printk("\n");
printk("Kernel Free SCB list: ");
i = 0;
SLIST_FOREACH(scb, &ahc->scb_data->free_scbs, links.sle) {
if (i++ > 256)
break;
printk("%d ", scb->hscb->tag);
}
printk("\n");
maxtarget = (ahc->features & (AHC_WIDE|AHC_TWIN)) ? 15 : 7;
for (target = 0; target <= maxtarget; target++) {
untagged_q = &ahc->untagged_queues[target];
if (TAILQ_FIRST(untagged_q) == NULL)
continue;
printk("Untagged Q(%d): ", target);
i = 0;
TAILQ_FOREACH(scb, untagged_q, links.tqe) {
if (i++ > 256)
break;
printk("%d ", scb->hscb->tag);
}
printk("\n");
}
printk("\n<<<<<<<<<<<<<<<<< Dump Card State Ends >>>>>>>>>>>>>>>>>>\n");
ahc_outb(ahc, SCBPTR, saved_scbptr);
if (paused == 0)
ahc_unpause(ahc);
}
/************************* Target Mode ****************************************/
#ifdef AHC_TARGET_MODE
cam_status
ahc_find_tmode_devs(struct ahc_softc *ahc, struct cam_sim *sim, union ccb *ccb,
struct ahc_tmode_tstate **tstate,
struct ahc_tmode_lstate **lstate,
int notfound_failure)
{
if ((ahc->features & AHC_TARGETMODE) == 0)
return (CAM_REQ_INVALID);
/*
* Handle the 'black hole' device that sucks up
* requests to unattached luns on enabled targets.
*/
if (ccb->ccb_h.target_id == CAM_TARGET_WILDCARD
&& ccb->ccb_h.target_lun == CAM_LUN_WILDCARD) {
*tstate = NULL;
*lstate = ahc->black_hole;
} else {
u_int max_id;
max_id = (ahc->features & AHC_WIDE) ? 16 : 8;
if (ccb->ccb_h.target_id >= max_id)
return (CAM_TID_INVALID);
if (ccb->ccb_h.target_lun >= AHC_NUM_LUNS)
return (CAM_LUN_INVALID);
*tstate = ahc->enabled_targets[ccb->ccb_h.target_id];
*lstate = NULL;
if (*tstate != NULL)
*lstate =
(*tstate)->enabled_luns[ccb->ccb_h.target_lun];
}
if (notfound_failure != 0 && *lstate == NULL)
return (CAM_PATH_INVALID);
return (CAM_REQ_CMP);
}
void
ahc_handle_en_lun(struct ahc_softc *ahc, struct cam_sim *sim, union ccb *ccb)
{
struct ahc_tmode_tstate *tstate;
struct ahc_tmode_lstate *lstate;
struct ccb_en_lun *cel;
cam_status status;
u_long s;
u_int target;
u_int lun;
u_int target_mask;
u_int our_id;
int error;
char channel;
status = ahc_find_tmode_devs(ahc, sim, ccb, &tstate, &lstate,
/*notfound_failure*/FALSE);
if (status != CAM_REQ_CMP) {
ccb->ccb_h.status = status;
return;
}
if (cam_sim_bus(sim) == 0)
our_id = ahc->our_id;
else
our_id = ahc->our_id_b;
if (ccb->ccb_h.target_id != our_id) {
/*
* our_id represents our initiator ID, or
* the ID of the first target to have an
* enabled lun in target mode. There are
* two cases that may preclude enabling a
* target id other than our_id.
*
* o our_id is for an active initiator role.
* Since the hardware does not support
* reselections to the initiator role at
* anything other than our_id, and our_id
* is used by the hardware to indicate the
* ID to use for both select-out and
* reselect-out operations, the only target
* ID we can support in this mode is our_id.
*
* o The MULTARGID feature is not available and
* a previous target mode ID has been enabled.
*/
if ((ahc->features & AHC_MULTIROLE) != 0) {
if ((ahc->features & AHC_MULTI_TID) != 0
&& (ahc->flags & AHC_INITIATORROLE) != 0) {
/*
* Only allow additional targets if
* the initiator role is disabled.
