forked from Minki/linux
be3468e8ff
Simplify code flow and make sure return value is always valid since further driver init depends on it. Carve out long warning string and make code more readable. Shorten some names, while at it. There should be no functional change resulting from this patch. Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
3227 lines
91 KiB
C
3227 lines
91 KiB
C
#include "amd64_edac.h"
|
|
#include <asm/k8.h>
|
|
|
|
static struct edac_pci_ctl_info *amd64_ctl_pci;
|
|
|
|
static int report_gart_errors;
|
|
module_param(report_gart_errors, int, 0644);
|
|
|
|
/*
|
|
* Set by command line parameter. If BIOS has enabled the ECC, this override is
|
|
* cleared to prevent re-enabling the hardware by this driver.
|
|
*/
|
|
static int ecc_enable_override;
|
|
module_param(ecc_enable_override, int, 0644);
|
|
|
|
/* Lookup table for all possible MC control instances */
|
|
struct amd64_pvt;
|
|
static struct mem_ctl_info *mci_lookup[MAX_NUMNODES];
|
|
static struct amd64_pvt *pvt_lookup[MAX_NUMNODES];
|
|
|
|
/*
|
|
* See F2x80 for K8 and F2x[1,0]80 for Fam10 and later. The table below is only
|
|
* for DDR2 DRAM mapping.
|
|
*/
|
|
u32 revf_quad_ddr2_shift[] = {
|
|
0, /* 0000b NULL DIMM (128mb) */
|
|
28, /* 0001b 256mb */
|
|
29, /* 0010b 512mb */
|
|
29, /* 0011b 512mb */
|
|
29, /* 0100b 512mb */
|
|
30, /* 0101b 1gb */
|
|
30, /* 0110b 1gb */
|
|
31, /* 0111b 2gb */
|
|
31, /* 1000b 2gb */
|
|
32, /* 1001b 4gb */
|
|
32, /* 1010b 4gb */
|
|
33, /* 1011b 8gb */
|
|
0, /* 1100b future */
|
|
0, /* 1101b future */
|
|
0, /* 1110b future */
|
|
0 /* 1111b future */
|
|
};
|
|
|
|
/*
|
|
* Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
|
|
* bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
|
|
* or higher value'.
|
|
*
|
|
*FIXME: Produce a better mapping/linearisation.
|
|
*/
|
|
|
|
struct scrubrate scrubrates[] = {
|
|
{ 0x01, 1600000000UL},
|
|
{ 0x02, 800000000UL},
|
|
{ 0x03, 400000000UL},
|
|
{ 0x04, 200000000UL},
|
|
{ 0x05, 100000000UL},
|
|
{ 0x06, 50000000UL},
|
|
{ 0x07, 25000000UL},
|
|
{ 0x08, 12284069UL},
|
|
{ 0x09, 6274509UL},
|
|
{ 0x0A, 3121951UL},
|
|
{ 0x0B, 1560975UL},
|
|
{ 0x0C, 781440UL},
|
|
{ 0x0D, 390720UL},
|
|
{ 0x0E, 195300UL},
|
|
{ 0x0F, 97650UL},
|
|
{ 0x10, 48854UL},
|
|
{ 0x11, 24427UL},
|
|
{ 0x12, 12213UL},
|
|
{ 0x13, 6101UL},
|
|
{ 0x14, 3051UL},
|
|
{ 0x15, 1523UL},
|
|
{ 0x16, 761UL},
|
|
{ 0x00, 0UL}, /* scrubbing off */
|
|
};
|
|
|
|
/*
|
|
* Memory scrubber control interface. For K8, memory scrubbing is handled by
|
|
* hardware and can involve L2 cache, dcache as well as the main memory. With
|
|
* F10, this is extended to L3 cache scrubbing on CPU models sporting that
|
|
* functionality.
|
|
*
|
|
* This causes the "units" for the scrubbing speed to vary from 64 byte blocks
|
|
* (dram) over to cache lines. This is nasty, so we will use bandwidth in
|
|
* bytes/sec for the setting.
|
|
*
|
|
* Currently, we only do dram scrubbing. If the scrubbing is done in software on
|
|
* other archs, we might not have access to the caches directly.
|
|
*/
|
|
|
|
/*
|
|
* scan the scrub rate mapping table for a close or matching bandwidth value to
|
|
* issue. If requested is too big, then use last maximum value found.
|
|
*/
|
|
static int amd64_search_set_scrub_rate(struct pci_dev *ctl, u32 new_bw,
|
|
u32 min_scrubrate)
|
|
{
|
|
u32 scrubval;
|
|
int i;
|
|
|
|
/*
|
|
* map the configured rate (new_bw) to a value specific to the AMD64
|
|
* memory controller and apply to register. Search for the first
|
|
* bandwidth entry that is greater or equal than the setting requested
|
|
* and program that. If at last entry, turn off DRAM scrubbing.
|
|
*/
|
|
for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
|
|
/*
|
|
* skip scrub rates which aren't recommended
|
|
* (see F10 BKDG, F3x58)
|
|
*/
|
|
if (scrubrates[i].scrubval < min_scrubrate)
|
|
continue;
|
|
|
|
if (scrubrates[i].bandwidth <= new_bw)
|
|
break;
|
|
|
|
/*
|
|
* if no suitable bandwidth found, turn off DRAM scrubbing
|
|
* entirely by falling back to the last element in the
|
|
* scrubrates array.
|
|
*/
|
|
}
|
|
|
|
scrubval = scrubrates[i].scrubval;
|
|
if (scrubval)
|
|
edac_printk(KERN_DEBUG, EDAC_MC,
|
|
"Setting scrub rate bandwidth: %u\n",
|
|
scrubrates[i].bandwidth);
|
|
else
|
|
edac_printk(KERN_DEBUG, EDAC_MC, "Turning scrubbing off.\n");
|
|
|
|
pci_write_bits32(ctl, K8_SCRCTRL, scrubval, 0x001F);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 *bandwidth)
|
|
{
|
|
struct amd64_pvt *pvt = mci->pvt_info;
|
|
u32 min_scrubrate = 0x0;
|
|
|
|
switch (boot_cpu_data.x86) {
|
|
case 0xf:
|
|
min_scrubrate = K8_MIN_SCRUB_RATE_BITS;
|
|
break;
|
|
case 0x10:
|
|
min_scrubrate = F10_MIN_SCRUB_RATE_BITS;
|
|
break;
|
|
case 0x11:
|
|
min_scrubrate = F11_MIN_SCRUB_RATE_BITS;
|
|
break;
|
|
|
|
default:
|
|
amd64_printk(KERN_ERR, "Unsupported family!\n");
|
|
break;
|
|
}
|
|
return amd64_search_set_scrub_rate(pvt->misc_f3_ctl, *bandwidth,
|
|
min_scrubrate);
|
|
}
|
|
|
|
static int amd64_get_scrub_rate(struct mem_ctl_info *mci, u32 *bw)
|
|
{
|
|
struct amd64_pvt *pvt = mci->pvt_info;
|
|
u32 scrubval = 0;
|
|
int status = -1, i, ret = 0;
|
|
|
|
ret = pci_read_config_dword(pvt->misc_f3_ctl, K8_SCRCTRL, &scrubval);
|
|
if (ret)
|
|
debugf0("Reading K8_SCRCTRL failed\n");
|
|
|
|
scrubval = scrubval & 0x001F;
|
|
|
|
edac_printk(KERN_DEBUG, EDAC_MC,
|
|
"pci-read, sdram scrub control value: %d \n", scrubval);
|
|
|
|
for (i = 0; ARRAY_SIZE(scrubrates); i++) {
|
|
if (scrubrates[i].scrubval == scrubval) {
|
|
*bw = scrubrates[i].bandwidth;
|
|
status = 0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
/* Map from a CSROW entry to the mask entry that operates on it */
|
|
static inline u32 amd64_map_to_dcs_mask(struct amd64_pvt *pvt, int csrow)
|
|
{
|
|
return csrow >> (pvt->num_dcsm >> 3);
|
|
}
|
|
|
|
/* return the 'base' address the i'th CS entry of the 'dct' DRAM controller */
|
|
static u32 amd64_get_dct_base(struct amd64_pvt *pvt, int dct, int csrow)
|
|
{
|
|
if (dct == 0)
|
|
return pvt->dcsb0[csrow];
|
|
else
|
|
return pvt->dcsb1[csrow];
|
|
}
|
|
|
|
/*
|
|
* Return the 'mask' address the i'th CS entry. This function is needed because
|
|
* there number of DCSM registers on Rev E and prior vs Rev F and later is
|
|
* different.
|
|
*/
|
|
static u32 amd64_get_dct_mask(struct amd64_pvt *pvt, int dct, int csrow)
|
|
{
|
|
if (dct == 0)
|
|
return pvt->dcsm0[amd64_map_to_dcs_mask(pvt, csrow)];
|
|
else
|
|
return pvt->dcsm1[amd64_map_to_dcs_mask(pvt, csrow)];
|
|
}
|
|
|
|
|
|
/*
|
|
* In *base and *limit, pass back the full 40-bit base and limit physical
|
|
* addresses for the node given by node_id. This information is obtained from
|
|
* DRAM Base (section 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers. The
|
|
* base and limit addresses are of type SysAddr, as defined at the start of
|
|
* section 3.4.4 (p. 70). They are the lowest and highest physical addresses
|
|
* in the address range they represent.
|
|
*/
|
|
static void amd64_get_base_and_limit(struct amd64_pvt *pvt, int node_id,
|
|
u64 *base, u64 *limit)
|
|
{
|
|
*base = pvt->dram_base[node_id];
|
|
*limit = pvt->dram_limit[node_id];
|
|
}
|
|
|
|
/*
|
|
* Return 1 if the SysAddr given by sys_addr matches the base/limit associated
|
|
* with node_id
|
|
*/
|
|
static int amd64_base_limit_match(struct amd64_pvt *pvt,
|
|
u64 sys_addr, int node_id)
|
|
{
|
|
u64 base, limit, addr;
|
|
|
|
amd64_get_base_and_limit(pvt, node_id, &base, &limit);
|
|
|
|
/* The K8 treats this as a 40-bit value. However, bits 63-40 will be
|
|
* all ones if the most significant implemented address bit is 1.
|
|
* Here we discard bits 63-40. See section 3.4.2 of AMD publication
|
|
* 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
|
|
* Application Programming.
|
|
*/
|
|
addr = sys_addr & 0x000000ffffffffffull;
|
|
|
|
return (addr >= base) && (addr <= limit);
|
|
}
|
|
|
|
/*
|
|
* Attempt to map a SysAddr to a node. On success, return a pointer to the
|
|
* mem_ctl_info structure for the node that the SysAddr maps to.
|
|
*
|
|
* On failure, return NULL.
|
|
*/
|
|
static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
|
|
u64 sys_addr)
|
|
{
|
|
struct amd64_pvt *pvt;
|
|
int node_id;
|
|
u32 intlv_en, bits;
|
|
|
|
/*
|
|
* Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
|
|
* 3.4.4.2) registers to map the SysAddr to a node ID.
|
|
*/
|
|
pvt = mci->pvt_info;
|
|
|
|
/*
|
|
* The value of this field should be the same for all DRAM Base
|
|
* registers. Therefore we arbitrarily choose to read it from the
|
|
* register for node 0.
|
|
*/
|
|
intlv_en = pvt->dram_IntlvEn[0];
|
|
|
|
if (intlv_en == 0) {
|
|
for (node_id = 0; ; ) {
|
|
if (amd64_base_limit_match(pvt, sys_addr, node_id))
|
|
break;
|
|
|
|
if (++node_id >= DRAM_REG_COUNT)
|
|
goto err_no_match;
|
|
}
|
|
goto found;
|
|
}
|
|
|
|
if (unlikely((intlv_en != (0x01 << 8)) &&
|
|
(intlv_en != (0x03 << 8)) &&
|
|
(intlv_en != (0x07 << 8)))) {
|
|
amd64_printk(KERN_WARNING, "junk value of 0x%x extracted from "
|
|
"IntlvEn field of DRAM Base Register for node 0: "
|
|
"This probably indicates a BIOS bug.\n", intlv_en);
|
|
return NULL;
|
|
}
|
|
|
|
bits = (((u32) sys_addr) >> 12) & intlv_en;
|
|
|
|
for (node_id = 0; ; ) {
|
|
if ((pvt->dram_limit[node_id] & intlv_en) == bits)
|
|
break; /* intlv_sel field matches */
|
|
|
|
if (++node_id >= DRAM_REG_COUNT)
|
|
goto err_no_match;
|
|
}
|
|
|
|
/* sanity test for sys_addr */
|
|
if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
|
|
amd64_printk(KERN_WARNING,
|
|
"%s(): sys_addr 0x%lx falls outside base/limit "
|
|
"address range for node %d with node interleaving "
|
|
"enabled.\n", __func__, (unsigned long)sys_addr,
|
|
node_id);
|
|
return NULL;
|
|
}
|
|
|
|
found:
|
|
return edac_mc_find(node_id);
|
|
|
|
err_no_match:
|
|
debugf2("sys_addr 0x%lx doesn't match any node\n",
|
|
(unsigned long)sys_addr);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Extract the DRAM CS base address from selected csrow register.
|
|
*/
|
|
static u64 base_from_dct_base(struct amd64_pvt *pvt, int csrow)
|
|
{
|
|
return ((u64) (amd64_get_dct_base(pvt, 0, csrow) & pvt->dcsb_base)) <<
|
|
pvt->dcs_shift;
|
|
}
|
|
|
|
/*
|
|
* Extract the mask from the dcsb0[csrow] entry in a CPU revision-specific way.
|
|
*/
|
|
static u64 mask_from_dct_mask(struct amd64_pvt *pvt, int csrow)
|
|
{
|
|
u64 dcsm_bits, other_bits;
|
|
u64 mask;
|
|
|
|
/* Extract bits from DRAM CS Mask. */
|
|
dcsm_bits = amd64_get_dct_mask(pvt, 0, csrow) & pvt->dcsm_mask;
|
|
|
|
other_bits = pvt->dcsm_mask;
|
|
other_bits = ~(other_bits << pvt->dcs_shift);
|
|
|
|
/*
|
|
* The extracted bits from DCSM belong in the spaces represented by
|
|
* the cleared bits in other_bits.
|
|
*/
|
|
mask = (dcsm_bits << pvt->dcs_shift) | other_bits;
|
|
|
|
return mask;
|
|
}
|
|
|
|
/*
|
|
* @input_addr is an InputAddr associated with the node given by mci. Return the
|
|
* csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
|
|
*/
|
|
static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
|
|
{
|
|
struct amd64_pvt *pvt;
|
|
int csrow;
|
|
u64 base, mask;
|
|
|
|
pvt = mci->pvt_info;
|
|
|
|
/*
|
|
* Here we use the DRAM CS Base and DRAM CS Mask registers. For each CS
|
|
* base/mask register pair, test the condition shown near the start of
|
|
* section 3.5.4 (p. 84, BKDG #26094, K8, revA-E).
|
|
*/
|
|
for (csrow = 0; csrow < CHIPSELECT_COUNT; csrow++) {
|
|
|
|
/* This DRAM chip select is disabled on this node */
|
|
if ((pvt->dcsb0[csrow] & K8_DCSB_CS_ENABLE) == 0)
|
|
continue;
|
|
|
|
base = base_from_dct_base(pvt, csrow);
|
|
mask = ~mask_from_dct_mask(pvt, csrow);
|
|
|
|
if ((input_addr & mask) == (base & mask)) {
|
|
debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n",
|
|
(unsigned long)input_addr, csrow,
|
|
pvt->mc_node_id);
|
|
|
|
return csrow;
|
|
}
|
|
}
|
|
|
|
debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n",
|
|
(unsigned long)input_addr, pvt->mc_node_id);
|
|
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* Return the base value defined by the DRAM Base register for the node
|
|
* represented by mci. This function returns the full 40-bit value despite the
|
|
* fact that the register only stores bits 39-24 of the value. See section
|
|
* 3.4.4.1 (BKDG #26094, K8, revA-E)
|
|
*/
|
|
static inline u64 get_dram_base(struct mem_ctl_info *mci)
|
|
{
|
|
struct amd64_pvt *pvt = mci->pvt_info;
|
|
|
|
return pvt->dram_base[pvt->mc_node_id];
|
|
}
|
|
|
|
/*
|
|
* Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
|
|
* for the node represented by mci. Info is passed back in *hole_base,
|
|
* *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
|
|
* info is invalid. Info may be invalid for either of the following reasons:
|
|
*
|
|
* - The revision of the node is not E or greater. In this case, the DRAM Hole
|
|
* Address Register does not exist.
|
|
*
|
|
* - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
|
|
* indicating that its contents are not valid.
|
|
*
|
|
* The values passed back in *hole_base, *hole_offset, and *hole_size are
|
|
* complete 32-bit values despite the fact that the bitfields in the DHAR
|
|
* only represent bits 31-24 of the base and offset values.
|
|
*/
|
|
int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
|
|
u64 *hole_offset, u64 *hole_size)
|
|
{
|
|
struct amd64_pvt *pvt = mci->pvt_info;
|
|
u64 base;
|
|
|
|
/* only revE and later have the DRAM Hole Address Register */
|
|
if (boot_cpu_data.x86 == 0xf && pvt->ext_model < OPTERON_CPU_REV_E) {
|
|
debugf1(" revision %d for node %d does not support DHAR\n",
|
|
pvt->ext_model, pvt->mc_node_id);
|
|
return 1;
|
|
}
|
|
|
|
/* only valid for Fam10h */
|
|
if (boot_cpu_data.x86 == 0x10 &&
|
|
(pvt->dhar & F10_DRAM_MEM_HOIST_VALID) == 0) {
|
|
debugf1(" Dram Memory Hoisting is DISABLED on this system\n");
|
|
return 1;
|
|
}
|
|
|
|
if ((pvt->dhar & DHAR_VALID) == 0) {
|
|
debugf1(" Dram Memory Hoisting is DISABLED on this node %d\n",
|
|
pvt->mc_node_id);
|
|
return 1;
|
|
}
|
|
|
|
/* This node has Memory Hoisting */
|
|
|
|
/* +------------------+--------------------+--------------------+-----
|
|
* | memory | DRAM hole | relocated |
|
|
* | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
|
|
* | | | DRAM hole |
|
|
* | | | [0x100000000, |
|
|
* | | | (0x100000000+ |
|
|
* | | | (0xffffffff-x))] |
|
|
* +------------------+--------------------+--------------------+-----
|
|
*
|
|
* Above is a diagram of physical memory showing the DRAM hole and the
|
|
* relocated addresses from the DRAM hole. As shown, the DRAM hole
|
|
* starts at address x (the base address) and extends through address
|
|
* 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
|
|
* addresses in the hole so that they start at 0x100000000.
|
|
*/
|
|
|
|
base = dhar_base(pvt->dhar);
|
|
|
|
*hole_base = base;
|
|
*hole_size = (0x1ull << 32) - base;
|
|
|
|
if (boot_cpu_data.x86 > 0xf)
|
|
*hole_offset = f10_dhar_offset(pvt->dhar);
|
|
else
|
|
*hole_offset = k8_dhar_offset(pvt->dhar);
|
|
|
|
debugf1(" DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
|
|
pvt->mc_node_id, (unsigned long)*hole_base,
|
|
(unsigned long)*hole_offset, (unsigned long)*hole_size);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
|
|
|
|
/*
|
|
* Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
|
|
* assumed that sys_addr maps to the node given by mci.
|
|
*
|
|
* The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
|
|
* 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
|
|
* SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
|
|
* then it is also involved in translating a SysAddr to a DramAddr. Sections
|
|
* 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
|
|
* These parts of the documentation are unclear. I interpret them as follows:
|
|
*
|
|
* When node n receives a SysAddr, it processes the SysAddr as follows:
|
|
*
|
|
* 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
|
|
* Limit registers for node n. If the SysAddr is not within the range
|
|
* specified by the base and limit values, then node n ignores the Sysaddr
|
|
* (since it does not map to node n). Otherwise continue to step 2 below.
|
|
*
|
|
* 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
|
|
* disabled so skip to step 3 below. Otherwise see if the SysAddr is within
|
|
* the range of relocated addresses (starting at 0x100000000) from the DRAM
|
|
* hole. If not, skip to step 3 below. Else get the value of the
|
|
* DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
|
|
* offset defined by this value from the SysAddr.
|
|
*
|
|
* 3. Obtain the base address for node n from the DRAMBase field of the DRAM
|
|
* Base register for node n. To obtain the DramAddr, subtract the base
|
|
* address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
|
|
*/
|
|
static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
|
|
{
|
|
u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
|
|
int ret = 0;
|
|
|
|
dram_base = get_dram_base(mci);
|
|
|
|
ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
|
|
&hole_size);
|
|
if (!ret) {
|
|
if ((sys_addr >= (1ull << 32)) &&
|
|
(sys_addr < ((1ull << 32) + hole_size))) {
|
|
/* use DHAR to translate SysAddr to DramAddr */
|
|
dram_addr = sys_addr - hole_offset;
|
|
|
|
debugf2("using DHAR to translate SysAddr 0x%lx to "
|
|
"DramAddr 0x%lx\n",
|
|
(unsigned long)sys_addr,
|
|
(unsigned long)dram_addr);
|
|
|
|
return dram_addr;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Translate the SysAddr to a DramAddr as shown near the start of
|
|
* section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
|
|
* only deals with 40-bit values. Therefore we discard bits 63-40 of
|
|
* sys_addr below. If bit 39 of sys_addr is 1 then the bits we
|
|
* discard are all 1s. Otherwise the bits we discard are all 0s. See
|
|
* section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
|
|
* Programmer's Manual Volume 1 Application Programming.
|
|
*/
|
|
dram_addr = (sys_addr & 0xffffffffffull) - dram_base;
|
|
|
|
debugf2("using DRAM Base register to translate SysAddr 0x%lx to "
|
|
"DramAddr 0x%lx\n", (unsigned long)sys_addr,
|
|
(unsigned long)dram_addr);
|
|
return dram_addr;
|
|
}
|
|
|
|
/*
|
|
* @intlv_en is the value of the IntlvEn field from a DRAM Base register
|
|
* (section 3.4.4.1). Return the number of bits from a SysAddr that are used
|
|
* for node interleaving.
|
|
*/
|
|
static int num_node_interleave_bits(unsigned intlv_en)
|
|
{
|
|
static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
|
|
int n;
|
|
|
|
BUG_ON(intlv_en > 7);
|
|
n = intlv_shift_table[intlv_en];
|
|
return n;
|
|
}
|
|
|
|
/* Translate the DramAddr given by @dram_addr to an InputAddr. */
|
|
static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
|
|
{
|
|
struct amd64_pvt *pvt;
|
|
int intlv_shift;
|
|
u64 input_addr;
|
|
|
|
pvt = mci->pvt_info;
|
|
|
|
/*
|
|
* See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
|
|
* concerning translating a DramAddr to an InputAddr.
|
|
*/
|
|
intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
|
|
input_addr = ((dram_addr >> intlv_shift) & 0xffffff000ull) +
|
|
(dram_addr & 0xfff);
|
|
|
|
debugf2(" Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
|
|
intlv_shift, (unsigned long)dram_addr,
|
|
(unsigned long)input_addr);
|
|
|
|
return input_addr;
|
|
}
|
|
|
|
/*
|
|
* Translate the SysAddr represented by @sys_addr to an InputAddr. It is
|
|
* assumed that @sys_addr maps to the node given by mci.
|
|
*/
|
|
static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
|
|
{
|
|
u64 input_addr;
|
|
|
|
input_addr =
|
|
dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
|
|
|
|
debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
|
|
(unsigned long)sys_addr, (unsigned long)input_addr);
|
|
|
|
return input_addr;
|
|
}
|
|
|
|
|
|
/*
|
|
* @input_addr is an InputAddr associated with the node represented by mci.
|
|
* Translate @input_addr to a DramAddr and return the result.
|
|
*/
|
|
static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
|
|
{
|
|
struct amd64_pvt *pvt;
|
|
int node_id, intlv_shift;
|
|
u64 bits, dram_addr;
|
|
u32 intlv_sel;
|
|
|
|
/*
|
|
* Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
|
|
* shows how to translate a DramAddr to an InputAddr. Here we reverse
|
|
* this procedure. When translating from a DramAddr to an InputAddr, the
|
|
* bits used for node interleaving are discarded. Here we recover these
|
|
* bits from the IntlvSel field of the DRAM Limit register (section
|
|
* 3.4.4.2) for the node that input_addr is associated with.
|
|
*/
|
|
pvt = mci->pvt_info;
|
|
node_id = pvt->mc_node_id;
|
|
BUG_ON((node_id < 0) || (node_id > 7));
|
|
|
|
intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
|
|
|
|
if (intlv_shift == 0) {
|
|
debugf1(" InputAddr 0x%lx translates to DramAddr of "
|
|
"same value\n", (unsigned long)input_addr);
|
|
|
|
return input_addr;
|
|
}
|
|
|
|
bits = ((input_addr & 0xffffff000ull) << intlv_shift) +
|
|
(input_addr & 0xfff);
|
|
|
|
intlv_sel = pvt->dram_IntlvSel[node_id] & ((1 << intlv_shift) - 1);
|
|
dram_addr = bits + (intlv_sel << 12);
|
|
|
|
debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx "
|
|
"(%d node interleave bits)\n", (unsigned long)input_addr,
|
|
(unsigned long)dram_addr, intlv_shift);
|
|
|
|
return dram_addr;
|
|
}
|
|
|
|
/*
|
|
* @dram_addr is a DramAddr that maps to the node represented by mci. Convert
|
|
* @dram_addr to a SysAddr.
|
|
*/
|
|
static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
|
|
{
|
|
struct amd64_pvt *pvt = mci->pvt_info;
|
|
u64 hole_base, hole_offset, hole_size, base, limit, sys_addr;
|
|
int ret = 0;
|
|
|
|
ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
|
|
&hole_size);
|
|
if (!ret) {
|
|
if ((dram_addr >= hole_base) &&
|
|
(dram_addr < (hole_base + hole_size))) {
|
|
sys_addr = dram_addr + hole_offset;
|
|
|
|
debugf1("using DHAR to translate DramAddr 0x%lx to "
|
|
"SysAddr 0x%lx\n", (unsigned long)dram_addr,
|
|
(unsigned long)sys_addr);
|
|
|
|
return sys_addr;
|
|
}
|
|
}
|
|
|
|
amd64_get_base_and_limit(pvt, pvt->mc_node_id, &base, &limit);
|
|
sys_addr = dram_addr + base;
|
|
|
|
/*
|
|
* The sys_addr we have computed up to this point is a 40-bit value
|
|
* because the k8 deals with 40-bit values. However, the value we are
|
|
* supposed to return is a full 64-bit physical address. The AMD
|
|
* x86-64 architecture specifies that the most significant implemented
|
|
* address bit through bit 63 of a physical address must be either all
|
|
* 0s or all 1s. Therefore we sign-extend the 40-bit sys_addr to a
|
|
* 64-bit value below. See section 3.4.2 of AMD publication 24592:
|
|
* AMD x86-64 Architecture Programmer's Manual Volume 1 Application
|
|
* Programming.
|
|
*/
|
|
sys_addr |= ~((sys_addr & (1ull << 39)) - 1);
|
|
|
|
debugf1(" Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
|
|
pvt->mc_node_id, (unsigned long)dram_addr,
|
|
(unsigned long)sys_addr);
|
|
|
|
return sys_addr;
|
|
}
|
|
|
|
/*
|
|
* @input_addr is an InputAddr associated with the node given by mci. Translate
|
|
* @input_addr to a SysAddr.
|
|
*/
|
|
static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
|
|
u64 input_addr)
|
|
{
|
|
return dram_addr_to_sys_addr(mci,
|
|
input_addr_to_dram_addr(mci, input_addr));
|
|
}
|
|
|
|
/*
|
|
* Find the minimum and maximum InputAddr values that map to the given @csrow.
|
|
* Pass back these values in *input_addr_min and *input_addr_max.
|
|
*/
|
|
static void find_csrow_limits(struct mem_ctl_info *mci, int csrow,
|
|
u64 *input_addr_min, u64 *input_addr_max)
|
|
{
|
|
struct amd64_pvt *pvt;
|
|
u64 base, mask;
|
|
|
|
pvt = mci->pvt_info;
|
|
BUG_ON((csrow < 0) || (csrow >= CHIPSELECT_COUNT));
|
|
|
|
base = base_from_dct_base(pvt, csrow);
|
|
mask = mask_from_dct_mask(pvt, csrow);
|
|
|
|
*input_addr_min = base & ~mask;
|
|
*input_addr_max = base | mask | pvt->dcs_mask_notused;
|
|
}
|
|
|
|
/*
|
|
* Extract error address from MCA NB Address Low (section 3.6.4.5) and MCA NB
|
|
* Address High (section 3.6.4.6) register values and return the result. Address
|
|
* is located in the info structure (nbeah and nbeal), the encoding is device
|
|
* specific.
|
|
*/
|
|
static u64 extract_error_address(struct mem_ctl_info *mci,
|
|
struct err_regs *info)
|
|
{
|
|
struct amd64_pvt *pvt = mci->pvt_info;
|
|
|
|
return pvt->ops->get_error_address(mci, info);
|
|
}
|
|
|
|
|
|
/* Map the Error address to a PAGE and PAGE OFFSET. */
|
|
static inline void error_address_to_page_and_offset(u64 error_address,
|
|
u32 *page, u32 *offset)
|
|
{
|
|
*page = (u32) (error_address >> PAGE_SHIFT);
|
|
*offset = ((u32) error_address) & ~PAGE_MASK;
|
|
}
|
|
|
|
/*
|
|
* @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
|
|
* Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
|
|
* of a node that detected an ECC memory error. mci represents the node that
|
|
* the error address maps to (possibly different from the node that detected
|
|
* the error). Return the number of the csrow that sys_addr maps to, or -1 on
|
|
* error.
|
|
*/
|
|
static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
|
|
{
|
|
int csrow;
|
|
|
|
csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
|
|
|
|
if (csrow == -1)
|
|
amd64_mc_printk(mci, KERN_ERR,
|
|
"Failed to translate InputAddr to csrow for "
|
|
"address 0x%lx\n", (unsigned long)sys_addr);
|
|
return csrow;
|
|
}
|
|
|
|
static int get_channel_from_ecc_syndrome(unsigned short syndrome);
|
|
|
|
static void amd64_cpu_display_info(struct amd64_pvt *pvt)
|
|
{
|
|
if (boot_cpu_data.x86 == 0x11)
|
|
edac_printk(KERN_DEBUG, EDAC_MC, "F11h CPU detected\n");
|
|
else if (boot_cpu_data.x86 == 0x10)
|
|
edac_printk(KERN_DEBUG, EDAC_MC, "F10h CPU detected\n");
|
|
else if (boot_cpu_data.x86 == 0xf)
|
|
edac_printk(KERN_DEBUG, EDAC_MC, "%s detected\n",
|
|
(pvt->ext_model >= OPTERON_CPU_REV_F) ?
|
|
"Rev F or later" : "Rev E or earlier");
|
|
else
|
|
/* we'll hardly ever ever get here */
|
|
edac_printk(KERN_ERR, EDAC_MC, "Unknown cpu!\n");
|
|
}
|
|
|
|
/*
|
|
* Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
|
|
* are ECC capable.
|
|
*/
|
|
static enum edac_type amd64_determine_edac_cap(struct amd64_pvt *pvt)
|
|
{
|
|
int bit;
|
|
enum dev_type edac_cap = EDAC_FLAG_NONE;
|
|
|
|
bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= OPTERON_CPU_REV_F)
|
|
? 19
|
|
: 17;
|
|
|
|
if (pvt->dclr0 & BIT(bit))
|
|
edac_cap = EDAC_FLAG_SECDED;
|
|
|
|
return edac_cap;
|
|
}
|
|
|
|
|
|
static void f10_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt,
|
|
int ganged);
|
|
|
|
/* Display and decode various NB registers for debug purposes. */
|
|
static void amd64_dump_misc_regs(struct amd64_pvt *pvt)
|
|
{
|
|
int ganged;
|
|
|
|
debugf1(" nbcap:0x%8.08x DctDualCap=%s DualNode=%s 8-Node=%s\n",
|
|
pvt->nbcap,
|
|
(pvt->nbcap & K8_NBCAP_DCT_DUAL) ? "True" : "False",
|
|
(pvt->nbcap & K8_NBCAP_DUAL_NODE) ? "True" : "False",
|
|
(pvt->nbcap & K8_NBCAP_8_NODE) ? "True" : "False");
|
|
debugf1(" ECC Capable=%s ChipKill Capable=%s\n",
|
|
(pvt->nbcap & K8_NBCAP_SECDED) ? "True" : "False",
|
|
(pvt->nbcap & K8_NBCAP_CHIPKILL) ? "True" : "False");
|
|
debugf1(" DramCfg0-low=0x%08x DIMM-ECC=%s Parity=%s Width=%s\n",
|
|
pvt->dclr0,
|
|
(pvt->dclr0 & BIT(19)) ? "Enabled" : "Disabled",
|
|
(pvt->dclr0 & BIT(8)) ? "Enabled" : "Disabled",
|
|
(pvt->dclr0 & BIT(11)) ? "128b" : "64b");
|
|
debugf1(" DIMM x4 Present: L0=%s L1=%s L2=%s L3=%s DIMM Type=%s\n",
|
|
(pvt->dclr0 & BIT(12)) ? "Y" : "N",
|
|
(pvt->dclr0 & BIT(13)) ? "Y" : "N",
|
|
(pvt->dclr0 & BIT(14)) ? "Y" : "N",
|
|
(pvt->dclr0 & BIT(15)) ? "Y" : "N",
|
|
(pvt->dclr0 & BIT(16)) ? "UN-Buffered" : "Buffered");
|
|
|
|
|
|
debugf1(" online-spare: 0x%8.08x\n", pvt->online_spare);
|
|
|
|
if (boot_cpu_data.x86 == 0xf) {
|
|
debugf1(" dhar: 0x%8.08x Base=0x%08x Offset=0x%08x\n",
|
|
pvt->dhar, dhar_base(pvt->dhar),
|
|
k8_dhar_offset(pvt->dhar));
|
|
debugf1(" DramHoleValid=%s\n",
|
|
(pvt->dhar & DHAR_VALID) ? "True" : "False");
|
|
|
|
debugf1(" dbam-dkt: 0x%8.08x\n", pvt->dbam0);
|
|
|
|
/* everything below this point is Fam10h and above */
|
|
return;
|
|
|
|
} else {
|
|
debugf1(" dhar: 0x%8.08x Base=0x%08x Offset=0x%08x\n",
|
|
pvt->dhar, dhar_base(pvt->dhar),
|
|
f10_dhar_offset(pvt->dhar));
|
|
debugf1(" DramMemHoistValid=%s DramHoleValid=%s\n",
|
|
(pvt->dhar & F10_DRAM_MEM_HOIST_VALID) ?