* The hardware cannot handle a re-select-in
* on the initiator id during a re-select-out
* on a different target id.
*/
status = CAM_TID_INVALID;
} else if ((ahc->flags & AHC_INITIATORROLE) != 0
|| ahc->enabled_luns > 0) {
/*
* Only allow our target id to change
* if the initiator role is not configured
* and there are no enabled luns which
* are attached to the currently registered
* scsi id.
*/
status = CAM_TID_INVALID;
}
} else if ((ahc->features & AHC_MULTI_TID) == 0
&& ahc->enabled_luns > 0) {
status = CAM_TID_INVALID;
}
}
if (status != CAM_REQ_CMP) {
ccb->ccb_h.status = status;
return;
}
/*
* We now have an id that is valid.
* If we aren't in target mode, switch modes.
*/
if ((ahc->flags & AHC_TARGETROLE) == 0
&& ccb->ccb_h.target_id != CAM_TARGET_WILDCARD) {
u_long s;
ahc_flag saved_flags;
printk("Configuring Target Mode\n");
ahc_lock(ahc, &s);
if (LIST_FIRST(&ahc->pending_scbs) != NULL) {
ccb->ccb_h.status = CAM_BUSY;
ahc_unlock(ahc, &s);
return;
}
saved_flags = ahc->flags;
ahc->flags |= AHC_TARGETROLE;
if ((ahc->features & AHC_MULTIROLE) == 0)
ahc->flags &= ~AHC_INITIATORROLE;
ahc_pause(ahc);
error = ahc_loadseq(ahc);
if (error != 0) {
/*
* Restore original configuration and notify
* the caller that we cannot support target mode.
* Since the adapter started out in this
* configuration, the firmware load will succeed,
* so there is no point in checking ahc_loadseq's
* return value.
*/
ahc->flags = saved_flags;
(void)ahc_loadseq(ahc);
ahc_restart(ahc);
ahc_unlock(ahc, &s);
ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
return;
}
ahc_restart(ahc);
ahc_unlock(ahc, &s);
}
cel = &ccb->cel;
target = ccb->ccb_h.target_id;
lun = ccb->ccb_h.target_lun;
channel = SIM_CHANNEL(ahc, sim);
target_mask = 0x01 << target;
if (channel == 'B')
target_mask <<= 8;
if (cel->enable != 0) {
u_int scsiseq;
/* Are we already enabled?? */
if (lstate != NULL) {
xpt_print_path(ccb->ccb_h.path);
printk("Lun already enabled\n");
ccb->ccb_h.status = CAM_LUN_ALRDY_ENA;
return;
}
if (cel->grp6_len != 0
|| cel->grp7_len != 0) {
/*
* Don't (yet?) support vendor
* specific commands.
*/
ccb->ccb_h.status = CAM_REQ_INVALID;
printk("Non-zero Group Codes\n");
return;
}
/*
* Seems to be okay.
* Setup our data structures.