|
|
"True" : "False",
|
|
(pvt->dhar & DHAR_VALID) ?
|
|
"True" : "False");
|
|
}
|
|
|
|
/* Only if NOT ganged does dcl1 have valid info */
|
|
if (!dct_ganging_enabled(pvt)) {
|
|
debugf1(" DramCfg1-low=0x%08x DIMM-ECC=%s Parity=%s "
|
|
"Width=%s\n", pvt->dclr1,
|
|
(pvt->dclr1 & BIT(19)) ? "Enabled" : "Disabled",
|
|
(pvt->dclr1 & BIT(8)) ? "Enabled" : "Disabled",
|
|
(pvt->dclr1 & BIT(11)) ? "128b" : "64b");
|
|
debugf1(" DIMM x4 Present: L0=%s L1=%s L2=%s L3=%s "
|
|
"DIMM Type=%s\n",
|
|
(pvt->dclr1 & BIT(12)) ? "Y" : "N",
|
|
(pvt->dclr1 & BIT(13)) ? "Y" : "N",
|
|
(pvt->dclr1 & BIT(14)) ? "Y" : "N",
|
|
(pvt->dclr1 & BIT(15)) ? "Y" : "N",
|
|
(pvt->dclr1 & BIT(16)) ? "UN-Buffered" : "Buffered");
|
|
}
|
|
|
|
/*
|
|
* Determine if ganged and then dump memory sizes for first controller,
|
|
* and if NOT ganged dump info for 2nd controller.
|
|
*/
|
|
ganged = dct_ganging_enabled(pvt);
|
|
|
|
f10_debug_display_dimm_sizes(0, pvt, ganged);
|
|
|
|
if (!ganged)
|
|
f10_debug_display_dimm_sizes(1, pvt, ganged);
|
|
}
|
|
|
|
/* Read in both of DBAM registers */
|
|
static void amd64_read_dbam_reg(struct amd64_pvt *pvt)
|
|
{
|
|
int err = 0;
|
|
unsigned int reg;
|
|
|
|
reg = DBAM0;
|
|
err = pci_read_config_dword(pvt->dram_f2_ctl, reg, &pvt->dbam0);
|
|
if (err)
|
|
goto err_reg;
|
|
|
|
if (boot_cpu_data.x86 >= 0x10) {
|
|
reg = DBAM1;
|
|
err = pci_read_config_dword(pvt->dram_f2_ctl, reg, &pvt->dbam1);
|
|
|
|
if (err)
|
|
goto err_reg;
|
|
}
|
|
|
|
return;
|
|
|
|
err_reg:
|
|
debugf0("Error reading F2x%03x.\n", reg);
|
|
}
|
|
|
|
/*
|
|
* NOTE: CPU Revision Dependent code: Rev E and Rev F
|
|
*
|
|
* Set the DCSB and DCSM mask values depending on the CPU revision value. Also
|
|
* set the shift factor for the DCSB and DCSM values.
|
|
*
|
|
* ->dcs_mask_notused, RevE:
|
|
*
|
|
* To find the max InputAddr for the csrow, start with the base address and set
|
|
* all bits that are "don't care" bits in the test at the start of section
|
|
* 3.5.4 (p. 84).
|
|
*
|
|
* The "don't care" bits are all set bits in the mask and all bits in the gaps
|
|
* between bit ranges [35:25] and [19:13]. The value REV_E_DCS_NOTUSED_BITS
|
|
* represents bits [24:20] and [12:0], which are all bits in the above-mentioned
|
|
* gaps.
|
|
*
|
|
* ->dcs_mask_notused, RevF and later:
|
|
*
|
|
* To find the max InputAddr for the csrow, start with the base address and set
|
|
* all bits that are "don't care" bits in the test at the start of NPT section
|
|
* 4.5.4 (p. 87).
|
|
*
|
|
* The "don't care" bits are all set bits in the mask and all bits in the gaps
|
|
* between bit ranges [36:27] and [21:13].
|
|
*
|
|
* The value REV_F_F1Xh_DCS_NOTUSED_BITS represents bits [26:22] and [12:0],
|
|
* which are all bits in the above-mentioned gaps.
|
|
*/
|
|
static void amd64_set_dct_base_and_mask(struct amd64_pvt *pvt)
|
|
{
|
|
if (pvt->ext_model >= OPTERON_CPU_REV_F) {
|
|
pvt->dcsb_base = REV_F_F1Xh_DCSB_BASE_BITS;
|
|
pvt->dcsm_mask = REV_F_F1Xh_DCSM_MASK_BITS;
|
|
pvt->dcs_mask_notused = REV_F_F1Xh_DCS_NOTUSED_BITS;
|
|
pvt->dcs_shift = REV_F_F1Xh_DCS_SHIFT;
|
|
|
|
switch (boot_cpu_data.x86) {
|
|
case 0xf:
|
|
pvt->num_dcsm = REV_F_DCSM_COUNT;
|
|
break;
|
|
|
|
case 0x10:
|
|
pvt->num_dcsm = F10_DCSM_COUNT;
|
|
break;
|
|
|
|
case 0x11:
|
|
pvt->num_dcsm = F11_DCSM_COUNT;
|
|
break;
|
|
|
|
default:
|
|
amd64_printk(KERN_ERR, "Unsupported family!\n");
|
|
break;
|
|
}
|
|
} else {
|
|
pvt->dcsb_base = REV_E_DCSB_BASE_BITS;
|
|
pvt->dcsm_mask = REV_E_DCSM_MASK_BITS;
|
|
pvt->dcs_mask_notused = REV_E_DCS_NOTUSED_BITS;
|
|
pvt->dcs_shift = REV_E_DCS_SHIFT;
|
|
pvt->num_dcsm = REV_E_DCSM_COUNT;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask hw registers
|
|
*/
|
|
static void amd64_read_dct_base_mask(struct amd64_pvt *pvt)
|
|
{
|
|
int cs, reg, err = 0;
|
|
|
|
amd64_set_dct_base_and_mask(pvt);
|
|
|
|
for (cs = 0; cs < CHIPSELECT_COUNT; cs++) {
|
|
reg = K8_DCSB0 + (cs * 4);
|
|
err = pci_read_config_dword(pvt->dram_f2_ctl, reg,
|
|
&pvt->dcsb0[cs]);
|
|
if (unlikely(err))
|
|
debugf0("Reading K8_DCSB0[%d] failed\n", cs);
|
|
else
|
|
debugf0(" DCSB0[%d]=0x%08x reg: F2x%x\n",
|
|
cs, pvt->dcsb0[cs], reg);
|
|
|
|
/* If DCT are NOT ganged, then read in DCT1's base */
|
|
if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
|
|
reg = F10_DCSB1 + (cs * 4);
|
|
err = pci_read_config_dword(pvt->dram_f2_ctl, reg,
|
|
&pvt->dcsb1[cs]);
|
|
if (unlikely(err))
|
|
debugf0("Reading F10_DCSB1[%d] failed\n", cs);
|
|
else
|
|
debugf0(" DCSB1[%d]=0x%08x reg: F2x%x\n",
|
|
cs, pvt->dcsb1[cs], reg);
|
|
} else {
|
|
pvt->dcsb1[cs] = 0;
|
|
}
|
|
}
|
|
|
|
for (cs = 0; cs < pvt->num_dcsm; cs++) {
|
|
reg = K8_DCSM0 + (cs * 4);
|
|
err = pci_read_config_dword(pvt->dram_f2_ctl, reg,
|
|
&pvt->dcsm0[cs]);
|
|
if (unlikely(err))
|
|
debugf0("Reading K8_DCSM0 failed\n");
|
|
else
|
|
debugf0(" DCSM0[%d]=0x%08x reg: F2x%x\n",
|
|
cs, pvt->dcsm0[cs], reg);
|
|
|
|
/* If DCT are NOT ganged, then read in DCT1's mask */
|
|
if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
|
|
reg = F10_DCSM1 + (cs * 4);
|
|
err = pci_read_config_dword(pvt->dram_f2_ctl, reg,
|
|
&pvt->dcsm1[cs]);
|
|
if (unlikely(err))
|
|
debugf0("Reading F10_DCSM1[%d] failed\n", cs);
|
|
else
|
|
debugf0(" DCSM1[%d]=0x%08x reg: F2x%x\n",
|
|
cs, pvt->dcsm1[cs], reg);
|
|
} else
|
|
pvt->dcsm1[cs] = 0;
|
|
}
|
|
}
|
|
|
|
static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt)
|
|
{
|
|
enum mem_type type;
|
|
|
|
if (boot_cpu_data.x86 >= 0x10 || pvt->ext_model >= OPTERON_CPU_REV_F) {
|
|
/* Rev F and later */
|
|
type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
|
|
} else {
|
|
/* Rev E and earlier */
|
|
type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
|
|
}
|
|
|
|
debugf1(" Memory type is: %s\n",
|
|
(type == MEM_DDR2) ? "MEM_DDR2" :
|
|
(type == MEM_RDDR2) ? "MEM_RDDR2" :
|
|
(type == MEM_DDR) ? "MEM_DDR" : "MEM_RDDR");
|
|
|
|
return type;
|
|
}
|
|
|
|
/*
|
|
* Read the DRAM Configuration Low register. It differs between CG, D & E revs
|
|
* and the later RevF memory controllers (DDR vs DDR2)
|
|
*
|
|
* Return:
|
|
* number of memory channels in operation
|
|
* Pass back:
|
|
* contents of the DCL0_LOW register
|
|
*/
|
|
static int k8_early_channel_count(struct amd64_pvt *pvt)
|
|
{
|
|
int flag, err = 0;
|
|
|
|
err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0);
|
|
if (err)
|
|
return err;
|
|
|
|
if ((boot_cpu_data.x86_model >> 4) >= OPTERON_CPU_REV_F) {
|
|
/* RevF (NPT) and later */
|
|
flag = pvt->dclr0 & F10_WIDTH_128;
|
|
} else {
|
|
/* RevE and earlier */
|
|
flag = pvt->dclr0 & REVE_WIDTH_128;
|
|
}
|
|
|
|
/* not used */
|
|
pvt->dclr1 = 0;
|
|
|
|
return (flag) ? 2 : 1;
|
|
}
|
|
|
|
/* extract the ERROR ADDRESS for the K8 CPUs */
|
|
static u64 k8_get_error_address(struct mem_ctl_info *mci,
|
|
struct err_regs *info)
|
|
{
|
|
return (((u64) (info->nbeah & 0xff)) << 32) +
|
|
(info->nbeal & ~0x03);
|
|
}
|
|
|
|
/*
|
|
* Read the Base and Limit registers for K8 based Memory controllers; extract
|
|
* fields from the 'raw' reg into separate data fields
|
|
*
|
|
* Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN
|
|
*/
|
|
static void k8_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
|
|
{
|
|
u32 low;
|
|
u32 off = dram << 3; /* 8 bytes between DRAM entries */
|
|
int err;
|
|
|
|
err = pci_read_config_dword(pvt->addr_f1_ctl,
|
|
K8_DRAM_BASE_LOW + off, &low);
|
|
if (err)
|
|
debugf0("Reading K8_DRAM_BASE_LOW failed\n");
|
|
|
|
/* Extract parts into separate data entries */
|
|
pvt->dram_base[dram] = ((u64) low & 0xFFFF0000) << 8;
|
|
pvt->dram_IntlvEn[dram] = (low >> 8) & 0x7;
|
|
pvt->dram_rw_en[dram] = (low & 0x3);
|
|
|
|
err = pci_read_config_dword(pvt->addr_f1_ctl,
|
|
K8_DRAM_LIMIT_LOW + off, &low);
|
|
if (err)
|
|
debugf0("Reading K8_DRAM_LIMIT_LOW failed\n");
|
|
|
|
/*
|
|
* Extract parts into separate data entries. Limit is the HIGHEST memory
|
|
* location of the region, so lower 24 bits need to be all ones
|
|
*/
|
|
pvt->dram_limit[dram] = (((u64) low & 0xFFFF0000) << 8) | 0x00FFFFFF;
|
|
pvt->dram_IntlvSel[dram] = (low >> 8) & 0x7;
|
|
pvt->dram_DstNode[dram] = (low & 0x7);
|
|
}
|
|
|
|
static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
|
|
struct err_regs *info,
|
|
u64 SystemAddress)
|
|
{
|
|
struct mem_ctl_info *src_mci;
|
|
unsigned short syndrome;
|
|
int channel, csrow;
|
|
u32 page, offset;
|
|
|
|
/* Extract the syndrome parts and form a 16-bit syndrome */
|
|
syndrome = HIGH_SYNDROME(info->nbsl) << 8;
|
|
syndrome |= LOW_SYNDROME(info->nbsh);
|
|
|
|
/* CHIPKILL enabled */
|
|
if (info->nbcfg & K8_NBCFG_CHIPKILL) {
|
|
channel = get_channel_from_ecc_syndrome(syndrome);
|
|
if (channel < 0) {
|
|
/*
|
|
* Syndrome didn't map, so we don't know which of the
|
|
* 2 DIMMs is in error. So we need to ID 'both' of them
|
|
* as suspect.
|
|
*/
|
|
amd64_mc_printk(mci, KERN_WARNING,
|
|
"unknown syndrome 0x%x - possible error "
|
|
"reporting race\n", syndrome);
|
|
edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
|
|
return;
|
|
}
|
|
} else {
|
|
/*
|
|
* non-chipkill ecc mode
|
|
*
|
|
* The k8 documentation is unclear about how to determine the
|
|
* channel number when using non-chipkill memory. This method
|
|
* was obtained from email communication with someone at AMD.
|
|
* (Wish the email was placed in this comment - norsk)
|
|
*/
|
|
channel = ((SystemAddress & BIT(3)) != 0);
|
|
}
|
|
|
|
/*
|
|
* Find out which node the error address belongs to. This may be
|
|
* different from the node that detected the error.
|
|
*/
|
|
src_mci = find_mc_by_sys_addr(mci, SystemAddress);
|
|
if (src_mci) {
|
|
amd64_mc_printk(mci, KERN_ERR,
|
|
"failed to map error address 0x%lx to a node\n",
|
|
(unsigned long)SystemAddress);
|
|
edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
|
|
return;
|
|
}
|
|
|
|
/* Now map the SystemAddress to a CSROW */
|
|
csrow = sys_addr_to_csrow(src_mci, SystemAddress);
|
|
if (csrow < 0) {
|
|
edac_mc_handle_ce_no_info(src_mci, EDAC_MOD_STR);
|
|
} else {
|
|
error_address_to_page_and_offset(SystemAddress, &page, &offset);
|
|
|
|
edac_mc_handle_ce(src_mci, page, offset, syndrome, csrow,
|
|
channel, EDAC_MOD_STR);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* determrine the number of PAGES in for this DIMM's size based on its DRAM
|
|
* Address Mapping.
|
|
*
|
|
* First step is to calc the number of bits to shift a value of 1 left to
|
|
* indicate show many pages. Start with the DBAM value as the starting bits,
|
|
* then proceed to adjust those shift bits, based on CPU rev and the table.
|
|
* See BKDG on the DBAM
|
|
*/
|
|
static int k8_dbam_map_to_pages(struct amd64_pvt *pvt, int dram_map)
|
|
{
|
|
int nr_pages;
|
|
|
|
if (pvt->ext_model >= OPTERON_CPU_REV_F) {
|
|
nr_pages = 1 << (revf_quad_ddr2_shift[dram_map] - PAGE_SHIFT);
|
|
} else {
|
|
/*
|
|
* RevE and less section; this line is tricky. It collapses the
|
|
* table used by RevD and later to one that matches revisions CG
|
|
* and earlier.
|
|
*/
|
|
dram_map -= (pvt->ext_model >= OPTERON_CPU_REV_D) ?
|
|
(dram_map > 8 ? 4 : (dram_map > 5 ?
|
|
3 : (dram_map > 2 ? 1 : 0))) : 0;
|
|
|
|
/* 25 shift is 32MiB minimum DIMM size in RevE and prior */
|
|
nr_pages = 1 << (dram_map + 25 - PAGE_SHIFT);
|
|
}
|
|
|
|
return nr_pages;
|
|
}
|
|
|
|
/*
|
|
* Get the number of DCT channels in use.
|
|
*
|
|
* Return:
|
|
* number of Memory Channels in operation
|
|
* Pass back:
|
|
* contents of the DCL0_LOW register
|
|
*/
|
|
static int f10_early_channel_count(struct amd64_pvt *pvt)
|
|
{
|
|
int err = 0, channels = 0;
|
|
u32 dbam;
|
|
|
|
err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0);
|
|
if (err)
|
|
goto err_reg;
|
|
|
|
err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCLR_1, &pvt->dclr1);
|
|
if (err)
|
|
goto err_reg;
|
|
|
|
/* If we are in 128 bit mode, then we are using 2 channels */
|
|
if (pvt->dclr0 & F10_WIDTH_128) {
|
|
debugf0("Data WIDTH is 128 bits - 2 channels\n");
|
|
channels = 2;
|
|
return channels;
|
|
}
|
|
|
|
/*
|
|
* Need to check if in UN-ganged mode: In such, there are 2 channels,
|
|
* but they are NOT in 128 bit mode and thus the above 'dcl0' status bit
|
|
* will be OFF.