*/
if (target != CAM_TARGET_WILDCARD && tstate == NULL) {
tstate = ahc_alloc_tstate(ahc, target, channel);
if (tstate == NULL) {
xpt_print_path(ccb->ccb_h.path);
printk("Couldn't allocate tstate\n");
ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
return;
}
}
lstate = kzalloc(sizeof(*lstate), GFP_ATOMIC);
if (lstate == NULL) {
xpt_print_path(ccb->ccb_h.path);
printk("Couldn't allocate lstate\n");
ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
return;
}
status = xpt_create_path(&lstate->path, /*periph*/NULL,
xpt_path_path_id(ccb->ccb_h.path),
xpt_path_target_id(ccb->ccb_h.path),
xpt_path_lun_id(ccb->ccb_h.path));
if (status != CAM_REQ_CMP) {
kfree(lstate);
xpt_print_path(ccb->ccb_h.path);
printk("Couldn't allocate path\n");
ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
return;
}
SLIST_INIT(&lstate->accept_tios);
SLIST_INIT(&lstate->immed_notifies);
ahc_lock(ahc, &s);
ahc_pause(ahc);
if (target != CAM_TARGET_WILDCARD) {
tstate->enabled_luns[lun] = lstate;
ahc->enabled_luns++;
if ((ahc->features & AHC_MULTI_TID) != 0) {
u_int targid_mask;
targid_mask = ahc_inb(ahc, TARGID)
| (ahc_inb(ahc, TARGID + 1) << 8);
targid_mask |= target_mask;
ahc_outb(ahc, TARGID, targid_mask);
ahc_outb(ahc, TARGID+1, (targid_mask >> 8));
ahc_update_scsiid(ahc, targid_mask);
} else {
u_int our_id;
char channel;
channel = SIM_CHANNEL(ahc, sim);
our_id = SIM_SCSI_ID(ahc, sim);
/*
* This can only happen if selections
* are not enabled
*/
if (target != our_id) {
u_int sblkctl;
char cur_channel;
int swap;
sblkctl = ahc_inb(ahc, SBLKCTL);
cur_channel = (sblkctl & SELBUSB)
? 'B' : 'A';
if ((ahc->features & AHC_TWIN) == 0)
cur_channel = 'A';
swap = cur_channel != channel;
if (channel == 'A')
ahc->our_id = target;
else
ahc->our_id_b = target;
if (swap)
ahc_outb(ahc, SBLKCTL,
sblkctl ^ SELBUSB);
ahc_outb(ahc, SCSIID, target);
if (swap)
ahc_outb(ahc, SBLKCTL, sblkctl);
}
}
} else
ahc->black_hole = lstate;
/* Allow select-in operations */
if (ahc->black_hole != NULL && ahc->enabled_luns > 0) {
scsiseq = ahc_inb(ahc, SCSISEQ_TEMPLATE);
scsiseq |= ENSELI;
ahc_outb(ahc, SCSISEQ_TEMPLATE, scsiseq);
scsiseq = ahc_inb(ahc, SCSISEQ);
scsiseq |= ENSELI;
ahc_outb(ahc, SCSISEQ, scsiseq);
}
ahc_unpause(ahc);
ahc_unlock(ahc, &s);
ccb->ccb_h.status = CAM_REQ_CMP;
xpt_print_path(ccb->ccb_h.path);
printk("Lun now enabled for target mode\n");
} else {
struct scb *scb;
int i, empty;
if (lstate == NULL) {
ccb->ccb_h.status = CAM_LUN_INVALID;
return;
}
ahc_lock(ahc, &s);
ccb->ccb_h.status = CAM_REQ_CMP;
LIST_FOREACH(scb, &ahc->pending_scbs, pending_links) {
struct ccb_hdr *ccbh;
ccbh = &scb->io_ctx->ccb_h;
if (ccbh->func_code == XPT_CONT_TARGET_IO
&& !xpt_path_comp(ccbh->path, ccb->ccb_h.path)){
printk("CTIO pending\n");
ccb->ccb_h.status = CAM_REQ_INVALID;
ahc_unlock(ahc, &s);
return;
}
}
if (SLIST_FIRST(&lstate->accept_tios) != NULL) {
printk("ATIOs pending\n");
ccb->ccb_h.status = CAM_REQ_INVALID;
}
if (SLIST_FIRST(&lstate->immed_notifies) != NULL) {
printk("INOTs pending\n");
ccb->ccb_h.status = CAM_REQ_INVALID;
}
if (ccb->ccb_h.status != CAM_REQ_CMP) {
ahc_unlock(ahc, &s);
return;
}
xpt_print_path(ccb->ccb_h.path);
printk("Target mode disabled\n");
xpt_free_path(lstate->path);
kfree(lstate);
ahc_pause(ahc);
/* Can we clean up the target too? */
if (target != CAM_TARGET_WILDCARD) {
tstate->enabled_luns[lun] = NULL;
ahc->enabled_luns--;
for (empty = 1, i = 0; i < 8; i++)
if (tstate->enabled_luns[i] != NULL) {
empty = 0;
break;
}
if (empty) {
ahc_free_tstate(ahc, target, channel,
/*force*/FALSE);
if (ahc->features & AHC_MULTI_TID) {
u_int targid_mask;
targid_mask = ahc_inb(ahc, TARGID)
| (ahc_inb(ahc, TARGID + 1)
<< 8);
targid_mask &= ~target_mask;
ahc_outb(ahc, TARGID, targid_mask);
ahc_outb(ahc, TARGID+1,
(targid_mask >> 8));
ahc_update_scsiid(ahc, targid_mask);
}
}
} else {
ahc->black_hole = NULL;
/*
* We can't allow selections without
* our black hole device.