|
|
*
|
|
* Need to check DCT0[0] and DCT1[0] to see if only one of them has
|
|
* their CSEnable bit on. If so, then SINGLE DIMM case.
|
|
*/
|
|
debugf0("Data WIDTH is NOT 128 bits - need more decoding\n");
|
|
|
|
/*
|
|
* Check DRAM Bank Address Mapping values for each DIMM to see if there
|
|
* is more than just one DIMM present in unganged mode. Need to check
|
|
* both controllers since DIMMs can be placed in either one.
|
|
*/
|
|
channels = 0;
|
|
err = pci_read_config_dword(pvt->dram_f2_ctl, DBAM0, &dbam);
|
|
if (err)
|
|
goto err_reg;
|
|
|
|
if (DBAM_DIMM(0, dbam) > 0)
|
|
channels++;
|
|
if (DBAM_DIMM(1, dbam) > 0)
|
|
channels++;
|
|
if (DBAM_DIMM(2, dbam) > 0)
|
|
channels++;
|
|
if (DBAM_DIMM(3, dbam) > 0)
|
|
channels++;
|
|
|
|
/* If more than 2 DIMMs are present, then we have 2 channels */
|
|
if (channels > 2)
|
|
channels = 2;
|
|
else if (channels == 0) {
|
|
/* No DIMMs on DCT0, so look at DCT1 */
|
|
err = pci_read_config_dword(pvt->dram_f2_ctl, DBAM1, &dbam);
|
|
if (err)
|
|
goto err_reg;
|
|
|
|
if (DBAM_DIMM(0, dbam) > 0)
|
|
channels++;
|
|
if (DBAM_DIMM(1, dbam) > 0)
|
|
channels++;
|
|
if (DBAM_DIMM(2, dbam) > 0)
|
|
channels++;
|
|
if (DBAM_DIMM(3, dbam) > 0)
|
|
channels++;
|
|
|
|
if (channels > 2)
|
|
channels = 2;
|
|
}
|
|
|
|
/* If we found ALL 0 values, then assume just ONE DIMM-ONE Channel */
|
|
if (channels == 0)
|
|
channels = 1;
|
|
|
|
debugf0("MCT channel count: %d\n", channels);
|
|
|
|
return channels;
|
|
|
|
err_reg:
|
|
return -1;
|
|
|
|
}
|
|
|
|
static int f10_dbam_map_to_pages(struct amd64_pvt *pvt, int dram_map)
|
|
{
|
|
return 1 << (revf_quad_ddr2_shift[dram_map] - PAGE_SHIFT);
|
|
}
|
|
|
|
/* Enable extended configuration access via 0xCF8 feature */
|
|
static void amd64_setup(struct amd64_pvt *pvt)
|
|
{
|
|
u32 reg;
|
|
|
|
pci_read_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, ®);
|
|
|
|
pvt->flags.cf8_extcfg = !!(reg & F10_NB_CFG_LOW_ENABLE_EXT_CFG);
|
|
reg |= F10_NB_CFG_LOW_ENABLE_EXT_CFG;
|
|
pci_write_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, reg);
|
|
}
|
|
|
|
/* Restore the extended configuration access via 0xCF8 feature */
|
|
static void amd64_teardown(struct amd64_pvt *pvt)
|
|
{
|
|
u32 reg;
|
|
|
|
pci_read_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, ®);
|
|
|
|
reg &= ~F10_NB_CFG_LOW_ENABLE_EXT_CFG;
|
|
if (pvt->flags.cf8_extcfg)
|
|
reg |= F10_NB_CFG_LOW_ENABLE_EXT_CFG;
|
|
pci_write_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, reg);
|
|
}
|
|
|
|
static u64 f10_get_error_address(struct mem_ctl_info *mci,
|
|
struct err_regs *info)
|
|
{
|
|
return (((u64) (info->nbeah & 0xffff)) << 32) +
|
|
(info->nbeal & ~0x01);
|
|
}
|
|
|
|
/*
|
|
* Read the Base and Limit registers for F10 based Memory controllers. Extract
|
|
* fields from the 'raw' reg into separate data fields.
|
|
*
|
|
* Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN.
|
|
*/
|
|
static void f10_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
|
|
{
|
|
u32 high_offset, low_offset, high_base, low_base, high_limit, low_limit;
|
|
|
|
low_offset = K8_DRAM_BASE_LOW + (dram << 3);
|
|
high_offset = F10_DRAM_BASE_HIGH + (dram << 3);
|
|
|
|
/* read the 'raw' DRAM BASE Address register */
|
|
pci_read_config_dword(pvt->addr_f1_ctl, low_offset, &low_base);
|
|
|
|
/* Read from the ECS data register */
|
|
pci_read_config_dword(pvt->addr_f1_ctl, high_offset, &high_base);
|
|
|
|
/* Extract parts into separate data entries */
|
|
pvt->dram_rw_en[dram] = (low_base & 0x3);
|
|
|
|
if (pvt->dram_rw_en[dram] == 0)
|
|
return;
|
|
|
|
pvt->dram_IntlvEn[dram] = (low_base >> 8) & 0x7;
|
|
|
|
pvt->dram_base[dram] = (((((u64) high_base & 0x000000FF) << 32) |
|
|
((u64) low_base & 0xFFFF0000))) << 8;
|
|
|
|
low_offset = K8_DRAM_LIMIT_LOW + (dram << 3);
|
|
high_offset = F10_DRAM_LIMIT_HIGH + (dram << 3);
|
|
|
|
/* read the 'raw' LIMIT registers */
|
|
pci_read_config_dword(pvt->addr_f1_ctl, low_offset, &low_limit);
|
|
|
|
/* Read from the ECS data register for the HIGH portion */
|
|
pci_read_config_dword(pvt->addr_f1_ctl, high_offset, &high_limit);
|
|
|
|
debugf0(" HW Regs: BASE=0x%08x-%08x LIMIT= 0x%08x-%08x\n",
|
|
high_base, low_base, high_limit, low_limit);
|
|
|
|
pvt->dram_DstNode[dram] = (low_limit & 0x7);
|
|
pvt->dram_IntlvSel[dram] = (low_limit >> 8) & 0x7;
|
|
|
|
/*
|
|
* Extract address values and form a LIMIT address. Limit is the HIGHEST
|
|
* memory location of the region, so low 24 bits need to be all ones.
|
|
*/
|
|
low_limit |= 0x0000FFFF;
|
|
pvt->dram_limit[dram] =
|
|
((((u64) high_limit << 32) + (u64) low_limit) << 8) | (0xFF);
|
|
}
|
|
|
|
static void f10_read_dram_ctl_register(struct amd64_pvt *pvt)
|
|
{
|
|
int err = 0;
|
|
|
|
err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCTL_SEL_LOW,
|
|
&pvt->dram_ctl_select_low);
|
|
if (err) {
|
|
debugf0("Reading F10_DCTL_SEL_LOW failed\n");
|
|
} else {
|
|
debugf0("DRAM_DCTL_SEL_LOW=0x%x DctSelBaseAddr=0x%x\n",
|
|
pvt->dram_ctl_select_low, dct_sel_baseaddr(pvt));
|
|
|
|
debugf0(" DRAM DCTs are=%s DRAM Is=%s DRAM-Ctl-"
|
|
"sel-hi-range=%s\n",
|
|
(dct_ganging_enabled(pvt) ? "GANGED" : "NOT GANGED"),
|
|
(dct_dram_enabled(pvt) ? "Enabled" : "Disabled"),
|
|
(dct_high_range_enabled(pvt) ? "Enabled" : "Disabled"));
|
|
|
|
debugf0(" DctDatIntLv=%s MemCleared=%s DctSelIntLvAddr=0x%x\n",
|
|
(dct_data_intlv_enabled(pvt) ? "Enabled" : "Disabled"),
|
|
(dct_memory_cleared(pvt) ? "True " : "False "),
|
|
dct_sel_interleave_addr(pvt));
|
|
}
|
|
|
|
err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCTL_SEL_HIGH,
|
|
&pvt->dram_ctl_select_high);
|
|
if (err)
|
|
debugf0("Reading F10_DCTL_SEL_HIGH failed\n");
|
|
}
|
|
|
|
/*
|
|
* determine channel based on the interleaving mode: F10h BKDG, 2.8.9 Memory
|
|
* Interleaving Modes.
|
|
*/
|
|
static u32 f10_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
|
|
int hi_range_sel, u32 intlv_en)
|
|
{
|
|
u32 cs, temp, dct_sel_high = (pvt->dram_ctl_select_low >> 1) & 1;
|
|
|
|
if (dct_ganging_enabled(pvt))
|
|
cs = 0;
|
|
else if (hi_range_sel)
|
|
cs = dct_sel_high;
|
|
else if (dct_interleave_enabled(pvt)) {
|
|
/*
|
|
* see F2x110[DctSelIntLvAddr] - channel interleave mode
|
|
*/
|
|
if (dct_sel_interleave_addr(pvt) == 0)
|
|
cs = sys_addr >> 6 & 1;
|
|
else if ((dct_sel_interleave_addr(pvt) >> 1) & 1) {
|
|
temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
|
|
|
|
if (dct_sel_interleave_addr(pvt) & 1)
|
|
cs = (sys_addr >> 9 & 1) ^ temp;
|
|
else
|
|
cs = (sys_addr >> 6 & 1) ^ temp;
|
|
} else if (intlv_en & 4)
|
|
cs = sys_addr >> 15 & 1;
|
|
else if (intlv_en & 2)
|
|
cs = sys_addr >> 14 & 1;
|
|
else if (intlv_en & 1)
|
|
cs = sys_addr >> 13 & 1;
|
|
else
|
|
cs = sys_addr >> 12 & 1;
|
|
} else if (dct_high_range_enabled(pvt) && !dct_ganging_enabled(pvt))
|
|
cs = ~dct_sel_high & 1;
|
|
else
|
|
cs = 0;
|
|
|
|
return cs;
|
|
}
|
|
|
|
static inline u32 f10_map_intlv_en_to_shift(u32 intlv_en)
|
|
{
|
|
if (intlv_en == 1)
|
|
return 1;
|
|
else if (intlv_en == 3)
|
|
return 2;
|
|
else if (intlv_en == 7)
|
|
return 3;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* See F10h BKDG, 2.8.10.2 DctSelBaseOffset Programming */
|
|
static inline u64 f10_get_base_addr_offset(u64 sys_addr, int hi_range_sel,
|
|
u32 dct_sel_base_addr,
|
|
u64 dct_sel_base_off,
|
|
u32 hole_valid, u32 hole_off,
|
|
u64 dram_base)
|
|
{
|
|
u64 chan_off;
|
|
|
|
if (hi_range_sel) {
|
|
if (!(dct_sel_base_addr & 0xFFFFF800) &&
|
|
hole_valid && (sys_addr >= 0x100000000ULL))
|
|
chan_off = hole_off << 16;
|
|
else
|
|
chan_off = dct_sel_base_off;
|
|
} else {
|
|
if (hole_valid && (sys_addr >= 0x100000000ULL))
|
|
chan_off = hole_off << 16;
|
|
else
|
|
chan_off = dram_base & 0xFFFFF8000000ULL;
|
|
}
|
|
|
|
return (sys_addr & 0x0000FFFFFFFFFFC0ULL) -
|
|
(chan_off & 0x0000FFFFFF800000ULL);
|
|
}
|
|
|
|
/* Hack for the time being - Can we get this from BIOS?? */
|
|
#define CH0SPARE_RANK 0
|
|
#define CH1SPARE_RANK 1
|
|
|
|
/*
|
|
* checks if the csrow passed in is marked as SPARED, if so returns the new
|
|
* spare row
|
|
*/
|
|
static inline int f10_process_possible_spare(int csrow,
|
|
u32 cs, struct amd64_pvt *pvt)
|
|
{
|
|
u32 swap_done;
|
|
u32 bad_dram_cs;
|
|
|
|
/* Depending on channel, isolate respective SPARING info */
|
|
if (cs) {
|
|
swap_done = F10_ONLINE_SPARE_SWAPDONE1(pvt->online_spare);
|
|
bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS1(pvt->online_spare);
|
|
if (swap_done && (csrow == bad_dram_cs))
|
|
csrow = CH1SPARE_RANK;
|
|
} else {
|
|
swap_done = F10_ONLINE_SPARE_SWAPDONE0(pvt->online_spare);
|
|
bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS0(pvt->online_spare);
|
|
if (swap_done && (csrow == bad_dram_cs))
|
|
csrow = CH0SPARE_RANK;
|
|
}
|
|
return csrow;
|
|
}
|
|
|
|
/*
|
|
* Iterate over the DRAM DCT "base" and "mask" registers looking for a
|
|
* SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
|
|
*
|
|
* Return:
|
|
* -EINVAL: NOT FOUND
|
|
* 0..csrow = Chip-Select Row
|
|
*/
|
|
static int f10_lookup_addr_in_dct(u32 in_addr, u32 nid, u32 cs)
|
|
{
|
|
struct mem_ctl_info *mci;
|
|
struct amd64_pvt *pvt;
|
|
u32 cs_base, cs_mask;
|
|
int cs_found = -EINVAL;
|
|
int csrow;
|
|
|
|
mci = mci_lookup[nid];
|
|
if (!mci)
|
|
return cs_found;
|
|
|
|
pvt = mci->pvt_info;
|
|
|
|
debugf1("InputAddr=0x%x channelselect=%d\n", in_addr, cs);
|
|
|
|
for (csrow = 0; csrow < CHIPSELECT_COUNT; csrow++) {
|
|
|
|
cs_base = amd64_get_dct_base(pvt, cs, csrow);
|
|
if (!(cs_base & K8_DCSB_CS_ENABLE))
|
|
continue;
|
|
|
|
/*
|
|
* We have an ENABLED CSROW, Isolate just the MASK bits of the
|
|
* target: [28:19] and [13:5], which map to [36:27] and [21:13]
|
|
* of the actual address.
|
|
*/
|
|
cs_base &= REV_F_F1Xh_DCSB_BASE_BITS;
|
|
|
|
/*
|
|
* Get the DCT Mask, and ENABLE the reserved bits: [18:16] and
|
|
* [4:0] to become ON. Then mask off bits [28:0] ([36:8])
|
|
*/
|
|
cs_mask = amd64_get_dct_mask(pvt, cs, csrow);
|
|
|
|
debugf1(" CSROW=%d CSBase=0x%x RAW CSMask=0x%x\n",
|
|
csrow, cs_base, cs_mask);
|
|
|
|
cs_mask = (cs_mask | 0x0007C01F) & 0x1FFFFFFF;
|
|
|
|
debugf1(" Final CSMask=0x%x\n", cs_mask);
|
|
debugf1(" (InputAddr & ~CSMask)=0x%x "
|
|
"(CSBase & ~CSMask)=0x%x\n",
|
|
(in_addr & ~cs_mask), (cs_base & ~cs_mask));
|
|
|
|
if ((in_addr & ~cs_mask) == (cs_base & ~cs_mask)) {
|
|
cs_found = f10_process_possible_spare(csrow, cs, pvt);
|
|
|
|
debugf1(" MATCH csrow=%d\n", cs_found);
|
|
break;
|
|
}
|
|
}
|
|
return cs_found;
|
|
}
|
|
|
|
/* For a given @dram_range, check if @sys_addr falls within it. */
|
|
static int f10_match_to_this_node(struct amd64_pvt *pvt, int dram_range,
|
|
u64 sys_addr, int *nid, int *chan_sel)
|
|
{
|
|
int node_id, cs_found = -EINVAL, high_range = 0;
|
|
u32 intlv_en, intlv_sel, intlv_shift, hole_off;
|
|
u32 hole_valid, tmp, dct_sel_base, channel;
|
|
u64 dram_base, chan_addr, dct_sel_base_off;
|
|
|
|
dram_base = pvt->dram_base[dram_range];
|
|
intlv_en = pvt->dram_IntlvEn[dram_range];
|
|
|
|
node_id = pvt->dram_DstNode[dram_range];
|
|
intlv_sel = pvt->dram_IntlvSel[dram_range];
|
|
|
|
debugf1("(dram=%d) Base=0x%llx SystemAddr= 0x%llx Limit=0x%llx\n",
|
|
dram_range, dram_base, sys_addr, pvt->dram_limit[dram_range]);
|
|
|
|
/*
|
|
* This assumes that one node's DHAR is the same as all the other
|
|
* nodes' DHAR.
|
|
*/
|
|
hole_off = (pvt->dhar & 0x0000FF80);
|
|
hole_valid = (pvt->dhar & 0x1);
|
|
dct_sel_base_off = (pvt->dram_ctl_select_high & 0xFFFFFC00) << 16;
|
|
|
|
debugf1(" HoleOffset=0x%x HoleValid=0x%x IntlvSel=0x%x\n",
|
|
hole_off, hole_valid, intlv_sel);
|
|
|
|
if (intlv_en ||
|
|
(intlv_sel != ((sys_addr >> 12) & intlv_en)))
|
|
return -EINVAL;
|
|
|
|
dct_sel_base = dct_sel_baseaddr(pvt);
|
|
|
|
/*
|
|
* check whether addresses >= DctSelBaseAddr[47:27] are to be used to
|
|
* select between DCT0 and DCT1.
|
|
*/
|
|
if (dct_high_range_enabled(pvt) &&
|
|
!dct_ganging_enabled(pvt) &&
|
|
((sys_addr >> 27) >= (dct_sel_base >> 11)))
|
|
high_range = 1;
|
|
|
|
channel = f10_determine_channel(pvt, sys_addr, high_range, intlv_en);
|
|
|
|
chan_addr = f10_get_base_addr_offset(sys_addr, high_range, dct_sel_base,
|
|
dct_sel_base_off, hole_valid,
|
|
hole_off, dram_base);
|
|
|
|
intlv_shift = f10_map_intlv_en_to_shift(intlv_en);
|
|
|
|
/* remove Node ID (in case of memory interleaving) */
|
|
tmp = chan_addr & 0xFC0;
|
|
|
|
chan_addr = ((chan_addr >> intlv_shift) & 0xFFFFFFFFF000ULL) | tmp;
|
|
|
|
/* remove channel interleave and hash */
|
|
if (dct_interleave_enabled(pvt) &&
|
|
!dct_high_range_enabled(pvt) &&
|
|
!dct_ganging_enabled(pvt)) {
|
|
if (dct_sel_interleave_addr(pvt) != 1)
|
|
chan_addr = (chan_addr >> 1) & 0xFFFFFFFFFFFFFFC0ULL;
|
|
else {
|
|
tmp = chan_addr & 0xFC0;
|
|
chan_addr = ((chan_addr & 0xFFFFFFFFFFFFC000ULL) >> 1)
|
|
| tmp;
|
|
}
|
|
}
|
|
|
|
debugf1(" (ChannelAddrLong=0x%llx) >> 8 becomes InputAddr=0x%x\n",
|
|
chan_addr, (u32)(chan_addr >> 8));
|
|
|
|
cs_found = f10_lookup_addr_in_dct(chan_addr >> 8, node_id, channel);
|
|
|
|
if (cs_found >= 0) {
|
|
*nid = node_id;
|
|
*chan_sel = channel;
|
|
}
|
|
return cs_found;
|
|
}
|
|
|
|
static int f10_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
|
|
int *node, int *chan_sel)
|
|
{
|
|
int dram_range, cs_found = -EINVAL;
|
|
u64 dram_base, dram_limit;
|
|
|
|
for (dram_range = 0; dram_range < DRAM_REG_COUNT; dram_range++) {
|
|
|
|
if (!pvt->dram_rw_en[dram_range])
|
|
continue;
|
|
|
|
dram_base = pvt->dram_base[dram_range];
|
|
dram_limit = pvt->dram_limit[dram_range];
|
|
|
|
if ((dram_base <= sys_addr) && (sys_addr <= dram_limit)) {
|
|
|
|
cs_found = f10_match_to_this_node(pvt, dram_range,
|
|
sys_addr, node,
|
|
chan_sel);
|
|
if (cs_found >= 0)
|
|
break;
|
|
}
|
|
}
|
|
return cs_found;
|
|
}
|
|
|
|
/*
|
|
* This the F10h reference code from AMD to map a @sys_addr to NodeID,
|
|
* CSROW, Channel.
|
|
*
|
|
* The @sys_addr is usually an error address received from the hardware.
|
|
*/
|
|
static void f10_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
|
|
struct err_regs *info,
|
|
u64 sys_addr)
|
|
{
|
|
struct amd64_pvt *pvt = mci->pvt_info;
|
|
u32 page, offset;
|
|
unsigned short syndrome;
|
|
int nid, csrow, chan = 0;
|
|
|
|
csrow = f10_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan);
|
|
|
|
if (csrow >= 0) {
|
|
error_address_to_page_and_offset(sys_addr, &page, &offset);
|
|
|
|
syndrome = HIGH_SYNDROME(info->nbsl) << 8;
|
|
syndrome |= LOW_SYNDROME(info->nbsh);
|
|
|
|
/*
|
|
* Is CHIPKILL on? If so, then we can attempt to use the
|
|
* syndrome to isolate which channel the error was on.
|
|
*/
|
|
if (pvt->nbcfg & K8_NBCFG_CHIPKILL)
|
|
chan = get_channel_from_ecc_syndrome(syndrome);
|
|
|
|
if (chan >= 0) {
|
|
edac_mc_handle_ce(mci, page, offset, syndrome,
|
|
csrow, chan, EDAC_MOD_STR);
|
|
} else {
|
|
/*
|
|
* Channel unknown, report all channels on this
|
|
* CSROW as failed.
|
|
*/
|
|
for (chan = 0; chan < mci->csrows[csrow].nr_channels;
|
|
chan++) {
|
|
edac_mc_handle_ce(mci, page, offset,
|
|
syndrome,
|
|
csrow, chan,
|
|
EDAC_MOD_STR);
|
|
}
|
|
}
|
|
|
|
} else {
|
|
edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Input (@index) is the DBAM DIMM value (1 of 4) used as an index into a shift
|
|
* table (revf_quad_ddr2_shift) which starts at 128MB DIMM size. Index of 0
|
|
* indicates an empty DIMM slot, as reported by Hardware on empty slots.
|
|
*
|
|
* Normalize to 128MB by subracting 27 bit shift.
|
|
*/
|
|
static int map_dbam_to_csrow_size(int index)
|
|
{
|
|
int mega_bytes = 0;
|
|
|
|
if (index > 0 && index <= DBAM_MAX_VALUE)
|
|
mega_bytes = ((128 << (revf_quad_ddr2_shift[index]-27)));
|
|
|
|
return mega_bytes;
|
|
}
|
|
|
|
/*
|
|
* debug routine to display the memory sizes of a DIMM (ganged or not) and it
|
|
* CSROWs as well
|
|
*/
|
|
static void f10_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt,
|
|
int ganged)
|
|
{
|
|
int dimm, size0, size1;
|
|
u32 dbam;
|
|
u32 *dcsb;
|
|
|
|
debugf1(" dbam%d: 0x%8.08x CSROW is %s\n", ctrl,
|
|
ctrl ? pvt->dbam1 : pvt->dbam0,
|
|
ganged ? "GANGED - dbam1 not used" : "NON-GANGED");
|
|
|
|
dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
|
|
dcsb = ctrl ? pvt->dcsb1 : pvt->dcsb0;
|
|
|
|
/* Dump memory sizes for DIMM and its CSROWs */
|
|
for (dimm = 0; dimm < 4; dimm++) {
|
|
|
|
size0 = 0;
|
|
if (dcsb[dimm*2] & K8_DCSB_CS_ENABLE)
|
|
size0 = map_dbam_to_csrow_size(DBAM_DIMM(dimm, dbam));
|
|
|
|
size1 = 0;
|
|
if (dcsb[dimm*2 + 1] & K8_DCSB_CS_ENABLE)
|
|
size1 = map_dbam_to_csrow_size(DBAM_DIMM(dimm, dbam));
|
|
|
|
debugf1(" CTRL-%d DIMM-%d=%5dMB CSROW-%d=%5dMB "
|
|
"CSROW-%d=%5dMB\n",
|
|
ctrl,
|
|
dimm,
|
|
size0 + size1,
|
|
dimm * 2,
|
|
size0,
|
|
dimm * 2 + 1,
|
|
size1);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Very early hardware probe on pci_probe thread to determine if this module
|
|
* supports the hardware.
|
|
*
|
|
* Return:
|
|
* 0 for OK
|
|
* 1 for error
|
|
*/
|
|
static int f10_probe_valid_hardware(struct amd64_pvt *pvt)
|
|
{
|
|
int ret = 0;
|
|
|
|
/*
|
|
* If we are on a DDR3 machine, we don't know yet if
|
|
* we support that properly at this time
|
|
*/
|
|
if ((pvt->dchr0 & F10_DCHR_Ddr3Mode) ||
|
|
(pvt->dchr1 & F10_DCHR_Ddr3Mode)) {
|
|
|
|
amd64_printk(KERN_WARNING,
|
|
"%s() This machine is running with DDR3 memory. "
|
|
"This is not currently supported. "
|
|
"DCHR0=0x%x DCHR1=0x%x\n",
|
|
__func__, pvt->dchr0, pvt->dchr1);
|
|
|
|
amd64_printk(KERN_WARNING,
|
|
" Contact '%s' module MAINTAINER to help add"
|
|
" support.\n",
|
|
EDAC_MOD_STR);
|
|
|
|
ret = 1;
|
|
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* There currently are 3 types type of MC devices for AMD Athlon/Opterons
|
|
* (as per PCI DEVICE_IDs):
|
|
*
|
|
* Family K8: That is the Athlon64 and Opteron CPUs. They all have the same PCI
|
|
* DEVICE ID, even though there is differences between the different Revisions
|
|
* (CG,D,E,F).
|
|
*
|
|
* Family F10h and F11h.
|
|
*
|
|
*/
|
|
static struct amd64_family_type amd64_family_types[] = {
|
|
[K8_CPUS] = {
|
|
.ctl_name = "RevF",
|
|
.addr_f1_ctl = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
|
|
.misc_f3_ctl = PCI_DEVICE_ID_AMD_K8_NB_MISC,
|
|
.ops = {
|
|
.early_channel_count = k8_early_channel_count,
|
|
.get_error_address = k8_get_error_address,
|
|
.read_dram_base_limit = k8_read_dram_base_limit,
|
|
.map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
|
|
.dbam_map_to_pages = k8_dbam_map_to_pages,
|
|
}
|
|
},
|
|
[F10_CPUS] = {
|
|
.ctl_name = "Family 10h",
|
|
.addr_f1_ctl = PCI_DEVICE_ID_AMD_10H_NB_MAP,
|
|
.misc_f3_ctl = PCI_DEVICE_ID_AMD_10H_NB_MISC,
|
|
.ops = {
|
|
.probe_valid_hardware = f10_probe_valid_hardware,
|
|
.early_channel_count = f10_early_channel_count,
|
|
.get_error_address = f10_get_error_address,
|
|
.read_dram_base_limit = f10_read_dram_base_limit,
|
|
.read_dram_ctl_register = f10_read_dram_ctl_register,
|
|
.map_sysaddr_to_csrow = f10_map_sysaddr_to_csrow,
|
|
.dbam_map_to_pages = f10_dbam_map_to_pages,
|
|
}
|
|
},
|
|
[F11_CPUS] = {
|
|
.ctl_name = "Family 11h",
|
|
.addr_f1_ctl = PCI_DEVICE_ID_AMD_11H_NB_MAP,
|
|
.misc_f3_ctl = PCI_DEVICE_ID_AMD_11H_NB_MISC,
|
|
.ops = {
|
|
.probe_valid_hardware = f10_probe_valid_hardware,
|
|
.early_channel_count = f10_early_channel_count,
|
|
.get_error_address = f10_get_error_address,
|
|
.read_dram_base_limit = f10_read_dram_base_limit,
|
|
.read_dram_ctl_register = f10_read_dram_ctl_register,
|
|
.map_sysaddr_to_csrow = f10_map_sysaddr_to_csrow,
|
|
.dbam_map_to_pages = f10_dbam_map_to_pages,
|
|
}
|
|
},
|
|
};
|
|
|
|
static struct pci_dev *pci_get_related_function(unsigned int vendor,
|
|
unsigned int device,
|
|
struct pci_dev *related)
|
|
{
|
|
struct pci_dev *dev = NULL;
|
|
|
|
dev = pci_get_device(vendor, device, dev);
|
|
while (dev) {
|
|
if ((dev->bus->number == related->bus->number) &&
|
|
(PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
|
|
break;
|
|
dev = pci_get_device(vendor, device, dev);
|
|
}
|
|
|
|
return dev;
|
|
}
|
|
|
|
/*
|
|
* syndrome mapping table for ECC ChipKill devices
|
|
*
|
|
* The comment in each row is the token (nibble) number that is in error.
|
|
* The least significant nibble of the syndrome is the mask for the bits
|
|
* that are in error (need to be toggled) for the particular nibble.
|
|
*
|
|
* Each row contains 16 entries.
|
|
* The first entry (0th) is the channel number for that row of syndromes.
|
|
* The remaining 15 entries are the syndromes for the respective Error
|
|
* bit mask index.
|
|
*
|
|
* 1st index entry is 0x0001 mask, indicating that the rightmost bit is the
|
|
* bit in error.
|
|
* The 2nd index entry is 0x0010 that the second bit is damaged.
|
|
* The 3rd index entry is 0x0011 indicating that the rightmost 2 bits
|
|
* are damaged.
|
|
* Thus so on until index 15, 0x1111, whose entry has the syndrome
|
|
* indicating that all 4 bits are damaged.
|
|
*
|
|
* A search is performed on this table looking for a given syndrome.
|
|
*
|
|
* See the AMD documentation for ECC syndromes. This ECC table is valid
|
|
* across all the versions of the AMD64 processors.
|
|
*
|
|
* A fast lookup is to use the LAST four bits of the 16-bit syndrome as a
|
|
* COLUMN index, then search all ROWS of that column, looking for a match
|
|
* with the input syndrome. The ROW value will be the token number.
|
|
*
|
|
* The 0'th entry on that row, can be returned as the CHANNEL (0 or 1) of this
|
|
* error.