*/
empty = TRUE;
}
if (ahc->enabled_luns == 0) {
/* Disallow select-in */
u_int scsiseq;
scsiseq = ahc_inb(ahc, SCSISEQ_TEMPLATE);
scsiseq &= ~ENSELI;
ahc_outb(ahc, SCSISEQ_TEMPLATE, scsiseq);
scsiseq = ahc_inb(ahc, SCSISEQ);
scsiseq &= ~ENSELI;
ahc_outb(ahc, SCSISEQ, scsiseq);
if ((ahc->features & AHC_MULTIROLE) == 0) {
printk("Configuring Initiator Mode\n");
ahc->flags &= ~AHC_TARGETROLE;
ahc->flags |= AHC_INITIATORROLE;
/*
* Returning to a configuration that
* fit previously will always succeed.
*/
(void)ahc_loadseq(ahc);
ahc_restart(ahc);
/*
* Unpaused. The extra unpause
* that follows is harmless.
*/
}
}
ahc_unpause(ahc);
ahc_unlock(ahc, &s);
}
}
static void
ahc_update_scsiid(struct ahc_softc *ahc, u_int targid_mask)
{
u_int scsiid_mask;
u_int scsiid;
if ((ahc->features & AHC_MULTI_TID) == 0)
panic("ahc_update_scsiid called on non-multitid unit\n");
/*
* Since we will rely on the TARGID mask
* for selection enables, ensure that OID
* in SCSIID is not set to some other ID
* that we don't want to allow selections on.
*/
if ((ahc->features & AHC_ULTRA2) != 0)
scsiid = ahc_inb(ahc, SCSIID_ULTRA2);
else
scsiid = ahc_inb(ahc, SCSIID);
scsiid_mask = 0x1 << (scsiid & OID);
if ((targid_mask & scsiid_mask) == 0) {
u_int our_id;
/* ffs counts from 1 */
our_id = ffs(targid_mask);
if (our_id == 0)
our_id = ahc->our_id;
else
our_id--;
scsiid &= TID;
scsiid |= our_id;
}
if ((ahc->features & AHC_ULTRA2) != 0)
ahc_outb(ahc, SCSIID_ULTRA2, scsiid);
else
ahc_outb(ahc, SCSIID, scsiid);
}
static void
ahc_run_tqinfifo(struct ahc_softc *ahc, int paused)
{
struct target_cmd *cmd;
/*
* If the card supports auto-access pause,
* we can access the card directly regardless
* of whether it is paused or not.
*/
if ((ahc->features & AHC_AUTOPAUSE) != 0)
paused = TRUE;
ahc_sync_tqinfifo(ahc, BUS_DMASYNC_POSTREAD);
while ((cmd = &ahc->targetcmds[ahc->tqinfifonext])->cmd_valid != 0) {
/*
* Only advance through the queue if we
* have the resources to process the command.
*/
if (ahc_handle_target_cmd(ahc, cmd) != 0)
break;
cmd->cmd_valid = 0;
ahc_dmamap_sync(ahc, ahc->shared_data_dmat,
ahc->shared_data_dmamap,
ahc_targetcmd_offset(ahc, ahc->tqinfifonext),
sizeof(struct target_cmd),
BUS_DMASYNC_PREREAD);
ahc->tqinfifonext++;
/*
* Lazily update our position in the target mode incoming
* command queue as seen by the sequencer.