|
|
*/
|
|
#define NUMBER_ECC_ROWS 36
|
|
static const unsigned short ecc_chipkill_syndromes[NUMBER_ECC_ROWS][16] = {
|
|
/* Channel 0 syndromes */
|
|
{/*0*/ 0, 0xe821, 0x7c32, 0x9413, 0xbb44, 0x5365, 0xc776, 0x2f57,
|
|
0xdd88, 0x35a9, 0xa1ba, 0x499b, 0x66cc, 0x8eed, 0x1afe, 0xf2df },
|
|
{/*1*/ 0, 0x5d31, 0xa612, 0xfb23, 0x9584, 0xc8b5, 0x3396, 0x6ea7,
|
|
0xeac8, 0xb7f9, 0x4cda, 0x11eb, 0x7f4c, 0x227d, 0xd95e, 0x846f },
|
|
{/*2*/ 0, 0x0001, 0x0002, 0x0003, 0x0004, 0x0005, 0x0006, 0x0007,
|
|
0x0008, 0x0009, 0x000a, 0x000b, 0x000c, 0x000d, 0x000e, 0x000f },
|
|
{/*3*/ 0, 0x2021, 0x3032, 0x1013, 0x4044, 0x6065, 0x7076, 0x5057,
|
|
0x8088, 0xa0a9, 0xb0ba, 0x909b, 0xc0cc, 0xe0ed, 0xf0fe, 0xd0df },
|
|
{/*4*/ 0, 0x5041, 0xa082, 0xf0c3, 0x9054, 0xc015, 0x30d6, 0x6097,
|
|
0xe0a8, 0xb0e9, 0x402a, 0x106b, 0x70fc, 0x20bd, 0xd07e, 0x803f },
|
|
{/*5*/ 0, 0xbe21, 0xd732, 0x6913, 0x2144, 0x9f65, 0xf676, 0x4857,
|
|
0x3288, 0x8ca9, 0xe5ba, 0x5b9b, 0x13cc, 0xaded, 0xc4fe, 0x7adf },
|
|
{/*6*/ 0, 0x4951, 0x8ea2, 0xc7f3, 0x5394, 0x1ac5, 0xdd36, 0x9467,
|
|
0xa1e8, 0xe8b9, 0x2f4a, 0x661b, 0xf27c, 0xbb2d, 0x7cde, 0x358f },
|
|
{/*7*/ 0, 0x74e1, 0x9872, 0xec93, 0xd6b4, 0xa255, 0x4ec6, 0x3a27,
|
|
0x6bd8, 0x1f39, 0xf3aa, 0x874b, 0xbd6c, 0xc98d, 0x251e, 0x51ff },
|
|
{/*8*/ 0, 0x15c1, 0x2a42, 0x3f83, 0xcef4, 0xdb35, 0xe4b6, 0xf177,
|
|
0x4758, 0x5299, 0x6d1a, 0x78db, 0x89ac, 0x9c6d, 0xa3ee, 0xb62f },
|
|
{/*9*/ 0, 0x3d01, 0x1602, 0x2b03, 0x8504, 0xb805, 0x9306, 0xae07,
|
|
0xca08, 0xf709, 0xdc0a, 0xe10b, 0x4f0c, 0x720d, 0x590e, 0x640f },
|
|
{/*a*/ 0, 0x9801, 0xec02, 0x7403, 0x6b04, 0xf305, 0x8706, 0x1f07,
|
|
0xbd08, 0x2509, 0x510a, 0xc90b, 0xd60c, 0x4e0d, 0x3a0e, 0xa20f },
|
|
{/*b*/ 0, 0xd131, 0x6212, 0xb323, 0x3884, 0xe9b5, 0x5a96, 0x8ba7,
|
|
0x1cc8, 0xcdf9, 0x7eda, 0xafeb, 0x244c, 0xf57d, 0x465e, 0x976f },
|
|
{/*c*/ 0, 0xe1d1, 0x7262, 0x93b3, 0xb834, 0x59e5, 0xca56, 0x2b87,
|
|
0xdc18, 0x3dc9, 0xae7a, 0x4fab, 0x542c, 0x85fd, 0x164e, 0xf79f },
|
|
{/*d*/ 0, 0x6051, 0xb0a2, 0xd0f3, 0x1094, 0x70c5, 0xa036, 0xc067,
|
|
0x20e8, 0x40b9, 0x904a, 0x601b, 0x307c, 0x502d, 0x80de, 0xe08f },
|
|
{/*e*/ 0, 0xa4c1, 0xf842, 0x5c83, 0xe6f4, 0x4235, 0x1eb6, 0xba77,
|
|
0x7b58, 0xdf99, 0x831a, 0x27db, 0x9dac, 0x396d, 0x65ee, 0xc12f },
|
|
{/*f*/ 0, 0x11c1, 0x2242, 0x3383, 0xc8f4, 0xd935, 0xeab6, 0xfb77,
|
|
0x4c58, 0x5d99, 0x6e1a, 0x7fdb, 0x84ac, 0x956d, 0xa6ee, 0xb72f },
|
|
|
|
/* Channel 1 syndromes */
|
|
{/*10*/ 1, 0x45d1, 0x8a62, 0xcfb3, 0x5e34, 0x1be5, 0xd456, 0x9187,
|
|
0xa718, 0xe2c9, 0x2d7a, 0x68ab, 0xf92c, 0xbcfd, 0x734e, 0x369f },
|
|
{/*11*/ 1, 0x63e1, 0xb172, 0xd293, 0x14b4, 0x7755, 0xa5c6, 0xc627,
|
|
0x28d8, 0x4b39, 0x99aa, 0xfa4b, 0x3c6c, 0x5f8d, 0x8d1e, 0xeeff },
|
|
{/*12*/ 1, 0xb741, 0xd982, 0x6ec3, 0x2254, 0x9515, 0xfbd6, 0x4c97,
|
|
0x33a8, 0x84e9, 0xea2a, 0x5d6b, 0x11fc, 0xa6bd, 0xc87e, 0x7f3f },
|
|
{/*13*/ 1, 0xdd41, 0x6682, 0xbbc3, 0x3554, 0xe815, 0x53d6, 0xce97,
|
|
0x1aa8, 0xc7e9, 0x7c2a, 0xa1fb, 0x2ffc, 0xf2bd, 0x497e, 0x943f },
|
|
{/*14*/ 1, 0x2bd1, 0x3d62, 0x16b3, 0x4f34, 0x64e5, 0x7256, 0x5987,
|
|
0x8518, 0xaec9, 0xb87a, 0x93ab, 0xca2c, 0xe1fd, 0xf74e, 0xdc9f },
|
|
{/*15*/ 1, 0x83c1, 0xc142, 0x4283, 0xa4f4, 0x2735, 0x65b6, 0xe677,
|
|
0xf858, 0x7b99, 0x391a, 0xbadb, 0x5cac, 0xdf6d, 0x9dee, 0x1e2f },
|
|
{/*16*/ 1, 0x8fd1, 0xc562, 0x4ab3, 0xa934, 0x26e5, 0x6c56, 0xe387,
|
|
0xfe18, 0x71c9, 0x3b7a, 0xb4ab, 0x572c, 0xd8fd, 0x924e, 0x1d9f },
|
|
{/*17*/ 1, 0x4791, 0x89e2, 0xce73, 0x5264, 0x15f5, 0xdb86, 0x9c17,
|
|
0xa3b8, 0xe429, 0x2a5a, 0x6dcb, 0xf1dc, 0xb64d, 0x783e, 0x3faf },
|
|
{/*18*/ 1, 0x5781, 0xa9c2, 0xfe43, 0x92a4, 0xc525, 0x3b66, 0x6ce7,
|
|
0xe3f8, 0xb479, 0x4a3a, 0x1dbb, 0x715c, 0x26dd, 0xd89e, 0x8f1f },
|
|
{/*19*/ 1, 0xbf41, 0xd582, 0x6ac3, 0x2954, 0x9615, 0xfcd6, 0x4397,
|
|
0x3ea8, 0x81e9, 0xeb2a, 0x546b, 0x17fc, 0xa8bd, 0xc27e, 0x7d3f },
|
|
{/*1a*/ 1, 0x9891, 0xe1e2, 0x7273, 0x6464, 0xf7f5, 0x8586, 0x1617,
|
|
0xb8b8, 0x2b29, 0x595a, 0xcacb, 0xdcdc, 0x4f4d, 0x3d3e, 0xaeaf },
|
|
{/*1b*/ 1, 0xcce1, 0x4472, 0x8893, 0xfdb4, 0x3f55, 0xb9c6, 0x7527,
|
|
0x56d8, 0x9a39, 0x12aa, 0xde4b, 0xab6c, 0x678d, 0xef1e, 0x23ff },
|
|
{/*1c*/ 1, 0xa761, 0xf9b2, 0x5ed3, 0xe214, 0x4575, 0x1ba6, 0xbcc7,
|
|
0x7328, 0xd449, 0x8a9a, 0x2dfb, 0x913c, 0x365d, 0x688e, 0xcfef },
|
|
{/*1d*/ 1, 0xff61, 0x55b2, 0xaad3, 0x7914, 0x8675, 0x2ca6, 0xd3c7,
|
|
0x9e28, 0x6149, 0xcb9a, 0x34fb, 0xe73c, 0x185d, 0xb28e, 0x4def },
|
|
{/*1e*/ 1, 0x5451, 0xa8a2, 0xfcf3, 0x9694, 0xc2c5, 0x3e36, 0x6a67,
|
|
0xebe8, 0xbfb9, 0x434a, 0x171b, 0x7d7c, 0x292d, 0xd5de, 0x818f },
|
|
{/*1f*/ 1, 0x6fc1, 0xb542, 0xda83, 0x19f4, 0x7635, 0xacb6, 0xc377,
|
|
0x2e58, 0x4199, 0x9b1a, 0xf4db, 0x37ac, 0x586d, 0x82ee, 0xed2f },
|
|
|
|
/* ECC bits are also in the set of tokens and they too can go bad
|
|
* first 2 cover channel 0, while the second 2 cover channel 1
|
|
*/
|
|
{/*20*/ 0, 0xbe01, 0xd702, 0x6903, 0x2104, 0x9f05, 0xf606, 0x4807,
|
|
0x3208, 0x8c09, 0xe50a, 0x5b0b, 0x130c, 0xad0d, 0xc40e, 0x7a0f },
|
|
{/*21*/ 0, 0x4101, 0x8202, 0xc303, 0x5804, 0x1905, 0xda06, 0x9b07,
|
|
0xac08, 0xed09, 0x2e0a, 0x6f0b, 0x640c, 0xb50d, 0x760e, 0x370f },
|
|
{/*22*/ 1, 0xc441, 0x4882, 0x8cc3, 0xf654, 0x3215, 0xbed6, 0x7a97,
|
|
0x5ba8, 0x9fe9, 0x132a, 0xd76b, 0xadfc, 0x69bd, 0xe57e, 0x213f },
|
|
{/*23*/ 1, 0x7621, 0x9b32, 0xed13, 0xda44, 0xac65, 0x4176, 0x3757,
|
|
0x6f88, 0x19a9, 0xf4ba, 0x829b, 0xb5cc, 0xc3ed, 0x2efe, 0x58df }
|
|
};
|
|
|
|
/*
|
|
* Given the syndrome argument, scan each of the channel tables for a syndrome
|
|
* match. Depending on which table it is found, return the channel number.
|
|
*/
|
|
static int get_channel_from_ecc_syndrome(unsigned short syndrome)
|
|
{
|
|
int row;
|
|
int column;
|
|
|
|
/* Determine column to scan */
|
|
column = syndrome & 0xF;
|
|
|
|
/* Scan all rows, looking for syndrome, or end of table */
|
|
for (row = 0; row < NUMBER_ECC_ROWS; row++) {
|
|
if (ecc_chipkill_syndromes[row][column] == syndrome)
|
|
return ecc_chipkill_syndromes[row][0];
|
|
}
|
|
|
|
debugf0("syndrome(%x) not found\n", syndrome);
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* Check for valid error in the NB Status High register. If so, proceed to read
|
|
* NB Status Low, NB Address Low and NB Address High registers and store data
|
|
* into error structure.
|
|
*
|
|
* Returns:
|
|
* - 1: if hardware regs contains valid error info
|
|
* - 0: if no valid error is indicated
|
|
*/
|
|
static int amd64_get_error_info_regs(struct mem_ctl_info *mci,
|
|
struct err_regs *regs)
|
|
{
|
|
struct amd64_pvt *pvt;
|
|
struct pci_dev *misc_f3_ctl;
|
|
int err = 0;
|
|
|
|
pvt = mci->pvt_info;
|
|
misc_f3_ctl = pvt->misc_f3_ctl;
|
|
|
|
err = pci_read_config_dword(misc_f3_ctl, K8_NBSH, ®s->nbsh);
|
|
if (err)
|
|
goto err_reg;
|
|
|
|
if (!(regs->nbsh & K8_NBSH_VALID_BIT))
|
|
return 0;
|
|
|
|
/* valid error, read remaining error information registers */
|
|
err = pci_read_config_dword(misc_f3_ctl, K8_NBSL, ®s->nbsl);
|
|
if (err)
|
|
goto err_reg;
|
|
|
|
err = pci_read_config_dword(misc_f3_ctl, K8_NBEAL, ®s->nbeal);
|
|
if (err)
|
|
goto err_reg;
|
|
|
|
err = pci_read_config_dword(misc_f3_ctl, K8_NBEAH, ®s->nbeah);
|
|
if (err)
|
|
goto err_reg;
|
|
|
|
err = pci_read_config_dword(misc_f3_ctl, K8_NBCFG, ®s->nbcfg);
|
|
if (err)
|
|
goto err_reg;
|
|
|
|
return 1;
|
|
|
|
err_reg:
|
|
debugf0("Reading error info register failed\n");
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This function is called to retrieve the error data from hardware and store it
|
|
* in the info structure.
|
|
*
|
|
* Returns:
|
|
* - 1: if a valid error is found
|
|
* - 0: if no error is found
|
|
*/
|
|
static int amd64_get_error_info(struct mem_ctl_info *mci,
|
|
struct err_regs *info)
|
|
{
|
|
struct amd64_pvt *pvt;
|
|
struct err_regs regs;
|
|
|
|
pvt = mci->pvt_info;
|
|
|
|
if (!amd64_get_error_info_regs(mci, info))
|
|
return 0;
|
|
|
|
/*
|
|
* Here's the problem with the K8's EDAC reporting: There are four
|
|
* registers which report pieces of error information. They are shared
|
|
* between CEs and UEs. Furthermore, contrary to what is stated in the
|
|
* BKDG, the overflow bit is never used! Every error always updates the
|
|
* reporting registers.
|
|
*
|
|
* Can you see the race condition? All four error reporting registers
|
|
* must be read before a new error updates them! There is no way to read
|
|
* all four registers atomically. The best than can be done is to detect
|
|
* that a race has occured and then report the error without any kind of
|
|
* precision.
|
|
*
|
|
* What is still positive is that errors are still reported and thus
|
|
* problems can still be detected - just not localized because the
|
|
* syndrome and address are spread out across registers.
|
|
*
|
|
* Grrrrr!!!!! Here's hoping that AMD fixes this in some future K8 rev.
|
|
* UEs and CEs should have separate register sets with proper overflow
|
|
* bits that are used! At very least the problem can be fixed by
|
|
* honoring the ErrValid bit in 'nbsh' and not updating registers - just
|
|
* set the overflow bit - unless the current error is CE and the new
|
|
* error is UE which would be the only situation for overwriting the
|
|
* current values.
|
|
*/
|
|
|
|
regs = *info;
|
|
|
|
/* Use info from the second read - most current */
|
|
if (unlikely(!amd64_get_error_info_regs(mci, info)))
|
|
return 0;
|
|
|
|
/* clear the error bits in hardware */
|
|
pci_write_bits32(pvt->misc_f3_ctl, K8_NBSH, 0, K8_NBSH_VALID_BIT);
|
|
|
|
/* Check for the possible race condition */
|
|
if ((regs.nbsh != info->nbsh) ||
|
|
(regs.nbsl != info->nbsl) ||
|
|
(regs.nbeah != info->nbeah) ||
|
|
(regs.nbeal != info->nbeal)) {
|
|
amd64_mc_printk(mci, KERN_WARNING,
|
|
"hardware STATUS read access race condition "
|
|
"detected!\n");
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR
|
|
* ADDRESS and process.
|
|
*/
|
|
static void amd64_handle_ce(struct mem_ctl_info *mci,
|
|
struct err_regs *info)
|
|
{
|
|
struct amd64_pvt *pvt = mci->pvt_info;
|
|
u64 SystemAddress;
|
|
|
|
/* Ensure that the Error Address is VALID */
|
|
if ((info->nbsh & K8_NBSH_VALID_ERROR_ADDR) == 0) {
|
|
amd64_mc_printk(mci, KERN_ERR,
|
|
"HW has no ERROR_ADDRESS available\n");
|
|
edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
|
|
return;
|
|
}
|
|
|
|
SystemAddress = extract_error_address(mci, info);
|
|
|
|
amd64_mc_printk(mci, KERN_ERR,
|
|
"CE ERROR_ADDRESS= 0x%llx\n", SystemAddress);
|
|
|
|
pvt->ops->map_sysaddr_to_csrow(mci, info, SystemAddress);
|
|
}
|
|
|
|
/* Handle any Un-correctable Errors (UEs) */
|
|
static void amd64_handle_ue(struct mem_ctl_info *mci,
|
|
struct err_regs *info)
|
|
{
|
|
int csrow;
|
|
u64 SystemAddress;
|
|
u32 page, offset;
|
|
struct mem_ctl_info *log_mci, *src_mci = NULL;
|
|
|
|
log_mci = mci;
|
|
|
|
if ((info->nbsh & K8_NBSH_VALID_ERROR_ADDR) == 0) {
|
|
amd64_mc_printk(mci, KERN_CRIT,
|
|
"HW has no ERROR_ADDRESS available\n");
|
|
edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
|
|
return;
|
|
}
|
|
|
|
SystemAddress = extract_error_address(mci, info);
|
|
|
|
/*
|
|
* Find out which node the error address belongs to. This may be
|
|
* different from the node that detected the error.
|
|
*/
|
|
src_mci = find_mc_by_sys_addr(mci, SystemAddress);
|
|
if (!src_mci) {
|
|
amd64_mc_printk(mci, KERN_CRIT,
|
|
"ERROR ADDRESS (0x%lx) value NOT mapped to a MC\n",
|
|
(unsigned long)SystemAddress);
|
|
edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
|
|
return;
|
|
}
|
|
|
|
log_mci = src_mci;
|
|
|
|
csrow = sys_addr_to_csrow(log_mci, SystemAddress);
|
|
if (csrow < 0) {
|
|
amd64_mc_printk(mci, KERN_CRIT,
|
|
"ERROR_ADDRESS (0x%lx) value NOT mapped to 'csrow'\n",
|
|
(unsigned long)SystemAddress);
|
|
edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
|
|
} else {
|
|
error_address_to_page_and_offset(SystemAddress, &page, &offset);
|
|
edac_mc_handle_ue(log_mci, page, offset, csrow, EDAC_MOD_STR);
|
|
}
|
|
}
|
|
|
|
static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
|
|
struct err_regs *info)
|
|
{
|
|
u32 ec = ERROR_CODE(info->nbsl);
|
|
u32 xec = EXT_ERROR_CODE(info->nbsl);
|
|
int ecc_type = info->nbsh & (0x3 << 13);
|
|
|
|
/* Bail early out if this was an 'observed' error */
|
|
if (PP(ec) == K8_NBSL_PP_OBS)
|
|
return;
|
|
|
|
/* Do only ECC errors */
|
|
if (xec && xec != F10_NBSL_EXT_ERR_ECC)
|
|
return;
|
|
|
|
if (ecc_type == 2)
|
|
amd64_handle_ce(mci, info);
|
|
else if (ecc_type == 1)
|
|
amd64_handle_ue(mci, info);
|
|
|
|
/*
|
|
* If main error is CE then overflow must be CE. If main error is UE
|
|
* then overflow is unknown. We'll call the overflow a CE - if
|
|
* panic_on_ue is set then we're already panic'ed and won't arrive
|
|
* here. Else, then apparently someone doesn't think that UE's are
|
|
* catastrophic.
|
|
*/
|
|
if (info->nbsh & K8_NBSH_OVERFLOW)
|
|
edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR "Error Overflow");
|
|
}
|
|
|
|
void amd64_decode_bus_error(int node_id, struct err_regs *regs)
|
|
{
|
|
struct mem_ctl_info *mci = mci_lookup[node_id];
|
|
|
|
__amd64_decode_bus_error(mci, regs);
|
|
|
|
/*
|
|
* Check the UE bit of the NB status high register, if set generate some
|
|
* logs. If NOT a GART error, then process the event as a NO-INFO event.
|
|
* If it was a GART error, skip that process.
|
|
*
|
|
* FIXME: this should go somewhere else, if at all.
|
|
*/
|
|
if (regs->nbsh & K8_NBSH_UC_ERR && !report_gart_errors)
|
|
edac_mc_handle_ue_no_info(mci, "UE bit is set");
|
|
|
|
}
|
|
|
|
/*
|
|
* The main polling 'check' function, called FROM the edac core to perform the
|
|
* error checking and if an error is encountered, error processing.
|
|
*/
|
|
static void amd64_check(struct mem_ctl_info *mci)
|
|
{
|
|
struct err_regs regs;
|
|
|
|
if (amd64_get_error_info(mci, ®s)) {
|
|
struct amd64_pvt *pvt = mci->pvt_info;
|
|
amd_decode_nb_mce(pvt->mc_node_id, ®s, 1);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Input:
|
|
* 1) struct amd64_pvt which contains pvt->dram_f2_ctl pointer
|
|
* 2) AMD Family index value
|
|
*
|
|
* Ouput:
|
|
* Upon return of 0, the following filled in:
|
|
*
|
|
* struct pvt->addr_f1_ctl
|
|
* struct pvt->misc_f3_ctl
|
|
*
|
|
* Filled in with related device funcitions of 'dram_f2_ctl'
|
|
* These devices are "reserved" via the pci_get_device()
|
|
*
|
|
* Upon return of 1 (error status):
|
|
*
|
|
* Nothing reserved
|
|
*/
|
|
static int amd64_reserve_mc_sibling_devices(struct amd64_pvt *pvt, int mc_idx)
|
|
{
|
|
const struct amd64_family_type *amd64_dev = &amd64_family_types[mc_idx];
|
|
|
|
/* Reserve the ADDRESS MAP Device */
|
|
pvt->addr_f1_ctl = pci_get_related_function(pvt->dram_f2_ctl->vendor,
|
|
amd64_dev->addr_f1_ctl,
|
|
pvt->dram_f2_ctl);
|
|
|
|
if (!pvt->addr_f1_ctl) {
|
|
amd64_printk(KERN_ERR, "error address map device not found: "
|
|
"vendor %x device 0x%x (broken BIOS?)\n",
|
|
PCI_VENDOR_ID_AMD, amd64_dev->addr_f1_ctl);
|
|
return 1;
|
|
}
|
|
|
|
/* Reserve the MISC Device */
|
|
pvt->misc_f3_ctl = pci_get_related_function(pvt->dram_f2_ctl->vendor,
|
|
amd64_dev->misc_f3_ctl,
|
|
pvt->dram_f2_ctl);
|
|
|
|
if (!pvt->misc_f3_ctl) {
|
|
pci_dev_put(pvt->addr_f1_ctl);
|
|
pvt->addr_f1_ctl = NULL;
|
|
|
|
amd64_printk(KERN_ERR, "error miscellaneous device not found: "
|
|
"vendor %x device 0x%x (broken BIOS?)\n",
|
|
PCI_VENDOR_ID_AMD, amd64_dev->misc_f3_ctl);
|
|
return 1;
|
|
}
|
|
|
|
debugf1(" Addr Map device PCI Bus ID:\t%s\n",
|
|
pci_name(pvt->addr_f1_ctl));
|
|
debugf1(" DRAM MEM-CTL PCI Bus ID:\t%s\n",
|
|
pci_name(pvt->dram_f2_ctl));
|
|
debugf1(" Misc device PCI Bus ID:\t%s\n",
|
|
pci_name(pvt->misc_f3_ctl));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void amd64_free_mc_sibling_devices(struct amd64_pvt *pvt)
|
|
{
|
|
pci_dev_put(pvt->addr_f1_ctl);
|
|
pci_dev_put(pvt->misc_f3_ctl);
|
|
}
|
|
|
|
/*
|
|
* Retrieve the hardware registers of the memory controller (this includes the
|
|
* 'Address Map' and 'Misc' device regs)
|
|
*/
|
|
static void amd64_read_mc_registers(struct amd64_pvt *pvt)
|
|
{
|
|
u64 msr_val;
|
|
int dram, err = 0;
|
|
|
|
/*
|
|
* Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
|
|
* those are Read-As-Zero
|
|
*/
|
|
rdmsrl(MSR_K8_TOP_MEM1, msr_val);
|
|
pvt->top_mem = msr_val >> 23;
|
|
debugf0(" TOP_MEM=0x%08llx\n", pvt->top_mem);
|
|
|
|
/* check first whether TOP_MEM2 is enabled */
|
|
rdmsrl(MSR_K8_SYSCFG, msr_val);
|
|
if (msr_val & (1U << 21)) {
|
|
rdmsrl(MSR_K8_TOP_MEM2, msr_val);
|
|
pvt->top_mem2 = msr_val >> 23;
|
|
debugf0(" TOP_MEM2=0x%08llx\n", pvt->top_mem2);
|
|
} else
|
|
debugf0(" TOP_MEM2 disabled.\n");
|
|
|
|
amd64_cpu_display_info(pvt);
|
|
|
|
err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCAP, &pvt->nbcap);
|
|
if (err)
|
|
goto err_reg;
|
|
|
|
if (pvt->ops->read_dram_ctl_register)
|
|
pvt->ops->read_dram_ctl_register(pvt);
|
|
|
|
for (dram = 0; dram < DRAM_REG_COUNT; dram++) {
|
|
/*
|
|
* Call CPU specific READ function to get the DRAM Base and
|
|
* Limit values from the DCT.
|
|
*/
|
|
pvt->ops->read_dram_base_limit(pvt, dram);
|
|
|
|
/*
|
|
* Only print out debug info on rows with both R and W Enabled.
|
|
* Normal processing, compiler should optimize this whole 'if'
|
|
* debug output block away.
|
|
*/
|
|
if (pvt->dram_rw_en[dram] != 0) {
|
|
debugf1(" DRAM_BASE[%d]: 0x%8.08x-%8.08x "
|
|
"DRAM_LIMIT: 0x%8.08x-%8.08x\n",
|
|
dram,
|
|
(u32)(pvt->dram_base[dram] >> 32),
|
|
(u32)(pvt->dram_base[dram] & 0xFFFFFFFF),
|
|
(u32)(pvt->dram_limit[dram] >> 32),
|
|
(u32)(pvt->dram_limit[dram] & 0xFFFFFFFF));
|
|
debugf1(" IntlvEn=%s %s %s "
|
|
"IntlvSel=%d DstNode=%d\n",
|
|
pvt->dram_IntlvEn[dram] ?
|
|
"Enabled" : "Disabled",
|
|
(pvt->dram_rw_en[dram] & 0x2) ? "W" : "!W",
|
|
(pvt->dram_rw_en[dram] & 0x1) ? "R" : "!R",
|
|
pvt->dram_IntlvSel[dram],
|
|
pvt->dram_DstNode[dram]);
|
|
}
|
|
}
|
|
|
|
amd64_read_dct_base_mask(pvt);
|
|
|
|
err = pci_read_config_dword(pvt->addr_f1_ctl, K8_DHAR, &pvt->dhar);
|
|
if (err)
|
|
goto err_reg;
|
|
|
|
amd64_read_dbam_reg(pvt);
|
|
|
|
err = pci_read_config_dword(pvt->misc_f3_ctl,
|
|
F10_ONLINE_SPARE, &pvt->online_spare);
|
|
if (err)
|
|
goto err_reg;
|
|
|
|
err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0);
|
|
if (err)
|
|
goto err_reg;
|
|
|
|
err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCHR_0, &pvt->dchr0);
|
|
if (err)
|
|
goto err_reg;
|
|
|
|
if (!dct_ganging_enabled(pvt)) {
|
|
err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCLR_1,
|
|
&pvt->dclr1);
|
|
if (err)
|
|
goto err_reg;
|
|
|
|
err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCHR_1,
|
|
&pvt->dchr1);
|
|
if (err)
|
|
goto err_reg;
|
|
}
|
|
|
|
amd64_dump_misc_regs(pvt);
|
|
|
|
return;
|
|
|
|
err_reg:
|
|
debugf0("Reading an MC register failed\n");
|
|
|
|
}
|
|
|
|
/*
|
|
* NOTE: CPU Revision Dependent code
|
|
*
|
|
* Input:
|
|
* @csrow_nr ChipSelect Row Number (0..CHIPSELECT_COUNT-1)
|
|
* k8 private pointer to -->
|
|
* DRAM Bank Address mapping register
|
|
* node_id
|
|
* DCL register where dual_channel_active is
|
|
*
|
|
* The DBAM register consists of 4 sets of 4 bits each definitions:
|
|
*
|
|
* Bits: CSROWs
|
|
* 0-3 CSROWs 0 and 1
|
|
* 4-7 CSROWs 2 and 3
|
|
* 8-11 CSROWs 4 and 5
|
|
* 12-15 CSROWs 6 and 7
|
|
*
|
|
* Values range from: 0 to 15
|
|
* The meaning of the values depends on CPU revision and dual-channel state,
|
|
* see relevant BKDG more info.
|
|
*
|
|
* The memory controller provides for total of only 8 CSROWs in its current
|
|
* architecture. Each "pair" of CSROWs normally represents just one DIMM in
|
|
* single channel or two (2) DIMMs in dual channel mode.
|
|
*
|
|
* The following code logic collapses the various tables for CSROW based on CPU
|
|
* revision.
|
|
*
|
|
* Returns:
|
|
* The number of PAGE_SIZE pages on the specified CSROW number it
|
|
* encompasses
|
|
*
|
|
*/
|
|
static u32 amd64_csrow_nr_pages(int csrow_nr, struct amd64_pvt *pvt)
|
|
{
|
|
u32 dram_map, nr_pages;
|
|
|
|
/*
|
|
* The math on this doesn't look right on the surface because x/2*4 can
|
|
* be simplified to x*2 but this expression makes use of the fact that
|
|
* it is integral math where 1/2=0. This intermediate value becomes the
|
|
* number of bits to shift the DBAM register to extract the proper CSROW
|
|
* field.
|
|
*/
|
|
dram_map = (pvt->dbam0 >> ((csrow_nr / 2) * 4)) & 0xF;
|
|
|
|
nr_pages = pvt->ops->dbam_map_to_pages(pvt, dram_map);
|
|
|
|
/*
|
|
* If dual channel then double the memory size of single channel.
|
|
* Channel count is 1 or 2
|
|
*/
|
|
nr_pages <<= (pvt->channel_count - 1);
|
|
|
|
debugf0(" (csrow=%d) DBAM map index= %d\n", csrow_nr, dram_map);
|
|
debugf0(" nr_pages= %u channel-count = %d\n",
|
|
nr_pages, pvt->channel_count);
|
|
|
|
return nr_pages;
|
|
}
|
|
|
|
/*
|
|
* Initialize the array of csrow attribute instances, based on the values
|
|
* from pci config hardware registers.
|
|
*/
|
|
static int amd64_init_csrows(struct mem_ctl_info *mci)
|
|
{
|
|
struct csrow_info *csrow;
|
|
struct amd64_pvt *pvt;
|
|
u64 input_addr_min, input_addr_max, sys_addr;
|
|
int i, err = 0, empty = 1;
|
|
|
|
pvt = mci->pvt_info;
|
|
|
|
err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCFG, &pvt->nbcfg);
|
|
if (err)
|
|
debugf0("Reading K8_NBCFG failed\n");
|
|
|
|
debugf0("NBCFG= 0x%x CHIPKILL= %s DRAM ECC= %s\n", pvt->nbcfg,
|
|
(pvt->nbcfg & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
|
|
(pvt->nbcfg & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled"
|
|
);
|
|
|
|
for (i = 0; i < CHIPSELECT_COUNT; i++) {
|
|
csrow = &mci->csrows[i];
|
|
|
|
if ((pvt->dcsb0[i] & K8_DCSB_CS_ENABLE) == 0) {
|
|
debugf1("----CSROW %d EMPTY for node %d\n", i,
|
|
pvt->mc_node_id);
|
|
continue;
|
|
}
|
|
|
|
debugf1("----CSROW %d VALID for MC node %d\n",
|
|
i, pvt->mc_node_id);
|
|
|
|
empty = 0;
|
|
csrow->nr_pages = amd64_csrow_nr_pages(i, pvt);
|
|
find_csrow_limits(mci, i, &input_addr_min, &input_addr_max);
|
|
sys_addr = input_addr_to_sys_addr(mci, input_addr_min);
|
|
csrow->first_page = (u32) (sys_addr >> PAGE_SHIFT);
|
|
sys_addr = input_addr_to_sys_addr(mci, input_addr_max);
|
|
csrow->last_page = (u32) (sys_addr >> PAGE_SHIFT);
|
|
csrow->page_mask = ~mask_from_dct_mask(pvt, i);
|
|
/* 8 bytes of resolution */
|
|
|
|
csrow->mtype = amd64_determine_memory_type(pvt);
|
|
|
|
debugf1(" for MC node %d csrow %d:\n", pvt->mc_node_id, i);
|
|
debugf1(" input_addr_min: 0x%lx input_addr_max: 0x%lx\n",
|
|
(unsigned long)input_addr_min,
|
|
(unsigned long)input_addr_max);
|
|
debugf1(" sys_addr: 0x%lx page_mask: 0x%lx\n",
|
|
(unsigned long)sys_addr, csrow->page_mask);
|
|
debugf1(" nr_pages: %u first_page: 0x%lx "
|
|
"last_page: 0x%lx\n",
|
|
(unsigned)csrow->nr_pages,
|
|
csrow->first_page, csrow->last_page);
|
|
|
|
/*
|
|
* determine whether CHIPKILL or JUST ECC or NO ECC is operating
|
|
*/
|
|
if (pvt->nbcfg & K8_NBCFG_ECC_ENABLE)
|
|
csrow->edac_mode =
|
|
(pvt->nbcfg & K8_NBCFG_CHIPKILL) ?
|
|
EDAC_S4ECD4ED : EDAC_SECDED;
|
|
else
|
|
csrow->edac_mode = EDAC_NONE;
|
|
}
|
|
|
|
return empty;
|
|
}
|
|
|
|
/*
|
|
* Only if 'ecc_enable_override' is set AND BIOS had ECC disabled, do "we"
|
|
* enable it.
|
|
*/
|
|
static void amd64_enable_ecc_error_reporting(struct mem_ctl_info *mci)
|
|
{
|
|
struct amd64_pvt *pvt = mci->pvt_info;
|
|
const cpumask_t *cpumask = cpumask_of_node(pvt->mc_node_id);
|
|
int cpu, idx = 0, err = 0;
|
|
struct msr msrs[cpumask_weight(cpumask)];
|
|
u32 value;
|
|
u32 mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;
|
|
|
|
if (!ecc_enable_override)
|
|
return;
|
|
|
|
memset(msrs, 0, sizeof(msrs));
|
|
|
|
amd64_printk(KERN_WARNING,
|
|
"'ecc_enable_override' parameter is active, "
|
|
"Enabling AMD ECC hardware now: CAUTION\n");
|
|
|
|
err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCTL, &value);
|
|
if (err)
|
|
debugf0("Reading K8_NBCTL failed\n");
|
|
|
|
/* turn on UECCn and CECCEn bits */
|
|
pvt->old_nbctl = value & mask;
|
|
pvt->nbctl_mcgctl_saved = 1;
|
|
|
|
value |= mask;
|
|
pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCTL, value);
|
|
|
|
rdmsr_on_cpus(cpumask, K8_MSR_MCGCTL, msrs);
|
|
|
|
for_each_cpu(cpu, cpumask) {
|
|
if (msrs[idx].l & K8_MSR_MCGCTL_NBE)
|
|
set_bit(idx, &pvt->old_mcgctl);
|
|
|
|
msrs[idx].l |= K8_MSR_MCGCTL_NBE;
|
|
idx++;
|
|
}
|
|
wrmsr_on_cpus(cpumask, K8_MSR_MCGCTL, msrs);
|
|
|
|
err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCFG, &value);
|
|
if (err)
|
|
debugf0("Reading K8_NBCFG failed\n");
|
|
|
|
debugf0("NBCFG(1)= 0x%x CHIPKILL= %s ECC_ENABLE= %s\n", value,
|
|
(value & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
|
|
(value & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled");
|
|
|
|
if (!(value & K8_NBCFG_ECC_ENABLE)) {
|
|
amd64_printk(KERN_WARNING,
|
|
"This node reports that DRAM ECC is "
|
|
"currently Disabled; ENABLING now\n");
|
|
|
|
/* Attempt to turn on DRAM ECC Enable */
|
|
value |= K8_NBCFG_ECC_ENABLE;
|
|
pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCFG, value);
|
|
|
|
err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCFG, &value);
|
|
if (err)
|
|
debugf0("Reading K8_NBCFG failed\n");
|
|
|
|
if (!(value & K8_NBCFG_ECC_ENABLE)) {
|
|
amd64_printk(KERN_WARNING,
|
|
"Hardware rejects Enabling DRAM ECC checking\n"
|
|
"Check memory DIMM configuration\n");
|
|
} else {
|
|
amd64_printk(KERN_DEBUG,
|
|
"Hardware accepted DRAM ECC Enable\n");
|
|
}
|
|
}
|
|
debugf0("NBCFG(2)= 0x%x CHIPKILL= %s ECC_ENABLE= %s\n", value,
|
|
(value & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
|
|
(value & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled");
|
|
|
|
pvt->ctl_error_info.nbcfg = value;
|
|
}
|
|
|
|
static void amd64_restore_ecc_error_reporting(struct amd64_pvt *pvt)
|
|
{
|
|
const cpumask_t *cpumask = cpumask_of_node(pvt->mc_node_id);
|
|
int cpu, idx = 0, err = 0;
|
|
struct msr msrs[cpumask_weight(cpumask)];
|
|
u32 value;
|
|
u32 mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;
|
|
|
|
if (!pvt->nbctl_mcgctl_saved)
|
|
return;
|
|
|
|
memset(msrs, 0, sizeof(msrs));
|
|
|
|
err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCTL, &value);
|
|
if (err)
|
|
debugf0("Reading K8_NBCTL failed\n");
|
|
value &= ~mask;
|
|
value |= pvt->old_nbctl;
|
|
|
|
/* restore the NB Enable MCGCTL bit */
|
|
pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCTL, value);
|
|
|
|
rdmsr_on_cpus(cpumask, K8_MSR_MCGCTL, msrs);
|
|
|
|
for_each_cpu(cpu, cpumask) {
|
|
msrs[idx].l &= ~K8_MSR_MCGCTL_NBE;
|
|
msrs[idx].l |=
|
|
test_bit(idx, &pvt->old_mcgctl) << K8_MSR_MCGCTL_NBE;
|
|
idx++;
|
|
}
|
|
|
|
wrmsr_on_cpus(cpumask, K8_MSR_MCGCTL, msrs);
|
|
}
|
|
|
|
static void check_mcg_ctl(void *ret)
|
|
{
|
|
u64 msr_val = 0;
|
|
u8 nbe;
|
|
|
|
rdmsrl(MSR_IA32_MCG_CTL, msr_val);
|
|
nbe = msr_val & K8_MSR_MCGCTL_NBE;
|
|
|
|
debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
|
|
raw_smp_processor_id(), msr_val,
|
|
(nbe ? "enabled" : "disabled"));
|
|
|
|
if (!nbe)
|
|
*(int *)ret = 0;
|
|
}
|
|
|
|
/* check MCG_CTL on all the cpus on this node */
|
|
static int mcg_ctl_enabled_on_node(const struct cpumask *mask)
|
|
{
|
|
int ret = 1;
|
|
preempt_disable();
|
|
smp_call_function_many(mask, check_mcg_ctl, &ret, 1);
|
|
preempt_enable();
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* EDAC requires that the BIOS have ECC enabled before taking over the
|
|
* processing of ECC errors. This is because the BIOS can properly initialize
|
|
* the memory system completely. A command line option allows to force-enable
|
|
* hardware ECC later in amd64_enable_ecc_error_reporting().