*/
if ((ahc->tqinfifonext & (HOST_TQINPOS - 1)) == 1) {
if ((ahc->features & AHC_HS_MAILBOX) != 0) {
u_int hs_mailbox;
hs_mailbox = ahc_inb(ahc, HS_MAILBOX);
hs_mailbox &= ~HOST_TQINPOS;
hs_mailbox |= ahc->tqinfifonext & HOST_TQINPOS;
ahc_outb(ahc, HS_MAILBOX, hs_mailbox);
} else {
if (!paused)
ahc_pause(ahc);
ahc_outb(ahc, KERNEL_TQINPOS,
ahc->tqinfifonext & HOST_TQINPOS);
if (!paused)
ahc_unpause(ahc);
}
}
}
}
static int
ahc_handle_target_cmd(struct ahc_softc *ahc, struct target_cmd *cmd)
{
struct ahc_tmode_tstate *tstate;
struct ahc_tmode_lstate *lstate;
struct ccb_accept_tio *atio;
uint8_t *byte;
int initiator;
int target;
int lun;
initiator = SCSIID_TARGET(ahc, cmd->scsiid);
target = SCSIID_OUR_ID(cmd->scsiid);
lun = (cmd->identify & MSG_IDENTIFY_LUNMASK);
byte = cmd->bytes;
tstate = ahc->enabled_targets[target];
lstate = NULL;
if (tstate != NULL)
lstate = tstate->enabled_luns[lun];
/*
* Commands for disabled luns go to the black hole driver.
*/
if (lstate == NULL)
lstate = ahc->black_hole;
atio = (struct ccb_accept_tio*)SLIST_FIRST(&lstate->accept_tios);
if (atio == NULL) {
ahc->flags |= AHC_TQINFIFO_BLOCKED;
/*
* Wait for more ATIOs from the peripheral driver for this lun.
*/
if (bootverbose)
printk("%s: ATIOs exhausted\n", ahc_name(ahc));
return (1);
} else
ahc->flags &= ~AHC_TQINFIFO_BLOCKED;
#if 0
printk("Incoming command from %d for %d:%d%s\n",
initiator, target, lun,
lstate == ahc->black_hole ? "(Black Holed)" : "");
#endif
SLIST_REMOVE_HEAD(&lstate->accept_tios, sim_links.sle);
if (lstate == ahc->black_hole) {
/* Fill in the wildcards */
atio->ccb_h.target_id = target;
atio->ccb_h.target_lun = lun;
}
/*
* Package it up and send it off to
* whomever has this lun enabled.
*/
atio->sense_len = 0;
atio->init_id = initiator;
if (byte[0] != 0xFF) {
/* Tag was included */
atio->tag_action = *byte++;
atio->tag_id = *byte++;
atio->ccb_h.flags = CAM_TAG_ACTION_VALID;
} else {
atio->ccb_h.flags = 0;
}
byte++;
/* Okay. Now determine the cdb size based on the command code */
switch (*byte >> CMD_GROUP_CODE_SHIFT) {
case 0:
atio->cdb_len = 6;
break;
case 1:
case 2:
atio->cdb_len = 10;
break;
case 4:
atio->cdb_len = 16;
break;
case 5:
atio->cdb_len = 12;
break;
case 3:
default:
/* Only copy the opcode. */
atio->cdb_len = 1;
printk("Reserved or VU command code type encountered\n");
break;
}
memcpy(atio->cdb_io.cdb_bytes, byte, atio->cdb_len);
atio->ccb_h.status |= CAM_CDB_RECVD;
if ((cmd->identify & MSG_IDENTIFY_DISCFLAG) == 0) {
/*
* We weren't allowed to disconnect.
* We're hanging on the bus until a
* continue target I/O comes in response
* to this accept tio.
*/
#if 0
printk("Received Immediate Command %d:%d:%d - %p\n",
initiator, target, lun, ahc->pending_device);
#endif
ahc->pending_device = lstate;
ahc_freeze_ccb((union ccb *)atio);
atio->ccb_h.flags |= CAM_DIS_DISCONNECT;
}
xpt_done((union ccb*)atio);
return (0);
}
#endif