|
|
*/
|
|
static const char *ecc_warning =
|
|
"WARNING: ECC is disabled by BIOS. Module will NOT be loaded.\n"
|
|
" Either Enable ECC in the BIOS, or set 'ecc_enable_override'.\n"
|
|
" Also, use of the override can cause unknown side effects.\n";
|
|
|
|
static int amd64_check_ecc_enabled(struct amd64_pvt *pvt)
|
|
{
|
|
u32 value;
|
|
int err = 0;
|
|
u8 ecc_enabled = 0, mcg_ctl_en = 0;
|
|
|
|
err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCFG, &value);
|
|
if (err)
|
|
debugf0("Reading K8_NBCTL failed\n");
|
|
|
|
ecc_enabled = !!(value & K8_NBCFG_ECC_ENABLE);
|
|
if (!ecc_enabled)
|
|
amd64_printk(KERN_WARNING, "This node reports that Memory ECC "
|
|
"is currently disabled, set F3x%x[22] (%s).\n",
|
|
K8_NBCFG, pci_name(pvt->misc_f3_ctl));
|
|
else
|
|
amd64_printk(KERN_INFO, "ECC is enabled by BIOS.\n");
|
|
|
|
mcg_ctl_en = mcg_ctl_enabled_on_node(cpumask_of_node(pvt->mc_node_id));
|
|
if (!mcg_ctl_en)
|
|
amd64_printk(KERN_WARNING, "NB MCE bank disabled, set MSR "
|
|
"0x%08x[4] on node %d to enable.\n",
|
|
MSR_IA32_MCG_CTL, pvt->mc_node_id);
|
|
|
|
if (!ecc_enabled || !mcg_ctl_en) {
|
|
if (!ecc_enable_override) {
|
|
amd64_printk(KERN_WARNING, "%s", ecc_warning);
|
|
return -ENODEV;
|
|
}
|
|
} else
|
|
/* CLEAR the override, since BIOS controlled it */
|
|
ecc_enable_override = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
struct mcidev_sysfs_attribute sysfs_attrs[ARRAY_SIZE(amd64_dbg_attrs) +
|
|
ARRAY_SIZE(amd64_inj_attrs) +
|
|
1];
|
|
|
|
struct mcidev_sysfs_attribute terminator = { .attr = { .name = NULL } };
|
|
|
|
static void amd64_set_mc_sysfs_attributes(struct mem_ctl_info *mci)
|
|
{
|
|
unsigned int i = 0, j = 0;
|
|
|
|
for (; i < ARRAY_SIZE(amd64_dbg_attrs); i++)
|
|
sysfs_attrs[i] = amd64_dbg_attrs[i];
|
|
|
|
for (j = 0; j < ARRAY_SIZE(amd64_inj_attrs); j++, i++)
|
|
sysfs_attrs[i] = amd64_inj_attrs[j];
|
|
|
|
sysfs_attrs[i] = terminator;
|
|
|
|
mci->mc_driver_sysfs_attributes = sysfs_attrs;
|
|
}
|
|
|
|
static void amd64_setup_mci_misc_attributes(struct mem_ctl_info *mci)
|
|
{
|
|
struct amd64_pvt *pvt = mci->pvt_info;
|
|
|
|
mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
|
|
mci->edac_ctl_cap = EDAC_FLAG_NONE;
|
|
|
|
if (pvt->nbcap & K8_NBCAP_SECDED)
|
|
mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
|
|
|
|
if (pvt->nbcap & K8_NBCAP_CHIPKILL)
|
|
mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
|
|
|
|
mci->edac_cap = amd64_determine_edac_cap(pvt);
|
|
mci->mod_name = EDAC_MOD_STR;
|
|
mci->mod_ver = EDAC_AMD64_VERSION;
|
|
mci->ctl_name = get_amd_family_name(pvt->mc_type_index);
|
|
mci->dev_name = pci_name(pvt->dram_f2_ctl);
|
|
mci->ctl_page_to_phys = NULL;
|
|
|
|
/* IMPORTANT: Set the polling 'check' function in this module */
|
|
mci->edac_check = amd64_check;
|
|
|
|
/* memory scrubber interface */
|
|
mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
|
|
mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
|
|
}
|
|
|
|
/*
|
|
* Init stuff for this DRAM Controller device.
|
|
*
|
|
* Due to a hardware feature on Fam10h CPUs, the Enable Extended Configuration
|
|
* Space feature MUST be enabled on ALL Processors prior to actually reading
|
|
* from the ECS registers. Since the loading of the module can occur on any
|
|
* 'core', and cores don't 'see' all the other processors ECS data when the
|
|
* others are NOT enabled. Our solution is to first enable ECS access in this
|
|
* routine on all processors, gather some data in a amd64_pvt structure and
|
|
* later come back in a finish-setup function to perform that final
|
|
* initialization. See also amd64_init_2nd_stage() for that.
|
|
*/
|
|
static int amd64_probe_one_instance(struct pci_dev *dram_f2_ctl,
|
|
int mc_type_index)
|
|
{
|
|
struct amd64_pvt *pvt = NULL;
|
|
int err = 0, ret;
|
|
|
|
ret = -ENOMEM;
|
|
pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
|
|
if (!pvt)
|
|
goto err_exit;
|
|
|
|
pvt->mc_node_id = get_node_id(dram_f2_ctl);
|
|
|
|
pvt->dram_f2_ctl = dram_f2_ctl;
|
|
pvt->ext_model = boot_cpu_data.x86_model >> 4;
|
|
pvt->mc_type_index = mc_type_index;
|
|
pvt->ops = family_ops(mc_type_index);
|
|
pvt->old_mcgctl = 0;
|
|
|
|
/*
|
|
* We have the dram_f2_ctl device as an argument, now go reserve its
|
|
* sibling devices from the PCI system.
|
|
*/
|
|
ret = -ENODEV;
|
|
err = amd64_reserve_mc_sibling_devices(pvt, mc_type_index);
|
|
if (err)
|
|
goto err_free;
|
|
|
|
ret = -EINVAL;
|
|
err = amd64_check_ecc_enabled(pvt);
|
|
if (err)
|
|
goto err_put;
|
|
|
|
/*
|
|
* Key operation here: setup of HW prior to performing ops on it. Some
|
|
* setup is required to access ECS data. After this is performed, the
|
|
* 'teardown' function must be called upon error and normal exit paths.
|
|
*/
|
|
if (boot_cpu_data.x86 >= 0x10)
|
|
amd64_setup(pvt);
|
|
|
|
/*
|
|
* Save the pointer to the private data for use in 2nd initialization
|
|
* stage
|
|
*/
|
|
pvt_lookup[pvt->mc_node_id] = pvt;
|
|
|
|
return 0;
|
|
|
|
err_put:
|
|
amd64_free_mc_sibling_devices(pvt);
|
|
|
|
err_free:
|
|
kfree(pvt);
|
|
|
|
err_exit:
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* This is the finishing stage of the init code. Needs to be performed after all
|
|
* MCs' hardware have been prepped for accessing extended config space.
|
|
*/
|
|
static int amd64_init_2nd_stage(struct amd64_pvt *pvt)
|
|
{
|
|
int node_id = pvt->mc_node_id;
|
|
struct mem_ctl_info *mci;
|
|
int ret, err = 0;
|
|
|
|
amd64_read_mc_registers(pvt);
|
|
|
|
ret = -ENODEV;
|
|
if (pvt->ops->probe_valid_hardware) {
|
|
err = pvt->ops->probe_valid_hardware(pvt);
|
|
if (err)
|
|
goto err_exit;
|
|
}
|
|
|
|
/*
|
|
* We need to determine how many memory channels there are. Then use
|
|
* that information for calculating the size of the dynamic instance
|
|
* tables in the 'mci' structure
|
|
*/
|
|
pvt->channel_count = pvt->ops->early_channel_count(pvt);
|
|
if (pvt->channel_count < 0)
|
|
goto err_exit;
|
|
|
|
ret = -ENOMEM;
|
|
mci = edac_mc_alloc(0, CHIPSELECT_COUNT, pvt->channel_count, node_id);
|
|
if (!mci)
|
|
goto err_exit;
|
|
|
|
mci->pvt_info = pvt;
|
|
|
|
mci->dev = &pvt->dram_f2_ctl->dev;
|
|
amd64_setup_mci_misc_attributes(mci);
|
|
|
|
if (amd64_init_csrows(mci))
|
|
mci->edac_cap = EDAC_FLAG_NONE;
|
|
|
|
amd64_enable_ecc_error_reporting(mci);
|
|
amd64_set_mc_sysfs_attributes(mci);
|
|
|
|
ret = -ENODEV;
|
|
if (edac_mc_add_mc(mci)) {
|
|
debugf1("failed edac_mc_add_mc()\n");
|
|
goto err_add_mc;
|
|
}
|
|
|
|
mci_lookup[node_id] = mci;
|
|
pvt_lookup[node_id] = NULL;
|
|
|
|
/* register stuff with EDAC MCE */
|
|
if (report_gart_errors)
|
|
amd_report_gart_errors(true);
|
|
|
|
amd_register_ecc_decoder(amd64_decode_bus_error);
|
|
|
|
return 0;
|
|
|
|
err_add_mc:
|
|
edac_mc_free(mci);
|
|
|
|
err_exit:
|
|
debugf0("failure to init 2nd stage: ret=%d\n", ret);
|
|
|
|
amd64_restore_ecc_error_reporting(pvt);
|
|
|
|
if (boot_cpu_data.x86 > 0xf)
|
|
amd64_teardown(pvt);
|
|
|
|
amd64_free_mc_sibling_devices(pvt);
|
|
|
|
kfree(pvt_lookup[pvt->mc_node_id]);
|
|
pvt_lookup[node_id] = NULL;
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
static int __devinit amd64_init_one_instance(struct pci_dev *pdev,
|
|
const struct pci_device_id *mc_type)
|
|
{
|
|
int ret = 0;
|
|
|
|
debugf0("(MC node=%d,mc_type='%s')\n", get_node_id(pdev),
|
|
get_amd_family_name(mc_type->driver_data));
|
|
|
|
ret = pci_enable_device(pdev);
|
|
if (ret < 0)
|
|
ret = -EIO;
|
|
else
|
|
ret = amd64_probe_one_instance(pdev, mc_type->driver_data);
|
|
|
|
if (ret < 0)
|
|
debugf0("ret=%d\n", ret);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void __devexit amd64_remove_one_instance(struct pci_dev *pdev)
|
|
{
|
|
struct mem_ctl_info *mci;
|
|
struct amd64_pvt *pvt;
|
|
|
|
/* Remove from EDAC CORE tracking list */
|
|
mci = edac_mc_del_mc(&pdev->dev);
|
|
if (!mci)
|
|
return;
|
|
|
|
pvt = mci->pvt_info;
|
|
|
|
amd64_restore_ecc_error_reporting(pvt);
|
|
|
|
if (boot_cpu_data.x86 > 0xf)
|
|
amd64_teardown(pvt);
|
|
|
|
amd64_free_mc_sibling_devices(pvt);
|
|
|
|
kfree(pvt);
|
|
mci->pvt_info = NULL;
|
|
|
|
mci_lookup[pvt->mc_node_id] = NULL;
|
|
|
|
/* unregister from EDAC MCE */
|
|
amd_report_gart_errors(false);
|
|
amd_unregister_ecc_decoder(amd64_decode_bus_error);
|
|
|
|
/* Free the EDAC CORE resources */
|
|
edac_mc_free(mci);
|
|
}
|
|
|
|
/*
|
|
* This table is part of the interface for loading drivers for PCI devices. The
|
|
* PCI core identifies what devices are on a system during boot, and then
|
|
* inquiry this table to see if this driver is for a given device found.
|
|
*/
|
|
static const struct pci_device_id amd64_pci_table[] __devinitdata = {
|
|
{
|
|
.vendor = PCI_VENDOR_ID_AMD,
|
|
.device = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
|
|
.subvendor = PCI_ANY_ID,
|
|
.subdevice = PCI_ANY_ID,
|
|
.class = 0,
|
|
.class_mask = 0,
|
|
.driver_data = K8_CPUS
|
|
},
|
|
{
|
|
.vendor = PCI_VENDOR_ID_AMD,
|
|
.device = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
|
|
.subvendor = PCI_ANY_ID,
|
|
.subdevice = PCI_ANY_ID,
|
|
.class = 0,
|
|
.class_mask = 0,
|
|
.driver_data = F10_CPUS
|
|
},
|
|
{
|
|
.vendor = PCI_VENDOR_ID_AMD,
|
|
.device = PCI_DEVICE_ID_AMD_11H_NB_DRAM,
|
|
.subvendor = PCI_ANY_ID,
|
|
.subdevice = PCI_ANY_ID,
|
|
.class = 0,
|
|
.class_mask = 0,
|
|
.driver_data = F11_CPUS
|
|
},
|
|
{0, }
|
|
};
|
|
MODULE_DEVICE_TABLE(pci, amd64_pci_table);
|
|
|
|
static struct pci_driver amd64_pci_driver = {
|
|
.name = EDAC_MOD_STR,
|
|
.probe = amd64_init_one_instance,
|
|
.remove = __devexit_p(amd64_remove_one_instance),
|
|
.id_table = amd64_pci_table,
|
|
};
|
|
|
|
static void amd64_setup_pci_device(void)
|
|
{
|
|
struct mem_ctl_info *mci;
|
|
struct amd64_pvt *pvt;
|
|
|
|
if (amd64_ctl_pci)
|
|
return;
|
|
|
|
mci = mci_lookup[0];
|
|
if (mci) {
|
|
|
|
pvt = mci->pvt_info;
|
|
amd64_ctl_pci =
|
|
edac_pci_create_generic_ctl(&pvt->dram_f2_ctl->dev,
|
|
EDAC_MOD_STR);
|
|
|
|
if (!amd64_ctl_pci) {
|
|
pr_warning("%s(): Unable to create PCI control\n",
|
|
__func__);
|
|
|
|
pr_warning("%s(): PCI error report via EDAC not set\n",
|
|
__func__);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int __init amd64_edac_init(void)
|
|
{
|
|
int nb, err = -ENODEV;
|
|
|
|
edac_printk(KERN_INFO, EDAC_MOD_STR, EDAC_AMD64_VERSION "\n");
|
|
|
|
opstate_init();
|
|
|
|
if (cache_k8_northbridges() < 0)
|
|
goto err_exit;
|
|
|
|
err = pci_register_driver(&amd64_pci_driver);
|
|
if (err)
|
|
return err;
|
|
|
|
/*
|
|
* At this point, the array 'pvt_lookup[]' contains pointers to alloc'd
|
|
* amd64_pvt structs. These will be used in the 2nd stage init function
|
|
* to finish initialization of the MC instances.
|
|
*/
|
|
for (nb = 0; nb < num_k8_northbridges; nb++) {
|
|
if (!pvt_lookup[nb])
|
|
continue;
|
|
|
|
err = amd64_init_2nd_stage(pvt_lookup[nb]);
|
|
if (err)
|
|
goto err_2nd_stage;
|
|
}
|
|
|
|
amd64_setup_pci_device();
|
|
|
|
return 0;
|
|
|
|
err_2nd_stage:
|
|
debugf0("2nd stage failed\n");
|
|
|
|
err_exit:
|
|
pci_unregister_driver(&amd64_pci_driver);
|
|
|
|
return err;
|
|
}
|
|
|
|
static void __exit amd64_edac_exit(void)
|
|
{
|
|
if (amd64_ctl_pci)
|
|
edac_pci_release_generic_ctl(amd64_ctl_pci);
|
|
|
|
pci_unregister_driver(&amd64_pci_driver);
|
|
}
|
|
|
|
module_init(amd64_edac_init);
|
|
module_exit(amd64_edac_exit);
|
|
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
|
|
"Dave Peterson, Thayne Harbaugh");
|
|
MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
|
|
EDAC_AMD64_VERSION);
|
|
|
|
module_param(edac_op_state, int, 0444);
|
|
MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
|